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ABSTRACT

For a nationwide logistics transportation system, it is critical to
make the vehicle loading plans (i.e., given many packages, deciding
vehicle types and numbers) at each sorting and distribution center.
This task is currently completed by dispatchers at each center in
many logistics companies and consumes a lot of workloads for
dispatchers. Existing works formulate such an issue as a cargo load-
ing problem and solve it by combinatorial optimization methods.
However, it cannot work in some real-world nationwide applica-
tions due to the lack of accurate cargo volume information and
effective model design under complicated impact factors as well
as temporal correlation. In this paper, we explore a new oppor-
tunity to utilize large-scale route and human behavior data (i.e.,
dispatchers’ decision process on planning vehicles) to generate ve-
hicle loading plans (i.e., plans). Specifically, we collect a five-month
nationwide operational dataset from JD Logistics in China and com-
prehensively analyze human behaviors. Based on the data-driven
analytics insights, we design a Vehicle Loading Plan learning model,
named VeLP, which consists of a pattern mining module and a deep
temporal cross neural network, to learn the human behaviors on
regular and irregular routes, respectively. Extensive experiments
demonstrate the superiority of VeLP, which achieves performance
improvement by 35.8% and 50% for trunk and branch routes com-
pared with baselines, respectively. Besides, we deployed VeLP in
JDL and applied it in about 400 routes, reducing the time by approx-
imately 20% in creating plans. It saves significant human workload
and improves operational efficiency for the logistics company.

PVLDB Reference Format:

Sijing Duan, Feng Lyu, Xin Zhu, Yi Ding, Haotian Wang, Desheng Zhang,
Xue Liu, Yaoxue Zhang, and Ju Ren. VeLP: Vehicle Loading Plan Learning
from Human Behavior in Nationwide Logistics System. PVLDB, 17(2): 241 -
249, 2023.

doi:10.14778/3626292.3626305

Corresponding author: Feng Lyu
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 2 ISSN 2150-8097.
doi:10.14778/3626292.3626305

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at .

1 INTRODUCTION

With the full-range penetration of online shopping, efficient and
fast package delivery like Amazon in the U.S. and JD Logistics (JDL)
in China has become crucial to user service experience [10, 27].
By June 2022, JDL built a nationwide logistics network [23], with
over 5,000 inter-region and intra-region routes connecting over 160
distribution centers and over 210 sorting centers across roughly 500
Chinese cities. This network facilitates the daily delivery of over
20 million packages. Central to these centers is the frequent task of
advance vehicle loading planning, crucial for on-time delivery.

The vehicle loading planning problem involves selecting the
types and quantity of vehicles for each transportation route given a
certain number of packages. Vehicles of varying capacities, such as
vans (14𝑚3-35𝑚3), lorries (40𝑚3-78𝑚3), and trailers (94𝑚3-120𝑚3),
can be utilized to meet different loading needs. Previous research
models this problem as a pallet stacking or knapsack problem with
capacity constraints, employing combinatorial optimization meth-
ods or machine learning [2, 4, 7, 8, 13, 14, 20, 22, 34, 36, 42, 44].
However, there are several limitations in the actual industry scenar-
ios. (1) The volume information of packages is inaccurate. The
reason is that the packages are not accurately measured at courier
business stations or stocked from warehouses due to non-standard
operations. Although there are some methods to measure the size
of the packages accurately (e.g., cameras [17]), the cost is very high
for nationwide deployment. (2) Even with accurate volume infor-
mation for the individual packages, the uneven placement of

packages with irregular shapes, soft bags, and deformable

items makes it hard to calculate the accurate loading plan with
classic combinatorial optimization solutions. To summarize, the
existing solutions cannot effectively address our problem.

In this study, rather than focusing on individual package sizes,
we derive loading plans by examining route data and predicting the
volume bound of packages. Volume bound represents the space a
group of packages occupies in a vehicle with efficient placement by
on-site workers, calculated from vehicle loading plans (i.e., plans).
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The operational nationwide vehicle loading planning behavior data
in JDL gives us a new opportunity to achieve this by studying and
learning from the dispatchers’ decision-making process. However,
it’s not straightforward because (1) dispatchers’ decisions de-
pend on various complex factors, including route types, time,
and waybill quantity; (2) their decisions for a specific route are

temporally correlated due to the temporal correlation of cargo
volume (e.g., previously unloaded cargo will be loaded in future
batches). Hence, inferring volume bound data from dispatchers’
decisions is a challenging task.

To tackle these challenges, we take the lead in studying plan
learning from human behavior data. Specifically, we conduct a thor-
ough analysis of human planning behaviors and introduce VeLP, a
model learning from historical human behaviors. VeLP comprises
two components: a Pattern Mining (PM) module for regular routes
and a Deep Temporal Cross Network (DTCNet) for irregular routes.
The PM identifies routes based on historical loading plan data and
reuses historical plans for regular routes. The DTCNet is tailored for
irregular routes, predicting volume bounds by integrating an LSTM-
based temporal network and a factorization machines-based deep
feature cross network. This captures sequential correlations and
cross-feature information. The outputs guide volume bound predic-
tion and plans generated through a cost-aware mapping strategy.
The main contributions of this paper are summarized as follows:

• To our knowledge, we are the first to utilize large-scale route
and vehicle loading decision data to predict volume bound and
generate loading plans by learning human behaviors without
leveraging the actual cargo’s volume information. This attempt
is valuable for the logistics industry to improve dispatchers’
working efficiency and save human workload.

