
Sparcle: Boosting the Accuracy of Data Cleaning Systems through
Spatial Awareness

Yuchuan Huang
huan1531@umn.edu

University of Minnesota, USA

Mohamed F. Mokbel
mokbel@umn.edu

University of Minnesota, USA

ABSTRACT
Though data cleaning systems have earned great success and wide
spread in both academia and industry, they fall short when try-
ing to clean spatial data. The main reason is that state-of-the-art
data cleaning systems mainly rely on functional dependency rules
where there is sufficient co-occurrence of value pairs to learn that
a certain value of an attribute leads to a corresponding value of
another attribute. However, for spatial attributes that represent
locations, there is very little chance that two records would have
the same exact coordinates, and hence co-occurrence is unlikely
to exist. This paper presents Sparcle (SPatially-AwaRe CLEaning);
a novel framework that injects spatial awareness into the core
engine of rule-based data cleaning systems through two main con-
cepts: (1) Spatial Neighborhood, where co-occurrence is relaxed
to be within a certain spatial proximity rather than same exact
value, and (2) Distance Weighting, where records are given different
weights of whether they satisfy a dependency rule, based on their
relative distance. Experimental results using a real deployment of
Sparcle inside a state-of-the-art data cleaning system, and real
and synthetic datasets, show that Sparcle significantly boosts the
accuracy of data cleaning systems when dealing with spatial data.

PVLDB Reference Format:
Yuchuan Huang and Mohamed F. Mokbel. Sparcle: Boosting the Accuracy
of Data Cleaning Systems through Spatial Awareness. PVLDB, 17(9):
2349-2362, 2024.
doi:10.14778/3665844.3665862

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/yhuang-db/holoclean-sparcle.

1 INTRODUCTION
Motivated by the imperfection of real data sets, along with the
huge efforts carried by data scientists to manually clean their
data, efforts have been dedicated to develop various approaches
and systems for automated data cleaning. The large majority of
such approaches (e.g., see [6, 11, 13, 21, 32, 43]) and systems (e.g.,
see [14, 19, 20, 28, 34, 44, 45]) are rule-based, where functional de-
pendencies between various attributes guide the data cleaning pro-
cess. The success and immense need of such data cleaning systems

This work is supported by NSF under grants IIS-2203553 and OAC-2118285.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 9 ISSN 2150-8097.
doi:10.14778/3665844.3665862

!"#$#%&'(#)&*+%,-(.+*+%,-/0

!"#$%#&&#$'()*+()+(,,-*(./,,/,,01./+

!'()*+.102.,-*1+-/0),,01...

!3455678$'()*+(,1)0,-*10/.02,,011-,

!9:;;$<'()*+/(2(,,-*10))-,,,011-+

!345$='()*0)/,0(,-*010/1.,,0111-

!!!!!

(a) Part of Table of NYC Motor Vehicle Collision Data

(b) Map of NYC Motor Vehicle Collision Data
Figure 1: NYC Motor Vehicle Collision Data

made it widely adopted by industry [2, 18, 23, 36] and commercial
startups [27, 50, 51]. Unfortunately, with all its success and wide
spread, state-of-the-art data cleaning systems fall short when trying
to clean data with spatial attributes dependency. As an example,
we investigated the NYC Motor Vehicle Collision data [40], which
includes 1,751,624 collision records that took place in the New York
City since 2014. A snapshot of this dataset is in Figure 1(a) for
five collision records and only four attributes of each collision (ID,
Latitude, Longitude, Borough). The snapshot shows two kinds of
errors: (1) the second record is missing the Borough information,
and (2) the fourth record has the wrong Borough information. To
get an idea of the scale of the problem, Figure 1(b) plots all the
erroneous records over NYC map (421,013 records), where 418,896
records have a missing borough (plotted in red) and 2,117 records
have incorrect borough (plotted in blue). We fed this data along
with the functional dependency: (Latitude, Longitude)→ Borough to
HoloClean [44] system as a state-of-the-art rule-based data cleaning
framework. HoloClean only repaired 58.7% of the errors, which is a
pretty low accuracy compared to its ability in cleaning non-spatial
data with more than 95% accuracy [44]. To understand such poor

2349

https://doi.org/10.14778/3665844.3665862
https://github.com/yhuang-db/holoclean-sparcle
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3665844.3665862
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: Error Repairing of NYCMotor Vehicle Collision Data

HoloClean Sparcle

Total 58.7% 99.4%
Errors at duplicated location 99.6% 99.7%
Errors at new location 30.3% 99.1%

accuracy, we distinguish between: (a) erroneous records that took
place in the same exact location of at least one other correct record,
and (b) erroneous records that took place in new locations where
there is no other correct records. As depicted in Table 1, HoloClean
was able to correct 99.6% of the former, but only 30.3% of the latter.

The main reason behind such poor performance of HoloClean,
as a representative of rule-based data cleaning systems, is twofold:
(1) Cleaning with functional dependencies relies on sufficient co-
occurrence of value pairs to learn that a certain value of an attribute
leads to a corresponding value of another attribute. However, for
spatial attributes, there is very little chance that two records have
the exact same coordinates, mainly due to the inherent inaccuracy
of location-detection devices. Hence, a rule-based system will not
be able to find sufficient spatial co-occurrence to be used to detect
and repair erroneous entries. (2) The outcome of whether a certain
record satisfies a rule is binary (True or False). However, in spatial
rules, such outcome needs to be fuzzy, as a certain recordmay satisfy
the rule in stronger terms than other records. It is important to
note that in this particular example, we do not rely on any external
knowledge of borough boundaries.

This paper presents Sparcle (SPatially-AwaRe CLEaning); a
novel framework that injects spatial awareness into the core en-
gine of rule-based data cleaning systems as a means of boosting
their accuracy. Our goal in Sparcle is not to come up with a new
data cleaning system. Instead, it is to boost the accuracy of current
systems. In particular, Sparcle lives inside a host data cleaning
system, making it spatially-aware. A key idea behind Sparcle is
that it goes beyond the traditional functional dependency rules of
the form: “Two records with the same location should have the same
borough” to support the more relaxed functional dependency form:
“Two records withmore similar locations aremore likely to have the
same borough”. To do so, Sparcle injects two main spatial concepts
into its host data cleaning system: (1) Spatial Neighborhood. To
support going from the “same” predicate to the “similar” predicate,
records with spatial attributes satisfying some spatial neighborhood
(similarity) criteria should be considered as relatively equivalent
with respect to the spatial functional dependencies; (2) Distance
Weighting. To support going from “should” to “likely” and to have
the keyword “more” in the relaxed functional dependency, records
will be given a weight of how much they satisfy each rule, where
the weight will be based on the distance between records satisfying
the functional dependency. With this, the last column of Table 1
shows that, for NYC collision data, Sparcle was able to correct
99.4% of all errors and 99.1% of the errors with new locations .

As Sparcle injects spatial awareness into existing data cleaning
systems, its architecture follows the same common architecture
of most rule-based data cleaning systems. In particular, such sys-
tems (e.g., [14, 19, 28, 34, 44, 53]) are typically composed of four
back-to-back components, error detector, candidate generator, input

formulator, and error corrector. The first three modules are mainly
for error detection and preparing the data in some format that can
be repaired using a statistical method in the last module, which is a
very system-specific module. Hence, Sparcle focuses on modifying
the first three modules to be: spatial error detector, spatial candidate
generator, and spatial input formulator, while leaving the fourth
module intact as it is system-specific. These modified modules will
mainly support spatial dependencies. Non-spatial dependencies are
still supported through the host data cleaning system. The outcome
of the third module (spatial input formulator) is forwarded as is to
the downstream host cleaning system to be combined with other
non-spatial constraints to find out the repaired value.

Sparcle is novel in its general approach of injecting spatial
awareness in the core engine of data cleaning systems. The chal-
lenge is that to have such spatial awareness, we need to dig deep
into the core engine of each single component and figure out a
way to make it spatially aware. Sparcle is also novel in its spe-
cific approaches of injecting spatial awareness in each the three
main components of data cleaning systems. The closest to Sparcle
would be the set of relaxed functional dependencies [9], including
matching dependency [16], metric dependency [29], differential
dependency [47], and ontology dependency [5]. However, such
dependencies fall short in achieving the objectives of Sparcle for
four main reasons: (a) They do not consider the Distance Weighting
concept, which is a cornerstone in Sparcle and its applications,
(b) They are designed to catch those few occasions of erroneous
data, while in spatial data, all records can be “erroneous”, as it is
very rare to have two records with same coordinates, (c) They are
designed to catch two entries of the same record, but having slightly
different instances (e.g., "Ave" and "Avenue"), while in spatial data,
two records with nearby coordinates are truly two different records,
and (d) They are not deployed in open-source data cleaning sys-
tems [34, 44, 52], while Sparcle main objective is to be injected
inside the core engine of such systems.

Extensive experiments based on real implementation of Sparcle
inside data cleaning systems and real datasets show that Sparcle
significantly boosts the accuracy of its host systems. The rest of the
paper is organized as follows: Section 2 presents Sparcle architec-
ture. The three modules of Sparcle are presented in Sections 3 to 5.
Experimental results are presented in Section 6. Section 7 highlights
related works. Section 8 concludes the paper.

2 ARCHITECTURE
Figure 2 depicts Sparcle architecture, deployed inside a host data
cleaning system. Sparcle takes two types of inputs, the raw data to
be cleaned and the constraints that define functional dependencies.
The output of Sparcle is the detected erroneous cells, where a cell is
a certain attribute of a certain record, along with a weighted list of
suggested correct values for each cell. Internally, Sparcle follows
similar architecture to that of rule-based data cleaning systems,
mainly composed of three modules, spatial error detector, spatial
candidate generator, and spatial input formulator. A brief description
of Sparcle input, modules, and output is below:
Sparcle Input: Constraints. As Sparcle is injected into a host
rule-based data cleaning system (e.g., [19, 34, 44, 52]), it is only
triggered when there are spatial constraints, and it only takes care

2350

!"#$%#& !"#$%$"&' ('#')"&*)

!"#$%#& +#,-& .*)/-0"&*)

1))*) !*))'2&%*# 3'&4*$

!"#$%#& 1))*) 5'&'2&*)

!"#$%#& 6 7*#89,"&%"0 !*#9&)"%#&9 :"; $"&"

!0'"# $"&"

<2'00=

1))*#'*-9 $"&"

<2'00=

!0'"# $"&"

<2'00 6 2"#$%$"&'9 6 0">'0=

1))*#'*-9 $"&"

<2'00 6 2"#$%$"&'9=

!0'"# %#,-& 1))*#'*-9 %#,-&

:',"%)'$ $"&"

!"#$%&'

Figure 2: Sparcle Architecture

of such constraints. Non-spatial constraints over the same input
data will still be supported by the host data cleaning systemwithout
any interference from Sparcle.
Spatial Error Detector. The input to this module is the input to
Sparcle. The output is two sets of cells, erroneous and clean cells.
It injects spatial-awareness into existing error detection modules.
Hence, instead of detecting errors based on exact co-occurrence, it
relaxes the co-occurrence criteria to consider records within spatial
proximity. It also assigns weights to all detected errors based on
the distance between co-occurred records.
Spatial Candidate Generator. The input to this module is the
two sets of erroneous and clean cells coming out of the spatial error
detector. The output is two similar sets of cells, considering the
following: (1) There will be more cells in the clean set, as some
erroneous cells will be cleaned, (2) Each cell will have a set of
weighted candidate values, where Sparcle believes that one of
these values in the correct value, (3) Clean cells will be labeled with
the value that Sparcle believes it is the correct one.
Spatial Input Formulator. This module mainly injects spatial-
awareness into existing input formulator modules, where the input
is the output of the spatial candidate generator, while the output is
the output of Sparcle. As these modules are very specific to the
host cleaning systems, Sparcle has to have various versions of
such module to match its host system. The goal is to score each
possible candidate value and prepare the output in a certain format
to match the requirements of the host error correction module.
Sparcle Output: Interaction with Host System. The output
of Sparcle is the output of the Spatial Input Formulator, which is
the detected erroneous cells and their weighted suggested values.
If we only have spatial constraints, then the output of Sparcle
is the completely corrected input data. When having non-spatial
constraints, the output of Sparcle is sent to the error correction
module of its host data cleaning system. Then, it will be integrated
with other suggested values from the non-spatial constraints to
statistically come up with the final correct value. As the correction
module is very system-specific, the Spatial Input Formulator has to
customize the output of Sparcle based on its host system.

