
Poligras: Policy-based Graph Summarization
Jiyang Bai

Florida State University

Tallahassee, Florida, U.S.A.

bai@cs.fsu.edu

Peixiang Zhao

Florida State University

Tallahassee, Florida, U.S.A.

zhao@cs.fsu.edu

ABSTRACT
Large graphs are ubiquitous. Their sizes, rates of growth, and com-

plexity, however, have significantly outpaced human capabilities

to ingest and make sense of them. As a cost-effective graph simpli-

fication technique, graph summarization is aimed to reduce large

graphs into concise, structure-preserving, and quality-enhanced

summaries readily available for efficient graph storage, processing,

and visualization. Concretely, given a graph 𝐺 , graph summariza-

tion condenses 𝐺 into a succinct representation comprising (1)
a supergraph with supernodes representing disjoint sets of ver-

tices of 𝐺 and superedges depicting aggregate-level connections

between supernodes, and (2) a set of correction edges that help

reconstruct 𝐺 losslessly from the supergraph. Existing graph sum-

marization solutions offer non-optimal graph summaries and are

time-demanding in real-world large graphs. In this paper, we pro-

pose a learning-enhanced graph summarization approach, Poligras
(Policy-based graph summarization), to model the most critical

computational component in graph summarization: supernode se-

lection and merging. Specifically, we design a probabilistic policy

learned and optimized by neural networks for efficient optimal

supernode pair selection. As the first learning-enhanced, scalable

graph summarization method, Poligras achieves significantly im-

proved performance over state-of-the-art graph summarization

solutions in real-world large graphs.

PVLDB Reference Format:
Jiyang Bai and Peixiang Zhao. Poligras: Policy-based Graph Summarization.

PVLDB, 17(10): 2432 - 2444, 2024.

doi:10.14778/3675034.3675037

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/jiyangbai/Poligras.

1 INTRODUCTION
Recent years have witnessed the ubiquity of graphs and networks

that pervade the natural, technological, and societal worlds sur-

rounding us. Their unprecedented sizes, rates of growth, and com-

plexity, however, have significantly surpassed the storage, com-

putation, and communication capacity at our disposal. Worse yet,

human capabilities to ingest and make sense of such complex data

have not scaled accordingly, rendering big graph management a

daunting task [11, 35]. To address this challenge, it is desirable

to summarize big graphs into concise, structure-preserving, and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 10 ISSN 2150-8097.

doi:10.14778/3675034.3675037

quality-enhanced summaries that are readily amenable for efficient,

cost-effective, and scalable graph storage and computation [45]. As

a remarkably useful methodology for graph data simplification and

reduction, graph summarization has imposed fundamental impacts

on widely varying real-world applications [19]:

(1) Graph summaries provide compact structure representations

that incur substantially smaller overhead than original graphs.

In many occasions, graph summaries can naturally fit in mem-

ory or cache, contributing to a significant reduction to I/O and

communication costs in graph computation [18, 21, 37, 45];

(2) Utility- or query-driven graph summaries retain salient and

query-relevant information of original graphs, which speeds

up query processing in large graphs [8–10, 12, 20];

(3) By generating a series of graph summaries with varied sizes and

resolutions, graph summarization facilitates exploratory studies

and interactive visualization for big graphs [2, 14, 19, 42, 46];

(4) Real-world graphs are fraught with distorted, spurious informa-

tion. Graph summarization helps filter such noise by preserv-

ing crucial and task-relevant information only from massive

graphs [15, 43].

In this paper, we study a fundamental graph summarization

scheme that has sparked lasting interest due in particular to its

generality, flexibility, and wide applicability [18, 31, 37, 45]. Given

a graph 𝐺 = (𝑉 , 𝐸), graph summarization is aimed to identify a

compact representation of 𝐺 consisting of (1) a summary graph

G = (V, E), and (2) an edge correction set𝐶 . Specifically, G is a su-
pergraph with a supernode setV (each supernode 𝜇 ∈ V represents

a disjoint subset of vertices of𝐺), and a superedge set E (a superedge
(𝜇, 𝜈) ∈ E symbolizes all the possible connections, not necessarily
actual edges of 𝐺 , between the vertices within supernodes 𝜇 and 𝜈 ,

respectively). The intuition is to exploit the connectivity proximity

in real-world graphs: if two vertices 𝑢 and 𝑣 connect to the same,

or a very similar, set of other vertices in 𝐺 , they can be coalesced

to a common supernode. Furthermore, we integrate incident edges

of 𝑢 and 𝑣 connecting to their common neighbors as a single su-

peredge to represent a group-level connection between supernodes.

In addition, the edge correction set 𝐶 keeps track of actual edges

of 𝐺 that need to be inserted to, or removed from, the summary

graph G towards a lossless reconstruction of the original graph 𝐺 .

Compliant with the minimum description length (MDL) principle,

this summarization scheme creates succinct, coarse-grained graph

summaries with desirable properties:

(1) Generality. Although initially proposed for simple, undirected

graphs [31], this general-purpose graph summarization scheme

can be extended to directed, attributed, or heterogeneous graphs.

In addition, the resultant supergraph G and the edge correction

set 𝐶 can be further summarized or compressed by other data

summarization techniques;

2432

https://doi.org/10.14778/3675034.3675037
https://github.com/jiyangbai/Poligras
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3675034.3675037
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(2) Flexibility. Graph summarization admits a lossless compres-

sion of the input graph 𝐺 , which can be reconstructed from G
and 𝐶 without information loss. Furthermore, by regulating an

error rate 𝜖 to drop part of the information in G and 𝐶 , we can

immediately enable lossy graph summarization that trades off

between the graph summary size and the tolerable amount of

information loss [31];

(3) Neighborhood-preservation. Graph summaries retain the

complete neighborhood information about vertices. Therefore,

neighborhood queries and their variants, such as DFS and BFS

based algorithms, can be addressed directly on graph sum-

maries, as opposed to the original big graph 𝐺 .

State-of-the-art solutions, such as SWeG [37] and LDME [45],

typically follow a two-stage algorithmic paradigm for graph sum-

marization. At the first, supernode selection and merging stage, a

set of supernode pairs are identified and merged in succession to

larger-size supernodes; At the second, edge-encoding stage, edges

of𝐺 are either aggregated as superedges to account for group-level

connections between supernodes, or explicitly maintained in the

edge correction set 𝐶 . The performance-critical operation here is

supernode selection, which determines, at each step of graph sum-

marization, the optimal pair of supernodes, the merge of which

will lead to the maximum size reduction to the resultant graph

summary. Existing solutions consider approximate metrics to quan-

tify the summarization effectiveness for supernode selection and

merging, which are inaccurate to characterize the sheer size reduc-

tions to graph summaries. As exact computation of such metrics is

time-consuming, SWeG and LDME instead consider approximation

and randomized algorithms for supernode selection and merging,

which, however, lack theoretical performance guarantees. In sum,

SWeG and LDME generate excessively large, non-optimal graph

summaries, and are time-consuming when employed in real-world,

large graphs.

Inspired by recent advances in online and reinforcement learning,

we propose in this paper a learning-enhanced graph summarization

method, Poligras (Policy-based graph summarization). In Poligras,
the crucial step of supernode selection is modeled as a sequential,

probabilistic decision-making process, in which optimal supernode

pairs are learned and identified with an objective to minimizing

the ultimate graph summary cost. We introduce in Poligras a novel
notion of summarization reward to quantify the sheer size reduction
between consecutive graph summaries subject to a supernode-pair

merging, and prove that selecting the supernode pairs with maxi-

mum summarization rewards will lead to a graph summary with the

minimum summarization cost, which is the prime goal for graph

summarization. To facilitate optimal supernode selection in Poligras,
we propose a probabilistic supernode selection policy that is modeled,

learned, and optimized by a multi-layer neural network. As the first

learning-enhanced graph summarization approach, Poligras proves
to be a highly effective, efficient, and scalable method that achieves

significantly improved performance for summarizing real-world

large graphs when compared with the state-of-the-art solutions,

SWeG and LDME. Specifically, the key contributions of Poligras
are outlined as follows:

(1) We reformulate the problem of graph summarization as a pol-

icy learning and optimization problem, where summarizing

Table 1: A Notation Primer

Symbol Definition

𝐺 = (𝑉 , 𝐸) A graph with vertex set 𝑉 and edge set 𝐸

G = (V, E) A supergraph with supernode setV and superedge set E
S = (G,𝐶) A graph summary with supergraph G and edge correction set 𝐶

P A set of partitioned supernode groups

𝑟 (𝜇, 𝜈) The summarization reward of merging supernodes 𝜇 and 𝜈

H𝜇 The supernode embedding for supernode 𝜇

P(·) The policy function

M𝑃 The selection probability matrix for group 𝑃 ∈ P
𝑇 The number of iterations for graph summarization

a graph can be considered as making a sequence of supern-

ode selection and merging decisions under the guidance of

an optimized supernode selection policy. To this end, Poligras
establishes a new, learning-enhanced solution for the classic

graph summarization problem (Section 3);

(2) We introduce a new notion of summarization reward to quantify

the merging effectiveness of a pre-selected supernode pair. We

further prove that iteratively selecting the supernode pairs

with maximum summarization rewards will lead to the graph

summary with the minimum summarization cost, which is the

prime goal for graph summarization (Section 3.1);

(3) We design a probabilistic supernode selection policy that is

trained and optimized by multi-layer neural networks in order

to identify the promising supernode pairs with high summa-

rization rewards (Section 3.2);

(4) We carry out systematic experimental studies on ten real-world

graph datasets, and the results validate the significant advan-

tages of Poligras, in comparison with the state-of-the-art graph

summarization solutions, in terms of graph summarization ef-

fectiveness, efficiency, and scalability (Section 4).

The remainder of this paper is organized as follows: In Sec-

tion 2, we introduce the key definitions, preliminary concepts, and

a generic algorithm framework for graph summarization. In Sec-

tion 3, we discuss in detail our learning-enhanced solution, Poligras.
We report experimental results and key findings in Section 4. In Sec-

tion 5, we brief related work for graph summarization, followed by

concluding remarks in Section 6. For ease of reference, We provide

a list of notations used in Poligras in Table 1.