• Technically, we design a VeLP model with the PM module and
DTCNet component for learning human decision behaviors on
regular and irregular routes, respectively, addressing the unique
challenges in the logistics vehicle planning scenario. It includes
inaccurate cargo volume, complicated factors influencing human
decisions, and uncertain temporal correlation.

• We implement and deploy VeLP in a large-scale logistics system
of JDL, applied in about 400 routes with an adoption rate of 80%,
which reduces the time by approximately 20% in creating plans.
Extensive offline experiments demonstrate the efficacy of VeLP
in plan volume bound prediction, adoption rate, and coverage
rate compared to state-of-the-art baselines. Particularly, VeLP can
achieve the overall 74.81% and 81.34% adoption rate for respective
trunk and branch routes, improving the performance by 35.8%
and 50% with baselines.

2 BACKGROUND AND PRILIMILARIES

2.1 System Background and Motivation

Figure 1 overviews the architecture of the logistics transportation
system, which supports the delivery of over 20 million packages
daily nationwide. The system comprises various nodes (warehouses,
sorting centers (SCs), distribution centers (DCs), and courier busi-
ness stations) and routes (ferry routes, branch routes, trunk routes,
transfer routes, and urban delivery routes). Warehouses store cargo,
SCs are located in urban areas, larger SCs (DCs) are based in re-
gional capitals, and courier stations directly service users. Ferry
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Figure 1: Nationwide logistics delivery process.

routes transport cargo from warehouses to originating DCs. Branch
routes are medium-distance trips from SCs to neighboring originat-
ing DCs. Trunk routes are long-distance inter-regional trips from
an originating DC to a destination DC. Transfer routes deliver pack-
ages from SCs to courier stations. Urban delivery routes transport
from courier stations to customers. Each type of route and nodes
depend on the business type and departure/destination locations.

We focus on branch and trunk routes between sorting and dis-
tribution centers in this paper. Figure 1 shows a geographical map
representing the nodes’ locations and their route links. Red circles
represent nodes, and blue lines signify trunk routes (limited to those
departing from Beijing for visibility). The extensive transportation
infrastructure roughly includes over 6,000 routes across 500 cities.

Figure 2(a) displays a transfer station snapshot where dispatch-
ers plan vehicle loads for each departure round, then sort packages
by destination and load them onto vehicles. Figure 2(b) shows one
example snapshot of different kinds of trucks that can be selected.
Note that, in the JDL, there are over 30 different types of vehicles
with capacities ranging from 10𝑚3 to 120𝑚3. The last picture shows
the cargo loading process, where cargo is packed in bags/packages
and stacked in the compartment of each vehicle. When finishing
loading, the dispatcher will use a laser ruler to estimate the cargo
volume of vehicles. Each delivery vehicle corresponds to one trans-
portation job, assigned to a specific route for the delivery task.

Motivation. In the logistics system, one of the most crucial and
frequent actions is to make plans for each transport task in ad-
vance. To reduce the workload and improve the working efficiency
of dispatchers, who spend 30% of working time on manual plan-
ning every day and have other responsibilities other than vehicle
dispatching (e.g., on-site inspection and personnel arrangement).
Our motivation is to generate plans by learning human behaviors
without considering the cargo’s volume information.

2.2 Preliminaries

Definition 1 (Vehicle Loading Plan <abbr: a plan or

plans>). We define a tuple 𝛽𝑛 (𝑒) = (𝑟
𝑛 (𝑒), 𝑝𝑛𝑖 (𝑒), 𝑎

𝑛
𝑖 (𝑒)) to represent

a plan of each route 𝑒 ∈ U on the n-𝑡ℎ day, where 𝑟 , 𝑝𝑖 , 𝑎𝑖 , and U

denote carrier name, vehicle type, the number of vehicles of 𝑖-th type,

and the set of routes, respectively. A plan can include one or multiple

vehicle types, depending on the total volume of packages.

Definition 2 (Entropy of the plan). We define an entropy

metric, 𝐸 (𝐶𝑒 ), to measure the plan stability of each route 𝑒 ∈ U,

calculated by 𝐸 (𝐶𝑒 ) =
∑
𝑒∈U 𝑝 (𝐶𝑒 ) log

1
𝑝 (𝐶𝑒 )

, where 𝐶𝑒 is the plan
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Figure 2: Snapshots in an operational system.

of route 𝑒 , U is the set of routes, and 𝑝 (·) is the probability function.

A lower 𝐸 (𝐶𝑒 ) indicates a more stable plan pattern.

Definition 3 (Volume Bound). Volume bound is the amount

of space occupied by a set of packages within a vehicle, accounting for

efficient placement determined by on-site workers. The volume bound

can be calculated based on the plans.

Definition 4 (Human Behaviors). Human behaviors repre-

sent dispatchers’ decisions when making route plans, influenced by

on-site observations and historical experience.

