
Blitzcrank: Fast Semantic Compression for In-memory Online
Transaction Processing

Yiming Qiao
Tsinghua University

qiaoym21@mails.tsinghua.edu.cn

Yihan Gao
gaoyihan@gmail.com

Huanchen Zhang∗
Tsinghua University

huanchen@tsinghua.edu.cn

ABSTRACT

We present Blitzcrank, a high-speed semantic compressor de-
signed for OLTP databases. Previous solutions are inadequate for
compressing row-stores: they suffer from either low compression
factor due to a coarse compression granularity or suboptimal per-
formance due to the inefficiency in handling dynamic data sets. To
solve these problems, we first propose novel semantic models that
support fast inferences and dynamic value set for both discrete and
continuous data types. We then introduce a new entropy encoding
algorithm, called delayed coding, that achieves significant improve-
ment in the decoding speed compared to modern arithmetic coding
implementations. We evaluate Blitzcrank in both standalone mi-
crobenchmarks and a multicore in-memory row-store using the
TPC-C benchmark. Our results show that Blitzcrank achieves a
sub-microsecond latency for decompressing a random tuple while
obtaining high compression factors. This leads to an 85% memory
reduction in the TPC-C evaluation with a moderate (19%) through-
put degradation. For data sets larger than the available physical
memory, Blitzcrank help the database sustain a high throughput
for more transactions before the I/O overhead dominates.

PVLDB Reference Format:

Yiming Qiao, Yihan Gao, and Huanchen Zhang∗. Blitzcrank: Fast Semantic
Compression for In-memory Online Transaction Processing. PVLDB,
17(10): 2528 - 2540, 2024.
doi:10.14778/3675034.3675044

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/YimingQiao/Blitzcrank.

1 INTRODUCTION

In-memory database management systems (DBMSs) offer low la-
tency and high throughput for online transaction processing (OLTP)
workloads when the working set fits in memory [50–52]. For data
sets beyond physical memory, their performance degrades quickly
because of expensive random I/Os to fetch tuples. Although DRAM
price has been decreasing, memory is still a limiting resource be-
cause of the increasing price gap between DRAM and SSDs [26, 61].

Applying compression can increase the capacity of in-memory
DBMSs with the same hardware cost, thus reducing or even elim-
inating disk accesses to improve performance [56, 57]. However,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 10 ISSN 2150-8097.
doi:10.14778/3675034.3675044

Figure 1: DB Size vs. Latency - Blitzcrank makes the size-
latency trade-offs more attractive compared to other tools in TPC-C.

most existing compression techniques are designed for column-
stores: they target read-mostly workloads with large batched pro-
cessing [7, 8, 11, 12, 20, 23, 32, 34, 43]. To compress in-memory
row-stores efficiently, the compression schemes must satisfy addi-
tional requirements. First, random access to tuples must be fast (e.g.,
sub-microsecond) because OLTP applications demand low query la-
tencies [58, 59]. For example, Amazon found that a 100 ms increase
in latency would lead to a 1% drop in sales [27, 35]. Second, the com-
pression algorithms must handle newly inserted/updated tuples
efficiently because OLTP workloads are typically write-heavy [49].
A frequent reconstruction of the compression model is usually unac-
ceptable because it brings too much performance overhead [44, 46].
Unfortunately, existing compression schemes are inadequate when
serving OLTP workloads: they suffer from either low compression
factor (i.e. the original size divided by the compressed size) due to
a coarse compression granularity or suboptimal performance due
to the inefficiency in handling dynamic data sets.

Coarse Retrieval Granularity. Modern general-purpose block
compression algorithms such as Zstandard have high decompres-
sion throughput (up to 500MB/s). They are widely used in operating
systems, databases, file systems, and computer networks [6, 36, 55].
However, to access a single tuple, they must decompress the entire
compression block [62], causing high random-access latency. One
solution is to compress each tuple individually, but the compression
factor suffers because the algorithms prefer a longer context to
create an effective dictionary in the sliding window [62, 63].

Inefficient Handling of New Tuples. The classic Raman’s
approach [46] concatenates Huffman-coded values into variable-
length tuples and then reorders the rows and columns so that it
achieves a better compression factor using delta encoding. Although
this solution compresses row-oriented data well, it cannot compress

∗Huanchen Zhang is also affiliated with Shanghai Qi Zhi Institute.

2528

https://doi.org/10.14778/3675034.3675044
https://github.com/YimingQiao/Blitzcrank
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3675034.3675044
https://www.acm.org/publications/policies/artifact-review-and-badging-current

unseen values unless it initiates an expensive model reconstruction
because such a solution relies on static dictionaries.

The above approaches are considered “syntactic” because they
treat the uncompressed data simply as consecutive bytes [38]. Se-
mantic compression, on the other hand, leverages the high-level
semantics in a relational table, such as value distributions and
functional dependencies between columns to achieve better com-
pression [46]. Unlike the above syntactic methods that rely on static
dictionaries, the semantic approach can use the same probability
models to compress new tuples effectively as long as the attribute
values follow the modeled distributions [10]. Existing semantic
compression methods, however, provide limited support for differ-
ent data types, and their model inferences are slow. For example,
Squish and the more recent DeepSqueeze take 324 and 127 seconds,
respectively, to compress a 75 MB relational table [25, 28].

In this paper, we show that semantic compression can be fast,
and it has potential beyond large archive compression. We present
Blitzcrank, a high-speed semantic compressor designed for
OLTP databases. Blitzcrank improves compression through both
data modeling and data encoding [15].
• For data modeling, Blitzcrank introduces novel semantic mod-

els that allow fast encoding/decoding for both discrete- and
continuous-value columns. It takes Blitzcrank less than one
second to compress the aforementioned 75 MB table.

• For data encoding, we propose delayed coding, a novel fine-
grained encoding algorithm that offers near-entropy compres-
sion as with Arithmetic Coding [33] while achieving a faster
decompression speed compared to the modern asymmetric num-
ber system (ANS) [22].

We first compared Blitzcrank against state-of-the-art com-
pressors that apply to row-stores, including Zstandard [17] and Ra-
man’s approach [46], in standalone microbenchmarks based on real
data sets. Blitzcrank achieves a sub-microsecond latency (fastest
among the baselines) for decompressing a random tuple while ob-
taining high compression factors. We then integrated Blitzcrank,
along with baseline compressors, into the in-memory OLTP data-
base, Silo [51] and evaluated it using the TPC-C benchmark [19].
The results are summarized in Figure 1. Compared to uncompressed
tables, Blitzcrank reduces memory usage by 85% with a mod-
erate (19%) throughput degradation. Compared to using Zstan-
dard, Blitzcrank achieves a 2.4× higher compression factor and
is 76% faster. When the data set exceeds the physical memory limit,
Blitzcrank greatly helps the database sustain high throughput
and execute 4× more transactions within the same amount of time.

The paper makes the following contributions. First, we iden-
tify the inefficiency of existing compression algorithms for OLTP
databases from both data modeling and data encoding perspectives.
Second, we introduce novel semantic models designed for fast in-
ferences for discrete and continuous data types. Third, we propose
the new delayed coding that is significantly faster than variants
of arithmetic coding while achieving near-entropy compression.
Finally, we build Blitzcrank based on the above technologies
and show that semantic compression can be fast enough to make
trade-offs between performance and space much more attractive
than previous solutions when integrated into an in-memory OLTP
database, such as Silo [51].

0.2 0.7 1.0
a b c

0.3 0.55 0.7
ba bb bc

0.2 0.22 0.27 0.3
baa bab bac

() 0.2P X a= =

() 0.5P X b= =

() 0.3P X c= =

 [0.0, 0.2)

 [0.2, 0.7)

 [0.7, 1.0)

Frequency Interval

Codes: (.001111)2

Figure 2: AnExample ofArithmetic Coding - Arithmetic coding
maps each possible string to disjoint probability intervals.

0.0 0.7
1.0

Taylor Alex

0.7 1.0
Alex, Female Alex, Male

0.85

0.0 0.7

Taylor, Female Taylor, Male

0.56

(|) 0.5P Female Name Alex= =

(|) 0.5P Male Name Alex= =

Codes: (.0)2 (|) 0.2P Male Name Taylor= =

(|) 0.8P Female Name Taylor= =

Figure 3: An Example of Column Correlation - Probabilities of
column “gender” depends on the “name” column value.

2 PRELIMINARIES

This section provides the necessary background information to
understand the design of Blitzcrank. Section 2.1 describes the
classic arithmetic coding, which is the basis of our proposed delayed
coding. Section 2.1 introduces the existing structure learning tech-
niques adopted in Blitzcrank to leverage functional dependencies
between columns for compression.

2.1 Arithmetic Coding

Arithmetic coding is one of the most widely used entropy codings
for lossless compression [15, 33]. Unlike Huffman coding [42] that
encodes symbols individually, arithmetic coding compresses the
entire message into a single fraction 0 ≤ 𝑞 < 1 with arbitrary
precision. Compared to Huffman coding, arithmetic coding can
achieve a higher compression factor. Arithmetic coding represents
the current information as an interval, defined by two numbers
(initially [0, 1)). Each encoding step in arithmetic coding divides
the current interval into smaller sub-intervals according to the
probability distribution of the alphabet and selects the one that
represents the next symbol to be encoded. For example, as shown
in Figure 2, the probability distribution of alphabet {𝑎, 𝑏, 𝑐} is 0.2,
0.5, and 0.3, respectively. To encode a message “𝑏𝑎𝑏”, we divide the
initial interval [0, 1) into three sub-intervals [0, 0.2), [0.2, 0.7), and
[0.7, 1) and select [0.2, 0.7) to represent “𝑏”. To encode the next
symbol “𝑎”, we further divide [0.2, 0.7) into [0.2, 0.3), [0.3, 0.55),
and [0.55, 0.7) based on the symbol probabilities and update the
current interval to [0.2, 0.3) which now represents “𝑏𝑎”. This pro-
cess continues until we reach the end of the message and obtain
the final interval [0.22, 0.27). We then select a fraction 𝑞 within
the final interval that has the shortest binary representation (e.g.,
𝑞 = (.001111)2) as the message’s code.