2 AN ALGORITHMIC FRAMEWORK FOR
GRAPH SUMMARIZATION

2.1 Problem Formulation
We consider as input a simple, undirected graph 𝐺 = (𝑉 , 𝐸) for
graph summarization, where𝑉 is a set of vertices, and 𝐸 ⊆ 𝑉 ×𝑉 is

a set of edges. Starting from𝐺 , a supergraph G is defined as follows,

Definition 1. [SUPERGRAPH] A supergraph G = (V, E) con-
sists of a supernode set V and a superedge set E: Each supernode
𝜇 ∈ V represents a subset 𝑉𝜇 of vertices in 𝐺 , 𝑉𝜇 ⊆ 𝑉 , such that
∀𝜇, 𝜈 ∈ V , 𝑉𝜇 ∩ 𝑉𝜈 = ∅, and ⋃︁

𝜇∈V 𝑉𝜇 = 𝑉 ; Each superedge
(𝜇, 𝜈) ∈ E between supernodes 𝜇 and 𝜈 represents all the pairwise
connections, not necessarily actual edges, between the plain vertices
𝑢 ∈ 𝜇 and 𝑣 ∈ 𝜈 , where 𝑢, 𝑣 ∈ 𝑉 . □

2433

1

2

4

5

6

7

8

Graph
Graph Summary

Summarization

3

Reconstruction

Figure 1: A graph 𝐺 and its graph summary S = (G,𝐶).

Given a supergraph G, its supernode setV represents a mutually

exclusive, collectively exhaustive partition for the vertex set 𝑉 of

the graph 𝐺 . Consider two vertices 𝑢, 𝑣 ∈ 𝑉 . If they are similar in

terms of neighborhood connectivity: they connect with the same,

or a highly similar, set of adjacent vertices in 𝐺 , 𝑢 and 𝑣 can thus

be coalesced into the same supernode of G. Likewise, all the edges
incident to 𝑢, 𝑣 , and their common neighbors can be consolidated

into a superedge depicting an aggregate, group-level connection

between two sets of vertices represented by the corresponding

supernodes. Consequently, the supergraph G is a compact graph

representation that encodes dominant connectivity patterns and

coarse-grained structural insights from the original graph 𝐺 .

To account for the actual edges of 𝐺 that is encoded by a su-

peredge (𝜇, 𝜈) between supernodes 𝜇 and 𝜈 , we define by Π𝜇𝜈 the

set of all vertex pairs (𝑢, 𝑣), where 𝑢 ∈ 𝜇, 𝑣 ∈ 𝜈 , and 𝑢, 𝑣 ∈ 𝑉 ;

Equivalently, Π𝜇𝜈 represents all the potential edges that may possi-

bly be present across supernodes 𝜇 and 𝜈 , and it is immediate that

|Π𝜇𝜈 | = |𝑉𝜇 | · |𝑉𝜈 |1. We further denote by 𝐸𝜇𝜈 the set of actual edges

present in the graph 𝐺 ; that is, 𝐸𝜇𝜈 = Π𝜇𝜈 ∩ 𝐸. Once a superedge
(𝜇, 𝜈) is present in G, we may falsely introduce a set Π𝜇𝜈 \ 𝐸𝜇𝜈
of spurious edges, each of which is denoted by “−(𝑢, 𝑣)", where
𝑢 ∈ 𝜇, 𝑣 ∈ 𝜈 , and the minus sign indicates (𝑢, 𝑣) is a spurious edge
not actually present in 𝐺 . Likewise, if there exists no superedge

(𝜇, 𝜈) in G, we may miss actual edges of 𝐸𝜇𝜈 in the summary, thus

rendering an information loss. Here we use “+(𝑢, 𝑣)" to denote a

missing edge, where the plus sign indicates the edge needs to be

reclaimed to G. To warrant correctness for graph summarization,

we introduce an edge correction set, 𝐶 ⊆ 𝑉 ×𝑉 , that maintains all

spurious and missing edges. To this end, the graph summary can

be defined below:

Definition 2. [GRAPH SUMMARY] Given a graph 𝐺 , its graph
summary, S = (G,𝐶), consists of a supergraph G = (V, E) and an
edge correction set 𝐶 . □

Consider a graph summary S = (G,𝐶). The supergraph G high-

lights the essential grouping characteristics (via supernodes) and

dense connectivity patterns (via superedges) in 𝐺 , and the edge

correction set 𝐶 allows for lossless reconstruction of 𝐺 from G. In
particular, we can reconstruct the original graph𝐺 (or a subgraph of

𝐺) from the graph summary S as follows: (1) For each supernode 𝜇

of G, we unfold it to a subset𝑉𝜇 of constituent vertices of𝐺 ; (2) For
each superedge (𝜇, 𝜈) of G, we expand it by adding pairwise edges

(𝑢, 𝑣) for any 𝑢 ∈ 𝜇 and 𝑣 ∈ 𝜈 ; (3) We scan the edge correction

1
The self-superedge (𝜇, 𝜇) is allowed in a supergraph, and in this case, |Π𝜇𝜇 | =
(|𝑉𝜇 | − 1) · |𝑉𝜇 |/2.

Algorithm 1 The Graph Summarization Framework

Input: A graph𝐺 = (𝑉 , 𝐸) , the number of iterations,𝑇 , for summarization

Output: The graph summary S = (G,𝐶)
1: V ← {{𝑣} | 𝑣 ∈ 𝑉 }
2: for 𝑘 = 1, 2, . . . ,𝑇 do
3: Partition V into a set P of disjoint groups ⊲ Group Partitioning

4: for each supernode group 𝑃𝑖 ∈ P do ⊲ Supernode Merging

5: Merge a selected pair of supernodes 𝜇, 𝜈 into 𝜇 ∪ 𝜈 ⊲ Algorithm 2

6: V ← (V \ {𝜇, 𝜈 }) ∪ {𝜇 ∪ 𝜈 }
7: Encode edges of𝐺 into E and𝐶 ⊲ Edge Encoding

8: return S = (G,𝐶)

set 𝐶 by either eliminating a spurious edge, −(𝑢, 𝑣), or inserting
a missing edge, +(𝑢, 𝑣). To this end, the graph summary S can be

regarded as a structure-preserving, information-lossless compres-

sion of the graph 𝐺 . To further condense the graph summary S,
we can selectively remove a subset of edges from the edge correc-

tion set 𝐶 , or even part of the supergraph G, thus yielding a lossy
summary S′, regulated by an error parameter, 𝜖 [31]. However, as

lossy summarization is typically a post-processing step once the

graph summary S is available, in this paper, we focus primarily on

lossless graph summarization (𝜖 = 0), which is also the target of

the state-of-the-art solutions [37, 45]

Example 1. Consider a graph𝐺 with 8 vertices and 14 edges as shown
in Figure 1. We summarize𝐺 to a graph summary S = (G,𝐶), where
G is a supergraph with 3 supernodes and 3 superedges, including a self-
superedge (𝛾,𝛾);𝐶 is the edge correction set containing 1missing edge
and 3 spurious edges. Note that the graph summary S is significantly
smaller than 𝐺 . Furthermore, we can reconstruct the original graph
𝐺 from S without information loss. □

The graph summarization scheme in Definition 2 embraces the

principle of minimum description length (MDL) as its theoretical

underpinning [31]. According to MDL [34], the potentially best

theory to infer from a dataset is the one that minimizes the total

sizes of (1) the theory per se, and (2) the data encoded by the theory.
In the case of graph summarization, the data to be summarized is

the input graph 𝐺 , and the theory is the supergraph G. The edge
correction set𝐶 is the encoding of𝐺 in terms of G. To this end, we

define the cost of a graph summary S = (G,𝐶) as2

𝑐𝑜𝑠𝑡 (S) = |E | + |𝐶 |. (1)

The first term |E | corresponds to the size of the theory (supergraph
G), while the second term |𝐶 | is the encoding size of 𝐺 w.r.t. G.
The objective of graph summarization is therefore to identify the

min-cost graph summary, S∗, from 𝐺 .

Definition 3. [GRAPH SUMMARIZATION] Given an input
graph 𝐺 , the problem of graph summarization is to find as output
the min-cost graph summary S∗, where S∗ = argminS (𝑐𝑜𝑠𝑡 (S)) =
argminS{|E | + |𝐶 |}. □

2.2 The Algorithmic Framework
We present in Algorithm 1 a generic algorithm framework for

graph summarization, in which the state-of-the-art solutions, such

2
We omit |V | and the cost of supernode-to-vertex mappings, 𝑉𝜇 = {𝑣1𝜇 , 𝑣2𝜇 , . . .}
where 𝑣𝑖𝜇 ∈ 𝑉 for all 𝜇 ∈ V , as they are significantly smaller than | E | .

2434

*UDSK�6XPPDU\

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�
�

�

�

� �

*UDSK����
���� 0HUJH

��������
0HUJH
��������

0HUJH
��������

0HUJH
��������

0HUJH
���������^�`��^�`� �^�`��^�`� �^�`��^�`� �^�`��^����`� �^����`��^�`�

Figure 2: The iterative process of graph summarization from 𝐺 to its ultimate graph summary S = (G5,𝐶5)

as SWeG [37] and LDME [45], naturally fit. Given an input graph

𝐺 , we start by initializing each vertex of 𝐺 as a trivial supernode

(Line 1), and iteratively select supernode pairs to merge in a bottom-

up, greedy fashion (Lines 2-6). Specifically, in each iteration, the

supernodes are first partitioned into disjoint groups based on their

connectivity proximity (Line 3). Within each group, a pair of su-

pernodes 𝜇 and 𝜈 , which, if merged, will lead to a significant size

reduction to graph summaries, are identified and merged into a

new supernode, denoted 𝜇 ∪ 𝜈 (Lines 4-6). When the supernodes

setV is finalized after 𝑇 iterations, the superedges, together with

the edge correction set 𝐶 , are further generated to accomplish the

ultimate graph summary S (Line 7).

Example 2. Given the graph 𝐺 in Figure 1, we present the iterative
process of graph summarization that simplifies 𝐺 to its graph sum-
mary S in Figure 2. First of all, all the vertices of 𝐺 are partitioned
into three groups colored in red, blue, and yellow. At each step of
graph summarization, a pair of supernodes are selected from within
the same group, and merged into a new supernode. This supernode
selection and merging process continues for a certain number of it-
erations 𝑇 = 5. In addition, the edges of 𝐺 can be either aggregated
as superedges, or maintained in the edge correction set 𝐶 . We thus
have a series of intermediate graph summaries, and the ultimate one
is S = (G5,𝐶5). □

In what follows, we look into three performance-critical steps

for graph summarization as sketched in Algorithm 1.

1. Group Partitioning (Line 3). In this step, the supernode setV
is partitioned to a set P of disjoint groups, each of which contains

supernodes with similar neighborhood proximity. The main objec-

tive here is to confine the subsequent, time-demanding supernode

selection and merging within each group 𝑃𝑖 ∈ P, as opposed to

upon the whole supernode setV . Additionally, this enables parallel

execution of supernode merging across separate partitions, leading

to further speedup for graph summarization. In particular, SWeG
chooses Jaccard coefficient to quantify the neighborhood proximity

of supernodes, and uses shingling and minhashing techniques [7]

for supernode partitioning. LDME considers the SuperJaccard simi-

larity, a min-max variant of Jaccard coefficient, and uses weighted

locality sensitive hashing (LSH) to partitionV [45]. It is reported

that the weighted LSH method typically leads to a greater number

of smaller-size groups than minhashing [45]. As a result, LDME
is more precise than SWeG in supernode partitioning: supernodes

with high SuperJaccard similarity are guaranteed, w.h.p., to be par-

titioned to the same group.