Definition 5 (Problem Formulation). We define plan learn-

ing as a predict-then-decide task. Given a set of the route features R𝑒

and historical human behaviors D𝑒 on vehicle loading planning of

route 𝑒 , we firstly predict the volume bound of the target route, then

generate the final vehicle plan. The problem can be formally defined

as: 𝑓𝜃 : (R𝑒 ,D𝑒 ) → 𝑦, where 𝑓𝜃 is the model parameterized by 𝜃

that we aim to learn, 𝑦 is the vehicle plan.

For better understanding, we use the regular route as an example.
GivenR𝑒 including origin and destination nodes of route 𝑒 , business
type, departure time, and carrier name. As well as D𝑒 , including
vehicle plans on different numbers of waybills for 𝑒 over the past 𝑡
days. Our objective is to determine the vehicle plans 𝑦 on the 𝑡 + 1

day, specified as a pair <number, vehicle type> (e.g., <1, 9.6-meters
lorry>). More route patterns can be found in Section 3.2.2.

3 DATA-DRIVEN ANALYSIS AND INSIGHTS

3.1 Data Collection

To understand vehicle loading planning behaviors and develop
a data-driven model, we gathered a five-month dataset from na-
tionwide logistics transportation. The dataset, as shown in Table
1, includes transportation job records with information such as
job code, creation time, business type, departure/destination city,
carrier name, estimated volume/weight, driver name/plate num-
ber, and the plan. Notably, JDL manages around 80,000 self-owned
and 400,000 third-party vehicles from various cooperative carriers,
encompassing over 30 vehicle types, each with a volume bound
(maximum loading capacity) ranging from 10𝑚3 to 120𝑚3.

3.2 Human Planning Behaviors

3.2.1 Inexact Plan Decisions. Figure 3 shows the estimated vol-
ume (measured by dispatchers with a laser ruler before the vehi-
cle departure) vs. the plan volume bound for trunk and branch
routes. Different plans yield multiple volume bounds despite iden-
tical cargo volumes, generally exceeding estimated volumes. This

Table 1: Transportation job records.

Trans. Job Code Create Time Business Type

TJ21071***74800 2021-07-19 01:00:00 Client Delivery

Departure Node Destination Node Departure Time

Beijing SC Shanghai SC 2021-07-19 03:00:00

Estimated Arrival Time Carrier Name Estimated Volume

2021-07-19 10:00:00 JLink Company 100𝑚3

Estimated Weight Package Count Driver Name

120 Kg 450 Liwei

Plate Number Plan Type Vehicle Number

LAG8**3 17.5-meters Trailer 1

Data Statistics

Number of DC: 38; Number of SC: 400; Number of records: 0.56 million
Number of routes: 2,250; Time span: from 07/15/2021 to 12/09/2021

reveals dispatchers’ inexactitude, leaving room for improvement.
To explore the potential reasons, we interviewed 20 dispatchers
and learned that the plan decisions account for multiple factors,
including historical data, resource availability, route, and temporal
features. Moreover, as the plans are made before departure, the
dispatchers have to predict the future cargo volume based on the
current package counts, further biasing the plan decisions.
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Figure 3: Inexact plan decisions.

3.2.2 Patterns of Regular and Irregular Plans. We investigate two
planning patterns: regular and irregular, by randomly selecting
representative routes and analyzing their volume bounds in July
2021. As shown in Figure 4(a), regular routes maintain a consistent
volume bound, primarily at 96𝑚3 throughout the month. In con-
trast, irregular routes exhibit significant volume bound fluctuations,
ranging from 94𝑚3 to 298𝑚3. To assess plan stability, we utilize
𝐸 (𝐶𝑒 ) as defined in Definition 3 and categorize volume bounds into
six levels, from 0-50𝑚3 (Level 1) to > 250𝑚3 (Level 6). Figure 4(b)
provides box plots showing the entropy distribution of trunk and
branch routes, yielding several insights: (i) Branch routes exhibit
higher entropy due to cargo volume fluctuations. (ii) Lower entropy
is observed for Level 1 and Level 5, indicating more stable load-
ing plans for extremely small or large cargo volumes. (iii) All 25%
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Figure 5: Temporal Patterns.

percentiles reach 0, indicating significant plan stability in certain
routes.

3.2.3 Temporal Patterns. We analyze correlations between adja-
cent rounds for routes with multiple daily departure rounds. Figure
5(a) illustrates route distribution based on the number of departure
rounds. While more than 75% of routes have a single departure
round, over 20% have multiple rounds. Field studies reveal a strong
correlation between plans of adjacent rounds, with previous round’s
remaining volume impacting the next. During non-holidays, about
25.4% of tasks have remaining waybills, increasing to over 30% dur-
ing holidays. Figure 5(b) shows cumulative distribution functions
(CDFs) of previous round’s remaining waybills for trunk and branch
routes, indicating that about 50% of tasks in both route types have
over 1,000 remaining waybills. According to dispatchers, when
waybill numbers reach 3,000 and 6,000, an additional vehicle with
volume bounds of 14𝑚3 and 40𝑚3 is needed. Plans are made 8-12
hours before departure, with a 3-4 hour interval between rounds,
making it challenging to establish a direct link between remaining
waybills and the next round’s plan.