3 SPATIAL ERROR DETECTOR
The spatial error detector module is the first module in Sparcle,
where its input is the input to Sparcle, which is the dataset to
be cleaned, along with a set of spatial constraints that need to be
enforced for error detection and correction. Then, it deals with
multiple spatial constraints separately and sequentially. For each
spatial constraint, the output is two sets of cells, where a cell is
a certain attribute of a certain record. The first set is the set of
cells that are deemed erroneous, while the second set is all other
cells that are considered clean for now. The main challenge in this
module is twofold: (a) current denial constraints in data cleaning
systems [13, 19, 44, 52] do not support spatial constraints like range
and 𝑘NN queries, with their own weight functions, and (b) spatial
denial constraints are pretty expensive to compute. The novelty of
Sparcle in this module includes: (1) providing the ability to incor-
porate both spatial neighborhood and distance weighting concepts
in the language defining spatial constraints (Section 3.1), (2) build-
ing spatial data infrastructure that boosts Sparcle performance to
support spatial constraints (Section 3.2), and (3) employing spatial
neighborhood and distance weighting concepts to detect erroneous
cells and weight their spatial constraint violation (Section 3.3).

3.1 Spatial Denial Constraints
Denial Constraints.Most rule-based data cleaning systems (e.g., [13,
19, 44]) use denial constraints to express the cases that should be
denied for any dataset. A denial constraint of the form ∀𝑟1, 𝑟2, · · · ∈
R : ¬(𝑝1 ∧ 𝑝2 ∧ · · · ∧ 𝑝𝑚) means that the set of predicates 𝑝1 to
𝑝𝑚 cannot be True together for any combination of records, where
the result of a predicate evaluation is either True or False. For the
example of Figure 1(a), a denial constraint would be:

∀𝑟1, 𝑟2 ∈ 𝑅 : ¬(𝑟1 .𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 𝑟2 .𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ∧
𝑟1 .𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = 𝑟2 .𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 ∧
𝑟1 .𝐵𝑜𝑟𝑜𝑢𝑔ℎ ≠ 𝑟2 .𝐵𝑜𝑟𝑜𝑢𝑔ℎ)

, which indicates that two records 𝑟1 and 𝑟2 cannot have the
same values for both latitude and longitude, but have different
borough values. In other words, if 𝑟1 and 𝑟2 have the same latitude
and longitude values, they should have the same borough value.
Spatial Denial Constraints. The current form of denial con-
straints is not suitable for spatial data as it is rare to have two
records with the same exact latitude and longitude. Hence, Spar-
cle extends the constraint language to support spatial denial con-
straints. This is done as merely a language extension, not as a new
class of constraints. This makes Sparcle inherit all system support
of denial constraints, including constraint satisfaction, validation,
and implication. For NYC data in Figure 1(a), Sparcle supports the
following construct for a SpatialRange denial constraint:

∀𝑟1, 𝑟2 ∈ 𝑅 : ¬(𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑅𝑎𝑛𝑔𝑒 (𝑟1 .𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑟1 .𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒,
𝑟2 .𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑟2 .𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑑, F ,W) ∧

𝑟1 .𝐵𝑜𝑟𝑜𝑢𝑔ℎ ≠ 𝑟2 .𝐵𝑜𝑟𝑜𝑢𝑔ℎ)
, which indicates that if two records 𝑟1 and 𝑟2 are within dis-

tance range 𝑑 from each other, according to distance function F ,
then they are likely, according to weight functionW, to have the
same borough. F , responsible on enforcing the spatial neighborhood
concept, may employ either Euclidean or road network distance.

2351

W(𝑟1, 𝑟2), responsible on enforcing the distance weighting concept,
employs an arbitrary function (e.g., linear or exponential) that re-
turns a decreasing value from 1 to 0 as the distance between 𝑟1 and
𝑟2 increases from 0 to 𝑑 . SpatialRange returns True as a non-zero
value (based onW) if F (𝑟1, 𝑟2) < 𝑑 , otherwise it returns False.

Sparcle also supports𝑘-nearest-neighbor (𝑘NN) denial constrains
with the following language construct:

∀𝑟1, 𝑟2 ∈ 𝑅 : ¬(𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑘𝑁𝑁 (𝑟1 .𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑟1 .𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒,
𝑟2 .𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑟2 .𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑘, F ,W) ∧

𝑟1 .𝐵𝑜𝑟𝑜𝑢𝑔ℎ ≠ 𝑟2 .𝐵𝑜𝑟𝑜𝑢𝑔ℎ)

, which indicates that if record 𝑟2 is among the 𝑘 nearest records
to 𝑟1, according to distance function F , then they are likely, accord-
ing to weight functionW, to have the same borough. SpatialkNN
returns True as a non-zero value (based onW) if 𝑟2 is among the 𝑘
nearest records to 𝑟1, otherwise it returns False.

3.2 Building Data Infrastructure
Current data cleaning systems check their constraint violations by
simply doing a self-join for the input dataset based on equality for
one of the predicates, then, scanning the result for other predicates.
Further operations in the data cleaning process are basically em-
ploying inexpensive equality search. Unfortunately, this is not the
case for evaluating spatial constraints violation along with down-
stream operations that will be needed in Sparcle. In particular, the
most needed operations in Sparcle are spatial range and 𝑘-nearest-
neighbor queries per the underlying spatial constraints. Since these
are pretty expensive operations, compared to the equality search,
Sparcle: (a) employs a spatial database system [42], where the input
raw data is spatially indexed based on their Latitude and Longitude
coordinates, and (b) for each spatial constraint 𝐶 , Sparcle uses
the spatial index to efficiently perform a self-join of the raw input
data based on either range or 𝑘-nearest-neighbor query with the
parameters defined in 𝐶 . The result of the join is then materialized
and stored in a table, termed DistanceMatrix, with the schema: (𝑅1,
𝑅2, 𝑣1, 𝑣2, 𝐷 ,𝑊), where 𝑅1 and 𝑅2 are two record identifiers such
that 𝑅2 is either within distance 𝑑 from 𝑅1 or is one of the 𝑘 nearest
neighbors of 𝑅1, according to a distance function F as defined by
range or 𝑘-nearest neighbor spatial constraints in Section 3.1. 𝑣1
and 𝑣2 are the corresponding values for 𝑅1 and 𝑅2 for the attribute
mentioned in 𝐶 that we aim to clean. 𝐷 is the distance between 𝑅1
and 𝑅2 according to the function F and𝑊 is the weight for the
distance between 𝑅1 and 𝑅2 according to the weight functionW.

Figure 3 gives an example for the DistanceMatrix computations.
In particular, Figure 3a shows a set of seven records on part of the
map that includes areas from two NYC boroughs, Manhattan and
Queens, plotted in light blue and green, respectively. It is important
to note that the borough boundaries are not known to the data
cleaning system, and they are just depicted here for illustration
of the ground truth, but this information is not used at all in any
of Sparcle computations. Meanwhile, records are colored based
on the borough information they have in their raw records, which
could be right or wrong. Figure 3b gives statistics about the whole
dataset, in terms of the number of records in the dataset for each
borough value. These statistics, collected in this module, will be
used by later modules for their computations. Figure 3c gives the

!"##$% !"#
!

#
"

$
!

$
"

!"#$%!!&'(")" *+,'(-!!!"

!"%..!!&'(")" *+,'(-!#!"

!"!$/!!0122(+)" *+,'(-!$!"

!"!$/!!0122(+)" *+,'(-!%!"

!"!$/!!0122(+)" *+,'(-!&!"

!"#$%!!)" *+,'(-&'("!"!!

!"3##!!&'("&'("!#!!

!"!34!!0122(+&'("!$!!

!"%..!!)" *+,'(-&'("!"!#

!"3##!!&'("&'("!!!#

!"!$/!!)" *+,'(-0122(+!"!$

!"!34!!&'("0122(+!!!$

!"3##!!0122(+0122(+!%!$

!"!$/!!)" *+,'(-0122(+!"!%

!"3##!!0122(+0122(+!$!%

!"3##!!0122(+0122(+!&!%

!"!34!!0122(+0122(+!'!%

!"!$/!!)" *+,'(-0122(+!"!&

!"3##!!0122(+0122(+!%!&

!"!34!!0122(+0122(+!%!'

!"#$%&'()*"+$,)(-&.

!"#$$%&'&()%*&(+,+&-%".&/0%

&''()*$+

,''()**-./$

0''12$3

0''!"##$%

&''43 5%.2$6

!/#$0)12+$3-+42+*"5

12$72882$

!
!

!
"

!
!

$

!
%

!
&

!
'

1%2%(+

!!"#$"%%"#

! &'((#)

! *%"%(# +),"#-

!)#$$%)()'+(

Figure 3: DistanceMatrix Example
DistanceMatrix for the seven records (𝑟1 to 𝑟7) of Figure 3a, based on
a SpatialRange denial constraint with distance𝑑=1km (plotted as red
dashed lines between records), and a weight function𝑊 (𝑟1, 𝑟2) =
(1 − F(𝑟1,𝑟2)

𝑑
)2, where F (𝑟1, 𝑟2) is the distance between 𝑅1 and 𝑅2.

For 𝑟1, with borough value Staten Island, there are five records (𝑟2
to 𝑟6) within distance 𝑑 . Hence, there are five corresponding records
in the DistanceMatrix. Two of these records, 𝑟2 and 𝑟3 have borough
value Manhattan, with distances 200m and 500m, which result in
weight values 0.64 and 0.25, respectively. Three of these records
(𝑟4 to 𝑟6) have distance 800m from 𝑟1, and hence they would have
weight 0.04. In a similar way, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, and 𝑟7 would have
three, two, three, four, two, and one records in the DistanceMatrix.

