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ABSTRACT

Graph representation learning is an emerging task for effectively

embedding graph-structured data with learned features. Among

them, Subgraph-based GRL (SGRL) methods have demonstrated

better scalability and expressiveness for large-scale tasks. The core

challenge of applying SGRL to dynamic graphs lies in accommodat-

ing the extraction of subgraphs to evolving data with efficient com-

putation. To address the efficiency bottleneck, we propose GENTI,

a GPU-oriented SGRL algorithm for dynamic graphs. Our approach

mainly improves the critical subgraph extraction stage by disentan-

gling it into two phases, namely neighbor sampling and subgraph

gathering, which are respectively performed on CPU and GPU in an

asynchronous fashion. The design favorably eliminates the depen-

dence of feature learning on subgraph extraction, and is capable of

exploiting the GPU’s batch processing ability to remarkably boost

computations throughout the pipeline. Dedicated data structures

are designed for efficiently managing the dynamic graph storage

and conforming efficient subgraph operations. Extensive empirical

results on various real-world dynamic graphs show that GENTI

achieves up to 30× faster in subgraph extraction time than the

state-of-the-art walk-based methods and up to 26× acceleration

in overall learning time, while maintaining comparable prediction

performance. In particular, it is able to complete learning on the

largest available graph of 1.3 billion edges within 24 hours, while

all other baselines exhibit prohibitive overhead.
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1 INTRODUCTION

Graph representation learning (GRL) has recently garnered sub-

stantial attention for effectively understanding graph-structured

data in modeling entities and their relationships, especially for
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complicated and large-scale graphs in real-world applications, such

as recommender systems [31, 57], anomaly detection [2, 4] and

network modeling [3, 45]. GRL aims to utilize neural networks

to retrieve information from the graph structure and map it into

low-dimensional representations, which is then used to generate

predictions for downstream tasks such as node classification and

link prediction [14].

To obtain structural representations, i.e., features from the graph,

conventional studies for GRL can be broadly categorized into two

types [5, 20]. Approaches based on graph neural networks (GNNs)
generate representations by normal GNN iterations of propagating

and updating neighboring messages [13, 21, 47], which suffer from

the loss of relative intra-node knowledge and limited expressiveness

[7, 10]. Alternatively, subgraph-based GRL (SGRL) methods embed

features from a specified area around nodes of interest, namely

subgraphs. Applying neural network models to the substructure

instead of the whole graph favorably captures the underlying struc-

tural information [50, 56, 58]. Previous studies show that compared

to GNNs, SGRL preserves expressiveness and offers better scal-

ability for GRL tasks emphasizing graph structure, such as link

prediction [24, 41, 51]. From the perspective of SGRL system, its

learning process exhibits a joint utilization of CPU and GPU devices

as shown in Fig. 1. Typically, CPU is utilized to compute the sub-

graph extraction and feature generation. Afterwards, the feature

data is learned by a neural network on the GPU in batches.

However, most existing GRL approaches are tailored for static

graphs and overlook the dynamic perspective. In realistic scenarios

such as financial transactions and recommender systems [31, 46],

graphs are actively evolving with frequent updates such as the

establishment of new connections. With the aim of transferring

to dynamic graphs, recent SGRL models [18, 45] propose to utilize

temporal variants of subgraph processing techniques and achieve

promising accuracy in the link prediction task.

Challenges of Dynamic SGRL. Despite their prominent algo-

rithmic solutions, the dynamic SGRL scheme calls for dedicated

system designs with unique challenges: the subgraph data in ex-

traction requires streaming updates under the evolving graph

structure, entailing a significant computation and communication

cost [46, 55]. As subgraph extraction is prerequisite for feature

learning, it becomes the workload bottleneck between CPU and

GPU devices. Correspondingly, graph data structure needs to be

specifically redesigned for enhanced efficiency when undergoing

dynamic amendments and subgraph sampling operations. These

system-level issues pose practical difficulties when applying the

advanced algorithms to real-world scenarios, especially when com-

putational resources are limited.
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Figure 1: Experimental comparison on execution time of

our GENTI pipeline against SGRL methods CAW [45] and

NeurTWs [18]. Each stage is either on the CPU or GPU device.