2.2 Structure Learning

Structure learning refers to the process of identifying correlations
between columns to achieve better compression [10, 21, 25, 28].
For example, the gender column is often highly correlated with
the name column in a relation. As depicted in Figure 3, 80% of
Taylors are female, while 50% of Alexes are male. Instead of us-
ing static probabilities (e.g., 50% male and 50% female) for the

2529

Sampled

Records

Structure Learning

Inv-Translate

Translate

Models Generation

with Full Table

Z
o

o
m

-i
n

Probability Intervals

Delayed Coding

Semantic Learner

Attribute Encoder Tuple Encoder

A Tuple in Ordering S

Compression Blocks

Dpr.
Dpr.

Cpr.

TableTable

Cpr.

Cpr.

Bidirectional Mapping

Schema

One Block

3 1 2{ , , }M P P P=

3 1 2, ,P P P

Discrete ModelDiscrete Model

Time-seriesTime-seriesStringString

Foundational Models

Extensions

JSONJSON

16-bit

code

Dpr.

...

Continuous ModelContinuous Model
Column Order

3v

3v

1v

1v

2v

2v

2v

3 1 3 2 3 1, (), (,)P P v P v v

Cond. Probabilities

3 1 2{ , , }S x x x=

Figure 4: Blitzcrank- Semantic Learner (SL), Attribute Encoder (AE), and Tuple Encoder (TE) are three components of Blitzcrank.

gender column, we model its distribution using probabilities condi-
tioned on the name column: 𝑃gender (Female|Name = Taylor) = 0.8,
𝑃gender (Female|Name = Alex) = 0.5. Then, the more common tu-
ple (Female, Taylor) is mapped to a larger interval [0, 0.56) with a
short binary code (.0)2, thus achieving better compression.

We use a Bayesian network (BN) to learn the best column or-
dering 𝑆 (e.g., {name, gender}) for compression. The output also
includes a model set 𝑀 , where each model is a probability distribu-
tion 𝑃𝑥 for column 𝑥 conditioned on the values of all the columns
preceding 𝑥 in 𝑆 . Determining the optimal ordering 𝑆 is an NP-hard
problem [30]. We, therefore, use a greedy algorithm [25] that selects
the column that produces the smallest compressed size conditioned
on the existing columns in 𝑆 for each iteration.

3 OVERVIEW

The goal of Blitzcrank is to reduce the memory footprint of an
in-memory OLTP database while imposing as small performance
overhead as possible. To achieve this, Blitzcrank must be able (1)
to handle newly inserted tuples with unseen values efficiently and
(2) to deliver low latency and high compression factor for individual
tuples. For (1), we build semantic models that describe the values’
(conditional) probability distributions instead of using static value
dictionaries (Section 4). For (2), we propose delayed coding that
offers fast and fine-grained encoding/decoding with near-entropy
compression (Section 5). Blitzcrank is optimized for single-tuple
retrieval. A larger compression granularity may improve the overall
compression factor, but it introduces decompression overhead for
point accesses common in OLTP workloads.

Blitzcrank sits above the table storage to compress and decom-
press tuples while remaining transparent to the execution engine of
an OLTP database. When the execution engine inserts a tuple into a
relation, Blitzcrank compresses that tuple before sending it to the
table storage. Upon receiving a tuple-fetching request, Blitzcrank
retrieves the compressed tuple from storage and decompresses it.
The execution engine then consumes the tuple and executes the
query without being aware of Blitzcrank.

As shown in Figure 4, Blitzcrank consists of three compo-
nents: Semantic Learner (SL), Attribute Encoder (AE), and Tuple
Encoder (TE). Specifically, the SL determines the compression or-
dering for the columns using structure learning and generates con-
ditional probability models for the AE. When the tables are small,
Blitzcrank leaves them uncompressed. SL is triggered when the

size of a table reaches a predefined threshold (default: 216 rows). For
compression, the AE takes in a tuple and translates the value of each
attribute into an interval in [0, 1) according to the models from SL.
The AE then sends the sequence of intervals to the Tuple Encoder
which uses delayed coding to produce a compressed record with
a near-optimal size. For decompression, the tuple is first decoded
into 16-bit codes at TE. The AE then invokes the Inv-Translate
(which refers to the probability models) to recover each tuple value.

Semantic Learner approaches the optimal column compression
ordering 𝑆 and a set of models 𝑀 through a greedy algorithm of
structure learning, as described in Section 2.1. To speed up the struc-
ture learning on large tables, we perform the algorithm on a set of
randomly selected tuples from the table. Once the column ordering
𝑆 is obtained, the SL further scans the full table to generate accurate
conditional probability models 𝑃𝑥 ∈ 𝑀 . 𝑃𝑥 is implemented as an
unordered map from each value combination of the proceeding
attribute models to a probability distribution 𝑝𝑖 of attribute 𝑥 . We
refer to 𝑝𝑖 as a semantic model. Semantic models can compress
values unseen before because they estimate the value distribution
rather than statically mapping values to codes in a dictionary. We
introduce two fundamental types of semantic models optimized for
decompression speed in Section 4.

Attribute Encoder converts each value into an interval and
vice versa according to the semantic models. Translate maps an
attribute value 𝑣 to an interval [𝑙, 𝑟), 0 ≤ 𝑙 < 𝑟 ≤ 1 (symbol-
to-interval), while Inv-Translate takes in a code 𝑠 ∈ [𝑙, 𝑟) and
recovers the attribute value 𝑣 (code-to-symbol). Inv-Translate
is critical to the decompression performance. Classic arithmetic
coding performs a binary search to determine the matching interval
[𝑙, 𝑟) for a code 𝑠 with a time complexity of 𝑂 (log𝑁) where 𝑁 is
the number of unique values in a column [38]. We optimize this
procedure to constant time in Blitzcrank, as detailed in Section 4.1.

Tuple Encoder receives a sequence of intervals representing
each value within a tuple and compresses them into a block of 16-
bit integers using delayed coding. At a high level, delayed coding
uses a 16-bit unsigned integer 𝑠int to encode each interval [𝑙, 𝑟)
such that 𝑠int/216 ∈ [𝑙, 𝑟). These integers are selected judiciously so
that some integer codes are stored implicitly using the redundant
information of the other integer codes. In this way, delayed coding
not only supports fast decoding (because of the fixed-length codes)
but also achieves near-entropy compression. We introduce delayed
coding in detail in Section 5.

2530

1/3 10 2/31/8 7/12

“b”“b”“c” “a” “b”

Y (1) w1 = 3/8 w2 = 3/4 w3 = 0

α1 β1 α2 β2 α3 = β3Frequency

Y (2) Y (3)

() 1/ 4

() 5 / 8

() 1/ 8

P X a

P X b

P X c

= =

= =

= =

Figure 5: Interval Allocation By Pairing Symbols - There are
three interval pairs {𝑌 (1) , 𝑌 (2) , 𝑌 (3) }. In each pair, two symbols
{(𝛼𝑁 , 𝛽𝑁)} and the symbol boundary {𝑤𝑁 } are saved.

4 SEMANTIC MODELS

A semantic model maps a value to an interval based on the esti-
mated (conditional) probability distribution of the values within a
column. In this section, we first introduce two fundamental models
for discrete/categorical columns and continuous/numeric columns,
respectively. We then show in Section 4.3 how to construct models
for other data types (e.g., string) using the fundamental models.

4.1 Discrete/Categorical Model

As in classic entropy encodings, we construct the semantic model
for a discrete/categorical column by counting the frequency of each
symbol (i.e., value) and computing their cumulative distribution
function (CDF). Each symbol is then mapped to its corresponding
probability interval on the CDF. For example, the semanticmodel for
column {𝑎, 𝑏, 𝑏, 𝑎, 𝑐, 𝑏, 𝑏, 𝑏} is {𝑎 ↔ [0, 0.25), 𝑏 ↔ [0.25, 0.875), 𝑐 ↔
[0.875, 1)}. Inv-Translate a code (e.g., (.01)2) back to its symbol
(e.g., “𝑏”) requires a binary search to find the interval that contains
the code. The logarithmic complexity slows down the decompres-
sion, especially when the number of distinct values of a categorical
column is large. We, therefore, propose a constant-time algorithm
for the Inv-Translate function, inspired by the alias method [31].

Constant-Time Inv-Translate. Let 𝜋1, 𝜋2, · · · , 𝜋𝑁 be the in-
terval length (i.e., probability) of each of the 𝑁 symbols. Given a
code 0 ≤ 𝑠 < 1, if 𝜋1 = 𝜋2 = · · · = 𝜋𝑁 , then 𝑠 belongs to the
⌊𝑠 · 𝑁 ⌋th interval. Therefore, the key to achieving constant-time
Inv-Translate is to “create” a uniform distribution. The core idea
of the algorithm is to pair the intervals so that the combined proba-
bility of each pair forms a uniform distribution.

Suppose we want to create 𝑁 pairs, each having a combined
interval length of 1/𝑁 . At each iteration of the algorithm, we pair
the shortest interval with the longest one in the remaining intervals.
When their combined interval length is greater than 1/𝑁 , we split
the longer interval in two and put the exceeded part back into the
interval collection for further pairing. The algorithm terminates
when there is ≤ 1 interval left in the collection. Figure 5 shows an
example where the interval for symbol “𝑏” is divided and mapped
to three pairs. The following theorem proves the validity of this
algorithm for any discrete probability distribution.

Theorem 1. Every probability vector 𝜋1, · · · , 𝜋𝑁 , can be expressed
as an equiprobable mixture of 𝑁 two-point distributions. That is,
there are 𝑁 pairs of integers (𝛼1, 𝛽1), · · · , (𝛼𝑁 , 𝛽𝑁) and probabilities
𝑤1, · · · ,𝑤𝑁 such that

𝜋𝑖 = 1/𝑁 ·
𝑁∑︂
𝑗=1
(𝑤 𝑗1{𝛼 𝑗=𝑖 } + (1 −𝑤 𝑗)1{𝛽 𝑗=𝑖 }) = 1/𝑁 ·

𝑁∑︂
𝑗=1

𝑌
(𝑗)
𝑖

.

for 1 ≤ 𝑖 ≤ 𝑁 , where 𝑌 (1) , · · · , 𝑌 (𝑁) are two-point distributions.