3.3 Detecting Spatial Constraint Violation
Algorithm 1 gives the pseudo code of Sparcle spatial error detector.
With the DistanceMatrix, computed by a self-join as described in
Section 3.2, the spatial error detection module becomes straight-
forward and pretty inexpensive. It is basically one scan over the
DistanceMatrix, where for each record (𝑅1, 𝑅2, 𝑣1, 𝑣2, 𝐷 ,𝑊), if 𝑣1 ≠
𝑣2, we consider that both 𝑅1.Borough and 𝑅2.Borough are erroneous
cells. Hence we move these two cells from the set of all (clean)
cells to the set of erroneous ones. Once we finish a full scan, we
output both sets of cells. The rationale behind this is that each row
in the DistanceMatrix refers to two records that satisfy the spatial
predicate (i.e., within range distance or 𝑘-nearest neighbor). Hence,
they are expected to have the same borough value (i.e., 𝑣1 is likely
to be the same as 𝑣2). If not, then at least one of these two records
might have wrong borough value. Since we are not sure which one
is wrong, we put both cells in the erroneous set.

For the example in Figure 3, all the Borough cells (attributes)
of records 𝑟1 to 𝑟6 will be added to the set of erroneous cells as
they appear in the first five rows of the DistanceMatrix, where 𝑣1 ≠
𝑣2. 𝑟7.Borough will be considered a clean cell as all its rows in the
DistanceMatrix have 𝑣1 = 𝑣2.

2352

Algorithm 1 Error Detection Pseudo Code

Procedure SpatialErrorDetection(Data I, DistMatrix𝑀)
1: ErroneousCells← 𝜙

2: CleanCells← All cells in Input Data I
3: for each row (𝑅1, 𝑅2, 𝑣1, 𝑣2, 𝐷 ,𝑊) in𝑀 do
4: if 𝑣1 ≠ 𝑣2 then
5: Move 𝑅1.Borough from CleanCells to ErroneousCells
6: Move 𝑅2.Borough from CleanCells to ErroneousCells
7: end if
8: end for
9: Return CleanCells and ErroneousCells

4 SPATIAL CANDIDATE GENERATOR
Though this module takes its input from the Spatial Error Detector
module (Section 3) as two sets of cells, clean and erroneous, for
each spatial constraint, it mainly operates on the erroneous list of
each constraint separately, aiming to: (1) generate a list of can-
didate values for each erroneous cell, along with the probability
that each candidate is the correct one, (2) use the probabilities of
the generated candidates to decide if any of the erroneous cells
can be safely moved to the list of clean cells. The output would
be another two sets of cells, clean and erroneous, along with the
generated candidate values for each cell. The main challenge in
this module is that standard candidate generation procedures in
rule-based data cleaning systems [19, 34, 44, 52] cannot accommo-
date both spatial neighborhood and distance weighting concepts,
needed to identify possible candidate values for each erroneous
result. The novelty of Sparcle in this module is that it modifies all
the equations and logic to come up with the set of candidate values
and their probability, by taking into account the spatial weight of
each possible candidate value, based on its spatial neighborhood.
In particular, this process goes through three phases as outlined in
Algorithm 2. The first phase (Section 4.1) generates an initial list
of possible candidate values for each erroneous cell. The second
phase (Section 4.2) estimates a probability of correctness for each
candidate value. The third phase (Section 4.3) finds if there is one
clear dominant candidate value. If so, it is considered as the correct
value of its cell, and the cell is moved to the clean list.

4.1 Phase 1: Initial Candidate Generation
Data cleaning systems mainly generate the candidate values based
on counting the co-occurrence between record attributes. For exam-
ple, the value of 𝑟𝑖 .Boroughwould be a likely candidate of 𝑟 𝑗 .Borough
if 𝑟𝑖 and 𝑟 𝑗 share the same Latitude value (i.e., co-occurrence of lati-
tudes). The likeliness of the candidacy will be based on the counting
of how many times such co-occurrence took place. Apparently, this
is not applicable to spatial data as it is rare to have two records
with the same Latitude and/or Longitude values. In fact, applying
this to the example in Figure 3 yields zero co-occurrence and hence
no candidates are generated for any of the erroneous cells.

Sparcle enriches existing candidate generators with spatial
awareness. In particular, for any record 𝑟𝑖 where its cell/attribute
Borough is marked erroneous, Sparcle modifies the candidate gen-
eration process in twoways: (1) The co-occurrence of record values is
relaxed from exact value co-occurrence to be nearby co-occurrence.

Algorithm 2 Candidate Generation Pseudo Code

Procedure SpatialCandGeneration(Cells C, Cells E, MaxProb)
1: for each erroneous cell 𝐸 in E do
2: 𝐸.CandList← InitCandidates(𝐸) ⊲ (Phase 1)
3: for 𝑖=1 to |𝐸.CandList| do ⊲ (Phase 2)
4: 𝐸.CandList[i].Prob← ProbEval(𝐸.CandList[i].value)
5: end for
6: ProbNormalization(𝐸.CandList) ⊲ (Phase 3)
7: if |𝐸.CandList| = 1 or TopProb(𝐸.Candlist) > MaxProb then
8: 𝐸.Label← TopProbCandidate(𝐸.Candlist)
9: Move 𝐸 from E to C
10: end if
11: end for
12: Return E and C

Hence, the candidate values for 𝑟𝑖 .Boroughwould include 𝑟𝑖 .Borough
itself, along with all Borough values for any record 𝑟 𝑗 that lies
within (range or 𝑘NN) proximity from 𝑟𝑖 according to the spatial
denial constraint. This is done through a lookup search over the
DistanceMatrix for all rows where 𝑅1 is 𝑟𝑖 . (2) The counting of the co-
occurrence is relaxed from being an absolute count to be a weighted
count based on how far the co-occurred records from each other.
This can be done by computing the sum of the weights in the Dis-
tanceMatrix for all co-occurred records, i.e., all rows where 𝑅1 is 𝑟𝑖 .
If none of the nearby records share the same value of 𝑟𝑖 .Borough,
we would still have the value of 𝑟𝑖 .Borough in our candidate list,
yet with a default minimal weight value of 0.01. The weights of all
candidate values will be used in the second phase (Section 4.2) to
estimate the probability of each candidate value.
Example. The second and third columns of Table 2 give the list of
candidate values, along with their weights for the Borough attribute
for record 𝑟1 in Figure 3. There are three candidate values, Manhat-
tan and Queens as they appear two and three times, respectively, in
the DistanceMatrix with nearby records (i.e., nearby co-occurrence).
The third candidate value is Staten Island, even though no nearby
record has this value, but it is the raw Borough value of 𝑟1, and hence
we need to consider it. The weights for Manhattan and Queens are
set to 0.89 and 0.12, respectively, computed as the sum of weights
of their corresponding records in the DistanceMatrix. The weight
for Staten Island is set to the default minimal value of 0.01.

4.2 Phase 2: Candidate Probabilities Estimation
This phase aims to estimate the probability of each candidate value
to be the correct one. Current data cleaning systems do so by adopt-
ing various statistical methods. One typical method is the Naive-
Bayes [38], where the probability that a cell 𝐶 of record 𝑅 has a
certain candidate value 𝑣 (Prob (𝐶 = 𝑣)) is computed as Prob (𝑣 ∈ 𝐷)
×∏︁𝐴 Prob ((𝑣 → 𝑅.𝐴) ∈ 𝐷), which is the probability of having 𝑣 in
the whole dataset 𝐷 , multiplied by, for each attribute 𝐴 other than
𝐶 , the ratio of records in 𝐷 where having 𝑣 in 𝐶 implies the value
in attribute 𝐴. Apparently this is not applicable to spatial data as
the co-occurrence of 𝑣 and the spatial attributes in 𝐴 is pretty rare,
which will make the probability of each candidate zero.

As it is the case for Phase 1, Sparcle enriches existing candidate
probability estimators with spatial awareness. For any record 𝑟𝑖

2353

Table 2: Candidate Generation State of 𝑟1.Borough

Cell Candidate Value SumWeights |𝑆𝑝𝑎𝑡𝑖𝑎𝑙 (𝑣,𝑅) |
|𝐷 |

𝐶𝑜𝑢𝑛𝑡 ((𝑣,𝑅.𝐼𝐷),𝐷)
𝐶𝑜𝑢𝑛𝑡 (𝑣,𝐷) Probability Normalized Prob.

𝑟1.Borough
Manhattan 0.89 0.00089 0.1/300 89/300000000 0.68

Queens 0.12 0.00012 0.1/300 1/25000000 0.09
S. Island 0.01 0.00001 1/100 1/10000000 0.23

with erroneous Borough cell, Sparcle modifies the candidate proba-
bility estimation in two ways: (1) In the calculation of Prob (𝐶 = 𝑣),
Sparcle replaces the term Prob ((𝑣→ 𝑅.𝐴) ∈ 𝐷) by the term Prob ((𝑣
→ location near 𝑅) ∈ 𝐷) for the spatial attributes in 𝐴. This means
that instead of considering the exact co-occurrence between 𝑣 and
each single location attribute, Sparcle employs its spatial neigh-
borhood concept to consider the nearby co-occurrence between 𝑣

and 𝑅 according to the spatial proximity defined in the denial con-
straint. (2) When calculating the co-occurrence probability, Spar-
cle does not count the nearby co-occurrences. Instead, it sums the
co-occurrence weights as closer ones are weighted higher than
further ones, per the distance weighting concept. Both nearby co-
occurrences and their weights are directly obtained from the Dis-
tanceMatrix. Formally, in Sparcle, the probability estimation for
any candidate value 𝑣 of cell 𝐶 of record 𝑅 is:

𝑃𝑟𝑜𝑏 (𝐶 = 𝑣) = 𝑃𝑟𝑜𝑏 (𝑣 ∈ 𝐷) ×
∏︂
𝐴′

𝑃𝑟𝑜𝑏 ((𝑣 → 𝑅.𝐴′) ∈ 𝐷)

×𝑃𝑟𝑜𝑏 ((𝑣 → 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑛𝑒𝑎𝑟 𝑅) ∈ 𝐷)
(1)

, where𝐴′ is the set of attributes in 𝑅 excluding𝐶 and the spatial
attributes. The first probability factor, Prob (𝑣 ∈ 𝐷), is basically
𝐶𝑜𝑢𝑛𝑡 (𝑣,𝐷)
|𝐷 | , which is the number of times that 𝑣 has appeared in

the dataset 𝐷 divided by the number of records in 𝐷 . The second
probability factor for each attribute in 𝐴′, Prob ((𝑣 → 𝑅.𝐴′) ∈ 𝐷),
is 𝐶𝑜𝑢𝑛𝑡 ((𝑣,𝑅.𝐴′),𝐷)