2. Supernode Selection and Merging (Lines 4-6). In each su-

pernode partition 𝑃𝑖 ∈ P, we identify a pair of supernodes, 𝜇 and 𝜈 ,

andmerge them to a new supernode, 𝜇∪𝜈 . The goal here is to choose
among O(|𝑃𝑖 |2) supernode pairs an optimal one, the merge of which

leads to a maximum reduction to edges/superedges in the graph

summary S. In each iteration, however, there exist O(∑︁ | P |
𝑖=1
|𝑃𝑖 |2)

supernode pairs under investigation, which poses a significant per-

formance barrier for graph summarization [31, 37, 45]. Furthermore,

if not carefully designed, the supernode pair selection may result in

notable inaccuracy for the graph summary cost (Equation 1). Worse

yet, such inaccuracy can be iteratively amplified, thereby yielding

excessively large, non-optimal graph summaries.

Existing solutions, such as SWeG and LDME, propose the no-
tion of saving(𝜇, 𝜈) to quantify the potential benefit of merging

supernodes 𝜇 and 𝜈 in graph summarization. Formally, saving(𝜇, 𝜈)
is the ratio of cost reduction as a result of merging toward a new

supernode 𝜇∪𝜈 over the combined cost of 𝜇 and 𝜈 before the merge.

As an exact computation of saving(𝜇, 𝜈) is costly, SWeG adopts

the SuperJaccard similarity of 𝜇 and 𝜈 as an approximation. To

further lower the computation cost, SWeG considers a randomized

algorithm that first picks a supernode 𝜇 uniformly at random, and

then selects 𝜇’s best possible merging candidate 𝜈 to approximate

SuperJaccard. In contrast, LDME develops a two-level hash table to

compute saving(𝜇, 𝜈), which incurs significant space overhead.

In sum, existing solutions consider the approximate metric, sav-
ing(𝜇, 𝜈), as opposed to the actual graph summary cost (Equation 1),

for supernode selection. Their approximation algorithms also lack

theoretical performance guarantees. Consequently, the estimated

metric, saving, oftentimes deviates from the goal of graph summa-

rization (Definition 3), rendering suboptimal supernodes selected

at each step, and non-optimal graph summary in the end.

3. Edge Encoding (Line 7). Once the supernode set V is deter-

mined, we further encode the edges of 𝐺 into the superedge set,

E, or the edge correction set, 𝐶 . Consider any pair of supernodes

𝜇, 𝜈 ∈ V . There exist two options to encode the actual edges of 𝐸𝜇𝜈
between supernodes 𝜇 and 𝜈 :

(1) We create a superedge (𝜇, 𝜈) in G. As a consequence, all the
spurious edges, −(𝑢, 𝑣), need to be added to the edge correction
set𝐶 for𝑢 ∈ 𝜇 and 𝑣 ∈ 𝜈 . The cost incurred is (1+|Π𝜇𝜈 |− |𝐸𝜇𝜈 |);

(2) We add all the missing edges, +(𝑢, 𝑣), to the edge correction

set 𝐶 without creating a superedge between 𝜇 and 𝜈 , where

(𝑢, 𝑣) ∈ 𝐸𝜇𝜈 . This way, the cost incurred is |𝐸𝜇𝜈 |;
We then choose the one with the smaller superedge cost:

𝑐𝑜𝑠𝑡 (𝜇, 𝜈) = min{1 + |Π𝜇𝜈 | − |𝐸𝜇𝜈 |, |𝐸𝜇𝜈 |} (2)

to encode actual edges of 𝐸𝜇𝜈 : When |𝐸𝜇𝜈 | > (1 + |Π𝜇𝜈 |)/2, the
superedge (𝜇, 𝜈) is present in G, and all spurious edge in Π𝜇𝜈 \ 𝐸𝜇𝜈
are inserted to the edge correction set 𝐶; Otherwise, the missing

2435

edges of 𝐸𝜇𝜈 are directly inserted to𝐶 . This edge encoding principle

minimizes the number of superedges/edges in the graph summary

S, while still warranting the correctness and completeness of edge

connectivity in the original graph. Therefore, when V is deter-

mined, it is straightforward to compute E, 𝐶 , and also the ultimate

graph summary S by investigating every supernode pair for edge

encoding as discussed above. As a result, to identify the min-cost

graph summary S∗ (Definition 3), it is essential to find the optimal

supernode set,V∗, which is the prime goal of our work.

3 POLIGRAS
To address the weaknesses of existing graph summarization solu-

tions, and more importantly, to explore a systematic approach for

optimal supernode pair selection in graph summarization, we pro-

pose in this paper a learning-enhanced approach, Poligras (Policy-
based graph summarization). In Poligras, the critical step for su-

pernode selection and merging is modeled as a sequential decision-

making process. We introduce the notion of summarization reward
to quantify the merging effectiveness for a pair of supernodes, and

demonstrate that selecting supernode pairs with maximum summa-

rization rewards will result in the min-cost graph summary, which

is the objective of graph summarization (Section 3.1). To facilitate

the computation for supernode selection, we propose a probabilistic

supernode selection policy that is modeled, learned, and optimized

by multi-layer neural networks (Section 3.2). Poligras is able to iden-
tify supernode pairs with significantly reduced summarization cost,

thus achieving improved performance for graph summarization

especially in large graphs.

3.1 Summarization Reward
In Poligras, graph summarization is driven by a sequence of 𝑛

supernode-merging operations, each of which is denoted by (𝜇𝑖 , 𝜈𝑖)
(0 ≤ 𝑖 ≤ 𝑛 − 1), indicating merging supernodes 𝜇𝑖 and 𝜈𝑖 selected

from the supergraph G𝑖 :

G0,𝐶0

(𝜇0,𝜈0)−−−−−−→ G1,𝐶1

(𝜇1,𝜈1)−−−−−−→ . . .
(𝜇𝑛−1,𝜈𝑛−1)−−−−−−−−−−→ G𝑛,𝐶𝑛

At the beginning, the input graph 𝐺 = (𝑉 , 𝐸) is abstracted as an

initial supergraph G0 = (V0, E0), where V0 = {{𝑣}|𝑣 ∈ 𝑉 } and
E0 = {({𝑢}, {𝑣}) |(𝑢, 𝑣) ∈ 𝐸}; Correspondingly, the edge correction
set𝐶0 is initialized to ∅. We then go through an iterative process of

supernode merging. At each step, we select a pair of supernodes

(𝜇𝑖 , 𝜈𝑖) from G𝑖 (The details of supernode selection are elaborated in
Section 3.2), and merge them to a new supernode. As a consequence,

the supergraph G𝑖 is summarized to G𝑖+1, and the edge correction

set 𝐶𝑖 is updated to 𝐶𝑖+1. This supernode-merging process is de-

tailed in Algorithm 2. First of all, we create a new supernode 𝜌

that encompasses all the plain vertices within 𝜇𝑖 and 𝜈𝑖 (Line 1).

Consider an arbitrary supernode 𝜇 of G𝑖 . We define its neighboring
supernode set, 𝑁G𝑖 [𝜇] = {𝜂 | (𝜂, 𝜇) ∈ E𝑖 , 𝜂 ∈ V𝑖 }, which includes all

𝜇’s adjacent supernodes in G𝑖 . While merging supernodes 𝜇𝑖 and

𝜈𝑖 into 𝜌 , the graph summary S𝑖 , including G𝑖 and 𝐶𝑖 , is updated
accordingly. The following theorem guarantees that updates to G𝑖
and 𝐶𝑖 are only confined to the adjacent supernodes of 𝜇𝑖 or 𝜈𝑖 :

Theorem 3.1. While merging supernodes 𝜇𝑖 and 𝜈𝑖 of G𝑖 into a new
supernode 𝜌 , only the adjacent supernodes of 𝜇𝑖 or 𝜈𝑖 in 𝑁G𝑖 [𝜇𝑖] ∪
𝑁G𝑖 [𝜈𝑖] are potentially updated in the graph summary. □

Algorithm 2 Supernode_Merging (𝜇𝑖 , 𝜈𝑖)
Input: The supergraph G𝑖 = (V𝑖 , E𝑖) , the edge correction set𝐶𝑖 , and a

pair of pre-selected supernodes 𝜇𝑖 , 𝜈𝑖 ∈ V𝑖

Output: The supergraph G𝑖+1 = (V𝑖+1, E𝑖+1) , the edge correction set𝐶𝑖+1
1: 𝜌 ← {𝑢 |𝑢 ∈ 𝜇𝑖 ,𝑢 ∈ 𝑉 } ∪ {𝑣 |𝑣 ∈ 𝜈𝑖 , 𝑣 ∈ 𝑉 } ⊲ A new supernode 𝜌 = 𝜇𝑖 ∪ 𝜈𝑖

2: for 𝜂 ∈ 𝑁G𝑖 [𝜇𝑖] ∪ 𝑁G𝑖 [𝜈𝑖] do
3: 𝐸𝜌,𝜂 ← {(𝑢, 𝑣) |𝑢 ∈ 𝜌, 𝑣 ∈ 𝜂} ∩ 𝐸
4: if |𝐸𝜌,𝜂 | > (1 + |𝜌 | · |𝜂 |)/2 then
5: E𝑖 ← E𝑖 ∪ { (𝜌, 𝜂) } ⊲ Create a superedge (𝜌,𝜂)
6: 𝐶𝑖 ← 𝐶𝑖 \ 𝐸𝜌,𝜂 ⊲ Remove existing +(𝑢, 𝑣) from𝐶𝑖

7: 𝐶𝑖 ← 𝐶𝑖 ∪ ({ (𝑢, 𝑣) |𝑢 ∈ 𝜌, 𝑣 ∈ 𝜂} \ 𝐸𝜌,𝜂) ⊲ Add −(𝑢, 𝑣) to𝐶𝑖

8: else
9: 𝐶𝑖 ← 𝐶𝑖 \ ({ (𝑢, 𝑣) |𝑢 ∈ 𝜌, 𝑣 ∈ 𝜂} \ 𝐸𝜌,𝜂) ⊲ Remove −(𝑢, 𝑣) from𝐶𝑖

10: 𝐶𝑖 ← 𝐶𝑖 ∪ 𝐸𝜌,𝜂 ⊲ Add +(𝑢, 𝑣) to𝐶𝑖

11: E𝑖+1 ← E𝑖 \ ({ (𝜇𝑖 , 𝜂) |𝜂 ∈ 𝑁G𝑖 [𝜇𝑖] } ∪ { (𝜈𝑖 , 𝜂) |𝜂 ∈ 𝑁G𝑖 [𝜈𝑖] })
12: V𝑖+1 ← (V𝑖 \ {𝜇, 𝜈 }) ∪ {𝜌 }
13: 𝐶𝑖+1 ← 𝐶𝑖

14: return G𝑖+1 (V𝑖+1, E𝑖+1),𝐶𝑖+1

Proof. Consider, otherwise, a supernode 𝜏 such that 𝜏 ∉ 𝑁G𝑖 [𝜇𝑖]
and 𝜏 ∉ 𝑁G𝑖 [𝜈𝑖]; that is, there exist no superedges (𝜇𝑖 , 𝜏) and (𝜈𝑖 , 𝜏)
in G𝑖 . Therefore,

|𝐸𝜇𝑖 ,𝜏 | ≤ (1 + |𝜇𝑖 | · |𝜏 |)/2, |𝐸𝜈𝑖 ,𝜏 | ≤ (1 + |𝜈𝑖 | · |𝜏 |)/2.