Algorithm 1: Inv-Translate
1 Given {(𝛼𝑁 , 𝛽𝑁)} and {𝑤𝑁 } defined in Theorem 1.

Function Inv-Translate(s):
2 𝑐 = 𝑠 · 𝑁 /* 𝑠 ∈ [0, 1) */

3 𝑗 = ⌊𝑐⌋ + 1 /* Determine the index of 𝑌 */

4 𝑞 = 𝑐 − ⌊𝑐⌋ /* Get the position in 𝑌 (𝑗) */

5 return (𝑞 < 𝑤 𝑗) ? 𝛼 𝑗 : 𝛽 𝑗

Proof. See Appendix B in our technical report [45]. □

The constant-time Inv-Translate function is presented in Al-
gorithm 1. Given the binary mixtures {𝑌 (𝑗) } with parameters
{(𝛼𝑁 , 𝛽𝑁)} and {𝑤𝑁 } defined in Theorem 1, Inv-Translate first
computes the index (i.e., 𝑗 = ⌊𝑠 · 𝑁 ⌋ + 1) of the binary mixture 𝑌 (𝑗)
that contains the input code 𝑠 . Then the function determines the
code’s position within 𝑌 (𝑗) and returns the corresponding symbol.

4.2 Continuous/Numeric Model

Previous semantic compression algorithms use a bisection method
[25, 54] to compress continuous values such as floating-point num-
bers. This approach, however, generates many low-entropy inter-
vals, thus affecting the efficiency of the subsequent Tuple Encoding.
Blitzcrank, therefore, introduces a novel two-level quantization
model for continuous-value columns. This model not only supports
arbitrary precision to guarantee lossless compression but also lever-
ages the distribution skew in the column for better compression.

Two-Level Quantization Model. The first-level quantization
is based on an equi-width histogram of the values in a column.
The goal at this level is to maximize compression by assigning
larger intervals (i.e., shorter codes) to more frequent value ranges.
Specifically, we divide the values into a predefined 𝑇 (e.g., 𝑇 = 512)
disjoint value ranges, each having a bucket width of𝑤 = (𝑣max −
𝑣min)/𝑇 , where 𝑣max/𝑣min is the estimated (or obtained directly
from table statistics) maximum/minimum value of the column. We
then obtain the frequency of each bucket by scanning the column
once, and we assign each bucket 𝑖 an interval [𝑙𝑖 , 𝑟𝑖) proportional
to its frequency, similar to the categorical model.

To guarantee a lossless compression (i.e., to distinguish between
the values within a bucket), we apply a second-level quantization
where we divide the value range of the bucket equally into 𝐺 seg-
ments so that the width of each segment is smaller than or equal to
the column’s required precision 𝑝 . We set 𝑝 = 10−7 and 𝑝 = 10−17
for the float and double types, respectively. Besides the bucket’s
interval [𝑙𝑖 , 𝑟𝑖), each segment 𝑗 in the bucket is assigned another
interval [𝑙𝜖 𝑗 , 𝑟𝜖 𝑗) with an equal length of 1/𝐺 . If the user specifies a
precision requirement for a float/double column (e.g., 2 decimal
places), we enable lossy compression by adjusting 𝑝 accordingly
(e.g., 𝑝 = 10−2) to achieve better compression.

Given a value 𝑣min ≤ 𝑣 < 𝑣max, the Translate function com-
putes its first-level bucket index 𝑖 and its second-level offset 𝑗 ac-
cording to the value-range division because 𝑣 can be uniquely de-
composed as 𝑖 ·𝑤 + 𝑗 ·𝑝 ≤ 𝑣−𝑣min < 𝑖 ·𝑤 + (𝑗 +1) ·𝑝 , where 𝑗 ·𝑝 < 𝑤 .
𝑣 is then converted into two intervals: [𝑙𝑖 , 𝑟𝑖) and [𝑙𝜖 𝑗 , 𝑟𝜖 𝑗). In cases
where 𝑣 is an outlier (i.e., 𝑣 < 𝑣min or 𝑣 ≥ 𝑣max), the algorithm falls

2531

Global Dictionary

vldb
vldb1

sigmod2
20183

https://doi.org/10.24963/vldb.2019/14

Local Dictionary

(empty)

https://doi.org/10.24963/vldb.2019/14

Prefix Dictionary

(empty)

1. Check Prefix Dict.
2. Split

3. Check Global Dict.

https://doi.org/10.24963/

https://doi.org/10.24963/sigmoid.2018/118

sigmod.2018/118 sigmod 2018 118

n-order Markov

Figure 6: String Model - The URL sample is from the DBLP.

back to the slow traditional bisection method. Such a fall back has
negligible impact on performance because outliers are usually rare.
To recover a value (a value range ≤ the column precision 𝑝 , to be
precise), we invoke the Inv-Translate function twice on [𝑙𝑖 , 𝑟𝑖)
and [𝑙𝜖 𝑗 , 𝑟𝜖 𝑗), respectively.

4.3 Composite Models

Our foundational models can be combined to compress complex
attributes. We implement a string model as the example, as shown
in Figure 6. It includes a prefix dictionary and a global dictionary.
For words not covered by either dictionary, we use a Markov model
to encode them letter-by-letter [40].

Efficient Blitzcrank Integration with Intervals. The prefix
dictionary compresses strings with similar prefixes and keeps a
queue of the latest 𝐾 (e.g., 𝐾 = 4) strings. Each string is analyzed to
find the index 𝑖 (ranging from 0 to 𝐾 − 1) of a previous string in the
queue that shares the longest common prefix, and the countℎ (an in-
definite integer) of identical characters. We use a categorical model
and a numeric model to estimate 𝑖 and ℎ distributions, respectively.
Given a new string, the two models output intervals representing 𝑖
and ℎ. This approach of interval-based representation integrates
smoothly with the Blitzcrank Framework.

Adaptive Base Models for Enhanced Compression. Follow-
ing the prefix dictionary, the remaining substring is split into words
using delimiters like spaces and commas. This process involves
two models: (1) using a numerical model to count the words in
the given substring, and (2) using a categorical model to identify
each delimiter. Our model can leverage the skewed distribution
of word count and delimiter usage patterns for compression. For
example, most sentences have 3-10 words, and the space character
is the most frequent delimiter. The final technique is the global
dictionary, implemented as a categorical model. It stores words that
frequently occur in sentences and is used for dictionary encoding.

Besides the string model, we also design two models: one for
encoding JSON collections and another for time-series column en-
coding, with the latter utilizing the Autoregressive Moving Average
(ARMA) [13]. When applied to the data set Jena Climate [41], our
time-series model achieved a 38% better compression factor than
our standard numeric model.

5 DELAYED CODING

The attribute encoder generates a series of intervals, which can
be encoded into a bit stream by the arithmetic coding. However,
it is slow due to its variable-length codes and extensive floating-
point calculations. We propose the delayed coding to address these
issues. For ease of understanding, we assume that every symbol
can be represented by a single, continuous interval. We relax the
constraint in Section 5.6.

Algorithm 2: Inv-Translate with the Integer Probability
1 Given𝑚, {(𝛼𝑁 , 𝛽𝑁)}, {𝑤𝑁 } defined in Theorem 1, where

𝑁 = 2𝑚,𝑚 ∈ N+, and𝑤𝑖 is an 16-bit integer, for 𝑖 = 1, · · · , 𝑁 .
Function Inv-Translate(s):

2 𝑗 ← 𝑠 »(16 −𝑚) /* The higher 𝑚 bits */

3 𝑄 ← 𝑠 & (216−𝑚 − 1) /* The lower 16-𝑚 bits */

4 return (𝑄 < (𝑤 𝑗 »𝑚)) ? 𝛼 𝑗 : 𝛽 𝑗

5.1 Probability Representation

We begin by investigating fast algorithms to represent and compute
with probability intervals. Arithmetic coding is slow due to the
many interval product operations required. Recall the example in
Section 2.1, when entering a sub-interval of the current interval
based on the next symbol’s probability, we need to compute a
product of intervals. If we use a floating-point number to represent
the probability, the interval product ⊠ is defined as:

[𝑙𝑎, 𝑟𝑎) ⊠ [𝑙𝑏 , 𝑟𝑏) ≔ [𝑙𝑎 + (𝑟𝑎 − 𝑙𝑎) · 𝑙𝑏 , 𝑙𝑎 + (𝑟𝑎 − 𝑙𝑎) · 𝑟𝑏), (1)

where 0 ≤ 𝑙𝑎 < 𝑟𝑎 ≤ 1, 0 ≤ 𝑙𝑏 < 𝑟𝑏 ≤ 1. However, this design
leads to floating-point calculations and the risk of floating-point
underflow. An alternative is to use two integers𝑈 ,𝑑 to represent
the probability𝑈 /2𝑑 . In this way, checking for underflow is simply
inspecting the exponent of the denominator 𝑑 .

Integer-based Probability Intervals. In Blitzcrank, a prob-
ability is presented as a 16-bit integer 𝑈 , which logically repre-
sents the probability 𝑈 /216. In this paper, we use [𝐿, 𝑅), where
0 ≤ 𝐿, 𝑅 ≤ 216 are integers, to logically represent the interval
[𝐿/216, 𝑅/216). We choose to use 16 bits because using shorter inte-
gers increases the decoding overhead while using 32-bit or 64-bit
integers must handle integer overflow during multiplication. For
an interval whose length is smaller than 1/216 (e.g. [0, 1/232)), we
use the product of two or more intervals to represent it, i.e.

[0, 1/232) = [0, 1/216) ⊠ [0, 32768/216) → [0, 1), [0, 32768) .