𝐶𝑜𝑢𝑛𝑡 (𝑣,𝐷) , which is the number of times that 𝑣 and the
value of 𝑅.𝐴′ have appeared together in𝐷 divided by the number of
times that 𝑣 has appeared in 𝐷 . The third probability factor, Prob ((𝑣
→ location near 𝑅) ∈ 𝐷) is |𝑆𝑝𝑎𝑡𝑖𝑎𝑙 (𝑣,𝑅) |

𝐶𝑜𝑢𝑛𝑡 (𝑣,𝐷) , which is the sum of the
weights of those records where 𝑣 appears within a spatial proximity
of 𝑅, divided by the number of times that 𝑣 has appeared in 𝐷 . With
this, Equation 1 can be rewritten as:

𝑃𝑟𝑜𝑏 (𝐶 = 𝑣) = 𝐶𝑜𝑢𝑛𝑡 (𝑣, 𝐷)
|𝐷 | ×

∏︂
𝐴′

𝐶𝑜𝑢𝑛𝑡 ((𝑣, 𝑅.𝐴′), 𝐷)
𝐶𝑜𝑢𝑛𝑡 (𝑣, 𝐷) × |𝑆𝑝𝑎𝑡𝑖𝑎𝑙 (𝑣, 𝑅) |

𝐶𝑜𝑢𝑛𝑡 (𝑣, 𝐷)

=
|𝑆𝑝𝑎𝑡𝑖𝑎𝑙 (𝑣, 𝑅) |

|𝐷 | ×
∏︂
𝐴′

𝐶𝑜𝑢𝑛𝑡 ((𝑣, 𝑅.𝐴′), 𝐷)
𝐶𝑜𝑢𝑛𝑡 (𝑣, 𝐷)

, where |Spatial(v,R)| is basically the third column of Table 2, com-
puted at Phase 1 (Section 4.1). Count(𝑣 ,𝐷) is obtained directly from
the value frequency table computed in Figure 3b. ForCount((𝑣 ,𝑅.𝐴′),𝐷),
we query the original input table to get the count of the number
of 𝑅.𝐴′ when the value of cell 𝑅.𝐶 is 𝑣 . In case 𝑅.𝐴′ is the record
identifier, such count would be set as either (a) 1, if the candidate
value 𝑣 is the original value of 𝑅.𝐶 , as the record identifier would
naturally appear only once in the dataset, combined with the record
original value, regardless of whether it is right or not, or (b) 0.1,
if 𝑣 is not the original value of 𝑅.𝐶 . Even though there is a zero

co-occurrence between the record identifier and any value of 𝑣 that
is not the original, we follow the same practice used by state-of-
the-art data cleaning systems [19, 44, 52], known as the principle
of minimality, where we put 0.1 co-occurrence value for any non
co-occurrence. This gives ten times more bias towards the original
record value, which again, follows existing data cleaning systems
that favor the original value.
Example. The fourth and fifth columns of Table 2 give the two
terms used to compute the probability of each candidate value
for 𝑟1. The sixth column in the table presents the probability of
each candidate to be the correct value for the record, which is
basically the multiplication of the fourth and fifth columns. The
first probability term (fourth column) is basically the sum of weights
(third column) divided by 1,000, which is the total number of input
records. Since our toy example has only one non-spatial attribute,
namely, the record identifier, the probability of the value Manhattan
and Queens for 𝑟1 would need to be multiplied by 0.1/300. The
0.1 is the default minimal value and 300 is the number of times
that the values Manhattan and Queens appear in the input dataset.
Meanwhile, as Staten Island is the original value of 𝑟1, we multiply
the probability by 1/100, where 1 for the original value and 100
is the number of times of Staten Island in the input dataset. The
output of this phase is both the second and sixth columns of Table 2
as the candidate values with their probabilities.

4.3 Phase 3: Candidate Labeling and Cutoffs
The goal of this phase is to identify: (a) If there are candidate values
that have marginal probability to the extent that there is no need
to consider them further, and (b) If there is a certain candidate
value that is clearly dominant and we can safely identify that this
is the correct value for its corresponding erroneous cell. To do so,
as outlined in Algorithm 2, Sparcle first normalizes the candidate
probabilities to have a sum of 1. Then, it employs two parameters,
MinProb and MaxProb. Any candidate value that has a probability
less than MinProb will be considered marginal, removed, and not
considered further. Then, if there is only one remaining candidate
value or if there is one candidate value that has a significantly high
probability more than MaxProb, we consider that this value is the
correct one and move the corresponding cell from the erroneous
list to the clean list. The output of this phase is the module output,
which includes both the erroneous and clean cells, along with a list
of remaining candidate values per each cell.
Example. The last column of Table 2 gives the normalized proba-
bility of the sixth column. Assuming MinProb=0.1, we exclude the
candidate value Staten Island from 𝑟1. Assuming MaxProb=0.9, no
candidate of 𝑟1.Borough will be marked as clean. Clean and erro-
neous cells with their remaining candidate values are passed to the
next module.

2354

5 SPATIAL INPUT FORMULATOR
The input to this module is two sets of clean and erroneous cells,
each with its own candidate list, identified from the spatial candi-
date generation, per each spatial constraint. Then, for each spatial
constraint, the module mainly operates on the erroneous cells, and
aims to identify the correct value for each erroneous cell, with a
score based on how much each candidate value satisfies (or vio-
lates) the spatial denial constraint. The output of this module is
the detected erroneous cells and their weighted candidate values,
per each spatial constraint. If we only have spatial constraints, this
will be the final output of the data cleaning process as the repaired
value for each cell can be inferred from its score, e.g., the value
with highest score. With non-spatial constraints, the output of this
module will be sent to the underlying error repair module of the
host data cleaning system to be integrated with the outcome of the
non-spatial constraints that are processed by the host system.

The main challenge in this module is that standard input formu-
lators are not equipped to support spatial data, as they deal with
error detection and candidate generation modules that do not sup-
port such data. The novelty of Sparcle in this module is twofold:
(a) It shows how input formulators can acknowledge spatial data
properties with its two main concepts of spatial neighborhood and
distance weighting, and (b) It does so for three families of open-
source data cleaning systems. Unlike the previous two modules
that are generic for any data cleaning systems, each system has its
own system specific Input Formulator that puts the results of the
two other modules in the form needed by the underlying statistical
repairing method. Hence, SparcleSpatial Input Formulator has to
be developed for each family of data cleaning systems that use the
same output form, which is the input to the underlying data repair.
We show how Sparcle injects Spatial Neighborhood and Distance
Weighting concepts in the input formulator module of three data
cleaning systems, namely, AimNet [52] (Section 5.1), Baran [34]
(Section 5.2), and HoloClean/MLNClean [19, 44] (Section 5.3).

5.1 Violation-based Feature Vectors
AimNet [52], the error correction method of the HoloClean’s open
source distribution, requires a feature vector 𝑉 per cell per con-
straint, where 𝑣 [𝑖] represents the score of how the 𝑖th candidate of
the cell violates the denial constraint. To construct its feature vector,
AimNet [52] counts the number of violations of the constraint that
are caused by the cell taking its 𝑖th candidate. The first column
of Figure 4a shows AimNet feature vector for 𝑟1 in our running
example of Figure 3. Setting 𝑟1.Borough to Manhattan will cause
three instances of denial constraint violations with 𝑟4, 𝑟5, and 𝑟6
(the 3rd to 5th rows in DistanceMatrix). Hence, the score is set to 3.
Similarly, the scores for Queens and Staten Island are set to 2 and 5.

Apparently, this is not suitable for spatial constraints as it equally
weights the constraint violations between 𝑟1 and 𝑟2 with the con-
straint violation between 𝑟1 and 𝑟5. Spatially speaking, the con-
straint violation (𝑟1, 𝑟5) should be weaker than (𝑟1, 𝑟2), as the dis-
tance between 𝑟1 and 𝑟5 is much more than the distance between
𝑟1 and 𝑟2. To inject the spatial awareness in the input formulator
of AimNet, Sparcle fills in the feature value 𝑉 [𝑖] by summing up
the weights of violations that are caused by the cell taking its 𝑖th
candidate. The second column of Figure 4a gives such vector for 𝑟1.

!"#$%$"&'(

)"*+'

!"#$

%&''#(

)$ *(+"#,

,-"./*'
0%1

2'&

!"#$-

!"%&.

#"!#/

!"#

$%&'"(%&)*+",-.

/-"(01- $-2(&1

,-"./*'3"."#

'!"%%(012314

'!"#$(012314

'!(012314

!+#

31&+"+%'%(4*+",-.

/-"(01- $-2(&1

,-"./*'
45*5

!*'"#

)!"**56

+!"**76

+#"!#5/

!2#

/"2(&1 51"67

Figure 4: Input of 𝑟1 .Borough by Original Method VS Sparcle

If 𝑟1.Borough is set to Manhattan, then three constraint violations
would take place with 𝑟4, 𝑟5, and 𝑟6, each with a weight 0.04, and
hence the total score of the constraint violation would be 0.12. Sim-
ilar, if 𝑟1.Borough is set to Queens, then two constraint violations
would take place with 𝑟2 and 𝑟3, with weights 0.64 and 0.25, respec-
tively. Hence, the total score is 0.89. Finally, if 𝑟1.Borough is set to
Staten Island, then five constraint violations would take place with
𝑟2 to 𝑟6 with a total weight of 1.01.

It is important to note here that the lower the score the more
likely the value would be considered correct. The fact that Manhat-
tan has the lowest score of 0.12, i.e., the lowest violation score, is
an indication that, per the spatial constraint, it is the most favored
value for 𝑟1.Borough. The final feature vector from Sparcle will be
passed to the repair module of AimNet [52] to consider it along
with other non-spatial constraints for the final repaired dataset.

5.2 Probability-based Feature Vectors
Unlike AimNet [52], the Baran [34] system requires the input to its
error correction method as a feature vector per cell per candidate,
where each vector value represents the probability of the candi-
date according to a specific dependency. Meanwhile, Baran does
not ask for user-input constraints, instead, it assumes all possible
dependencies from all other attributes to the cell. For the exam-
ple of Figure 3, Baran assumes the dependency from Latitude and
Longitude separately. Then, for each dependency, e.g., Latitude→
Borough, it estimates the probability based on co-occurrence. The
first column in Figure 4b gives the feature vector values for 𝑟1 for
each possible Borough value. They are all zero vectors as there
is zero co-occurrence between the Latitude and Longitude values
with any Borough value. This makes the error correction module of
Baran fail to identify the correct answer.

To inject the spatial awareness in the input formulator of Baran,
Sparcle uses the weights and spatial neighborhood records that
were evaluated in Section 3 along with the candidate values com-
puted in Section 4 to calculate the probability of a combined depen-
dency on the form (Latitude, Longitude)→ Borough. The second
column of Figure 4b gives such vector for 𝑟1. Since there is only two
possible values among the candidate ones that have proximity co-
occurrence with 𝑟1, we set their vector values as their normalized
probability 0.88 for Manhattan and 0.12 for Queens. The last row
for Staten Island is set to 0 as there is no proximity co-occurrence.