4 DESIGN OF VELP

4.1 System Overview

To solve the vehicle loading planning problem, we propose a predict-
then-decide framework VeLP, which is shown in Figure 6. It is com-
posed of four stages and two key components: Pattern Mining (PM)
and Deep Temporal Cross Network (DTCNet). PM mines historical
patterns to generate vehicle loading plans for regular routes. DTC-
Net learns historical behaviors for irregular routes using features
from experienced dispatchers. The system first preprocesses data
from the transportation management system. With historical task
records and contextual information (e.g., route, carrier, and depar-
ture time), PM identifies regular and irregular routes and matches
rules from historical plans for regular routes. These plans are then
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Figure 6: System framework of VeLP.

applied to future contexts. For irregular routes, DTCNet uses ad-
ditional features to predict volume bound. Based on the volume
bound prediction, the cost-aware plan mapping strategy can output
the final appropriate vehicle loading plan. Next, we elaborate on
each component in detail.

4.2 Pattern Mining Module

Data analysis in Section 3.2 shows that some routes’ plans are
regular. Thus, the PM module is designed to identify regular and
irregular routes. Specifically, plans with similarity scores equal to
or greater than 𝜃 over 𝑐 days (𝑐 ∈ C) are marked as regular routes,
where C is the cycle value set. The threshold 𝜃 can be adjusted based
on business requirements, and the rules are dynamically updated
with the adjustment1. We adopt the Jaccard similarity to measure
the plan similarity for route 𝑒 between the 𝑛-th and𝑚-th day as

𝑃𝑒𝑠𝑖𝑚𝑖 (𝑛,𝑚) =
𝛽𝑛 (𝑒 )∩𝛽𝑚 (𝑒 )
𝛽𝑛 (𝑒 )∪𝛽𝑚 (𝑒 )

.

Algorithm 1 details the PM module, which utilizes a set C (i.e.,
{1, 7}) of cycle values to assess the periodicity of loading plans. For
instance, a cycle value of 1 signifies that the plan for a specific route
𝑒 is identical on consecutive days, while a value of 7 implies the
same plan repeats weekly. By categorizing routes based on their
cycle values, the PM module extracts regular plans and reuses them
in the future context, thus enhancing vehicle loading efficiency.

4.3 Deep Temporal Cross Network

In order to identify the critical factors influencing dispatchers’
behaviors on irregular routes, we have undertaken a thorough
feature extraction process. This is based on data-driven insights,
field studies online interviews and expert knowledge, with some
results reported in Section 3. We identify four categories of static
and dynamic features (route, temporal, historical plan, and real-
time waybill features) that strongly relate to dispatchers’ decisions,
as detailed in Table 2.

Prior to model input, we preprocess both continuous and dis-
crete features. Specifically, we calculate the detailed embedding 𝑣𝑟
for route features (1). For business type (2) and discrete temporal
features (3-6), we use one-hot encoding to vectorize them. For his-
torical features (7-9) and package-related continuous features (10),
we design a dense layer to extract latent representations.

1Based on expert experiences and verified in the experiments, we set 𝜃=0.8 in this
paper.
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Algorithm 1: Pattern Mining Algorithm

Input: Route set R, plan set 𝛽 (R), cycle set C, similarity
threshold 𝜃 , day 𝑛 and𝑚.

Output: Regular route set R𝑠 , irregular route set R𝑞 ,
regular plan set 𝛽 (R𝑠 ), cycle 𝑐 .

1 R𝑠 = ∅, R𝑞 = ∅, 𝛽 (R) = ∅ ;

2 for 𝑒 ∈ R do

3 for 𝑐 ∈ C do

4 Group 𝑒 based on 𝑐 ;

5 Compute 𝑃𝑒𝑠𝑖𝑚𝑖 (𝑛,𝑚) within groups on n-𝑡ℎ and

m-𝑡ℎ day ;

6 Compute the average value 𝑎𝑣𝑔(𝑒) of all 𝑃𝑒𝑠𝑖𝑚𝑖 (𝑛,𝑚) for

route 𝑒 with cycle 𝑐 ;

7 if 𝑎𝑣𝑔(𝑒) ≥ 𝜃 then

8 Add 𝑒 and 𝛽 (𝑒) to R𝑠 and 𝛽 (R𝑠 ) ;

9 R𝑞 = R - R𝑠 ;

10 return R𝑠 , 𝛽 (R𝑠 ), and R𝑞 ;

Table 2: The features for DTCNet.