Adding up both sides of the above inequalities, we have

|𝐸𝜌,𝜏 | = |𝐸𝜇𝑖 ,𝜏 | + |𝐸𝜈𝑖 ,𝜏 | ≤
1 + (|𝜇𝑖 | + |𝜈𝑖 |) · |𝜏 |

2

=
1 + |𝜌 | · |𝜏 |

2

;

That is, there exists no superedge between 𝜏 and the new supernode

𝜌 in G𝑖+1. Therefore, the superedges incident to 𝜏 will not change
during the supernode merging for 𝜇𝑖 and 𝜈𝑖 . Likewise, all the edges

in the edge correction set𝐶𝑖 that are incident to the vertices within

𝜏 will not change as well. □

According to Theorem 3.1, when updating G𝑖 and 𝐶𝑖 due to a

supernode merging between 𝜇𝑖 and 𝜈𝑖 , it suffices to examine the

supernodes only in 𝜇𝑖 ’s or 𝜈𝑖 ’s neighboring set, as opposed to the

entire supergraph G𝑖 (Lines 2-10). After merging 𝜇𝑖 and 𝜈𝑖 into 𝜌 ,

we remove from G𝑖 the incident superedges of 𝜇𝑖 (resp. 𝜈𝑖) (Line 11),
followed by 𝜇𝑖 and 𝜈𝑖 , which are substituted by the new supernode 𝜌

(Line 12). As a result, the supergraph G𝑖 is summarized to G𝑖+1, and
the edge correction set𝐶𝑖 is updated to𝐶𝑖+1 (Line 13). This iterative
supernode merging process culminates in the final graph summary

S𝑛 comprising the supergraph G𝑛 and the edge correction set 𝐶𝑛 .

To precisely quantify the summarization effectiveness incurred

by a supernode merging to the graph summary, we introduce in

Poligras a new notion of summarization reward:

Definition 4. [SUMMARIZATION REWARD] Consider a su-
pernode pair (𝜇𝑖 , 𝜈𝑖), where 𝜇𝑖 , 𝜈𝑖 ∈ V𝑖 , 0 ≤ 𝑖 ≤ 𝑛 − 1. The summa-
rization reward, 𝑟 (𝜇𝑖 , 𝜈𝑖), of merging 𝜇𝑖 and 𝜈𝑖 that transforms the
graph summary S𝑖 (G𝑖 ,𝐶𝑖) to S𝑖+1 (G𝑖+1,𝐶𝑖+1) is defined as

𝑟 (𝜇𝑖 , 𝜈𝑖) = max{0, (|E𝑖 | + |𝐶𝑖 |) − (|E𝑖+1 | + |𝐶𝑖+1 |)}. □

As 𝑟 (𝜇𝑖 , 𝜈𝑖) ≥ 0, the summarization reward 𝑟 (𝜇𝑖 , 𝜈𝑖) specifies an
absolute size reduction to graph summaries incurred by a supernode

merging of 𝜇𝑖 and 𝜈𝑖 . Therefore, at each step of summarization, we

aim to identify a pair of supernodes, 𝜇∗
𝑖
and 𝜈∗

𝑖
, from G𝑖 (more

specifically, from each partitioned group ofV𝑖), such that

(𝜇∗𝑖 , 𝜈
∗
𝑖) = argmax{𝑟 (𝜇𝑖 , 𝜈𝑖)}, 𝜇𝑖 , 𝜈𝑖 ∈ V𝑖 . (3)

2436

When there exist no supernode pairs at step 𝑛(≥ 0) satisfying
𝑟 (𝜇∗𝑛, 𝜈∗𝑛) > 0, it means G𝑛 can no longer be summarized for further

size reduction. We define the cumulative summarization reward for

the graph summary S𝑛 as

𝑟 (S𝑛) =
𝑛−1∑︂
𝑖=0

𝑟 (𝜇∗𝑖 , 𝜈
∗
𝑖) 𝜇∗𝑖 , 𝜈

∗
𝑖 ∈ V𝑖 (4)

As each 𝑟 (𝜇∗
𝑖
, 𝜈∗

𝑖
) > 0, it is immediate that 𝑟 (S𝑖+1) > 𝑟 (S𝑖); that is,

the cumulative summarization reward 𝑟 (S𝑖) is monotonically in-

creasing w.r.t. 𝑖 . When 𝑖 = 𝑛 and ∄𝜇∗𝑛, 𝜈∗𝑛 ∈ V𝑛 such that 𝑟 (𝜇∗𝑛, 𝜈∗𝑛) >
0, we terminate the supernode merging process, which ends up

with the ultimate graph summary S𝑛 = (G𝑛,𝐶𝑛).
A direct benefit of quantifying the supernode merging effec-

tiveness based on the notion of summarization reward is that it

is intrinsically related to the graph summary cost (Equation 1), as

shown in the following theorem.

Theorem 3.2. Given a graph 𝐺 = (𝑉 , 𝐸), a sequence of 𝑛 supernode-
merging operations, and the ultimate graph summary S𝑛 = (G𝑛,𝐶𝑛),
the cumulative summarization reward of S𝑛 , 𝑟 (S𝑛), is equivalent to
|𝐸 | − (|E𝑛 | + |𝐶𝑛 |), the absolute reduction of graph summary cost of
S𝑛 w.r.t. 𝐺 . □

Proof. Based on the definition of cumulative summarization re-

ward, we note that

𝑟 (S𝑛) =
𝑛−1∑︂
𝑖=0

𝑟 (𝜇∗𝑖 , 𝜈
∗
𝑖) =

𝑛−1∑︂
𝑖=0

max{0, (|E𝑖 | + |𝐶𝑖 |) − (|E𝑖+1 | + |𝐶𝑖+1 |)}

=

𝑛−1∑︂
𝑖=0

{(|E𝑖 | + |𝐶𝑖 |) − (|E𝑖+1 | + |𝐶𝑖+1 |)}

= (|E0 | + |𝐶0 |) − (|E𝑛 | + |𝐶𝑛 |) = |𝐸 | − (|E𝑛 | + |𝐶𝑛 |)

Specifically, the second line holds because 𝑟 (𝜇∗
𝑖
, 𝜈∗

𝑖
) > 0 for all

0 ≤ 𝑖 ≤ 𝑛 − 1; The third line holds because the telescopic sums

cancel consecutive terms, leaving only the initial and final ones. In

particular, E0 is equivalent to the edge set 𝐸 of the original graph

𝐺 , and 𝐶0 is initialized to ∅, so |𝐶0 | = 0. □

According to Theorem 3.2, the objective of identifying a min-cost

graph summaryS∗ (Definition 3) translates to finding an optimal se-

quence of𝑛 supernode pairs (𝜇∗
𝑖
, 𝜈∗

𝑖
) determined by Equation 3. As a

consequence, the iterative merging of 𝜇∗
𝑖
and 𝜈∗

𝑖
(0 ≤ 𝑖 ≤ 𝑛 − 1) will

lead to the optimal graph summary S∗(= S𝑛) with the maximum

cumulative summarization reward, 𝑟 (S𝑛). It is worth noting that

existing graph summarization solutions, such as SWeG [37] and

LDME [45], adopt approximate metrics for supernode pair selection,

which result in non-optimal graph summaries. Poligras instead con-
siders the new notion of summarization reward, the maximization

of which directly leads to the min-cost graph summary.

3.2 Supernode Selection Policy
To this end, our prime goal is to select the optimal pair of supern-

odes, 𝜇∗
𝑖
and 𝜈∗

𝑖
, from G𝑖 , where 𝑖 = 0, 1, 2, . . ., based on Equation 3.

In practice, given the supergraph G𝑖 , its supernode setV𝑖 is first
partitioned to a set P of supernode groups, and supernode pairs are

chosen from within each group 𝑃 ∈ P. A straightforward solution

is to explore every supernode pair within 𝑃 , the number of which

can be

(︁ |𝑃 |
2

)︁
= 𝑂 (|𝑃 |2), and for each such pair (𝜇, 𝜈), we tentatively

merge them in order to compute the summarization reward, 𝑟 (𝜇, 𝜈),
based on Algorithm 2. The pair with the maximum summariza-

tion reward will be selected for merging. This brute-force approach,

however, is computationally infeasible especially in real-world large

graphs (See details in Section 4).

To address this challenge, we propose in Poligras a learning-

enhanced supernode selection policy. Intuitively, this policy is a

probabilistic function aiming to model the pairwise likelihood of

supernodes that could potentially be selected as the optimal pair

for merging: Given any supernode pair (𝜇, 𝜈) in a partitioned group

𝑃 , the higher the summarization reward 𝑟 (𝜇, 𝜈), the greater the

probability assigned for this pair (𝜇, 𝜈) by the supernode selection

policy. To this end, the supernode selection policy is essentially a

probabilistic approximation for summarization rewards. In addition,

the learning and optimization of such a policymust be efficient, thus

making the process of supernode pair selection computationally

feasible in real-world graphs.

The learning and computation of the supernode selection policy

consists of two components: (1) supernode embedding and (2)
policy function learning and optimization, as elaborated below.

3.2.1 Supernode Embedding. Based on Definition 4, we note

that the summarization reward 𝑟 (𝜇, 𝜈) quantifies an absolute size

reduction to the graph summaries incurred by merging supernodes

𝜇 and 𝜈 . According to Theorem 3.1 and Algorithm 2, however, the

merge of 𝜇 and 𝜈 causes potential updates for a sub-portion of the

graph summary, which is only related to the adjacent supernodes

of 𝜇 or 𝜈 . In order to capture the neighborhood information of

supernodes during the summarization reward computation, we

propose to embed each supernode into a low-dimensional space

with reduced complexity, high efficiency, and scalability.