Inv-Translate Becomes Faster. Although the code-to-symbol
in Algorithm 1 has constant time complexity, the “floor” opera-
tion slows it down. The integer-based probability can make the
Inv-Translate faster, replacing the “floor” operation with bitwise
operations. Algorithm 2 gives the new Inv-Translate algorithm
with integer-based probability. Note that both the {𝑤𝑁 } and the
input 𝑠 in Algorithm 2, using the integer-based probability, are
16-bit unsigned integers. Also, 𝑁 is always a power of two, a con-
dition that can be satisfied by adding placeholder symbols with a
frequency of 0 if necessary.

5.2 Options of Fixed-length Codes

We then introduce an algorithm to extract the code from an in-
terval based on our integer-based probability representation and
analyze the bits wasted in terms of code options. In Section 2.1,
we explained that for the final interval [0.22, 0.27) in arithmetic
coding, using just enough fractional digits to keep the number
within this interval is sufficient for encoding. However, this results
in variable-length codes, which can slow down decoding due to

2532

the inconsistent number of digits across intervals, requiring more
branch predictions and checks [47].

An approach to simplify the decoding process is to utilize a
fixed number of bits, such as 16 bits, for encoding each interval.
In this scenario, adopting integer-based probability, we define the
bidirectional mapping of a semantic model as follows:

symbol-to-interval : {𝑣1, · · · , 𝑣𝑁 } → {[𝐿𝑖 , 𝑅𝑖), 1 ≤ 𝑖 ≤ 𝑁 },
code-to-symbol : {𝑠 ∈ N, 0 ≤ 𝑠 < 216} → {𝑣1, · · · , 𝑣𝑁 },

where 𝑣𝑖 denotes a unique symbol in this model, allocated with a
disjoint interval [𝐿𝑖 , 𝑅𝑖), 𝐿𝑖 being the lower bound and 𝑅𝑖 being the
upper bound of the interval, for 1 ≤ 𝑖 ≤ 𝑁 . By converting the inter-
val [0.22, 0.27) to [14418, 17694) using integer-based probability, we
can encode it using any 16-bit integer within this range. However,
this method requires more than the 6 bits we use in the example of
Section 2.1. In fact, for an interval [𝐿, 𝑅), the probability of the event
it represents is (𝑅−𝐿)/216. Thus, its entropy is 16− log2 (𝑅−𝐿) bits,
and we waste log2 (𝑅 − 𝐿) bits if using 16 bits to encode it. Notice
that we have 𝑅 − 𝐿 code options for this interval. The selection of a
specific code option itself carries information. Since any of these
options can represent the interval [𝐿, 𝑅), we can use the options to
represent another interval partially.

5.3 Problem Formulation

Leveraging the concept of code options, we formalize the code ex-
traction problem as follows. Given a series of intervals [𝐿1, 𝑅1), · · · ,
[𝐿𝑛, 𝑅𝑛) with 𝑛 > 0 and 0 ≤ 𝐿𝑖 < 𝑅𝑖 ≤ 216, we can select a 16-bit
integer 𝑠𝑖 ∈ [𝐿𝑖 , 𝑅𝑖) to encode each interval. Then, can we represent
a distinct interval [𝐿∗, 𝑅∗) using a sequence (𝑠1, · · · , 𝑠𝑛)?

Consider a special case where each interval is of length 2 (i.e.,𝑅𝑖−
𝐿𝑖 = 2), we have two encoding options per interval: either 𝐿𝑖 or 𝐿𝑖+1.
These options can uniquely represent their respective intervals.
Using this binary decision for each interval, we can represent parts
of the distinct interval [𝐿∗, 𝑅∗). To fully encode [𝐿∗, 𝑅∗), we need
a sufficient number of intervals. If we have at least 16 intervals,
matching the 16 bits of 𝐿∗, complete representation is possible. The
encoding rule is simple: Let the code 𝑠𝑖 = 𝐿𝑖 if the 𝑖-th bit of 𝐿∗
is 0; otherwise, 𝑠𝑖 takes the value 𝐿𝑖 + 1. This way, the sequence
(𝑠1, · · · , 𝑠𝑛) encodes both the series of intervals and the interval
[𝐿∗, 𝑅∗), leveraging the binary encoding options of each interval.

Consider a general case where each interval’s length 𝑘𝑖 = 𝑅𝑖 −𝐿𝑖
varies within the range [1, 216). This means each interval [𝐿𝑖 , 𝑅𝑖)
has 𝑘𝑖 coding options: {𝐿𝑖 , 𝐿𝑖 + 1, · · · , 𝐿𝑖 + (𝑘𝑖 − 1)}. Any of these
codes can uniquely represent its interval. Moreover, these codes
can represent the distinct interval [𝐿∗, 𝑅∗) partially as well. In this
case, the 𝑖-th interval offers a digit in a base 𝑘𝑖 system. With 𝑛
such intervals, they collectively form a mixed radix (base) numeral
system [24], with bases {𝑘𝑛}. Assuming

∏︁𝑛
𝑖=1 𝑘𝑖 ≥ 216, the 16-bit

number 𝐿∗ can be converted into this mixed-base system as follows:

𝑎𝑖 = 𝐿
∗ % 𝑘𝑖 , 𝐿∗ = 𝐿∗ / 𝑘𝑖 , (2)

for 𝑖 = 𝑛, · · · , 1 in a loop. The resulting value is 𝑎1𝑎2 · · ·𝑎𝑛 . Setting
𝑠𝑖 to 𝐿𝑖 + 𝑎𝑖 gives a valid code, as 𝑎𝑖 < 𝑘𝑖 ensures 𝐿𝑖 + 𝑎𝑖 < 𝑅𝑖 .
Hence, the sequence (𝑠1, · · · , 𝑠𝑛) effectively encodes both the series
of intervals and the interval [𝐿∗, 𝑅∗).

Example: 3-Digit Mixed Radix Numeral System. Given
intervals [1, 4), [2, 6), [3, 10), forming a 3-digit mixed radix numeral

system with bases (3, 4, 7). This system can encode up to 3× 4× 7 =
84 distinct states. Assume we use 4 bits to encode each interval.
To encode the interval [13, 14), we select 𝑥 = 13 from this range.
Decomposing 13 with the bases (3, 4, 7) using Equation (2) gives
13 = 0×(4×7)+1×7+6, leading to the indices (0, 1, 6). To determine
𝑠1, we select the value at index 0 in the first interval [1, 4), resulting
in 𝑠1 = 1. Similarly, 𝑠2 = 3 and 𝑠3 = 9. Therefore, the encoded bit
stream for the four intervals is (0001 0011 1001)2.

5.4 Encoding Procedure

Inspired by the mixed radix numeral system introduced above, the
encoding procedure of delayed coding is essentially transforming
decimal numbers into mixed radix numbers. The encoding of de-
layed coding has two steps. First, we mark all intervals that can be
represented by their former intervals’ options. An interval can be
marked if and only if the current option number is larger than 𝜆 (it
takes 216 by default). Second, for each marked interval, we convert
its 16-bit code into a mixed-radix number, represented using code
options of the intervals that precede it.

Step 1: Mark Intervals. In Figure 7, we illustrate the encoding
process of a tuple (“b”, 1,“@”, 3) using four categorical models that
convert the tuple into intervals. We use an option counter𝑘 , initially
set to one, to track redundant information. The 1st interval provides
215 options, updating 𝑘 to 215. Next, the 2nd interval cannot be
marked because the current option counter 𝑘 ≤ 𝜆 = 216. Note that
we use fixed-length code (i.e., 16-bit) to encode each interval, and
the current numeral system cannot represent a 16-bit integer. The
2nd interval increases 𝑘 to 219 due to its option of 16. Currently,
it is enough to mark the third interval, it consumes 216 options
and updates 𝑘 = 𝑘/216 = 23. The 3rd interval contributes 32769
options, updating 𝑘 = 23 (215 + 1). The marking process continues;
finally, the last two intervals are marked and will be transformed
into mixed radix numbers, represented by their preceding intervals.

Step 2: Convert Intervals From the End. We convert each
marked interval into a mixed-radix number in a recursive manner,
as illustrated in Figure 8. Specifically, the last two intervals are
marked in the marking step. First, we convert the rightmost interval
into a mixed-radix number using bases (𝑘1, 𝑘2, 𝑘3). Then, the last-
second interval holds the partial code of the last interval. Since the
last-second interval is also marked, it is converted into a mixed-
radix number with bases (𝑘1, 𝑘2). This approach highlights the
necessity of processing intervals from the end.

We use a 64-bit integer 𝑉info to store the codes for marked inter-
vals temporarily, starting with 𝑉info = 0. We use a loop to process
each interval [𝐿, 𝑅) from the end. For each step, the decimal number
to be converted is 𝑉info, and the current interval [𝐿, 𝑅) provides
𝑘 = 𝑅 − 𝐿 options, as a base-𝑘 digit. We compute the digit value 𝑎
and the left decimal number, using Equation (2):

𝑎 = 𝑉info % 𝑘, 𝑉info = 𝑉info / 𝑘. (3)

Therefore, the 16-bit code for the interval [𝐿, 𝑅) is computed as
𝑐 = 𝐿+𝑎, i.e., we use the code options of it to store a digit value 𝑎. For
the first processed interval, we get 𝑎 = 0 because𝑉info = 0, but𝑉info
can be updated. If the interval [𝐿, 𝑅) is marked, 𝑉info = 𝑉info · 𝑘 + 𝑐 .
Otherwise, output the 16-bit code 𝑐 to the bit stream. The loop
continues; finally, we encode the four intervals into 4 bytes.

2533

Encoding Algorithm: Step 2 - Convert Intervals FROM THE END

Initialization: set Vinfo = 0, bs = "". For each interval [L, R):

 1) Update parameters:

k = R – L, a = Vinfo % k, c = L + a, Vinfo = Vinfo / k.

 2) If the interval is marked, Vinfo = (Vinfo « 16) + c; otherwise bs = c + bs.

Decoding Algorithm - Receive A Bit Stream bs.