Unlike the case of AimNet, the higher the values here the more
likely the candidate value is the correct one. This is mainly because
these values represent a probability rather than a violation. Finally,
such form of output vector of Sparcle will be sent to the repair
module of Baran [34] to consider it along with other non-spatial
constraints for the final repaired dataset.

2355

5.3 Factor Graph
HoloClean [44] and MLNClean [19] include error correction meth-
ods that are based on Markov Logic Network [46], which requires
its input to be in a form of a factor graph. To construct the factor
graph, each functional dependency instance needs a factor func-
tion that returns a value reflecting how the instance satisfies the
dependency. In particular, for HoloClean, the factor function re-
turns 1 if the instance satisfies the dependency, otherwise it returns
−1. Then, the data cleaning process aims to find the values that
maximize the sum of all factor functions in the dataset. The first
column in Figure 4c shows the sum of factor functions related with
𝑟1 in Figure 3. For Manhattan, the sum of factor functions would
be -1 as the factor function would return -1 three times (with 𝑟4,
𝑟5 and 𝑟6) and 1 two times (with 𝑟2 and 𝑟3) when 𝑟1.Borough is set
to Manhattan. For Staten Island, the sum would be -5 as the factor
function would return -1 five times.

Apparently, this is not suitable for spatial constraints as the fac-
tor function would only return either 1 or -1 regardless of how
strong a certain instance satisfies the spatial constraint. To inject
the spatial awareness in the input formulator of HoloClean [44],
Sparcle modifies the factor graph construction by multiplying the
factor function output (1 or -1) by the weight of the instance, com-
puted in the DistanceMatrix of Figure 3. For example, the second
column in Figure 4c gives Sparcle output for factor graphs for 𝑟1.
For Manhattan, the sum of factor functions would be 0.77, com-
puted as -1*(0.04+0.04+0.04)+1*(0.64+0.85). For Queens, the sum of
factor functions would be 1*(0.04+0.04+0.04)-1*(0.64+0.85)=-0.77.
For Staten Island, the sum will be -1.01. The higher the value of
the sum the more likely the candidate value is the correct one.
This shows how spatial awareness changed the favored value from
Queens to Manhattan. Such form of factor graph of Sparcle will
be sent to the repair module of HoloClean [44] to consider it along
with other non-spatial constraints for the final repaired dataset.

6 EXPERIMENTAL RESULTS
This section compares different implementations of Sparcle show-
ing the impact of the injected spatial awareness on both accuracy
and efficiency. In particular, we pick two state-of-the-art rule-based
data cleaning systems, HoloClean [22] and Baran [3], as host sys-
tems. HoloClean+Sparcle (referred by Sparcle for short) is a full-
fledged real system deployment and it is the main open-source
release of Sparcle [49]. Baran+Sparcle, which is released as a sec-
ondary open-source release of Sparcle [4], is a proof-of-concept
implementation that emulates the behaviour of the first two mod-
ules of Sparcle within Baran, then produces spatial-aware feature
vectors through a real deployment of the spatial input formulator
inside Baran. We also introduce a third implementation of Sparcle
(n=0), where 𝑛 is the exponential factor of the weight function
W(𝑟𝑖 ,𝑟 𝑗)= (1- F(𝑟𝑖 ,𝑟 𝑗)

𝑑
)𝑛 . Having 𝑛=0 cancels the distance weighting

concept as the weight between any pair of records would be always
1 regardless of how far they are from each other. This would mimic
the behavior of relaxed functional dependencies that can be uti-
lized to present the spatial neighborhood concept. For Sparcle and
Baran+Sparcle, we set 𝑛=2 as a default value.
Competitors. We compare the three implementations of Sparcle
with (1) HoloClean [44], with its open-source distribution [22],

Table 3: Experiment Datasets

Dataset Dependency Records Errors Dup. Dis.

Austin-
Code

(Lat, Lon)→ zipcode 93,414 13,968 0.00 50
(Lat, Lon)→ city 12,224 0.00 9

Boston-
311

(Lat, Lon)→ public_district

10,000

100 0.00 14
(Lat, Lon)→ police_district 122 0.00 12
(Lat, Lon)→ ward 120 0.00 22
(Lat, Lon)→ zipcode 2,578 0.01 30

Chicago-
Building

(Lat, Lon)→ community
731,734

105,240 0.64 77
(Lat, Lon)→ census_tract 138,953 0.64 980
(Lat, Lon)→ ward 181,119 0.58 50

NYC-
Crash

(Lat, Lon)→ borough 1,751,624 421,013 0.44 5
(Lat, Lon)→ zipcode 528,565 0.30 230

Chicago-
Synthetic

(Lat, Lon)→ police_district 23
(Lat, Lon)→ ward 50
(Lat, Lon)→ zipcode 59
(Lat, Lon)→ beat 275
(Lat, Lon)→ census 801

is a data repairing system that unifies integrity constraints with
other signals such as statistics and external knowledge. We mute
other signals and only keep the integrity constraints to limit the
comparison to constraint-based data cleaning. HoloClean uses a
conservative error detection process that marks erroneous for all
cells that involve in constraint violations. (2) Baran [34] is an error
correction system that takes signals from functional dependencies
as well as statistical perspectives. We run Baran as is with all its
signals, human labeling budget set to 20, and use its sister system
Raha [35] for error detection. (3) SMFL [17], which is a matrix
factorization technique that leverages the locality in spatial data
to predict spatial-correlated values. It only performs missing value
imputation where it employs Raha [35] to detect errors, then erases
the erroneous entries, and attempts to impute them.
Datasets. Table 3 shows the properties of the four real and one
synthetic datasets we are using in our experiments. For each real
dataset, we only keep the spatial attributes Latitude and Longi-
tude and the attributes dependent on them: (1) Austin-Code [1].
93+K records of Austin Code Department complaint cases. Two
spatial functional dependencies for zipcode and city need to be
kept, with around 14K and 12K errors (either missing or incorrect),
respectively. The second last column in Table 3 presents the er-
ror duplication ratio, which is the ratio of erroneous records that
took place on the same location of other correct records. The last
column indicates the data has 50 distinct zipcode and 9 city val-
ues. (2) Boston-311 [7]. Randomly sampled 10K records for the
311 service requests in Boston, with four spatial dependencies. We
had to sample this dataset as some competitors cannot scale for
large datasets. (3) Chicago-Building [12]. 731+K records for the
building permits issued by the City of Chicago, with three spatial
dependencies. (4) NYC-Crash [40]. The dataset shown in Figure 1
with 1.7+M records for the location of vehicle crashes in NYC since
2014, with two spatial dependencies. (5) Chicago-Synthetic. A syn-
thetic data in the spatial extent of Chicago, in which each record is
a random location with five functional dependencies. Number of
records, errors, and duplication ratios are not shown here as would
vary these parameters in our experiments.

2356

100 500 1000 2000

(a) Range Threshold d (m)

0.0

0.1

0.2

0.3

0.4

0.5

F
1
 S

c
o
re

1 10 25 50

(b) kNN Threshold k

n=0

n=2

n=4

n=16

Runtime

0

2

4

6

8

10

R
u
n
ti

m
e
 (

m
in

)

n=0

n=2

n=4

n=16

Runtime

Figure 5: Sparcle Parameter Tuning

Evaluation Metrics and Experiment Design. We evaluate Spar-
cle and competitors based on four metrics: (1) Precision: The frac-
tion of number of correct repairs over total number of repairs made
by the system, (2) Recall: The fraction of number of correct re-
pairs over total number of errors, (3) F1 score: The harmonic mean
of precision and recall, i.e., 2∗(𝑃𝑟𝑒𝑐.∗𝑅𝑒𝑐.)

𝑃𝑟𝑒𝑐.+𝑅𝑒𝑐. , and (4) the system run
time. All experiments are performed on a Linux server with 20
CPU@2.2GHz, 96GB memory and 1TB SSD. In this section, we first
perform a parameter study of Sparcle to set on its optimal param-
eters (Section 6.1). Then, we compare Sparcle against competitors
in terms of accuracy (Sections 6.2 to 6.3) and efficiency (Section 6.4).

6.1 Sparcle Parameter Tuning
This section studies the impact and trade-offs of Sparcle parameters
on its accuracy and efficiency, namely, the spatial range 𝑑 , the
number of nearest neighbors 𝑘 , and the exponential weight factor
𝑛. To do so, we create a Chicago-Synthetic dataset of 20,000 records
and focus on the functional dependency (Lat, Lon)→ census.
Spatial range parameter 𝑑 . Figure 5(a) shows the impact of in-
creasing the spatial range 𝑑 from 100 to 2000, on both the accuracy
(F1 score) and efficiency. For accuracy, we plot Sparcle with dif-
ferent values of 𝑛 as it impacts the system accuracy. No need to
do the same for efficiency as 𝑛 has no impact on efficiency. For 𝑑
from 100 to 2000, the highest F1 score at each distance increases,
and finally, achieves its highest when 𝑑=2000 with 𝑛=16. This sug-
gests that a larger neighborhood has a potential to achieve higher
accuracy. Meanwhile for 𝑛, a larger neighborhood requires a larger
𝑛 to achieve that high accuracy. For example, for 𝑑 of 500, 1000 and
2000, the best 𝑛 is 2, 4, 16, respectively. From efficiency perspective,
large value of 𝑑 (e.g., 2000) encounters very high overhead to search
a large neighborhood area and build the DistanceMatrix.
Nearest-neighbor parameter 𝑘 . Figure 5(b) shows the impact of
increasing 𝑘 from 1 to 50. Similar to spatial range, a large 𝑘 with a
large 𝑛 achieve high accuracy. However, the neighborhood cannot
be too large as the accuracy almost drops to 0 when 𝑘=50. The
reason is that the dataset has 20K records but 801 distinct census
values. So, a pretty large neighborhood (e.g., 𝑘=50) would involve
too many neighbors from different census_tracts, which may not
guide the cleaning logic. Hence, we come up with a recommen-
dation ceiling value that 𝑘 should not be greater than |𝐷 ||𝐴 | where
|𝐷 | is the dataset size and |𝐴| is the number of distinct values of
attribute 𝐴. For efficiency, also similar to spatial range, large values
of 𝑘 suffer from the DistanceMatrix computation.