At the beginning, each vertex𝑢 of the input graph𝐺 is treated as

a special supernode {𝑢} in G0, and its supernode-embedding, H{𝑢} ,
is a |𝑉 |-dimensional vector based on the one-hot encoding of 𝑢’s

adjacent neighbors in 𝐺 : The 𝑖-th entry of H{𝑢} is 1 if (𝑢, 𝑣𝑖) ∈ 𝐸,
or 0 otherwise, where 𝑣𝑖 ∈ 𝑉 (1 ≤ 𝑖 ≤ |𝑉 |). To further reduce its

dimensionality, we divide the one-hot encodings into 𝑑 groups of

sub-encodings, each of which is with a length of ⌈|𝑉 |/𝑑⌉, except for
the last group whose length is (|𝑉 | − (𝑑 − 1) ∗ (⌈|𝑉 |/𝑑⌉)) without
padding. Here 𝑑 (≪ |𝑉 |) is a user-specified parameter for the final

embedding dimension. We then aggregate each of the 𝑑 groups

by summing up its sub-encoding. This way, the dimension of the

supernode embedding H is reduced from |𝑉 | to 𝑑 .
In the subsequent iterative process of graph summarization,

when two supernodes 𝜇 and 𝜈 are merged to a new supernode

𝜌 , the embedding H is updated accordingly. As the neighboring set

of 𝜌 is solely determined by the union of neighboring sets of 𝜇 and

𝜈 , its embedding can be computed as

H𝜌 = H𝜇 ⊕ H𝜈 , (5)

where ⊕ is the element-wise addition between 𝑑-dimensional vec-

tors, and H𝜌 ∈ R𝑑 . This embedding scheme encodes the salient

neighborhood information of supernodes, which is essential for

supernode merging in Algorithm 2. Furthermore, it also provides

the low-dimensional input for the policy function learning and

optimization as discussed below.

2437

Supernode
Embeddings

Supernode
PairPolicy Function

Input
Layer

Layers
Hidden

Output
Layer

Node
Representation

Selection Prob.
Matrix

Figure 3: Supernode Pair Selection by the Policy P(·).

3.2.2 Policy Function Learning and Optimization. The su-
pernode selection policy is a learnable probabilistic function P(·)
that models the summarization reward for supernode pairs. Specif-

ically, given as input the embeddings H𝑃 of supernodes in a par-

titioned group 𝑃 , the policy function P(·), which is learned and

optimized by a multi-layer neural network, estimates the pairwise

supernode selection probability P(𝜇, 𝜈), for any 𝜇, 𝜈 ∈ 𝑃 . The over-
all process for policy-based supernode pair selection is illustrated

in Figure 3. In particular, given a partitioned group 𝑃 ∈ P (from

the group partitioning stage in Section 2.2), we embed all the su-

pernodes of 𝑃 into a 𝑑-dimensional space. The resultant supernode

embedding matrix is denoted by H𝑃 ∈ R |𝑃 |×𝑑 with each row H𝑃 [𝑖]
representing a 𝑑-dimensional vector for the 𝑖-th supernode 𝜇𝑖 of 𝑃 .

Given as input the supernode embedding matrix H𝑃 , the supernode

selection policy P(·) is formulated as

P(H𝑃) := softmax(NN(H𝑃) · NN(H𝑃)⊤), (6)

where NN(·) is a multi-layer neural network whose weights are

to be learned and optimized. In essence, the policy function P(·)
characterizes the pairwise similarity of supernodes in terms of their

neighborhood proximity. It generates as output a symmetric prob-

ability matrix M𝑃 ∈ [0, 1] |𝑃 |× |𝑃 | with M𝑃 [𝑖, 𝑗] representing the

selection probability of the supernode pair (𝜇𝑖 , 𝜈 𝑗), where 𝜇𝑖 , 𝜈 𝑗 ∈ 𝑃 .
Consequently, the supernode pair with the largest selection proba-

bility is chosen for supernode merging:

(𝜇∗𝑖 , 𝜈
∗
𝑗) = argmax

1≤𝑖< 𝑗≤ |𝑃 |
M𝑃 [𝑖, 𝑗] . (7)

To enforce the intrinsic property that the supernode selection

probability is an stochastic estimation of summarization rewards,

we learn and optimize the policy P(·) in an unsupervised, online-

learning fashion. In particular, for each iteration of graph summa-

rization, the supernode setV is partitioned to a set P of disjoint

groups, and we identify from each group 𝑃𝑖 ∈ P a supernode

pair, (𝜇∗
𝑃𝑖
, 𝜈∗

𝑃𝑖
), with the largest supernode-pair selection proba-

bility,M𝑃𝑖 [𝜇∗𝑃𝑖 , 𝜈
∗
𝑃𝑖
]. We further compute its exact summarization

reward, 𝑟 (𝜇∗
𝑃𝑖
, 𝜈∗

𝑃𝑖
), by merging 𝜇∗

𝑃𝑖
and 𝜈∗

𝑃𝑖
based on Algorithm 2.

As a result, we have |P | such supernode pairs, together with their

summarization rewards, which constitute the training instances

toward learning the policy, P(·), within an iteration. We define the

loss function for training P(·) as

L =
1

|P |

| P |∑︂
𝑖=1

{− log(𝑀𝑃𝑖 [𝜇
∗
𝑃𝑖
, 𝜈∗𝑃𝑖]) · 𝑟 (𝜇

∗
𝑃𝑖
, 𝜈∗𝑃𝑖)}, (8)

Algorithm 3 Poligras Training (In Lines 4-6 of Algorithm 1)

1: 𝑏𝑒𝑠𝑡_𝑠𝑢𝑚 ← 0

2: while True do
3: 𝑠𝑝_𝑙𝑖𝑠𝑡 ← [], 𝑠𝑟_𝑙𝑖𝑠𝑡 ← [] ⊲ MaintainM𝑃𝑖

[𝜇∗
𝑃𝑖
, 𝜈∗
𝑃𝑖
] and 𝑟 (𝜇∗

𝑃𝑖
, 𝜈∗
𝑃𝑖
)

4: for 𝑃𝑖 ∈ P do
5: (𝜇∗

𝑃𝑖
, 𝜈∗

𝑃𝑖
) ← argmax M𝑃𝑖 from P(H𝑃𝑖) ⊲ Supernode selection

6: 𝑠𝑝_𝑙𝑖𝑠𝑡 .push(M𝑃𝑖 [𝜇∗𝑃𝑖 , 𝜈
∗
𝑃𝑖
])

7: 𝑠𝑟_𝑙𝑖𝑠𝑡 .push(𝑟 (𝜇∗
𝑃𝑖
, 𝜈∗

𝑃𝑖
))

8: L = 1

|P |
∑︁|P |

𝑖=1
{− log(𝑀𝑃𝑖 [𝜇∗𝑃𝑖 , 𝜈

∗
𝑃𝑖
]) · 𝑟 (𝜇∗

𝑃𝑖
, 𝜈∗

𝑃𝑖
) } ⊲ Loss function

9: w← w − 𝛼 · Adam(𝜕L
𝜕w) ⊲ Back-propagation via the Adam optimizer

10: if sum(𝑠𝑟_𝑙𝑖𝑠𝑡) ≤ 𝑏𝑒𝑠𝑡_𝑠𝑢𝑚 then
11: Break
12: 𝑏𝑒𝑠𝑡_𝑠𝑢𝑚 ← sum(𝑠𝑟_𝑙𝑖𝑠𝑡)

where 𝑟 (𝜇∗
𝑃𝑖
, 𝜈∗

𝑃𝑖
) = (𝑟 (𝜇∗

𝑃𝑖
, 𝜈∗

𝑃𝑖
) − 𝜇𝑟)/𝜎𝑟 is the normalized sum-

marization reward for the supernode pair (𝜇∗
𝑃𝑖
, 𝜈∗

𝑃𝑖
), with 𝜇𝑟 and

𝜎𝑟 being the sample mean and the sample standard deviation, re-

spectively, of the summarization rewards for the aforementioned

collection of |P | supernode pairs, (𝜇∗
𝑃𝑖
, 𝜈∗

𝑃𝑖
), where 1 ≤ 𝑖 ≤ |P|. In

the training phase, our goal is to minimize the loss L. As a result,
the policy P(·) is optimized in the following manner:

(1) For a supernode pair (𝜇𝑃𝑖 , 𝜈𝑃𝑖) with a high summarization re-

ward, its supernode selection probability, M𝑃𝑖 [𝜇𝑃𝑖 , 𝜈𝑃𝑖], is in-
clined to become large. In other words, in order to decrease the

lossL, the policy P(·) tends to enhance the supernode selection
probabilities for the supernode pairs with high summarization

rewards;

(2) On the other hand, for supernode pairs with low summarization

rewards (e.g., 𝑟 (𝜇𝑃𝑖 , 𝜈𝑃𝑖) < 0), the policy P(·) tends to output

small supernode selection probabilities.

In Poligras, the training and optimization of the policy function

P(·) is accomplished by back-propagation. Different from the con-

ventional machine learning process where the model training and

usage for inference are separated to different stages, the training

and optimization of P(·) follows an online learning paradigm that

is integrated to the graph summarization process. In particular,

within each iteration of summarization (Lines 4-6 of Algorithm 1),

the back-propagation algorithm is executed to minimize the loss

function L (Equation 8) by the Adam optimizer [17].

The training and optimization of the policy P(·) is detailed in

Algorithm 3. Specifically, in each execution of back-propagation, a

supernode pair, (𝜇∗
𝑃𝑖
, 𝜈∗

𝑃𝑖
), is selected from each partitioned group

𝑃𝑖 ∈ P. Its supernode selection probability,M𝑃𝑖 [𝜇∗𝑃𝑖 , 𝜈
∗
𝑃𝑖
], and the

summarization reward, 𝑟 (𝜇∗
𝑃𝑖
, 𝜈∗

𝑃𝑖
), are maintained in two data struc-

tures, 𝑠𝑝_𝑙𝑖𝑠𝑡 , and 𝑠𝑟_𝑙𝑖𝑠𝑡 , respectively (Lines 4-7). These |P | su-
pernode pairs constitute a mini-batch for training P(·) and updating
the weights, w, of the neural network (Lines 8-9). After each run

of back-propagation, a new mini-batch of |P | supernode pairs are
selected for training and optimization. If the total summarization

reward of the current batch is greater than that of the previous

one, back-propagation will continue; Otherwise, we terminate the

optimization in the current iteration of graph summarization, and

the mini-batch with the greatest total summarization reward will

be chosen for supernode merging (Lines 10-12).