Initialization: set Vsize = 1, Vinfo = 0. To decode each attribute value:

 1) If Vsize ≥ λ = 216, fetch 16 bits from Vinfo and update Vsize = Vsize » 16;

 otherwise, fetch 16 bits from bs;

 2) Use Inv-Translate to get the symbol and its interval [L, R). Update:

 k = R - L, a = 16bits - L, Vinfo = Vinfo · k + a, Vsize = Vsize· k.

Encoding Algorithm: Step 1 - Mark Intervals with λ = 216

Initialization: Begin by setting an option counter k = 1.

For each interval [L, R):

 1) If k ≥ λ = 216, mark the interval, and then update k = k » 16.

 2) Update k by multiplying it with the option number: k = k · (R – L).

#Redundant Info (bits)

= log2 (R - L)

15 bits

15.0004 bits

2.32 bits

4 bits

Loop Interval k Marked Info

0 - 1 - Initialize

1 [32768, 65536) 2
15 N k = k · (65536 - 32768) = 2

15

2 [10011, 10027) 2
19 N k = k · (10027 - 10011) = 2

19

3 [3, 32772) 2
3
(2

15
+1) Y k = (k » 16) · (32772 - 3)

4 [1023, 1028) 20 Y k = (k » 16) · (1028 - 1023)

Loop Interval k a c V info bitstream Info

0 - - - - 0 "" Initialize

1 [1023, 1028) 5 0 1023 1023 "" V info = (V info / 5 « 16) + 1023

2 [3, 32772) 32769 1023 1026 1026 "" V info = (V info / 2
15

 « 16) + 1026

3 [10011, 10027) 16 2 10013 64 0x271D bs = 10013 = 0x271D (16 bits)

4 [32768, 65536) 2
15 64 32832 0 0x8040 271D bs = concat(0x8040, 0x271D)

Loop 16-bit Hit Symbol k a V info V size Info

0 - - - - 0 1 Initialize

1 0x8040 "b" - [32768, 65536) 2
15 64 64 2

15 16-bit from bs

2 0x271D 1 - [10011, 10027) 16 2 1026 (0x0402) 2
19 16-bit from bs

3 0x0402 "@" - [3, 32772) 32769 1023 1023 (0x03FF) 2
3
(2

15
+1) 16-bit from V info

4 0x03FF 3 - [1023, 1028) 5 0 0 20 16-bit from V info

Figure 7: Delayed Coding - Given a tuple (“b”, 1, “@”, 3), the attribute encoder translates it into intervals: [32768, 65536), [10011, 10027), [3,
32772), [1023, 1028). These intervals are then encoded and decoded as shown above.

①

②

k1 k2 k3

Figure 8: Recursive Encoding - First, the last interval is encoded
by the numeral system with base (𝑘1, 𝑘2, 𝑘3). Then, the last-second
interval is encoded by the numeral system with base (𝑘1, 𝑘2).

5.5 Decoding Procedure

Conversely, the decoding procedure transforms the mixed radix
numerals back into decimal numbers. There are two sources of
bits to decode a tuple: the bit stream or the virtual input 𝑉info. The
decoding of each symbol has three steps: (1) retrieve a 16-bit code
from 𝑉info if the current option number 𝑉size is larger than 216;
otherwise from the bit stream; (2) obtain the desired symbol and its
interval [𝐿, 𝑅) by calling the Inv-Translate function; (3) Update
𝑉info and 𝑉size accordingly.

The bottom part of Figure 7 shows the decoding process. We
want to decode a tuple from the bit stream 0x8040 271D, at first,
𝑉info = 0 , and𝑉size = 1. For the first attribute value, We fetch 16 bits
from the bit stream, getting 0x8040. The function Inv-Translate
receives it and returns the symbol “b”.We use the symbol-to-interval
mapping to determine its interval, resulting in [𝐿, 𝑅) = [215, 216).
Next, we compute the digit base 𝑘 = 𝑅 − 𝐿 = 215, and the digit
number 𝑎 = 16bits− 𝐿 = 64. Using them, we update𝑉info, and𝑉size:

𝑉info = 𝑘 ·𝑉info + 𝑎, 𝑉size = 𝑘 ·𝑉info .

This is just the inverse formula of Equation (3). It is necessary to
use 𝑉size to record the amount of information in 𝑉info. For instance,
with 𝑉info = 1, a 𝑉size of 4 results in two virtual bits 012, while a
𝑉size of 8 yields three virtual bits 0012. The second interval decodes
to the symbol “1”. When 𝑉size = 219 (≥ 𝜆 = 216), we fetch the next
16-bit code from the virtual input, resulting in 0x0402 for the third
symbol, as shown in the decoding table Loop 3 of Figure 7. This
decoding process repeats for all symbols, getting (“b”, 1, “@", “3”).

5.6 Modification for Non-Continuous Intervals

Up to this point, we assume that each symbol is represented by a
single continuous interval. In this section, we modify our algorithm
by relaxing this constraint to allow a symbol to be represented by
the union of multiple non-continuous intervals. A non-continuous
interval example is shown in Figure 5, where the symbol “𝑏” is
assigned to the interval [1/8, 1/3) ∪ [7/12, 1), or its integer repre-
sentation [8192, 21845) ∪ [38229, 65536).

Non-continuous intervals, offering the same number of options
as continuous ones butwith different option positions, require slight
modifications in delayed coding. Take a non-continuous interval
with two segments [𝐿 (1) , 𝑅 (1))∪[𝐿 (2) , 𝑅 (2)). It provides𝑘 = (𝑅 (1)−
𝐿 (1)) + (𝑅 (2) − 𝐿 (2)) options. To store a number 𝑎 ∈ [0, 𝑘] using
these options, wemodify the selection of the 16-bit code 𝑐 as follows:

𝑐 =

{︄
𝐿 (1) + 𝑎 if 0 ≤ 𝑎 ≤ 𝑅 (1) − 𝐿 (1) ,
𝐿 (2) + 𝑎 − (𝑅 (1) − 𝐿 (1)) if 𝑅 (1) − 𝐿 (1) ≤ 𝑎 ≤ 𝑘.

In other words, we choose the a-th optional code of the symbol,
regardless of its integer value. Decoding involves the reverse pro-
cess. For a 16-bit code within this non-continuous interval, we re-
trieve the stored number 𝑎 as follows: if 16bits ∈ [𝐿 (1) , 𝑅 (1)), then
𝑎 = 16bits − 𝐿 (1) . Otherwise, 𝑎 = 16bits − 𝐿 (2) + (𝑅 (1) − 𝐿 (1)). In
other words, the 16-bit code is the 𝑎-th item in this non-continuous
interval. This method can be extended to manage intervals with
more than two segments, generating two piecewise linear functions
for the computation of 𝑐 and 𝑎. Importantly, this modification has
no effect on the correctness and efficiency of delayed coding, as
shown in our technical report [45].

5.7 Fine Granularity Compression Effectiveness

We show the effectiveness and optimality of delayed coding in
this section. In Figure 7, there are 20 unused options (i.e., 𝑘 = 20)
after the encoding, resulting in a waste of log2 20 = 4.32 bits. The
number of wasted bits can be bounded by log2 𝜆 (note that we mark

2534

Table 1: Data sets - Unmarked data sets come from Public BI
Benchmark [53] or earlier semantic compression research [25, 28].

Group Data sets #Rows #Cols Row Length

N
um

er
ic Corel 68,040 93 820 byte

Jena Climate [41] 420,551 14 138 byte
Cars 344,287 155 393 byte

Ca
te
go

ric
al Forest Cover 581,012 55 127 byte

US Census 1990 2,458,285 69 145 byte
Food 5,216,593 5 22 byte
Bimbo 20,259,279 12 54 byte

St
rin

g Yale Languages 5,762,082 30 284 byte
Medicare 8,645,072 26 229 byte
Arade 9,888,775 11 88 byte

an interval once the number of options is larger than 𝜆). Theorem 2
shows that as the number of intervals grows, the effectiveness of
delayed coding improves, approaching the entropy.

Theorem 2. Give a series of intervals [𝐿1, 𝑅1), · · · , [𝐿𝑛, 𝑅𝑛), where
𝑛 ≥ 1, and 𝐿𝑖 , 𝑅𝑖 are 16-bit integers less than or equal to 216 for all 𝑖 .
Suppose delayed coding:

(1) Marks an interval if and only if the current option number is
larger or equal to 𝜆, where 𝜆 ≥ 216.

(2) Encodes every 𝜁 intervals as a bit stream, where 0 < 𝜁 ≤ 𝑛.
Thus, the number of used bits 𝐿𝑛,𝜆,𝜁 is bounded by

𝐿𝑛,𝜆,𝜁 ≤ 𝑛 ·𝐶 + (⌊𝑛/𝜁 ⌋ + 1) · log2 𝜆 + 𝑛 · log2 (1 − 65535/𝜆)−1,
where 𝑛 ·𝐶 is the entropy of all intervals. Further, for a sufficiently
large 𝑛, by setting 𝜆 = 𝜁 = 𝑛, we have 𝐿𝑛,𝜆,𝜁 /(𝑛 ·𝐶) → 1 as 𝑛 → +∞.

Proof. See Appendix D.2 in our technical report [45]. □

Summary: Delayed coding uses a fixed number of bits to encode
each interval. It is based on the insight that altering the redundant
information in an interval does not affect its symbol retrieval. The-
orem 2 reveals that delayed coding has a near-entropy compression
factor with fine compression granularity.

6 COMPRESSION MICROBENCHMARKS

We evaluate Blitzcrank in the next two sections. First, using 10
real tables, we compare Blitzcrank with modern compressors.
This comparison focuses on compression factors and fast random
tuple access from compressed storage (Section 6.1). Then, we pro-
vide a breakdown of the Blitzcrank structure learner (Section 6.2).
Following this, we compare delayed coding with asymmetric nu-
meral systems (Section 6.3). Finally, we optimize the random access
performance by analyzing the compression block size (Section 6.4).