Features Static

(1) Origin and destination nodes of route 𝑒 Y
(2) Business type of route 𝑒 Y
(3) Departure time from origin node of route 𝑒 Y
(4) The n-𝑡ℎ departure round of one day Y
(5) Day of the week Y
(6) Month of year Y
(7) Last departure round plan of route 𝑒 Y
(8) Yesterday’s plan of route 𝑒 Y
(9) Volume bound, volume, weight in last 14 days of route 𝑒 Y
(10) The number of waybills in the last 20 hours of route 𝑒 N

After identifying and preprocessing the related features, we then
design DTCNet2 to predict vehicle loading volume bound, as shown
in Figure 7. This design is based on two considerations: (i) We utilize
a Long Short Term Memory (LSTM)-based model [21] to capture
temporal correlations among sequential departure rounds within a
day for each route. (ii) To allow our model to learn more detailed
representations, rather than relying solely on numerical values,
we use the DeepFM-based model [12] to encode each category
of features, taking into account both low- and high-order feature
interactions. We avoid using complex modules like the Transformer
to learn temporal correlations, as the sequence length in our time
series is relatively short. In our scenario, LSTM is sufficient to learn
sequential features among adjacent departure rounds.

4.3.1 The LSTM Component. At departure round 𝑇𝑖 , the LSTM
cell takes the vector representation of the round 𝑇𝑖−1, the mem-
ory state and hidden state at round 𝑖 − 1 as inputs, i.e., ℎ𝑖 , 𝑐𝑖 =

LSTM(𝑣𝑇𝑖−1 , ℎ𝑖−1, 𝑐𝑖−1), where ℎ𝑖 and ℎ𝑖−1 denote the hidden states
at departure rounds 𝑇𝑖 and 𝑇𝑖−1, and 𝑐𝑖 and 𝑐𝑖−1 represent the
corresponding memory states. The vector representation 𝑣𝑇𝑖−1 of
departure round𝑇𝑖−1 combines route, temporal, historical plan, and

2Normal Connection in black refers to the connection with weight to be learned; the
Weight-1 Connection in red arrow is a connection with weight 1 by default; Addition
means adding all input together; Inner Product means the output is the product of
two input vector; Activation Function are used for non-linearly transforming; Sigmoid
Function is used as the output function; Each category of features are colored differently.
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Figure 7: Illustration of DTCNet.

dynamic waybill features. It’s worth noting that some routes only
have 1 or 2 departure rounds. We use a masking layer to standard-
ize the sequence data so that each route has an identical feature
length [3]. To prevent over-fitting, we incorporate a dropout mech-
anism on LSTM states between consecutive steps. The output of
the LSTM cell is then inputted into a dense layer made up of a fully
connected network (FCN). Therefore, the output of the LSTM-based
component can be represented as 𝐿𝑆𝑇𝑀𝑜𝑢𝑡 = FCN(ℎ𝑖 ).

4.3.2 The Deep Feature Cross (DFC) Component. To effectively
capture the intricacies of human behaviors from the available fea-
ture set, we introduce the DFC component, which is capable of
learning both lower-order and higher-order features. The DFC is
composed of four primary layers: the embedding layer, dense layer,
factorization-machine (FM) layer, and concatenate layer, all receiv-
ing the same input. To ensure uniformity in the embedding vectors
for varying-sized static features, we compute them. These embed-
dings are denoted as 𝑒𝑖 = 𝑤𝑖 · 𝑥𝑖 , where 𝑒𝑖 is the embedding of the
i-𝑡ℎ feature,𝑤𝑖 denotes the parameters within the embedding layer,
and 𝑥𝑖 represents the vector of the i-𝑡ℎ raw input feature.

Then, 𝑒𝑖 is fed into the FM layer to model order-2 feature interac-
tions. The FM layer is designed to learn interaction features, which
is applicable for plan prediction with complex feature combina-
tions. Particularly, FM layer models feature pair interactions as the
inner products of respective feature latent vectors. Compared to
the order-1 linear layer, it can capture order-2 feature interactions
much more efficiently, especially for sparse data. Due to this flexi-
ble representation learning capability, the FM layer can learn the
feature interactions that never or rarely appeared in the training
data. The output of the FM layer is the summation of an Addition

function and several Inner Product functions:

𝑦𝐹𝑀 =< 𝑤, 𝑥 > +

𝑑∑︁

𝑖=1

𝑑∑︁

𝑗=𝑖+1

< 𝑣𝑖 , 𝑣 𝑗 > 𝑒𝑖 · 𝑒 𝑗 , (1)

where 𝑣𝑖 and 𝑣 𝑗 are latent vectors. The Addition unit < 𝑤, 𝑥 >

reflects the importance of order-1 features. The Inner Product 𝑒𝑖 · 𝑒 𝑗
represents the impact of order-2 feature interactions.

Afterward, the outputs are fed into the dense layer to model
high-order feature interactions. The dense layer is a feed-forward
neural network with several hidden layers, which is used to learn
high-order feature interaction representations. After going through
the dense layer, the output feature vector is denoted as
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𝑦𝑑𝑒𝑛𝑠𝑒 (𝑥) =𝑊 |𝜆 |+1 · 𝑎 |𝜆 | + 𝑏 |𝜆 |+1, (2)

where |𝜆 | is the number of hidden layers,𝑊 ,𝑎, and𝑏 are the network
parameters.