6.2 System Overall Accuracy
We compare the Sparcle and Baran+Sparcle with their host sys-
tems HoloClean and Baran, respectively, on cleaning real data to
show the effectiveness of the spatial awareness injected by Spar-
cle. We also include SMFL for comparison and Sparcle (n=0) for
ablation study. Table 4 gives the cleaning accuracy in terms of preci-
sion, recall, and F1 score for each functional dependency, and then
for the overall accuracy for the whole dataset with all functional
dependencies combined. For Baran and SMFL, we only show the
results for the Austin and Boston datasets, and for Baran+Sparcle
we only show the results for Boston as these approaches did not
scale to larger datasets. More about scalability is in Section 6.4.
Sparcle VS HoloClean. For overall accuracy in terms of F1, Spar-
cle clearly outperforms HoloClean for every single dependency as
well as the whole dataset. In particular, Sparcle constantly achieves
higher recall than HoloClean, owing to (1) the spatial neighborhood
concept that lets Sparcle detect more errors than HoloClean, and
(2) the spatial awareness injected into the feature vectors that leads
to more error corrected. For precision, Sparcle also does better
on most dependencies, with some high-precision/low-recall excep-
tions by HoloClean, such as the city attribute of Austin dataset
and public_district and police_district attribute of Boston dataset.
The reason is that HoloClean only makes a few repairs on such
dependencies, as it cannot generate a candidate due to the lack of
duplication in those datasets. However, Sparcle is able to draw
correct candidates from the spatial neighborhood so that does not
have such problem. In fact, HoloClean gets extremely low recall
on all dependencies for Austin and Boston dataset, and performs
better on Chicago and NYC dataset. The main reason is that, as de-
picted in Table 3, Austin and Boston data have no duplicates, which
makes it very hard to clean by current data cleaning systems. We
study the impact of duplication ratio in more details in Section ??.
Despite of duplication ratio, the number of distinct values also af-
fects the cleaning accuracy: both Sparcle and HoloClean perform
better on city attribute than zipcode in Austin data, although both
attributes have 0 duplication ratio. The main reason is that the city
dependency has only 9 distinct values, which is much less than
the distinct values for zipcode, which is 50 (Table 3). Naturally, it is
much harder to clean data with more distinct values. We study the
impact of distinct values in more detail in Section 6.3.
Baran+Sparcle VS Baran. Baran+Sparcle outperforms Baran for
all dependencies in Boston-311 dataset, boosting overall F1 score
from 0.07 to 0.78. In particular, the superiority in recall is more
significant than precision, which means that Baran+Sparcle at-
tempts to make more corrections while keeping good correction
precision. Given that they both use Raha [35] for error detection,
whichmeans they receive the same set of detected errors, the reason
Baran+Sparcle is able to makes more corrections is that the error
correction method of Baran works in a way of generalizing human
corrections to the rest of the dataset. However, due to the lack of
location duplication, Baran itself finds no relation between loca-
tions hence cannot generalize a human correction. On the contrary,
Baran+Sparcle recognizes the spatial neighborhood relevance and
generalizes the human correction at a location to its neighborhood,
leading to high recall. Meanwhile, the distance weighting concept
that injected by Sparcle guides the generalization so that closer

2357

Table 4: Cleaning Accuracy on Real Data

Austin-Code Boston-311 Chicago-Building NYC-Crash
zipcode city overall public police ward zipcode overall comm. census ward overall borough zipcode overall

Prec.

Sparcle (n=2) 0.853 0.992 0.921 0.483 0.569 0.266 0.867 0.779 0.990 0.829 0.746 0.836 0.998 0.821 0.909
Sparcle (n=0) 0.790 0.992 0.885 0.327 0.352 0.117 0.745 0.593 0.983 0.724 0.727 0.785 0.997 0.803 0.898

HoloClean 0.001 0.993 0.093 1.000 0.800 0.000 0.112 0.115 0.925 0.398 0.717 0.627 0.683 0.384 0.533
Baran+Sparcle -# -# -# 0.969 0.975 0.836 0.853 0.847 -# -# -# -# -# -# -#

Baran 0.374 0.995 0.882 0.791 0.943 0.815 0.528 0.688 -∗ -∗ -∗ -∗ -# -# -#
SMFL 0.580 0.997 0.789 0.889 0.873 0.770 0.462 0.490 -∗ -∗ -∗ -∗ -∗ -∗ -∗

Rec.

Sparcle (n=2) 0.782 0.992 0.880 0.730 0.639 0.650 0.859 0.837 0.982 0.894 0.685 0.827 0.994 0.662 0.809
Sparcle (n=0) 0.782 0.992 0.880 0.840 0.754 0.625 0.828 0.817 0.977 0.893 0.710 0.836 0.994 0.667 0.812

HoloClean 0.000 0.024 0.011 0.050 0.033 0.000 0.101 0.092 0.635 0.393 0.437 0.472 0.587 0.264 0.407
Baran+Sparcle -# -# -# 0.620 0.402 0.425 0.757 0.714 -# -# -# -# -# -# -#

Baran 0.010 0.674 0.324 0.270 0.209 0.217 0.011 0.037 -∗ -∗ -∗ -∗ -# -# -#
SMFL 0.508 0.997 0.736 0.560 0.451 0.392 0.428 0.432 -∗ -∗ -∗ -∗ -∗ -∗ -∗

F1.

Sparcle (n=2) 0.816 0.992 0.900 0.582 0.602 0.378 0.863 0.807 0.986 0.860 0.714 0.832 0.996 0.733 0.856
Sparcle (n=0) 0.786 0.992 0.882 0.471 0.480 0.197 0.784 0.687 0.980 0.800 0.718 0.810 0.995 0.729 0.853

HoloClean 0.000 0.046 0.020 0.095 0.063 0.000 0.106 0.102 0.753 0.396 0.543 0.538 0.632 0.313 0.462
Baran+Sparcle -# -# -# 0.756 0.544 0.564 0.802 0.775 -# -# -# -# -# -# -#

Baran 0.019 0.683 0.441 0.388 0.340 0.334 0.022 0.070 -∗ -∗ -∗ -∗ -# -# -#
SMFL 0.542 0.997 0.761 0.687 0.595 0.519 0.444 0.459 -∗ -∗ -∗ -∗ -∗ -∗ -∗

* cannot finish due to memory error
cannot finish after 1 day

neighbors learn more from the human input than distant neighbors,
resulting in high precision.
Sparcle, Baran+SparcleVS SMFL. SMFL has better accuracy than
HoloClean and Baran but still lower than Sparcle and Baran+Sparcle.
On one hand, SMFL captures the spatial information of the datasets,
thus outperforms the non-spatial systems. On the other hand, SMFL
falls short comparing with Sparcle-facilitated systems for the rea-
sons: (1) SMFL does not have an error detection method adapted
for spatial data. When using Raha [35] for error detection, it cannot
catch the errors with respect to spatial neighborhood, which even-
tually limits the cleaning recall. (2) SMFL natively only supports
numerical values. To work with the categorical attributes of the
experiment datasets, we have to number the categories. For exam-
ple, Manhattan as 1, Queens as 2 and Staten Island as 5. This brings
in an implication that Manhattan is closer to Queens than Staten
Island, which is neither necessary nor valid. (3) SMFL natively does
not support integrity constraints as it predicts its values from a
spatial correlation perspective, which is relatively “softer” and does
not apply to constraint-based cleaning.
Sparcle (n=2) VS Sparcle (n=0). We compare Sparcle (n=2) with
Sparcle (n=0) as an ablation study that shows the impact of dis-
tance weighting concept on real data. Sparcle (n=2) and Sparcle
(n=0) have similar accuracy on dense datasets like NYC-Crash, but
Sparcle (n=2) is superior on smaller datasets like Boston-311. The
reason is that given a fixed 𝑘NN parameter, in dense datasets, most
neighbors belong to the same class, hence distance weighting may
not have an impact. Yet, in other datasets, neighbors belong to
different classes, and hence distance weighting will have the most
impact. This shows that distance weighting, as a crucial concept for
spatial data, enhances the cleaning robustness regrading to various
datasets.

Figure 6 shows the impact of duplication ratio on the accuracy
of all systems. To control the duplication ratio, we use the Chicago-
Synthetic dataset (20K records with 2K errors) in Figure 6a to 6c,
where we measure the precision, recall, and F1 score when having
error duplication ratios of 0, 0.33, 0.67, and 1 for the dependency
(Lat, Lon)→ ward. A duplication ratio of 0 means that none of the
erroneous records happen in a location of other records, while a
ratio of 1 means that all erroneous records happened in the same
location of some other records. Sparcle with 𝑛=2 significantly out-
performs HoloClean in low duplicate ratios for precision, recall, and
F1 score, and gives similar performance for duplicate ratio of 1. The
trend is similar for Baran+Sparcle and Baran. The reason is that
having erroneous records with duplicate values gives HoloClean
and Baran the chance to learn the correct values from the duplicates,
and hence can perform better. However, Sparcle can still perform
well even with 0 duplicates, as it employs the spatial neighborhood
concept, which somehow considers records with spatial proximity
as duplicates. Meanwhile, Sparcle with 𝑛=2 performs much better
than the case when 𝑛=0, and the superiority increases with high
duplicate ratios. The main reason is that with more duplicates, it
becomes more important to set accurate weights for each record
with respect to satisfying the functional dependency. Hence, Spar-
cle with 𝑛=2 takes advantage of its distance weighting concept
to accommodate this. SMFL also cannot benefit from duplicates
because it does not enforce functional dependencies.

Figure 6d shows the same experiment of Figure 6c, yet for the
four real datasets of Austin, Boston, NYC, and Chicago that have
duplicate ratios 0, 0.01, 0.36, 0.61. For each dataset, we compute the
duplicate ratio as a weighted average of the duplicate ratios of its
dependencies. For all cases, Sparcle significantly improves their
base systems.

2358

0 0.33 0.67 1

Duplication Ratio

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

(a) Precision

0 0.33 0.67 1

Duplication Ratio
R

e
c
a
ll

(b) Recall

0 0.33 0.67 1

Duplication Ratio

F
1
 S

c
o
re

(c) F1 Score

Austion-Code
(0.00)

Boston-311
(0.01)

NYC-Crash
(0.36)

Chicago
Building
(0.61)

F
1
 S

c
o
re

(d) F1 Score on Real Dataset

Sparcle(n=2) Sparcle(n=0) Holoclean Baran+Sparcle Baran SMFL

Figure 6: Impact of Duplication Ratio

Table 5: Accuracy per Attribute in Chicago-Synthetic.

police ward zipcode beat census

Prec.

Sparcle (n=2) 0.97 0.67 0.86 0.60 0.35
Sparcle (n=0) 0.95 0.47 0.79 0.49 0.25

HoloClean 0.61 0.46 0.21 0.43 0.03
Baran+Sparcle 0.95 0.54 0.90 0.76 0.33

Baran 0.46 0.40 0.44 0.60 0.23
SMFL 0.54 0.20 0.14 0.03 0.01

Rec.

Sparcle (n=2) 0.99 0.95 0.98 0.93 0.84
Sparcle (n=0) 0.99 0.90 0.97 0.89 0.77

HoloClean 0.31 0.23 0.11 0.21 0.01
Baran+Sparcle 0.50 0.44 0.46 0.39 0.26

Baran 0.13 0.06 0.07 0.01 0.00
SMFL 0.29 0.14 0.12 0.02 0.01

F1.