2438

3.3 Computational Complexity of Poligras
In Algorithm 1, we note that Poligras is an iterative method with

the number of iterations, 𝑇 , as an input. It can terminate early if

summarization rewards at iteration 𝑇 ′ (< 𝑇) are no longer positive.

In each iteration, Poligras comprises the following key steps: (1)
Supernode partitioning: We use minhashing to partition the su-

pernode setV into |P | disjoint groups based the node connectivity
of 𝐺 with the time complexity of O(|𝑉 |) and the space complexity

of O(|𝐸 |); (2) Supernode embedding: All the supernodes are em-

bedded into a low-dimensional space H represented as a |𝑉 | × 𝑑
matrix, where 𝑑 is the dimensionality for supernode embeddings.

The space cost is O(𝑑 · |𝑉 |), and the time complexity for computing

and updating H is O(𝑑 · |𝑉 |); (3) Policy learning and optimization,

which further contains three computational components:

(1) Mini-batch supernode selection: This step mainly involves the

computation for the neural network. We maintain an intermedi-

ate data structure for the probability matrix M𝑃 , where 𝑃 ∈ P
is a partitioned group with an average size of |𝑃 | = ⌈|𝑉 |/|P|⌉.
Therefore, the space cost is O(|𝑃 |2). The neural network com-

putation is O(𝜂 · (𝑑 · |𝑃 | + |𝑃 |2)), where 𝜂 is a small, constant

factor related to tiny-size matrix multiplication once the neural

network structure is determined and fixed; For all the partitions,

the time complexity is O(𝜂 (|𝑉 | + |𝑉 |2/|P|));
(2) Summarization reward computation: According to Algorithm 2,

an exact computation of 𝑟 (𝜇, 𝜈) needs a tentative supernode
merging, whose complexity is O(𝑑𝑚), where 𝑑𝑚 denotes the

maximum vertex-degree of 𝐺 . In each mini-batch, we need to

compute 𝑟 (𝜇∗
𝑃
, 𝜈∗

𝑃
) for every partitioned group 𝑃 ∈ P, so the

time complexity is O(𝑑𝑚 · |P |);
(3) Back-propagation optimization: In each round of optimization,

the time complexity stems from updates to the parameters

of the neural network, which is related to parameters 𝛼 (the

learning rate) and 𝑑 , so the complexity for this step is O(𝛼 · 𝑑).
Therefore, the total time complexity for policy learning and opti-

mization is O(𝜂 (|𝑉 | + |𝑉 |2/|P|) + 𝑑𝑚 · |P | + 𝛼 · 𝑑). In our setting,

the size of each partitioned group, |𝑃 | = ⌈|𝑉 |/|P|⌉, is typically
bounded by a small constant (e.g., 200 or 400), so it is safe to assume

|P | = O(|𝑉 |). The above complexity can be further simplified to

O(𝛽 · |𝑉 | + 𝑑𝑚 · |𝑉 |), where 𝛽 is a constant factor. After the su-

pernode setV is determined, we encode plain edges of 𝐺 into the

superedge set E and the edge correction set 𝐶 with the time and

space complexity of O(|𝐸 |). As a result, the total time complexity of

Poligras is O((𝛽 + 𝑑𝑚) · |𝑇 | · |𝑉 | + |𝐸 |), indicating it is a linear-time

method for graph summarization. In addition, its space complexity

is O(|𝐸 | + 𝑑 · |𝑉 |), which is also space-efficient.

4 EXPERIMENTS
We report our experimental studies and key findings for graph

summarization in real-world graphs. In particular, we compare our

policy-based graph summarization method, Poligras, with the state-

of-the-art solutions, SWeG [37] and LDME [45], by evaluating both

the summarization effectiveness and efficiency.We also examine the

learning-enhanced mechanisms of Poligras for supernode selection
and merging and its potential benefits for graph summarization. All

our experiments are carried out on a Linux server running Ubuntu

20.04 with two Intel 2.3GHz ten-core CPUs and 256GB memory.

Table 2: Statistics of Graph Datasets

Datasets |V| |E| Avg. Degree

astro-ph (AS) 18,772 198,110 21.11

cnr-2000 (CN) 325,557 2,738,969 16.83

skitter (SK) 1,696,415 11,095,298 13.08

in-2004 (IN) 1,382,908 13,591,473 19.65

eu-2005 (EU) 862,664 16,138,468 37.42

patent (PA) 3,774,768 16,518,948 8.75

tweibo (TW) 1,397,020 41,145,547 58.90

hollywood-2011 (HW) 2,180,759 114,492,816 105.00

indochina-2004 (IC) 7,414,866 150,984,819 40.72

uk-2002 (UK) 18,520,486 261,787,258 28.27

4.1 Datasets
We consider ten real-world graph datasets [3–6, 23, 24] in our ex-

perimental studies, and their key statistics, including the number of

nodes, |𝑉 |, the number of edges, |𝐸 |, and the average node-degrees

of graphs, are reported in Table 2. These datasets have been exten-

sively used to evaluate existing graph summarization techniques,

such as SWeG and LDME. Concretely, astro-ph (AS) is a collabo-
ration network between the authors who submitted papers to the

Astro-Physics domain; cnr-2000 (CN), in-2004 (IN), and eu-2005
(EU) are hyperlink networks in different Internet domains; skitter
(SK) is an Internet topology graph extracted by traceroute run

daily in 2005; patent (PA) is a citation network for U.S. utility

patents published between 1975 and 1999; tweibo (TW) is a so-

cial network from the Tencent Weibo platform; hollywood-2011
(HW) is a Hollywood movie-actor social network, in which nodes

represent actors and edges indicate the co-occurrence relationship

for two actors in the same movie; indochina-2004 (IC) is a sub-
Internet crawled in the country domains of Indochina; uk-2002
(UK) is an Internet graph crawled in the .uk domain in 2002.

4.2 Experimental Settings
4.2.1 Baseline Methods. Besides Poligras, we consider in our

experimental studies two state-of-the-art graph summarization so-

lutions: (1) SWeG [37] is a scalable graph summarization method

that employs shingling and minhashing techniques for supernode

partitioning, and the SuperJaccard metric for supernode selection

and merging; (2) LDME [45] adopts the weighted locality sensitive

hashing (LSH) technique for supernode partitioning, and achieves

significant speedup in supernode merging based on hash indexing.

Both methods, however, are approximate graph summarization so-

lutions with no learning-enabled mechanisms proposed. We also

develop another baseline method, Baseline, which explores every

supernode pair, (𝜇, 𝜈), in a partitioned group to compute the exact
summarization reward, 𝑟 (𝜇, 𝜈), and selects the one, (𝜇∗, 𝜈∗), with
the highest summarization reward for supernode merging. Baseline
guarantees that the optimal supernode pairs can always be identi-

fied for merging. However, Baseline is extremely time-consuming:

It fails to summarize the smallest graph, CN, within 120 hours. We

thus ignore its results in the following experimental studies.

4.2.2 Evaluation Metrics. We consider both the summarization

effectiveness and the runtime efficiency to evaluate different graph

summarization methods. For the effectiveness metric, we consider

2439

AS CN SK IN EU PA TW HW IC UK
0.2

0.4

0.6

0.8

1.0

Su
m

m
ar

iz
at

io
n

Ra
tio

SWeG LDME Poligras

Figure 4: Graph Summarization Ratios on All Datasets.

the summarization ratio of the graph summary S𝑛 w.r.t. the input
graph 𝐺 as

𝑐𝑜𝑠𝑡 (S𝑛)
|𝐸 | =

|E𝑛 | + |𝐶𝑛 |
|𝐸 | , (9)

where |𝐸 | represents the size of the original graph 𝐺 . The graph

summarization ratio quantifies the percentage of the graph summary

size w.r.t. the original graph size; The lower the graph summariza-

tion ratio, the lower the graph summary cost (Equation 1), and the

better the graph summarization effectiveness. For the efficiency

metric, we report the overall runtime cost (in seconds) for different

graph summarization algorithms.

4.2.3 Algorithm and Parameter Settings for Poligras. We

choose minhashing for group partitioning in Poligras, like SWeG.
Specifically, in the TW and HW datasets, the size of partitioned

groups (i.e., the average number of supernodes in each group) is 400,

and in all the other datasets, the size is 200; This setting is consistent

with the group-size settings as reported in SWeG and LDME. For
supernode embeddings in Poligras, we set the embedding dimension

𝑑 between 200 and 1,700 in different graph datasets. To train the

supernode selection policy P(·), we consider a two-layer Perceptron
with hidden sizes of 64 and 32, respectively, as the underlying neural

network (We carry out experimental studies by varying the number

of layers and the size of each layer in the neural network. Marginal

changes in experimental results are witnessed, and thus omitted

for reporting in the paper). In the online learning process, Poligras
is optimized by back-propagation with the Adam optimizer [17],

and the default learning rate 𝛼 is set to 0.001.

4.3 Experimental Results
4.3.1 Graph Summarization Effectiveness. In the first experi-

ment, we evaluate three graph summarization methods, Poligras,
SWeG, and LDME, upon ten real-world graph datasets, and re-

port the graph summarization ratio results in Figure 4. We set in

this experiment the number of iterations, 𝑇 , for graph summariza-

tion to be an excessively large value, such that each summariza-

tion method terminates only when the iterative summarization

process can no longer contribute further size reductions to graph

summaries; that is, the results reported here are the best possible

graph summarization ratios different methods can achieve in the

graphs. First of all, Poligras can losslessly summarize real-world

graphs of varying sizes and structures into succinct summaries

that are significantly smaller than original graphs. For instance, the

graph summaries derived from the CN (small), IN (medium), and

IC (large) datasets are merely 28%, 24%, and 43% the sizes of the

original graphs, respectively, thereby demonstrating its excellent

summarization capabilities in real-world graphs.

Next, we note that Poligras outperforms SWeG and LDME by

consistently achieving the smallest graph summarization ratios in

every graph dataset; that is, Poligras can obtain the most succinct

graph summaries for all these graphs. In particular, the gains of

graph summarization effectiveness by Poligras are notable: when
compared with SWeG, Poligras offers 1.72×, 1.55×, and 1.64× im-

provements in theCN (small), EU (medium), and IC (large) datasets,

respectively; when compared with LDME, Poligras achieves 1.64×,
2.74×, and 1.71× improvements in the CN (small), IN (medium),

and IC (large) datasets, respectively. Even for the largest graph,UK,
Poligras gains 1.42× and 1.33× improvements in graph summariza-

tion ratios compared with SWeG and LDME, respectively, and the

graph summary obtained by Poligras is less than half the size of the

original graph without information loss. Such performance gains

are due in particular to the learning-enhanced supernode selection

policy proposed in Poligras, which can be further validated in the

experiments in Section 4.3.5.