Finally, the output of the FM layer and dense layer are combined
in a concatenate layer. Since the related dynamic amount of waybills
is a continuous feature, they are directly fed into dense layers to
extract high-order representations. Finally, all features are added
and activated with Sigmoid function, i.e.,

𝐷𝐹𝐶𝑜𝑢𝑡 = Sigmoid(𝑦𝐹𝑀 (𝑥) + 𝑦𝑑𝑒𝑛𝑠𝑒 (𝑥)), (3)

where 𝑦𝐹𝑀 (𝑥) and 𝑦𝑑𝑒𝑛𝑠𝑒 (𝑥) are the outputs of FM and dense layer.
With the outputs of two components, we can derive the final out-

put𝐷𝑇𝐶𝑁𝑒𝑡𝑜𝑢𝑡 (i.e., volume bound) withAddition operation, which
can be denoted as 𝐷𝑇𝐶𝑁𝑒𝑡𝑜𝑢𝑡 = Addition(𝐷𝐹𝐶𝑜𝑢𝑡 +𝑙𝑠𝑡𝑚𝑜𝑢𝑡 ). Dur-
ing model training, the mean absolute error loss is calculated by
L =

∑
𝑒∈R |𝑣𝑟𝑒𝑎𝑙 − 𝐷𝑇𝐶𝑁𝑒𝑡𝑜𝑢𝑡 |, where 𝑣𝑟𝑒𝑎𝑙 is the real volume

bound calculated by the vehicle loading plan for route 𝑒 ∈ R.

4.4 Cost-Aware Plan Generation

To create appropriate plans, we finally match the predicted volume
bound to a specific plan from the recent month. We do this in two
steps. First, we find plans from the past month with volume bounds
that are closest to the predicted volume. However, our analysis
shows that one volume bound can have multiple corresponding
plans. So, in the second step, we select the plan with the lowest
transportation cost.We can denote the final plan asF (𝐷𝑇𝐶𝑁𝑒𝑡𝑜𝑢𝑡 ),
where F is the cost-aware plan mapping function.

5 PERFORMANCE EVALUATION

5.1 Evaluation Methodology

Experimental Settings.We conduct experiments based on five-
month operation data to evaluate the performance. All data samples
are divided into five groups equally, among which four groups are
used for training while the remaining one is used for testing. In
addition, the testing group is alternately adopted to calculate the
error bars, i.e., conducting the 𝑘-fold cross-validation with 𝑘 = 5.
We implement the proposed model and other baselines with Keras,
Python 3.6 environment. The experiments are carried out on a CPU
server with 8 cores and 20 GB of memory, we set batch size and
learning rate as 256 and 0.01, respectively. The Adam optimizer is
used for model training.

Baselines. To demonstrate the superiority of our proposed VeLP,
we design and implement the following baselines. We choose these
three methods because they are commonly used in the literature [24,
38, 41] in human behavior modeling and prediction. The features
for all baselines and our proposed method are the same. Note that
although these algorithms have been widely adopted in the existing
literature, there is no reference implementation for vehicle loading
plan generation in logistics transportation systems.

• LGBM [18]: is a gradient boosting method that uses tree-based
learning algorithms.

• LSTM [15]: is a variant of recurrent neural networks (RNN) and
widely adopted in capturing the long- and short-term temporal
correlations among sequential data.

• DeepFM [12]: is a general deep learning framework, which
combines the factorization machines and deep neural network
for feature learning to conduct item recommendation.

Performance Metrics. Three metrics are adopted to quantify
the model performance, including one technical and two business
metrics. Denote 𝑝𝑖

𝑎𝑙𝑔
and 𝑝𝑖

ℎ𝑢𝑚
by the 𝑖-th plan (i.e., the set of

planned vehicles) generated by an algorithm and human decision
for a route.

• Mean Absolute Error (MAE: technical metric): refers to the
averaged differences between the prediction and ground-truth
values, i.e., 1

𝑛

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |, where 𝑦𝑖 and 𝑦𝑖 are the actual value

and predicted value of the 𝑖-th prediction, and 𝑛 is the total
number of predictions.

• Adoption rate (business metric): refers to the proportion of
the same number of vehicles between algorithm-based and hu-
man actual plans, divided by the total number of vehicles in

algorithm-based plans, i.e.,

∑𝑛
𝑖=1 |𝑝

𝑖
𝑎𝑙𝑔

∩𝑝𝑖
ℎ𝑢𝑚

|
∑𝑛

𝑖=1 |𝑝
𝑖
𝑎𝑙𝑔

|
. This metric is uti-

lized to evaluate dispatchers’ adoptionwillingness. Because plans
usually require human final approval since some in-site infor-
mation cannot be obtained in the system in advance. It is also
an important problem in other human-AI collaboration systems
[19, 31, 35, 43].

• Coverage rate (businessmetric): refers to the proportion of the
same number of vehicles between algorithm-based and human
actual plans, divided by the total number of vehicles in human

actual plans, i.e.,

∑𝑛
𝑖=1 |𝑝

𝑖
𝑎𝑙𝑔

∩𝑝𝑖
ℎ𝑢𝑚

|
∑𝑛

𝑖=1 |𝑝
𝑖
ℎ𝑢𝑚

|
.