Sparcle (n=2) 0.98 0.78 0.92 0.73 0.49
Sparcle (n=0) 0.97 0.62 0.87 0.63 0.38

HoloClean 0.41 0.31 0.14 0.28 0.02
Baran+Sparcle 0.66 0.48 0.61 0.51 0.29

Baran 0.18 0.08 0.09 0.20 0.01
SMFL 0.38 0.15 0.12 0.02 0.01

6.3 Impact of Distinct Values on Accuracy
To better study the impact of the number of distinct values, we
use the Chicago-Synthetic dataset (20K records, 2K errors) with
five different dependencies, each with different number of distinct
values as outlined in Table 3. To visualize the challenges, Figure 7
plots the map of Chicago outlines the possible values of the five
dependency attributes, police_district, ward, zipcode, city, and cen-
sus_tract, with 23, 50, 59, 275, and 801 distinct values, respectively.
Table 5 gives the precision, recall, and F1 score for all systems on the
five dependencies. Sparcle and Baran+Sparcle clearly boost accu-
racy for HoloClean and Baran in all measures and dependencies. A
general trend is that the accuracy of all techniques degrade with the
increase of the number of distinct values, yet, Sparcle is way more
resilient to number of distinct values than its competitors. This is
to the extent that, for the census tract, the F1 score for HoloClean,
Baran and SMFL is 0.02, 0.01 and 0.01, respectively, while it is 0.49
for Sparcle (𝑛=2). This shows that Sparcle is still able to clean a
good ratio of the records, while other systems cannot really clean
any record here. The main reason is that, as plotted in Figure 7e
for census tract boundaries, with more area distinct values, there
are longer boundaries between each two values and more records
close to the boundary, which are naturally hard to clean.

Table 6: Running Time on Real Data

Austin Boston Chicago NYC

Sparcle 22m10s 2m17s 2h14m29s 3h58m10s
HoloClean 17m39s 2m08s 1h55m28s 3h06m55s
Baran+Sparcle -# 5h58m34s -# -#
Baran 1h03m50s 5m53s -∗ -#
SMFL 38m23s 0m30s -∗ -∗

* cannot finish due to memory error
cannot finish after 1 day

It is interesting to see that though zipcode dependency has slightly
more distinct values than ward dependency, but Sparcle actually
performs better for it. The main reason is that per the boundary
maps of Figures 7b and 7c, theward areas havemore complex shapes
than zipcode areas, which means that there are longer boundaries
between areas, and hence it is much harder to clean. Overall, the
shape of the boundary areas as well as the number of areas (i.e.,
distinct value) impact the accuracy of all techniques. Table 5 shows
the impact of the distance weighting concept in Sparcle, where
having 𝑛=2 makes Sparcle way more resilient to larger numbers of
distinct values. With 𝑛=0, the accuracy of Sparcle degrades much
higher with the increase of distinct values.

6.4 System Efficiency
Table 6 gives the running time of all systems. SMFL and Baran-
based systems could not finish for Chicago and NYC datasets as
they are proposed as in-memory frameworks and cannot handle
out-of-memory large datasets. Baran takes much more time than
HoloClean-based systems for Austin and Boston as it assumes de-
pendency between every pair of attributes, hence ends up in process-
ing too many dependencies, which takes significant execution time
overhead. SMFL is much faster for Boston and but much slower for
Austin, indicating its high time complexity. For all datasets, Spar-
cle encounters 17% to 29% extra overhead than HoloClean, mainly
due to the time taken to build the DistanceMatrix as a self-join of
the input data. Given that spatial operations are pretty expensive
compared to non-spatial operations, having less than 30% overhead
is highly acceptable. Baran+Sparcle takes orders of more time
than Baran since it is only a proof-of-concept with no efficiency op-
timization. On one hand, this means that adding spatial awareness
into data cleaning systems is non-trivial, requiring system imple-
mentation and careful efficiency consideration. On the other hand,
this again indicates the importance of efficiency optimizations of
Sparcle that lives inside HoloClean.

2359

(a) Police District (23) (b) Ward (50) (c) Zipcode (59) (d) Beat (275) (e) Census Tract (801)

Figure 7: Map of Dependency Attribute of Chicago-Synthetic

7 RELATEDWORK
Rule-based Data Cleaning.Motivated by a real need, there has
been huge efforts over the last two decades for automated data
cleaning [24–26]. By far, the most common of these approaches are
the rule-based data cleaning systems (e.g., [14, 19, 20, 28, 34, 44, 45]),
where it is deployed in open-source systems [3, 22, 33, 41] and
industry [27, 50, 51]. Almost all rule-based approaches share the
core idea of trying to minimize or eliminate a set of constraint
violations, where a constraint is presented as a dependency rule that
needs to be followed by any given dataset. Recent notable examples
of such approaches include the HoloClean [44] and Baran [34]
systems. HoloClean is a holistic rule-based data cleaning system
that was first relying on Markov Logic Network [44], which is
later replaced by an attention-based learning network [52] in its
open source distribution [22]. Baran [34] is a configuration-free,
human-in-the-loop data cleaning system that assumes functional
dependencies between each pair of attributes. Unfortunately, rule-
based data cleaning systems fall short in supporting spatial data
as they mainly rely on the exact co-occurrence of record values,
which would rarely happen for spatial data captured by inherently
inaccurate devices. Sparcle aims to fix this by injecting spatial
awareness into the core engine of rule-based data cleaning systems,
boosting their accuracy when dealing with spatial data.
Relaxed Functional Dependencies. Earlier data cleaning ap-
proaches have considered the use of the approximation in the func-
tional dependency rules [13, 14, 28, 43, 48, 55], along with a relaxed
form of functional dependencies [9], including matching depen-
dency [16], metric dependency [29], differential dependency [47],
and ontology dependency [5]. This was mainly proposed to tolerate
marginal syntactic difference for entities that are actually consid-
ered the same, e.g., the words “Ave.” and “Avenue” should mean
the same thing. Though one can use such relaxed dependencies
to mimic the spatial neighborhood concept in Sparcle, still such
dependencies fall short in achieving the objectives of Sparcle for
four main reasons: (a) None of such relaxed dependencies support
the Distance Weighting concept, which is a cornerstone in Sparcle
and its applications, where two records could match the depen-
dency in more stronger terms than two other records. (b) They
are applicable to applications where errors are few and occasional,
which is not the case for spatial data, where it is pretty rare to have
two records with the same coordinates, and hence to that relaxed
dependencies, all records are erroneous (c) Their goal is to catch
two entries of the same record, while in spatial data, two records
with nearby coordinates are truly two different records, and (d) They

are actually not deployed in open-source rule-based data cleaning
systems [34, 44, 52], as it is pretty challenging to do so and they are
designed to solve certain problems of interest, while Sparcle main
objective is to be injected inside the core engine of such systems.
Spatial Data Cleaning. Within the spatial computing community,
spatial data cleaning approaches mainly focus on improving the
quality of spatial attributes [30], but not on following any kind of
constraint rules. Examples include correcting erroneous GPS point
through map matching [8, 39], employing signal triangulation to
enhance the accuracy of indoor locations [31, 54], machine learning
approaches for trajectory imputation [15, 37], and data analysis
techniques to reduce the uncertainty of location data [10, 56]. None
of these approaches apply to our case as our goal is not to correct
the spatial data itself, but use the spatial information to enhance the
accuracy of data cleaning systems for other attributes. Meanwhile, a
recent approach aims to inject spatial locality awareness into matrix
factorization [17] as a means of making it suitable for spatial data
cleaning. However, matrix factorization does not support functional
dependency rules, categorical data, and error detection, as it mainly
repairs missing numerical data by imputing them based on other
records. As Sparcle lives in a rule-based data cleaning system, it
natively supports functional dependencies, categorical data, and
error detection, which distinguish it from matrix factorization.

8 CONCLUSION
This paper presented Sparcle; a novel framework built inside the
core engine of rule-based data cleaning systems to boost their accu-
racy when dealing with spatial data. Sparcle system architecture
is made similar to rule-based data cleaning systems where it in-
jects spatial awareness in every system component. Sparcle is
composed of three main components, spatial error detector, spatial
candidate generator, and spatial input formulator. It relaxes the func-
tional dependency that drives data cleaning rules from “records
with same location would have same value in a dependent attribute”
to “records with more similar locations are more likely to have same
value in a dependent attribute”, which is more suitable for spatial
attributes. Sparcle applies two main spatial concepts, spatial neigh-
borhood and distance weighting. With spatial neighborhood, records
within spatial proximity are considered similar and involved in
the dependency constraint. With distance weighting, some records
satisfy the dependency constraint more than others. Experimental
results with real and synthetic datasets and a real deployment of
Sparcle inside HoloClean data cleaning system show that Sparcle
significantly boosts the accuracy of its host data cleaning system.

2360

REFERENCES
[1] AustinCode [n.d.]. Austin Open Data. Austin Code Complaint Cases. https://

data.austintexas.gov/Public-Safety/Austin-Code-Complaint-Cases/6wtj-zbtb.
[2] AWS [n.d.]. Prepare data for machine learning - Amazon SageMaker Data

Wrangler - Amazon Web Services. https://aws.amazon.com/sagemaker/data-
wrangler/.

[3] Baran [n.d.]. Baran. https://github.com/BigDaMa/raha.
[4] BaranSparcle [n.d.]. Baran+Sparcle. https://github.com/yhuang-db/baran-

sparcle/tree/sparcle.
[5] Sridevi Baskaran, Alexander Keller, Fei Chiang, Lukasz Golab, and Jaroslaw

Szlichta. 2017. Efficient Discovery of Ontology Functional Dependencies. In
Proceedings of the International Conference on Information and Knowledge Man-
agement, CIKM (Singapore).

[6] Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi. 2005. A
Cost-Based Model and Effective Heuristic for Repairing Constraints by Value
Modification. In Proceedings of the ACM International Conference on Management
of Data, SIGMOD (Baltimore, Maryland, USA).

[7] Boston311 [n.d.]. Analyze Boston. Boston 311 Service Requests. https://data.
boston.gov/dataset/311-service-requests.

[8] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and CarolaWenk. 2005. OnMap-
Matching Vehicle Tracking Data. In Proceedings of the International Conference
on Very Large Data Bases, PVLDB (Trondheim, Norway). ACM.

[9] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2016. Relaxed
Functional Dependencies - A Survey of Approaches. IEEE Transactions on Knowl-
edge and Data Engineering, TKDE 28, 1 (2016).

[10] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. 2003. Evaluating
Probabilistic Queries over Imprecise Data. In Proceedings of the ACM International
Conference on Management of Data, SIGMOD (San Diego, California, USA).

[11] Fei Chiang and Renée J. Miller. 2011. A unified model for data and constraint
repair. In Proceedings of the International Conference on Data Engineering, ICDE
(Hannover, Germany).

[12] ChicagoBuilding [n.d.]. Chicago Data Portal. Building Permits. https://data.
cityofchicago.org/Buildings/Building-Permits/ydr8-5enu.