Baselines.We evaluate Blitzcrank against Zstandard [17] and
Raman’s approach [46]: (1) Zstandard is a real-time compression
system. It has a training mode, designed for compressing many
small files. This mode creates a “zstd-dictionary” from all files and
uses it to compress each file independently. We use the open-source
Zstandard (v1.5.1) in C++, setting the “zstd-dictionary” capacity
to the recommended 110 KB and using the default compression
level. (2) Raman’s method [46] focuses on tuple compression. It
considers correlations between columns and combines Huffman
coding and delta encoding to achieve a high compression factor. We

implemented Raman’s approach in C++ using the default column
ordering of an input table.

We exclude DeepSqueeze [28] because it does not support high
cardinality columns and is not open-sourced. We do not include
FSST [12] and other lightweight techniques [7, 8, 20], because they
are not for row-stores. In our technical report [45], we also evaluate
Blitzcrank against the open-sourced (in C++) Squish [25] and
Gzip [62] for the table archive task. Our method is 20× faster than
Squish and offers 2× higher compression factors compared to Gzip.

Blitzcrank Setting. Blitzcrank samples 215 tuples for struc-
ture learning, with detailed sensitivity analysis provided in Sec-
tion 6.2. For delayed coding, each tuple is individually encoded
for the optimal access latency. We set 𝜆 = 216 to maximize the
compression factor, as detailed in Theorem 2. We evaluate two
Blitzcrank variants: one utilizes column correlation for com-
pression (Blitzcrank w/ Correlation), while the other does not
(Blitzcrank w/o Correlation).

Data Sets. Table 1 shows the data sets. Besides the data sets
from previous studies [25, 28, 53], we also use Jena Climate, which
consists of 14 time-series columns [41]. We classify each data set
into categorical, numeric, or string types. Specifically, we calculate
the proportion of each attribute type in the total data set size and
select the type with the highest proportion as the representative
group for that data set.

Experimental Setup. We use three metrics to measure com-
pression performance: compression factor, throughput, and random
access latency. The throughput represents the amount of data pro-
cessed per unit of time for a given compression/decompression task.
Random access latency is the time required to retrieve a random
record. We conduct our experiments on a machine equipped with
two Intel® Xeon 8375C (32 × 2 cores) and 512 GB RAM. The disk we
use is an Intel® SSD D5-P5530 (1 TB). We use Debian GNU/Linux
11 and GCC 10.2 with -O3 enabled. All microbenchmarks are con-
ducted with a single thread.

6.1 Compression Evaluation

We evaluate Blitzcrank on in-memory tables (constructed using
the data sets above) with each tuple compressed separately. The
compressed tuples are organized using a primary-key index (im-
plemented using a simple C++ vector) where the primary keys are
monotonically increasing integers. We use YCSB (workload C) with
a Zipf distribution to generate the random-access workloads [18].
Specifically, for each data set, we first compress and insert 5 million
tuples into the in-memory table and then execute 1 million point
queries, each involving decompressing a particular tuple. We report
the average latencies for compression-insertion and random access
separately. We also record the size of each in-memory table after
insertion to calculate the compression factor. For each compressor,
we first train its model over the corresponding data set if required
by the algorithm.

Figure 9 shows the results, including compression factor, la-
tency, and training time, across various data sets on the x-axis.
Blitzcrank has the highest compression factor for 7/10 tables, and
offers the lowest latency for 9/10 tables among all compressors.
This is because Blitzcrank models columns in a semantic way
and uses fixed-length code for encoding. Raman’s approach has the

2535

Figure 9: Compression Evaluation - We report the compression factor, insert/access latency, and training time of all compressors.

highest compression factor for the remaining 3/10 tables because
tuples of these tables have low entropy; each tuple requires on
average just a few bits for encoding (e.g., 2.6 bytes for a Bimbo’s
tuple). In this case, using fixed-length codes is less efficient. How-
ever, Raman’s approach is slow for accessing tuples, because its
variable-length code for each attribute leads to additional checks
when decoding. Zstandard falls short for both the compression
factor and the latency, because it relies on long contexts, at least
4KB, to build an effective dictionary. However, the length of a single
tuple is insufficient to meet this 4 KB requirement.

We advise using Blitzcrank w/o Correlation in most cases.
Capturing column correlations improves the compression factor
in the sacrifice of the access latency and the model training time.
The training time is often exponential to the number of categorical
columns, but a longer training time does not necessarily guarantee
better performance. A detailed analysis of the semantic learner is
given in Section 6.2.

6.2 Sensitivity to Sampling Number

Blitzcrank randomly selects a subset of samples for structure
learning.We now investigate the sensitivity to the sampling number.
We use Blitzcrank w/ Correlation to compress and decompress
the whole data sets with the compression granularity being a single
tuple (i.e., delayed coding encodes each tuple into a separate com-
pressed block). We keep this tuple-level compression granularity
or the remaining experiments unless specified otherwise. We select

two representative data sets Bimbo and Census for the analysis. Be-
cause the structure learning influences the complexity of the model
generated, which further affects the compression speed, we report
the duration of each stage within Blitzcrank: structure learning
(Structuring), model generation (Generation), compression, and
decompression.

Figure 10 shows the results. We vary the #samples in structure
learning on the x-axis (log-scaled) and record the compression fac-
tor and the running time of each stage. For Bimbo in Figure 10a,
the sample number has little effect on the compression factor and
running time – the learner cannot learn many dependencies. Struc-
ture learning time increases slightly with sample number; this is
expected since more samples need scanning. Census in Figure 10b
shows a different pattern: the compression factor increases with
the #samples – the learner finds interesting dependencies and gen-
erates more complex models. Therefore, we need more time to
generate models. The disparity between the two patterns is due
to different column counts: Census has 69 columns compared to
Bimbo’s 12. More columns typically indicate more complex depen-
dencies, leading to higher access latency and longer training time.
Considering the running time and performance, we set the default
sample number to 215 for Blitzcrank. R4.W3, R4.D5Although con-
sidering column correlation may improve the compression factor
of Blitzcrank on a few data sets (e.g., Yale) with a small impact
on the access latency, we opt to use Blitzcrank w/o Correlation
for the remaining experiments unless otherwise specified.

2536

(a) No Correlation Found Example: Bimbo (b) Correlation Found Example: Census
Figure 10: Breakdown of Blitzcrank Distribution Learner - Vary the #samples and evaluate the performance.

(a) Compression (b) Decompression
Figure 11: Entropy Coding Running Time - Vary the #column
of tables and record the processing time.

6.3 Entropy Coding Running Time

We evaluate the delayed coding with arithmetic coding and asym-
metric numeral systems (ANS) [22]. We implement arithmetic cod-
ing with the integer-based probability representation; and use finite-
state entropy [16] as the implementation of the ANS. We integrate
them into Blitzcrank and use the same models for distribution
estimation. In this experiment, we create 64 MB relational data sets
with different numbers of columns. Each column has a uniform
distribution of cardinality 255 with values sampled from ASCII
codes. We vary the column number from 2 to 1024 to record the
compression and decompression times of all algorithms.

In Figure 11, we compare delayed coding, arithmetic coding, and
ANS, represented by the solid lines. Delayed coding is 2× faster
than ANS for the decompression speed, with arithmetic coding
being the slowest. This is because delayed coding has a constant-
time decoding complexity. Arithmetic coding, on the other hand,
relies on binary search for code-to-symbol mapping, operating in
𝑂 (log𝑁). An improvement for ANS involves using an unordered
map from codes to symbols to accelerate decoding [22]. We then
implement such a decoding map for both ANS and delayed coding,
denoted by the dotted lines. Figure 11 shows that the delayed coding
is still faster than ANS. Decompression time for ANS is similar to
delayed coding with few columns but slows as column numbers
increase due to cache burden. Storing decoding maps increases the
cache miss rate from 0.04% to 0.132% when columns exceed 108.

6.4 Sensitivity to Compression Granularity

We claim that delayed coding has near-entropy performance with
fine compression granularity in Section 5.7. In this part, we inves-
tigate the effect of compression block size in practice. We present
three data sets for this experiment: Arade, Cover Type, and Yale
Language. We omit other data sets because they produce similar

(a) Zoom-in (b) Latency vs. Cpr. Factor
Figure 12: Compression Granularity - Vary the block size from
1 to 128 tuples, and write it next to the marker for each trial.

(a) Uniform Distribution (b) Zipfian Distribution
Figure 13: Effect of a Fast-Path LRU Cache - The workloads are
based on YCSB Workload F (read-modify-write). Dashed lines are
Blitzcrank without caching, while the solid lines are Blitzcrank
with fast-path cache enabled.

results. In each trial, we vary the block size (#tuple) to see how they
affect the compression factor and the random access latency. We
measure the access latency by repeating the process one million
times. This experiment is conducted in memory.

Figure 12 shows that the delayed coding has a high compression
factor with fine compression granularity. For each table, the com-
pression factor reaches a plateau when the compression block size
exceeds 8 tuples. This indicates a trade-off between compression
factor and latency within the 0 to 8 tuple range, allowing the users
to select their preferred block sizes. Since OLTP databases usually
prioritize low latency and Blitzcrank has a high compression
factor even at a block size of one tuple, we set this as the default.

6.5 Fast Path for Tuple Updates

We evaluate a fast path for tuple updates in this section. Specifi-
cally, we implemented an LRU write-back cache to buffer the most

2537

Table 2: Data Generation Methods - Addresses are generated
by ZIP code conventions [5]; Phone and district are produced by
populating a predefined format with random numbers.

Column Method Source/Format

C_FIRST Sampling US Baby Names [4]
C_STREET Sampling Open Addresses [3]
C_DATA Sampling City Max Capita [53]
S_DATA Sampling Corporations [53]

C_STATE Sampling List of US States
C_CITY Conditional Cities within C_STATE
C_ZIP Conditional ZIP Codes within C_CITY

C_PHONE Format-Based “(XXX) XXX-XXXX”
S_DIST Format-Based “dist-str#XX#XX#XXXX”

recently accessed tuples in their decompressed form. Normally, a
tuple update involves loading the compressed tuple, decompressing
it, modifying the tuple, and re-compressing the updated tuple. With
the cache, the workload flow starts by looking up the cache. If the
target (decompressed) tuple is already in the cache, we modify the
tuple directly. Otherwise, we first decompress the target tuple and
insert it into the cache. We evaluate the cache using YCSB workload
F (read-modify-write) under Uniform and Zipfian query distribu-
tions on data sets Census and Bimbo. The table initially contains
five million tuples, and we execute one million read-modify-write
queries on the table.