GENTI divides the subgraph extraction bottleneck into asyn-

chronous CPU neighbor sampling and GPU subgraph gather-

ing to facilitate balanced and concurrent workloads. Graph

update procedures are not shown in CAW and NeurTWs as

they are preprocessed in an extra stage.

Figure 1 illustrates the time consumption of the three-stage

pipeline of representative dynamic SGRL methods CAW [45] and

NeurTWs [18] in our experiment. It can be observed that subgraph

extraction and feature generation executed on CPU constitute the

majority of GRL overhead, and further delays GPU computation.

The sequential execution also results in low CPU and GPU device

utilization. Additionally, in our evaluation, both current methods

are prohibitive on the largest available dynamic graph MAG with

1.3 billion edges, demanding prolonged learning time over months.

Our Contribution. In this paper, we propose GENTI, a GPU-

efficiENt SGRL on continuous-TIme dynamic graphs. GENTI high-

lights the adaptation of GPU to better balance the workload and

improve efficiency. We primarily focus on the subgraph extraction

procedure in light of its pivotal role in affecting both the SGRL

pipeline’s efficacy and efficiency. To this end, algorithms, data struc-

tures, and operations related to this stage are thoroughly refined

for GPU processing and dynamic updates on billion-edge graphs.

To harness GPU acceleration and address imbalanced device

workload, we devise a novel subgraph extraction scheme by dis-

secting it into two phases respectively for neighbor sampling and

subgraph gathering. The first phase samples neighborhoods from

the graph structure by CPU and loads the data onto GPU. Then,

subgraph gathering by performing random walks is completely

conducted on GPU thanks to its parallelism. A memory-efficient

pool is innovatively crafted to cache the sampled subgraph on GPU

and support gathering in batches. As shown in Figure 1, our over-

all subgraph extraction scheme ensures that it is asynchronous to

feature processing, effectively distributing the workload between

the two devices and preventing the pipeline from being blocked by

the CPU computation bottleneck. Moreover, we perform dedicated

enhancements on the data structure for graph storage in considera-

tion of the dynamic SGRL pipeline, powering it with capabilities

including 𝑂 (1) updating and search-free sampling.

To summarize, we have made the following contributions:

• Algorithm:We propose GENTI as a scalable SGRL algorithm

on dynamic graphs with GPU-oriented designs. We decouple the

resource-intensive subgraph extraction stage to be separately

conducted on CPUs and GPUs, which enables full GPU utilization

and offers improved efficiency.

• System:We design the data structure for maintaining subgraphs

on GPU with improved memory complexity and fast batch pro-

cessing ability. We also enhance the graph storage to render it

applicable for scalable and dynamic updating and sampling.

• Experiment:We conduct comprehensive experiments to eval-

uate the efficiency and effectiveness of GENTI on 7 real-world

dynamic graphs with up to millions/billions of nodes/edges. Con-

cerning the comprehensive pipeline and specifically the subgraph

extraction stage, our approach respectively achieves up to 30×
and 26× speedups in running time when compared to state-of-

the-art SGRL algorithms.

2 RELATEDWORKS

2.1 Subgraph-based GRL

GRLmethods based on subgraphs have been extensively applied to a

variety of tasks on graph-structured data [15, 22, 29, 32, 33, 57, 61].

The intuition of SGRL is to extract and learn from a subgraph

around queried nodes to emphasize local structural information

and enhance model expressiveness. As depicted in Fig. 2, common

SGRL methods adopt a pipeline of extracting subgraphs for each

queried node, generating features from subgraph structure, and

lastly learning predictions for the given task [26, 30, 50, 51, 56, 58].