[13] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In Proceedings of the International Conference on Data
Engineering, ICDE (Brisbane, Australia).

[14] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Ihab F.
Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a commodity data cleaning
system. In Proceedings of the ACM International Conference on Management of
Data, SIGMOD (New York, NY, USA).

[15] Mohamed M. Elshrif, Keivin Isufaj, and Mohamed F. Mokbel. 2022. Network-
less trajectory imputation. In Proceedings of the ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL
GIS (Seattle, Washington).

[16] Wenfei Fan. 2008. Dependencies revisited for improving data quality. In Proceed-
ings of the ACM Symposium on Principles of Database Systems, PODS (Vancouver,
BC, Canada).

[17] Chenguang Fang, Yinan Mei, and Shaoxu Song. 2023. Matrix Factorization with
Landmarks for Spatial Data. In Proceedings of the International Conference on
Data Engineering, ICDE (Anaheim, CA, USA).

[18] GCP [n.d.]. Dataprep by Trifacta, Google Cloud. https://cloud.google.com/
dataprep.

[19] Congcong Ge, Yunjun Gao, Xiaoye Miao, Bin Yao, and Haobo Wang. 2022. A Hy-
brid Data Cleaning Framework Using Markov Logic Networks. IEEE Transactions
on Knowledge and Data Engineering, TKDE 34, 5 (2022), 2048–2062.

[20] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2020.
Cleaning data with Llunatic. VLDB Journal 29, 4 (2020), 867–892.

[21] Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.
Cleaning Denial Constraint Violations through Relaxation. In Proceedings of the
ACM International Conference on Management of Data, SIGMOD (Portland, OR,
USA).

[22] HoloClean [n.d.]. HoloClean. http://www.holoclean.io/.
[23] IBM [n.d.]. Data Quality Tools and Solutions, IBM. https://www.ibm.com/data-

quality.
[24] Ihab F. Ilyas and Xu Chu. 2015. Trends in Cleaning Relational Data: Consistency

and Deduplication. Found. Trends Databases 5, 4 (2015), 281–393.
[25] Ihab F. Ilyas and Xu Chu. 2019. Data Cleaning. ACM.
[26] Ihab F. Ilyas and Felix Naumann. 2022. Data Errors: Symptoms, Causes and

Origins. IEEE Data Engineering Bulletin 45, 1 (2022), 4–9.
[27] Inductiv [n.d.]. Inductiv. https://cs.uwaterloo.ca/news/waterloo-based-ai-start-

up-inductiv-acquired-apple.
[28] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani,

Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. 2015. BigDans-
ing: A System for Big Data Cleansing. In Proceedings of the ACM International
Conference on Management of Data, SIGMOD (Melbourne, Australia).

[29] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubrama-
nian. 2009. Metric Functional Dependencies. In Proceedings of the International

Conference on Data Engineering, ICDE (Shanghai, China).
[30] Huan Li, Hua Lu, Christian S. Jensen, Bo Tang, and Muhammad Aamir Cheema.

2023. Spatial Data Quality in the Internet of Things: Management, Exploitation,
and Prospects. ACM Comput. Surv. 55, 3 (2023), 57:1–57:41.

[31] Xiao Li, Huan Li, Harry Kai-Ho Chan, Hua Lu, and Christian S. Jensen. 2023.
Data Imputation for Sparse Radio Maps in Indoor Positioning. In Proceedings of
the International Conference on Data Engineering, ICDE (Anaheim, CA, USA).

[32] Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. 2020. Computing Optimal
Repairs for Functional Dependencies. ACM Transactions on Database Systems,
TODS 45, 1 (2020), 4:1–4:46.

[33] Llunatic [n.d.]. Llunatic. https://github.com/donatellosantoro/Llunatic.
[34] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error Cor-

rection via a Unified Context Representation and Transfer Learning. Proceedings
of the International Conference on Very Large Data Bases, PVLDB 13, 11 (2020),
1948–1961.

[35] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Mad-
den, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A
Configuration-Free Error Detection System. In Proceedings of the ACM Interna-
tional Conference on Management of Data, SIGMOD (Amsterdam, The Nether-
lands). ACM.

[36] MS [n.d.]. Data Cleansing - Data Quality Services (DQS) in Microsoft SQL
Server. https://learn.microsoft.com/en-us/sql/data-quality-services/data-
cleansing?view=sql-server-ver16.

[37] Mashaal Musleh and Mohamed F. Mokbel. 2023. A Demonstration of KAMEL:
A Scalable BERT-based System for Trajectory Imputation. In Proceedings of the
ACM International Conference on Management of Data, SIGMOD (Seattle, WA,
USA).

[38] NaiveBayes [n.d.]. NaiveBayes. https://en.wikipedia.org/wiki/Naive_Bayes_
classifier.

[39] Paul Newson and John Krumm. 2009. Hidden Markov map matching through
noise and sparseness. In Proceedings of the ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS
(Seattle, Washington, USA).

[40] NYCOpenData [n.d.]. NYC Open Data. Motor Vehicle Collisions -
Crashes. https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-
Crashes/h9gi-nx95.

[41] openclean [n.d.]. openclean. https://github.com/VIDA-NYU/openclean.
[42] PostGIS [n.d.]. PostGIS. https://postgis.net/.
[43] Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J. Miller, and Divesh

Srivastava. 2015. Combining Quantitative and Logical Data Cleaning. Proceedings
of the International Conference on Very Large Data Bases, PVLDB 9, 4 (2015), 300–
311.

[44] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. Proceedings of the
International Conference on Very Large Data Bases, PVLDB 10, 11 (2017), 1190–
1201.

[45] El Kindi Rezig, Mourad Ouzzani, Walid G. Aref, Ahmed K. Elmagarmid, Ahmed R.
Mahmood, and Michael Stonebraker. 2021. Horizon: Scalable Dependency-driven
Data Cleaning. Proceedings of the International Conference on Very Large Data
Bases, PVLDB 14, 11 (2021), 2546–2554.

[46] Matthew Richardson and Pedro M. Domingos. 2006. Markov logic networks.
Mach. Learn. 62, 1-2 (2006).

[47] Shaoxu Song and Lei Chen. 2011. Differential dependencies: Reasoning and
discovery. ACM Transactions on Database Systems, TODS 36, 3 (2011), 16:1–
16:41.

[48] Shaoxu Song, Aoqian Zhang, Lei Chen, and Jianmin Wang. 2015. Enriching Data
Imputation with Extensive Similarity Neighbors. Proceedings of the International
Conference on Very Large Data Bases, PVLDB 8, 11 (2015), 1286–1297.

[49] Sparcle [n.d.]. Sparcle. https://github.com/yhuang-db/holoclean-sparcle/tree/
latest-aimnet-310-sparcle.

[50] Tamr [n.d.]. Tamr. https://www.tamr.com/.
[51] Trifacta [n.d.]. Trifacta. https://www.trifacta.com/.
[52] Richard Wu, Aoqian Zhang, Ihab F. Ilyas, and Theodoros Rekatsinas. 2020.

Attention-based Learning for Missing Data Imputation in HoloClean. In Proceed-
ings of Machine Learning and Systems, MLSys (Austin, TX, USA).

[53] Mohamed Yakout, Laure Berti-Équille, and Ahmed K. Elmagarmid. 2013. Don’t
be SCAREd: use SCalable Automatic REpairing with maximal likelihood and
bounded changes. In Proceedings of the ACM International Conference on Man-
agement of Data, SIGMOD (New York, NY, USA).

[54] Faheem Zafari, Athanasios Gkelias, and Kin K. Leung. 2019. A Survey of Indoor
Localization Systems and Technologies. IEEE Commun. Surv. Tutorials 21, 3
(2019), 2568–2599.

[55] Zheng Zheng, Longtao Zheng, Morteza Alipour Langouri, Fei Chiang, Lukasz
Golab, Jaroslaw Szlichta, and Sridevi Baskaran. 2022. Contextual Data Cleaning
with Ontology Functional Dependencies. ACM J. Data Inf. Qual. 14, 3 (2022),
20:1–20:26.

2361

https://data.austintexas.gov/Public-Safety/Austin-Code-Complaint-Cases/6wtj-zbtb
https://data.austintexas.gov/Public-Safety/Austin-Code-Complaint-Cases/6wtj-zbtb
https://aws.amazon.com/sagemaker/data-wrangler/
https://aws.amazon.com/sagemaker/data-wrangler/
https://github.com/BigDaMa/raha
https://github.com/yhuang-db/baran-sparcle/tree/sparcle
https://github.com/yhuang-db/baran-sparcle/tree/sparcle
https://data.boston.gov/dataset/311-service-requests
https://data.boston.gov/dataset/311-service-requests
https://data.cityofchicago.org/Buildings/Building-Permits/ydr8-5enu
https://data.cityofchicago.org/Buildings/Building-Permits/ydr8-5enu
https://cloud.google.com/dataprep
https://cloud.google.com/dataprep
http://www.holoclean.io/
https://www.ibm.com/data-quality
https://www.ibm.com/data-quality
https://cs.uwaterloo.ca/news/waterloo-based-ai-start-up-inductiv-acquired-apple
https://cs.uwaterloo.ca/news/waterloo-based-ai-start-up-inductiv-acquired-apple
https://github.com/donatellosantoro/Llunatic
https://learn.microsoft.com/en-us/sql/data-quality-services/data-cleansing?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/data-quality-services/data-cleansing?view=sql-server-ver16
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95
https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95
https://github.com/VIDA-NYU/openclean
https://postgis.net/
https://github.com/yhuang-db/holoclean-sparcle/tree/latest-aimnet-310-sparcle
https://github.com/yhuang-db/holoclean-sparcle/tree/latest-aimnet-310-sparcle
https://www.tamr.com/
https://www.trifacta.com/

[56] Andreas Züfle, Goce Trajcevski, Dieter Pfoser, Matthias Renz, Matthew T. Rice,
Timothy Leslie, Paul L. Delamater, and Tobias Emrich. 2017. Handling Uncer-
tainty in Geo-Spatial Data. In Proceedings of the International Conference on Data

Engineering, ICDE (San Diego, CA, USA).

2362

	Abstract
	1 Introduction
	2 Architecture
	3 Spatial Error Detector
	3.1 Spatial Denial Constraints
	3.2 Building Data Infrastructure
	3.3 Detecting Spatial Constraint Violation

	4 Spatial Candidate Generator
	4.1 Phase 1: Initial Candidate Generation
	4.2 Phase 2: Candidate Probabilities Estimation
	4.3 Phase 3: Candidate Labeling and Cutoffs

	5 Spatial Input Formulator
	5.1 Violation-based Feature Vectors
	5.2 Probability-based Feature Vectors
	5.3 Factor Graph

	6 Experimental Results
	6.1 Sparcle Parameter Tuning
	6.2 System Overall Accuracy
	6.3 Impact of Distinct Values on Accuracy
	6.4 System Efficiency

	7 Related Work
	8 Conclusion
	References