As shown in Figure 13, adding the fast-path cache slows down
uniformly distributed queries because cache hits are rare, and
cache lookup and maintenance bring overhead. For Zipf-distributed
queries, having the fast-path cache improves the query performance
because as the cache size increases, more and more tuple updates
are performed directly in the cache without decompression. We
conclude that a fast-path cache can benefit skewed workloads when
using Blitzcrank for compression.

7 SYSTEM EVALUATION

We integrated Blitzcrank (w/o Correlation) into Silo [51] and
measured the end-to-end performance using the TPC-C bench-
mark [19]. Silo is an OCC-based serializable database designed for
excellent performance at scale on large multi-core machines. Silo
uses the Masstree[39] for its underlying indexes, and has a very
high transaction throughput, achieving more than 1 million txns/s
on the standard TPC-C workload in our experiments.

Each record in a table is compressed separately. The compressors
under test are Uncompressed, Zstandard, Raman, and Blitzcrank
with the corresponding row-stores named Silo, ZstdDB, RamanDB,
and BlitzDB, respectively. To access a record by primary key, Silo
walks the index tree using that key to find the compressed record
and then decompresses it into a list of attributes.

According to the TPC-C specification, some columns are filled
with random bytes which are incompressible. We substitute these
bytes with data that either follows real-world patterns or is sam-
pled from the collected corpus. Table 2 details our data generation
approach. The compression factors for the new Customer and Stock
tables are 3.44 and 5.57, respectively.

7.1 In-Memory Workloads

In this section, we investigate the performance-space trade-offs of
BlitzDB compared to the other baselines when the entire database
fits in memory. We vary the number of warehouses in TPC-C from
64 to 896, in increments of 64. In each trial, we use 16 threads.
Each database executes 16 million transactions and presents the
average throughput results. The training time is measured before
the transactions start, while the database size and model size are
measured after the transactions. RamanDB uses the entire data set
for training, while Blitzcrank and ZstdDB sample data from 16
warehouses. Because Raman’s approach uses a static dictionary,
it cannot compress new records. We, therefore, use a buffer (size
= 64K tuples) to batch the newly inserted and updated records
temporarily. When the buffer is full, we create a new dictionary
to compress these buffered records. Before adding or using these
dictionaries, each thread secures a mutex lock.

As shown in Figure 14, Blitzcrank compresses the data to 14.8%
of the original (i.e., Silo) with a throughput decrease of around 21%
due to the compression overhead. Such a performance-space trade-
off is much more optimized compared to ZstdDB and RamanDB.
Moreover, Figure 15 shows that Blitzcrank has the smallest model
size and requires orders-of-magnitude shorter time for training
compared to the baselines.

Figure 17 shows the TPC-C throughput as the number of threads
grows, with each thread corresponding to awarehouse. Both BlitzDB
and Silo demonstrate impressive thread scalability. However, through-
put reaches a clear limit after 64 threads, which is particularly no-
ticeable in Raman’s approach. This limit can be ascribed to several
factors: hyperthreading, the increasing size of the database, shared
resources such as the L3 cache, and direct thread contention.

7.2 Larger-Than-Memory Workloads

We then evaluate Blitzcrank under the case when the working
set does not fit in physical memory. The tuples are stored on disk
with the memory acting as a cache. The memory (i.e., the buffer
pool) adopts an LRU replacement policy, and we set the memory
limit to 5 GB (excluding the memory occupied by indexes). We start
with 16 warehouses (around 1 GB) and execute TPC-C transactions
for 20 minutes using 16 threads.

Figure 16 shows the throughput and memory consumption for
the experiments. Note that the x-axis represents the number of
executed transactions as did in [56]. After 20 minutes of execution,
BlitzDB completed 5× as many transactions as Silo. This is because
Blitzcrank not only achieves an exceptional compression factor
but also brings moderate compression/decompression overhead to
the system. BlitzDB can sustain at high throughput for a longer
time because the memory saved by Blitzcrank allows the database
to keep a larger working set in memory.

As a comparison, neither ZstdDB nor RamanDB significantly
improves transaction execution. Zstandard suffers from a low com-
pression factor, especially on short tuples. For example, despite
using the zstd-dictionary, Zstandard only achieves a compression
factor of around 1.3 for the TPC-C table OrderLine. On the other
hand, Raman’s method is limited by its large dictionary size. It uses
a buffer to temporarily hold tuples, compressing them once the
buffer is full and then clearing them. This leads to the generation

2538

(a) Throughput (b) DB Size
Figure 14: TPC-CWorkload - In each trial, we use 16 threads and
each thread executes 1 million transactions.

(a) Training Time (b) Models Size
Figure 15: Models in TPC-C - RamanDB uses full data for training,
and the others only sample 16 warehouses for training.

(a) Throughput (b) Memory Consumption
Figure 16: TPC-C Large-Than-Memory Workload - Start with
16 warehouses, and each trial runs 20 minutes using 16 threads.

of large compression dictionaries and unstable throughput, with a
notable decrease in speed during compressing the buffer tuples.

8 RELATEDWORK

Lightweight encoding, such as bit-packed, delta, run-length, dic-
tionary, and bit vector encoding, is popular recently [1, 7–9, 12,
14, 37, 48]. These are used in column-store databases as they can
quickly process large chunks of data using the SIMD technique [29].
However, delta and run-length encoding methods can be slowwhen
we need to quickly grab just a single tuple/value, as they have to
decode an entire data block. Therefore, these lightweight encoding
methods are unsuitable for processing data in OLTP databases.

General-purpose block compression methods such as Gzip[62],
Snappy [2], and Zstandard [17] effectively save disk space by us-
ing a sliding window technique to identify word repetitions, thus
minimizing data transfer between disk and memory [1]. However,
the static dictionary makes them inflexible for insert/update scenar-
ios. Zstandard provides a special mode for small files. It improves
compression by training on all small file, generating a dictionary.
This dictionary is required to be loaded before compression and
decompression. However, this mode is less effective at compressing
files slightly different from the prior data.

Semantic compression needs to estimate probability distribu-
tions for each column in a relational table. Babu et al. proposed the

Figure 17: Scalability of Compression - Vary the thread number
from 1 to 128, and each trail runs 1 minute.
first lossy semantic compression method, SPARTAN, for table com-
pression [10]. Subsequently, Gao et al. introduced Squish, which
uses a Bayesian network and arithmetic coding [25]. Later, Deep-
Squeeze was conceived, using auto-encoders [28]. However, being
lossy, these techniques are suited for data archiving and less so for
low-latency transaction processing. For example, Squish sorts each
table column to make delta encoding more efficient, but slowing
compression. DeepSqueeze does not support columns with high
cardinality∗. In contrast, Blitzcrank supports all common column
types in databases and provides a faster compression speed. Also,
DeepSqueeze uses deep learning techniques [60] for structure learn-
ing. However, this approach lacks explainability and has a slow
inference speed. Blitzcrank, therefore, uses the Bayesian network
to capture column correlations for its simplicity. The effectiveness
of the Bayesian network approach has been proved in [25].

9 CONCLUSIONS

We introduce Blitzcrank, a high-speed semantic compressor for
OLTP databases. We first propose novel semantic models that sup-
port fast inferences and dynamic value sets for both discrete and
continuous data types; we then introduce a new entropy encoding
algorithm, called delayed coding, that achieves significant improve-
ment in the decoding speed compared to modern arithmetic coding
implementations. Blitzcrank has high compression factors and
fast decompression speed. We integrate Blitzcrank into an in-
memory OLTP database, Silo. The TPC-C benchmark shows that,
for data sets larger than the available physical memory, Blitzcrank
can help the database sustain a high throughput and execute four
times more transactions before the I/O overhead dominates.

∗DeepSqueeze uses one-hot encoding for each column in its network architecture, and
high cardinality introduces numerous parameters in the fully connected layer [28].

2539

REFERENCES

[1] 2013. parquet. https://parquet.apache.org/
[2] 2019. Snappy. https://github.com/google/snappy
[3] 2023. The free and open global address collection. https://openaddresses.io/
[4] 2023. Popularity of Names by US State from the Social Security Website. https:

//www.ssa.gov/oact/babynames/limits.html
[5] 2023. US Zip Codes Database. https://simplemaps.com/data/us-zips
[6] 2023. Zstandard - Real-time data compression algorithm. http://facebook.github.

io/zstd/
[7] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel Madden,

et al. 2013. The design and implementation of modern column-oriented database
systems. Foundations and Trends® in Databases (2013), 197–280.

[8] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating com-
pression and execution in column-oriented database systems. In Proceedings of
SIGMOD’06. 671–682.

[9] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating com-
pression and execution in column-oriented database systems. In Proceedings of
SIGMOD’16. ACM, 671–682.

[10] Shivnath Babu, Minos N. Garofalakis, and Rajeev Rastogi. 2001. SPARTAN: A
Model-Based Semantic Compression System for Massive Data Tables. In Proceed-
ings of SIGMOD’01. ACM, 283–294.

[11] Bruno Barbarioli, Gabriel Mersy, Stavros Sintos, and Sanjay Krishnan. 2023.
Hierarchical Residual Encoding for Multiresolution Time Series Compression.
Proceedings of SIGMOD’23 (2023), 1–26.

[12] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access
string compression. Proceedings of VLDB’20 (2020), 2649–2661.

[13] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015.
Time series analysis: forecasting and control. John Wiley & Sons.

[14] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. 2001. Query optimization in
compressed database systems. In Proceedings of SIGMOD’01. 271–282.

[15] John G. Cleary and Ian H. Witten. 1984. Data Compression Using Adaptive
Coding and Partial String Matching. IEEE Trans. Commun. 32, 4 (1984), 396–402.