In the second experiment, we consider another application sce-

nario for graph summarization: Instead of waiting for the ultimate

graph summaries where no supernodes can be further merged

for improved summarization effectiveness, we early terminate the

graph summarization process by fine tuning the number of itera-

tions, 𝑇 , as long as (1) the current graph summary has reached a

desirable size, or (2) the difference of graph summarization ratios

between adjacent iterations becomes marginal. In this scenario,

users would accept sufficiently compact, not necessarily the small-

est, graph summaries in order to trade for summarization efficiency.

By regulating the number of iterations, 𝑇 , we report the graph

summarization ratios for all the graph datasets in Figure 5. We

note that, in each dataset and for different values of 𝑇 , Poligras
consistently outperforms SWeG and LDME, and the performance

gains are significant. For example, when 𝑇 = 100, Poligras achieves
1.73× and 2.45× improvements for graph summarization ratios in

the graph IN, when compared with SWeG and LDME, respectively.
In the largest graph, UK, if users want a graph summary with

60% the size of the original graph, it only takes Poligras 𝑇 = 60

iterations of computation. However, neither SWeG nor LDME can

attain this goal after 𝑇 = 120 iterations of summarization, which is

time-consuming. The reason that Poligras outperforms SWeG and

LDME is twofold: First, Poligras uses the notion of summarization

reward to quantify the effectiveness of supernode selection and

merging, which helps find the min-cost graph summaries; Second,

and more importantly, the learning-enhanced supernode selection

policy P(·) in Poligras is more effective for optimal supernode pair

selection than the approximation or randomized algorithms used

in SWeG and LDME.
To further validate the advantages of Poligras in supernode se-

lection and merging, we report the average summarization rewards

for the supernode pairs identified in the first 50 iterations of differ-

ent graph summarization methods, and the results are illustrated

in Figure 6. According to Definition 4, the summarization reward,

𝑟 (𝜇, 𝜈), quantifies the absolute size reduction to graph summaries

incurred by merging the pre-selected supernodes 𝜇 and 𝜈 , so the

average summarization reward signifies the quality of supernode

pairs selected by different summarization methods. In all graph

2440

SWeG LDME Poligras

CN SK IN EU

TW HW IC UK

AS

PA

Figure 5: Graph Summarization Ratio w.r.t. Number of Iterations, |𝑇 |, for Different Graph Summarization Methods.

AS CN SK IN EU PA TW HW IC UK

101

102

Av
g

SR

SWeG LDME Poligras

Figure 6: Average Summarization Rewards on All Datasets.

datasets, the average summarization rewards of Poligras are signif-
icantly higher than those of SWeG and LDME. In the TW dataset,

for instance, Poligras achieves 5.6× and 9.8× improvements when

comparedwith SWeG and LDME, respectively, thanks to the supern-
ode selection policy of Poligras, which helps identify and merge

supernode pairs with high summarization rewards, and therefore

result in low-cost graph summaries for real-world graphs.

4.3.2 Graph Summarization Efficiency. In this experiment, we

examine the efficiency of different graph summarization methods

in real-world graphs. In the first setting, we run different algo-

rithms until the ultimate graph summaries stabilize (no supernode

merging arises for further summarization), and the overall runtime

costs (in seconds) are reported in Figure 8. We note that Poligras is
consistently faster than LDME, and the improvements on summa-

rization efficiency ranges from 1.2× to 2.2× across different datasets.
When compared with SWeG, Poligras has similar runtime costs

in small and medium-size graphs, such as CN, SK, IN, and EU.
However, when the graphs get larger, such as in TW, HW, IC,
and UK, Poligras runs faster than SWeG: the improvements on

summarization efficiency range from 1.5× to 1.8×.
For Poligras, we also report in Figure 8 the subdivided runtime

(in log-scale) for the three main computational components: (1)
supernode partitioning, (2) supernode selection based on policy

learning and optimization, and (3) edge encoding. Note that, on
average, 86.2% of the running time for Poligras is consumed for

0.2 0.4 0.6 0.8 1.0
Scales of Initial Graph

0.0

2.0

4.0

6.0

Ti
m

e
(×

10
4 s

)

CN
IN

EU
IC

Figure 7: Scalability Tests for Poligras

supernode selection and merging; The supernode partitioning takes

9.3% of the overall time; For edge encoding, it takes only 4.5% of

the overall time for graph summarization.

In another setting, we report the runtime costs of different meth-

ods by limiting the number of iterative executions of graph sum-

marization up to 𝑇 , and the results are shown in Figure 9. Note

that Poligras has similar runtime costs to SWeG; Both are faster

than LDME in small and medium-size graphs. When graphs get

larger, Poligras is significantly faster: in the largest UK dataset,

for instance, the speedup ranges from 2.4× to 3.7× compared to

SWeG, and 2.1× to 2.8× compared to LDME. In SWeG and LDME,
for each step of supernode selection, it is imperative to compute

the SuperJaccard coefficient for all the supernodes in a partitioned

group, which is time-consuming. In contrast, supernode selection

in Poligras is accomplished by the learnable policy P(·), whose
training and optimization in mini-batches is efficient.

4.3.3 Scalability Analysis. To examine if the proposed method,

Poligras, can scale up in real-world graphs, we extract a series

of connected subgraphs with varying sizes of 𝑥% × |𝐸 |, where 𝑥%
denotes the percentage of edges retained in subgraphs, and evaluate

the runtime cost for graph summarization. The results for four

graph datasets are presented in Figure 7. In this experiment, we

set five different size ratios ranging from 20% to 100%. With an

increase of graph sizes, Poligras exhibits excellent scalability: The
runtime costs of graph summarization in the graphs of varying

2441

AS CN SK IN EU PA TW HW IC UK

103

104

105

Ti
m

e(
s)

SWeG LDME Poligras_Partitioning Poligras_Policy Poligras_Encoding

Figure 8: Graph Summarization Efficiency for Different Methods in Ten Graph Datasets.

SWeG LDME Poligras

CN SK IN EU

TW HW IC UK

AS

PA

Figure 9: Graph Summarization Efficiency w.r.t. Number of Iterations, |𝑇 |, for Graph Summarization Algorithms.

sizes present nearly linear trends. These results are consistent with

the time-complexity analysis in Section 3.3. Consequently, Poligras
is a scalable graph summarization method that can be employed in

real-world, large-scale graphs for efficient graph summarization.

4.3.4 Parameter Sensitivity Analysis. Poligras has several al-
gorithmic parameters that can be regulated. In the following exper-

iments, we examine how these parameters affect the performance

of graph summarization. We first regulate the group size (the av-

erage number of supernodes within each partitioned group) for

supernode partitioning, and report graph summarization ratios and

runtime costs in Figure 10. While changing the group sizes from

50 to 800, the graph summarization ratios remain roughly stable

with an exception of a steady decrease in the large graph IC. The
reason is that in large partitioned groups of a large graph, chances

are higher to select the supernode pairs with larger summarization

rewards, thus resulting in lower-cost graph summaries. On the

other hand, with an increase of the group sizes, the runtime costs of

Poligras grow proportionally, as more time is needed for supernode

selection and merging in larger partitioned groups.

In Poligras, supernodes of each partitioned group are first embed-

ded into a 𝑑-dimensional space before fed into the neural network

for policy learning. In this experiment, by regulating the dimension-

ality 𝑑 in supernode embeddings, we report graph summarization

ratios and runtime costs of Poligras in Figure 11. In general, the

summarization ratios remain stable given different values of 𝑑 in

four graphs. Minor decreases are witnessed when we increase the

embedding dimensions from 𝑑/4 to 𝑑 , as more neighborhood in-

formation surrounding supernodes and more learnable weights in

neural networks have to be encoded in Poligras, both of which help

improve the effectiveness for supernode selection and merging.

On the other hand, the runtime costs grow proportionally with

an increase of 𝑑 , as it takes more time for Poligras to train and

optimize the policy P(·) when the supernode embeddings have a

larger dimensionality.

4.3.5 Effectiveness of Policy Optimization. In this experiment,

we evaluate the effectiveness of the optimization mechanism in

the supernode selection policy, P(·). We first design an alterna-

tive method for the policy function computation, denoted as Non-
optimized, by opting out the back-propagation optimization in

Poligras (Line 9 in Algorithm 3). In other words, the approach

Non-optimized does not optimize the objective loss function (Equa-

tion 8) during policy training. We then compare Non-optimized to

Poligras with the optimization enabled (our default setting), which

is denoted as Optimized, and the graph summarization ratios in dif-

ferent graph datasets are presented in Table 3. Note this experiment

directly demonstrates the correctness of the proposed objective loss

function, and also the effectiveness of the optimization mechanism

in P(·). From Table 3, we recognize that the optimization-enabled

method, Optimized, achieves consistently lower summarization

ratios than Non-optimized in different graph datasets, indicating

2442

CN IN EU IC

Figure 10: Poligras with Different Group Sizes.

the optimization mechanism of Poligras indeed helps improve the

effectiveness for graph summarization.

Table 3: Policy Optimization in Poligras

Methods AS CN SK IN EU PA TW HW IC UK

Non-optimized 0.717 0.348 0.753 0.501 0.693 0.930 0.901 0.928 0.721 0.661

Optimized 0.661 0.286 0.649 0.254 0.398 0.891 0.884 0.603 0.489 0.506

5 RELATEDWORKS
Graph Summarization. As an effective means for graph data

reduction and simplification, graph summarization aims to iden-

tify concise representations for graphs [15, 28]. Existing graph

summarization methods can be broadly classified into two cat-

egories: lossy summarization and lossless summarization. Lossy
graph summarization techniques, such as summarization with util-

ity loss [12, 20], summarization with construction error [33], graph

sparsification [21], and graph structure summary [22], seek to opti-

mize the compression for effective graph storage and representa-

tion, yet some graph-specific information may become inaccurate

or even lost during summarization. In contrast, lossless graph sum-

marization [31, 37, 45] strives to reduce the storage requirement

for graphs, while the complete information of vertices and edges in

the graphs can be well preserved and fully restored if needed. The

graph summarization problem studied in this paper belongs to the

category of lossless graph summarization.

The edge-correction based graph summarization [31, 37, 45] is

one of the widely used lossless graph summarization techniques.

GREDDY [31] proposes a novel framework that reduces an input

graph into a summary graph and an edge correction set: The sum-

mary graph consists of supernodes and superedges, and the edge

correction set aims to rectify incorrect connections in the sum-

mary graph. RANDOMIZED [31] follows the same summarization

framework as GREDDY. However, during supernode merging, it

first picks a supernode uniformly at random, and then select an-

other supernode in order to maximize the number of edges thus

saved in the summary. SAGS [16] and LDME [45] apply the locality

sensitive hashing technique for supernode selection and merging.