5.2 Performance of Volume Bound Prediction

We first examine the performance of plan volume bound prediction.
Figure 8(a) and Figure 8(b) display CDFs of MAE scores for trunk
and branch routes. VeLP outperforms other models significantly.
Figure 8(c) shows average MAEs with error bars, revealing VeLP’s
smaller MAE and reduced deviation, indicating reliability. VeLP
outperforms in capturing critical factors and temporal correlations
in the decision-making process, resulting in more accurate predic-
tions. Traditional methods may ignore these nuances, yielding less
precise results.
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Figure 8: Vehicle plan volume bound prediction.

5.3 Performance of Loading Plan Learning

Figure 9(a) and Figure 9(b) display CDFs of adoption rates for trunk
and branch routes, and Figure 9(c) shows average performance with
error bars. VeLP outperforms other baselines significantly, achiev-
ing a higher average adoption rate. This demonstrates VeLP’s effec-
tiveness in learning human behaviors through multi-dimensional
features. Figure 10(a) and Figure 10(b) exhibit CDFs of coverage
rates for trunk and branch routes, with Figure 10(c) illustrating av-
erage performance with error bars. VeLP surpasses other baselines
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significantly in terms of coverage rate, attributed to the separation
of regular and irregular routes and the specialized PM module and
DTCNet. This approach enables our model to learn from dispatcher
behavior patterns, while other baselines may overlook these char-
acteristics, resulting in suboptimal solutions.
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Figure 9: Performance of overall adoption rate.
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Figure 10: Performance of overall coverage rate.

5.4 Ablation Study

We first conduct ablation studies to verify key feature effectiveness
in the design of VeLP. Table 3 shows the results, highlighting the
influence of features, particularly yesterday’s departure round plan
and waybill count in the last 20 hours. We also evaluate component
design in VeLP through ablation experiments, as shown in Table
4. We can observe that removing any component has a notable
impact on overall performance, underlining the critical role of all
components in vehicle loading plan learning.

Table 3: Feature ablation of trunk / branch routes.

Ablation MAE Adoption rate

all features 8.39 / 3.81 74.81% / 81.34%
- Yesterday plan 15.33 / 13.41 64.13% / 67.44%
- Waybill feature 10.17 / 7.59 71.21% / 71.87%
- History features 10.03 / 7.01 72.56% / 73.11%
- Day of week 9.95 / 6.84 73.62% / 75.52%

Table 4: Component ablation of trunk / branch routes.

Ablation MAE Adoption rate

VeLP 8.39 / 3.81 74.81% / 81.34%
w/o PM 12.85 / 8.52 70.64% / 76.83%
w/o DTCNet 52.34 / 48.50 41.37% / 47.21%

We further conduct two ablation studies to demonstrate the effec-
tiveness of PM and DTCNet components on regular and irregular
routes. Specifically, Table 5 presents the adoption and coverage rates
of the PM module on regular trunk and branch routes. Likewise,
Table 6 provides the results for irregular routes. We observe that
PM and DTCNet outperform other baselines on trunk and branch
routes. In addition, it shows a smaller performance gap between
PM and DTCNet compared to other baselines, mainly because these
two modules are tailored for regular and irregular routes.

Table 5: Results for regular routes (Trunk / Branch).

Adoption rate Coverage rate

PM 79.41% / 80.33% 81.29% / 80.58%
DeepFM 67.65% / 64.27% 69.68% / 65.51%
LGBM 65.37% / 62.05% 68.23% / 63.94%
LSTM 60.44% / 58.11% 60.35% / 59.23%

Table 6: Results for irregular routes (Trunk / Branch).

Adoption rate Coverage rate

DTCNet 72.21% / 79.46% 73.15% / 80.01%
DeepFM 48.29% / 40.21% 50.04% / 40.58%
LGBM 40.56% / 34.12% 41.22% / 35.77%
LSTM 38.23% / 30.21% 36.16% / 31.84%

6 REAL-WORLD DEPLOYMENT

6.1 Deployment Implementation

We deploy VeLP in JDL, one of the largest logistics companies in
China, for real-time plan generation to boost dispatcher efficiency.
This involves selecting around 400 routes in South and North China
as pilot areas and training the model using offline data. We collect
usage data from the transportation management system and utilize
a data dashboard to monitor online performance. The dashboard in
Figure 11 provides detailed information for each route, such as the
date, origin and destination nodes, route code, algorithm-generated
plans, and actual dispatcher-used plans.

Detailed Vehicle Plans

Coverage Rate Adoption Rate

Scheduling Automation Project: Data Board

Date  Origin 
Node

Destination 
Node

 Route 
ID

Algorithm
Plan

# Algorithm
Vehicles

Actual 
Plan

# Actual
Vehicles

01-28 02-04 01-28 02-04
Date Date

Figure 11: Visualization data dashboard.

6.2 Deployment Performance

We analyze six months of deployment data in South and North
China, spanning from 01/17/2022 to 07/17/2022. Figure 12(a) dis-
plays coverage rates in both areas. Scores start around 70% in the
first week, dipping during the Chinese Spring Festival, with a sig-
nificant drop to about 30% around 02/01/2022. Figure 12(b) reveals
adoption rates, with North China slightly outperforming South
China. Both rates decline markedly as the Chinese Spring Festi-
val approached, reaching about 45% and 42% for North and South
China from 01/23/2022 to 02/07/2022. After festival, coverage and
adoption rates return to normal levels, approximately 75%.