[16] Yann Collet. 2022. Finite State Entropy. https://github.com/Cyan4973/
FiniteStateEntropy

[17] Yann Collet and Murray S. Kucherawy. 2021. Zstandard Compression and the
“application/zstd” Media Type. RFC 8878 (2021), 1–45.

[18] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
SOCC’10. 143–154.

[19] The Transaction Processing Council. 2007. TPC-C Benchmark (Revision 5.9.0).
https://www.tpc.org/tpcc/

[20] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner. 2017.
Lightweight Data Compression Algorithms: An Experimental Survey (Experi-
ments and Analyses).. In Proceedings of EDBT’17. 72–83.

[21] Scott Davies and Andrew W. Moore. 1999. Bayesian Networks for Lossless
Dataset Compression. In Proceedings of SIGKDD’99. ACM, 387–391.

[22] Jarek Duda. 2021. Encoding of probability distributions for Asymmetric Numeral
Systems. CoRR abs/2106.06438 (2021).

[23] Yannis Foufoulas, Lefteris Sidirourgos, Elefterios Stamatogiannakis, and Yannis E.
Ioannidis. 2021. Adaptive Compression for Fast Scans on String Columns. In
Proceedings of SIGMOD’21. ACM, 554–562.

[24] Aviezri S Fraenkel. 1985. Systems of numeration. The American Mathematical
Monthly 92, 2 (1985), 105–114.

[25] Yihan Gao and Aditya G. Parameswaran. 2016. Squish: Near-Optimal Compres-
sion for Archival of Relational Datasets. In Proceedings of SIGKDD’16. ACM,
1575–1584.

[26] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-
Attached NVMe Arrays in DBMS.. In CIDR.

[27] Christoph Heger, André van Hoorn, Mario Mann, and Dusan Okanovic. 2017.
Application Performance Management: State of the Art and Challenges for the
Future. In Proceedings of ICPE’17. ACM, 429–432.

[28] Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace Fan, Xiran
Shi, and Ugur Çetintemel. 2020. DeepSqueeze: Deep Semantic Compression for
Tabular Data. In Proceedings of SIGMOD’20. ACM, 1733–1746.

[29] Hao Jiang and Aaron J Elmore. 2018. Boosting data filtering on columnar encod-
ing with simd. In Workshop on Data Management on New Hardware, Proceedings
of SIGMOD’18. 1–10.

[30] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles
and Techniques. MIT Press.

[31] Richard A Kronmal and Arthur V Peterson Jr. 1979. On the alias method for gen-
erating random variables from a discrete distribution. The American Statistician
33, 4 (1979), 214–218.

[32] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proceedings of
SIGMOD’23 (2023), 1–26.

[33] Glen G Langdon. 1984. An introduction to arithmetic coding. IBM Journal of
Research and Development 28, 2 (1984), 135–149.

[34] Robert Lasch, Ismail Oukid, Roman Dementiev, Norman May, Süleyman Sirri
Demirsoy, and Kai-Uwe Sattler. 2020. Faster & strong: string dictionary compres-
sion using sampling and fast vectorized decompression. Proceedings of VLDB’20
29, 6 (2020), 1263–1285.

[35] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. 2020. Enabling
Low Tail Latency on Multicore Key-Value Stores. Proceedings of VLDB’20 13, 7
(2020), 1091–1104.

[36] Jiguo Li, Chuanmin Jia, Xinfeng Zhang, Siwei Ma, and Wen Gao. 2021. Cross
Modal Compression: Towards Human-comprehensible Semantic Compression.
In Proceedings of ACM MM’21. ACM, 4230–4238.

[37] Yihao Liu, Xinyu Zeng, and Huanchen Zhang. 2024. LeCo: Lightweight Com-
pression via Learning Serial Correlations. Proceedings of SIGMOD’24 2, 1 (2024),
65:1–65:28.

[38] David J. C. MacKay. 2003. Information Theory, Inference, and Learning Algorithms.
Copyright Cambridge University Press.

[39] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th ACM european
conference on Computer Systems. 183–196.

[40] V Mahoney Matthew. 2005. Adaptive weighing of context models for lossless
data compression. Florida Institute of Technology CS Dept, Technical Report (2005).

[41] Baligh Mnassri. 2020. Jena Climate Dataset. https://www.kaggle.com/datasets/
mnassrib/jena-climate

[42] Alistair Moffat. 2019. Huffman coding. ACM Computing Surveys (CSUR) 52, 4
(2019), 1–35.

[43] Orestis Polychroniou and Kenneth A Ross. 2015. Efficient lightweight compres-
sion alongside fast scans. In Proceedings of DaMoN@SIGMOD’15. 1–6.

[44] Meikel Pöss and Dmitry Potapov. 2003. Data Compression in Oracle. In Proceed-
ings of VLDB’03. VLDB Endowment, 937–947.

[45] Yiming Qiao, Yihan Gao, and Huanchen Zhang. 2024. Blitzcrank: Fast Semantic
Compression for In-memory Online Transaction Processing. arXiv:2406.13107

[46] Vijayshankar Raman and Garret Swart. 2006. How toWring a Table Dry: Entropy
Compression of Relations and Querying of Compressed Relations. In Proceedings
of VLDB’06. VLDB Endowment, 858–869.

[47] Amir Said. 2004. Comparative Analysis of Arithmetic Coding Computational
Complexity.. In Data compression conference. Citeseer, 562.

[48] Jia Shi. 2020. Column partition and permutation for run length encoding in
columnar databases. In Proceedings of SIGMOD’20. 2873–2874.

[49] Tanmay Sinha. 2021. OLAP vs. OLTP: What’s the Difference? https://www.ibm.
com/blog/olap-vs-oltp/

[50] Sivaprasad Sudhir, Michael Cafarella, and Samuel Madden. 2021. Replicated
layout for in-memory database systems. Proceedings of VLDB’21 (2021), 984–997.

[51] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In Proceedings of
SOSP’13. 18–32.

[52] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, andMitsuru Sato. 2018. Man-
aging non-volatile memory in database systems. In Proceedings of SIGMOD’18.
1541–1555.

[53] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Vik-
tor Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get
Real: How Benchmarks Fail to Represent the Real World. In Proceedings of
DBTest@SIGMOD’18. 1:1–1:6.

[54] Ian H Witten, Radford M Neal, and John G Cleary. 1987. Arithmetic coding for
data compression. Commun. ACM 30, 6 (1987), 520–540.

[55] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-
wide measurements. In Proceedings of SIGCOM’18. 561–575.

[56] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin
Ma, and Rui Shen. 2016. Reducing the Storage Overhead of Main-Memory OLTP
Databases with Hybrid Indexes. In Proceedings of SIGMOD’16. ACM, 1567–1581.

[57] Huanchen Zhang, Xiaoxuan Liu, David G. Andersen, Michael Kaminsky, Kim-
berly Keeton, and Andrew Pavlo. 2020. Order-Preserving Key Compression for
In-Memory Search Trees. In Proceedings of SIGMOD’20. ACM, 1601–1615.

[58] Jiaoyi Zhang and Yihan Gao. 2022. CARMI: A Cache-Aware Learned Index with a
Cost-based Construction Algorithm. Proc. VLDB Endow. 15, 11 (2022), 2679–2691.

[59] Junyi Zhao, Huanchen Zhang, and Yihan Gao. 2023. Efficient Query Re-
optimization with Judicious Subquery Selections. Proc. ACM Manag. Data 1, 2
(2023), 185:1–185:26.

[60] Hu Zhu, Yiming Qiao, Guoxia Xu, Lizhen Deng, and Yu-Feng Yu. 2020. DSPNet:
A Lightweight Dilated Convolution Neural Networks for Spectral Deconvolution
With Self-Paced Learning. IEEE Trans. Ind. Informatics 16, 12 (2020), 7392–7401.

[61] Tobias Ziegler, Carsten Binnig, and Viktor Leis. 2022. ScaleStore: A Fast and
Cost-Efficient Storage Engine using DRAM, NVMe, and RDMA. In Proceedings
of SIGMOD’22. 685–699.

[62] Jacob Ziv and Abraham Lempel. 1977. A Universal Algorithm for Sequential
Data Compression. IEEE Trans. Inf. Theory 23, 3 (1977), 337–343.

[63] Jacob Ziv and Abraham Lempel. 1978. Compression of Individual Sequences via
Variable-Rate Coding. IEEE Trans. Inf. Theory 24, 5 (1978), 530–536.

2540

https://parquet.apache.org/
https://github.com/google/snappy
https://openaddresses.io/
https://www.ssa.gov/oact/babynames/limits.html
https://www.ssa.gov/oact/babynames/limits.html
https://simplemaps.com/data/us-zips
http://facebook.github.io/zstd/
http://facebook.github.io/zstd/
https://github.com/Cyan4973/FiniteStateEntropy
https://github.com/Cyan4973/FiniteStateEntropy
https://www.tpc.org/tpcc/
https://www.kaggle.com/datasets/mnassrib/jena-climate
https://www.kaggle.com/datasets/mnassrib/jena-climate
https://arxiv.org/abs/2406.13107
https://www.ibm.com/blog/olap-vs-oltp/
https://www.ibm.com/blog/olap-vs-oltp/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Arithmetic Coding
	2.2 Structure Learning

	3 Overview
	4 Semantic Models
	4.1 Discrete/Categorical Model
	4.2 Continuous/Numeric Model
	4.3 Composite Models

	5 Delayed Coding
	5.1 Probability Representation
	5.2 Options of Fixed-length Codes
	5.3 Problem Formulation
	5.4 Encoding Procedure
	5.5 Decoding Procedure
	5.6 Modification for Non-Continuous Intervals
	5.7 Fine Granularity Compression Effectiveness

	6 Compression Microbenchmarks
	6.1 Compression Evaluation
	6.2 Sensitivity to Sampling Number
	6.3 Entropy Coding Running Time
	6.4 Sensitivity to Compression Granularity
	6.5 Fast Path for Tuple Updates

	7 System Evaluation
	7.1 In-Memory Workloads
	7.2 Larger-Than-Memory Workloads

	8 Related Work
	9 Conclusions
	References