SWeG [37] uses SuperJaccard similarity as an approximation met-

ric for supernode selection, and it is further implemented in the

shared-memory and MapReduce environment for parallel graph

summarization. Other related topics, such as summarizing dynamic

graphs or graph streams [18, 26, 32, 36, 41], query- or utility-driven

graph summarization [8, 10, 13], and graph summarization in the

distributed environment [27], have also been studied.

CN IN EU IC

Figure 11: Poligras with Different Embedding Dimensions 𝑑 .

Policy Learning and Optimization. Policy gradient [25, 29, 38,

40, 44] is one of the widely used models for online or deep rein-

forcement learning [1, 30, 39], which trains an agent interacting

with the environment in order to achieve the highest overall re-

wards. In the policy gradient framework, there is a policy agent 𝜋

(with parameter 𝜃) employed to interact with the environment and

make a series of decisions over time. At each timestamp 𝑡 , the agent

receives the state 𝑠𝑡 from the environment, performs an action

𝑎𝑡 following the policy 𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃), and receives a corresponding

reward 𝑟𝑡 . The environment then transits to the next state 𝑠𝑡+1.
This iterative process continues until the policy agent reaches a

termination state. The objective of policy gradient is to optimize

the policy agent (i.e., 𝜃) to maximize total rewards, or alternatively,

to maximize accumulated rewards after certain steps [29]. In this

framework, the policy 𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃) can be optimized by updating

parameter 𝜃 with the gradient ascent method [44]. Inspired by the

idea of policy gradient, we transform in this paper the problem of

graph summarization into a policy optimization problem, where the

graph summarization process translates to a sequence of supernode

selection and merging actions determined by the supernode selec-

tion policy, P(·). Each supernode selection decision is similar to

an agent performing actions to interact with the environment. By

optimizing P(·), the cumulative summarization rewards of selected

supernode pairs can be maximized and, as a result, the cost of graph

summaries is minimized.

6 CONCLUSION
With the prevalence of large graphs, it becomes indispensable

and imperative to concisely represent them for efficient and cost-

effective storage, analysis, and visualization in real-world networked

applications. In this paper, we proposed a learning-enhanced ap-

proach, Poligras, for summarizing large graphs. We reformulated

the problem of graph summarization as a sequential decision-making

problem, where optimal supernode pairs could be identified and

merged based on the novel notion of summarization rewards and

the learning-enhanced policy that was trained and optimized by

neural networks. Poligras has proven to be highly efficient, effective,

scalable, and achieved significantly better graph summarization

performance than state-of-the-art solutions.

ACKNOWLEDGMENTS
This work was supported in part by the Army Research Office (ARO

Award No. W911NF1810395). Any opinions, findings, and conclu-

sions in this paper are those of the authors and do not necessarily

reflect the funding agencies.

2443

REFERENCES
[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE Signal Process-
ing Magazine 34, 6 (2017), 26–38.

[2] Till Blume, David Richerby, and Ansgar Scherp. 2020. Incremental and parallel

computation of structural graph summaries for evolving graphs. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management
(CIKM’20). 75–84.

[3] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004. Ubi-

Crawler: a scalable fully distributed web crawler. Software: Practice & Experience
34, 8 (2004), 711–726.

[4] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. 2018. BUb-

iNG: massive crawling for the masses. ACM Trans. Web 12, 2 (2018), 1–26.
[5] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered

label propagation: a multi-resolution coordinate-free ordering for compressing

social networks. In Proceedings of the 20th international conference on World Wide
Web (WWW’11). 587–596.

[6] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph framework I: compres-

sion techniques. In Proceedings of the Thirteenth International World Wide Web
Conference (WWW’04). 595–601.

[7] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher.

2000. Min-wise independent permutations. J. Comput. System Sci. 60, 3 (2000),
630–659.

[8] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. 2012. Query preserv-

ing graph compression. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (SIGMOD’12). 157–168.

[9] Wenfei Fan, Yuanhao Li, Muyang Liu, and Can Lu. 2021. Making graphs compact

by lossless contraction. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD’21). 472–484.

[10] Wenfei Fan, Yuanhao Li, Muyang Liu, and Can Lu. 2022. A hierarchical con-

traction scheme for querying big graphs. In Proceedings of the 2022 International
Conference on Management of Data (SIGMOD’22). 1726–1740.

[11] George Fletcher, Jan Hidders, and Josep Llus Larriba-Pey. 2018. Graph data
management: fundamental issues and recent developments (1st ed.). Springer.

[12] Mahdi Hajiabadi, Jasbir Singh, Venkatesh Srinivasan, and Alex Thomo. 2021.

Graph summarization with controlled utility loss. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining (KDD’21). 536–546.

[13] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently

answering reachability queries on very large directed graphs. In Proceedings of the
2008 ACM SIGMOD International Conference onManagement of Data (SIGMOD’08).
595–608.

[14] Xiangyu Ke, Arijit Khan, and Francesco Bonchi. 2022. Multi-relation graph

summarization. ACM Trans. Knowl. Discov. Data 16, 5 (2022), 1–30.
[15] Arijit Khan, Sourav S. Bhowmick, and Francesco Bonchi. 2017. Summarizing

static and dynamic big graphs. Proc. VLDB Endow. 10, 12 (2017), 1981–1984.
[16] Kifayat Ullah Khan. 2015. Set-based approach for lossless graph summarization

using locality sensitive hashing. In the 31st IEEE International Conference on Data
Engineering Workshops (ICDEW’15). 255–259.

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: a method for stochastic optimiza-

tion. In the 3rd International Conference on Learning Representations (ICLR’15).
[18] Jihoon Ko, Yunbum Kook, and Kijung Shin. 2020. Incremental lossless graph

summarization. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD’20). 317–327.

[19] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. 2015. Summarizing

and understanding large graphs. Stat. Anal. Data Min. 8, 3 (2015), 183–202.
[20] K Ashwin Kumar and Petros Efstathopoulos. 2018. Utility-driven graph summa-

rization. Proceedings of the VLDB Endowment 12, 4 (2018), 335–347.
[21] Kyuhan Lee, Hyeonsoo Jo, Jihoon Ko, Sungsu Lim, and Kijung Shin. 2020.

SSumM: sparse summarization of massive graphs. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD’20). 144–154.

[22] Kristen LeFevre and Evimaria Terzi. 2010. GraSS: Graph structure summarization.

In Proceedings of the 2010 SIAM International Conference on Data Mining (SDM’10).
SIAM, 454–465.

[23] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:

densification laws, shrinking diameters and possible explanations. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining (KDD’05). 177–187.

[24] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:

densification and shrinking diameters. ACM transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2–42.

[25] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control

with deep reinforcement learning. In the 4th International Conference on Learning
Representations (ICLR’16).

[26] Yu-Ru Lin, Hari Sundaram, and Aisling Kelliher. 2008. Summarization of social

activity over time: people, actions and concepts in dynamic networks. In Pro-
ceedings of the 17th ACM conference on Information and knowledge management
(CIKM’08). 1379–1380.

[27] Xingjie Liu, Yuanyuan Tian, Qi He, Wang-Chien Lee, and John McPherson. 2014.

Distributed graph summarization. In Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management (CIKM’14).
799–808.

[28] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph sum-

marization methods and applications: A survey. Comput. Surveys 51, 3 (2018),
1–34.

[29] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-

chronous methods for deep reinforcement learning. In International Conference
on Machine Learning (ICML’16). 1928–1937.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529–533.
[31] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. 2008. Graph summa-

rizationwith bounded error. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data (SIGMOD’08). 419–432.

[32] Qiang Qu, Siyuan Liu, Christian S Jensen, Feida Zhu, and Christos Faloutsos. 2014.

Interestingness-driven diffusion process summarization in dynamic networks.

InMachine Learning and Knowledge Discovery in Databases: European Conference
(ECML/PKDD’14). 597–613.

[33] Matteo Riondato, David García-Soriano, and Francesco Bonchi. 2017. Graph

summarization with quality guarantees. Data mining and knowledge discovery
31, 2 (2017), 314–349.

[34] Jorma Rissanen. 1978. Modeling by shortest data description. Automatica 14, 5
(1978), 465–471.

[35] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,

Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz, Khuza-

ima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard

Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki

Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan Plan-

tikow, Mohamed Ragab, Matei R. Ripeanu, Semih Salihoglu, Christian Schulz,

Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tom-

masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun

Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The Future is Big Graphs:

A Community View on Graph Processing Systems. Commun. ACM 64, 9 (2021),

62–71.

[36] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.

2015. Timecrunch: interpretable dynamic graph summarization. In Proceedings
of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining (KDD’15). 1055–1064.

[37] Kijung Shin, Amol Ghoting, Myunghwan Kim, and Hema Raghavan. 2019. SWeG:

lossless and lossy summarization of web-scale graphs. In The World Wide Web
Conference (WWW’19). 1679–1690.

[38] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Mar-

tin Riedmiller. 2014. Deterministic policy gradient algorithms. In International
conference on machine learning (ICML’14). 387–395.

[39] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[40] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.

Policy gradient methods for reinforcement learning with function approximation.

Advances in Neural Information Processing Systems (NIPS’99) 12 (1999), 1057–1063.
[41] Nan Tang, Qing Chen, and Prasenjit Mitra. 2016. Graph stream summarization:

From big bang to big crunch. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD’16). 1481–1496.

[42] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. 2008. Efficient ag-

gregation for graph summarization. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (SIGMOD’08). 567–580.

[43] Ioanna Tsalouchidou, Francesco Bonchi, Gianmarco De Francisci Morales, and

Ricardo Baeza-Yates. 2020. Scalable dynamic graph summarization. IEEE Trans-
actions on Knowledge and Data Engineering 32, 2 (2020), 360–373.

[44] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning 8, 3 (1992), 229–256.

[45] Quinton Yong, Mahdi Hajiabadi, Venkatesh Srinivasan, and Alex Thomo. 2021.

Efficient graph summarization using weighted LSH at billion-scale. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD’21). 2357–
2365.

[46] Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. 2011. Graph Cube: on

warehousing and OLAP multidimensional networks. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data (SIGMOD’11).
853–864.

2444

	Abstract
	1 Introduction
	2 An Algorithmic Framework For Graph Summarization
	2.1 Problem Formulation
	2.2 The Algorithmic Framework

	3 Poligras
	3.1 Summarization Reward
	3.2 Supernode Selection Policy
	3.3 Computational Complexity of Poligras

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Experimental Results

	5 Related Works
	6 Conclusion
	Acknowledgments
	References