The reason for the decreased results during the period of the
Chinese Spring Festival is that the dispatchers have unique loading
plans to handle the increased number of cargoes due to festival
promotion. The corresponding behavior data is not included in
the training data set (we only have training data from 07/2021 to
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12/2021). The coverage and adoption rates are still not 100% in the
rest of the time. We have an in-depth discussion on why correctly
predicted vehicle plans are not adopted in Section 6.3.

We also analyze the working efficiency improvement. Before
implementing VeLP, dispatchers spent 7.8 minutes per task man-
ually creating plans, handling an average of 24 tasks daily and
consuming 3.12 hours, 39% of their workload. With VeLP applied
to 30% of nationwide routes, auto-generated plans now require
only modifications and confirmation from dispatchers, saving up
to 35 minutes per day. Furthermore, VeLP can reduce time spent on
creating temporal loading plans by around 20%, as it learns from his-
torical route-specific human behaviors, thereby minimizing errors
in volume estimation.
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Figure 12: Temporal Patterns.

6.3 Lessons and Discussions

6.3.1 Human-Data-Driven System Collaboration. While machine
learning approaches have been applied to order dispatching and
route planning in logistics and delivery[6, 25, 26], the reliance on
human decision-making at certain points persists due to factors
like data limitations and policies. Therefore, the collaboration be-
tween humans and data-driven systems is poised to be a significant
area of research in the near future. To facilitate this collaboration
effectively, it’s crucial to comprehend human decision-making be-
haviors and the underlying motivations guiding their acceptance
or rejection of decisions from data-driven systems.

Our nationwide logistics experiment and a survey of over 300 dis-
patchers identified twomain causes of failure in human-data-driven
decision-making collaboration, particularly in plan rejection by dis-
patchers. Firstly, inconsistencies in human-generated historical
data lead to algorithmic failures due to hidden factors influencing
human decisions or inherent decision randomness. Secondly, real-
time onsite situations unknown to the algorithm, such as resource
shortages or capacity limitations, disrupt plan execution. This high-
lights the need for future collaborations to address human-reported
exceptions and develop strategies for their learning.

While the VeLP model might seem less intricate when compared
with certain complex models, it is essential to highlight that the
true significance of VeLP lies in its effective solution of a signif-
icant but often neglected real-world problem within the domain
of human-data-driven system collaboration in the industrial lo-
gistics. Both offline evaluations and online deployment prove the
performance effectiveness. Therefore, our approach can make a
meaningful contribution to the field.

6.3.2 Limitations and Enhancements. We identify several limita-
tions of VeLP: (i) It may not fully grasp sudden increases in cargo
volume during holiday promotions (e.g., the Chinese New Year

Festival). (ii) Relying on historical dispatcher behaviors may yield
suboptimal results since not all dispatcher decisions are optimal.
(iii) The platform’s data lacks comprehensiveness, such as actual
cargo volumes, which impacts plan prediction performance. To
improve VeLP, we propose collecting more accurate volume data,
establishing a plan feedback mechanism, i.e., dispatchers are re-
quired to fill in the detailed reasons when they modify or reject
the AI-generated plans, and incorporating holiday patterns and
common temporary conditions into the algorithm.

7 RELATED WORKS

Data-Driven Delivery/Logistics System.Many studies have pro-
posed to enhance operational efficiency in data-driven delivery and
logistics systems, mostly targeting vehicle routing optimization
problems [5, 26, 32, 33, 37, 39, 40], and food delivery [6, 9, 11, 16, 28ś
30]. For example, the authors of [32, 33, 39] proposed route planning
methods for shared mobility and ridesharing services, which dif-
fers from our scenario in logistics vehicle planning. Pan et al. [28]
proposed a UAVs schedule approach optimizing time and pack-
age delivery quantity. However, these time and route optimization
methods do not apply to our task, which centers on learning vehicle
loading plans, not optimizing distance or time.
Cargo Loading Problem. The existing literature typically formu-
lates cargo loading problems as knapsack or pallet stacking issues
with capacity constraints, resolved by either combinatorial opti-
mization or machine learning methods [1, 2, 4, 7, 13, 14, 20, 22, 34,
36, 42, 44]. For example, Zhu et al. [44] introduced a data-driven tree
search algorithm for the 3-dimensional bin packing problem. How-
ever, most of them assume accurate advanced knowledge of cargo
volume. In reality, accurately calculating package volume is chal-
lenging due to the irregular shapes, soft bags, and deformable items
that packages can comprise. Therefore, traditional combinatorial
optimization solutions are ineffective in our context.

8 CONCLUSION

In this paper, we have studied a vehicle load planning problem
based on one operational dataset collected in the nationwide lo-
gistics transportation system. With data-driven insights, we have
designed and implemented VeLP, which consists of the PM module
and DTCNet model. Finally, we have developed VeLP in the nation-
wide logistic transportation system. Both offline experiments and
online deployment performance have demonstrated the efficacy of
VeLP. For future works, we will further enhance the performance
of VeLP based on the user feedback from dispatchers.
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