Being the core of SGRL, subgraph extraction has been accentu-

ated through the design of samplers, which can be further divided

into two categories. Walk-based samplers [9, 37, 49, 56, 58] gen-
erate a certain number of random walks starting from each seed

node and encode such structural information as features. In com-

parison, metric-based samplers [2, 22, 27, 28, 43, 50] rely on graph

metrics such as personalized PageRank (PPR) [17] for assessing

the proximity between given nodes. Previous evidence shows that

the latter nonetheless struggle to capture intricate subgraph mo-

tifs and achieve relatively suboptimal performance in downstream

tasks [50]. Therefore, our SGRL algorithm focuses on utilizing and

improving the walk-based sampler for subgraph extraction.

2.2 GRL on Dynamic Graphs

In order to learn from graphs with dynamic updates, GRL methods

are equipped with techniques for obtaining and handling features

for both temporal and topology information [19]. GNN-based ap-

proaches [52, 59, 60] commonly exploit Recurrent Neural Networks

(RNNs) structures [8, 36] to deal with the sequential data. How-

ever, these methods necessitate accessing the entire graph data

stored in RAM to update structural features, resulting in frequent

synchronization delays during the GPU training pipeline.

Subgraph-based designs [25, 34] introduce specific metrics to

sample representative subgraphs and embed temporal information.

In particular, SGRLs featuring walk-based samplers represented by

CAW [45] and NeurTWs [18] have the merit to extend random

walks into the temporal dimension and efficiently retrieve graph

dynamics. Intuitively, most recent updates of the graph have greater

impact on the prediction result. Hence, they tend to extract and

model only the relevant nodes closest to the current timestamp,

greatly reducing the overhead in both structural and temporal
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Figure 2: Framework overview of GENTI and standard SGRLmethods. Conventionally, the three-stage SGRL pipeline, including

subgraph extraction, feature generation, and feature learning, is conducted in a sequential manner. GENTI divides the critical

subgraph extraction stage into asynchronous neighbor sampling and subgraph gathering, which enables the representation

learning stages to commence in batches on GPU without blockage. The overlap of neighbor sampling and subgraph gathering

stages indicates that they can be performed simultaneously in actual execution. Moreover, GENTI introduces a bucketing

scheme to enhance dynamic graph storage by supporting efficient update and sampling.

domains. These dynamic solutions entail an extra round of graph

update computation for the whole time range, which significantly

impedes their deployment with streaming updates.

3 PRELIMINARIES

3.1 Dynamic Graphs

At a specific timestamp, a dynamic graph is denoted as G = (V, E),
whereV and E are node and directed edge sets with sizes 𝑛 = |V|
and𝑚 = |E |, respectively. Dynamic graphs can be classified into

two categories, namely Continuous-Time Dynamic Graphs (CTDGs)
and Discrete-Time Dynamic Graphs (DTDGs), depending on their

representation with regard to time intervals [19]. We mainly fo-

cus on CTDGs as they are more expressive in depicting temporal

information and are commonly used in SGRL tasks [11, 19].

For dynamic graphs, the graph components of nodes and edges

are changing overtime, which are knows as events. A CTDG can

be constructed by a series of edge additions and deletions events.

The graph G can thus be represented by an event sequence S =

{(𝑢, 𝑣, 𝑡, 𝑜𝑝)}. Each event implies that the edge from node 𝑢 to

𝑣 experiences the operation denoted by 𝑜𝑝 at timestamp 𝑡 . The

operation 𝑜𝑝 can either be insertion or deletion of the edge (𝑢, 𝑣).

3.2 Temporal Walk-based Sampling

Walk-based SGRL employs the random walk procedure to sample

connected nodes and construct the subgraph. The temporal random

walk serves as an extension tailored for dynamic graphs, facilitating

learning from the temporal dimension. A temporal random walk

at time 𝑡 is a traversal of G that initiates from the source node

𝑢 ∈ V and, at each step, advances to a randomly selected out-

neighbor of the current node. Generating the subgraph for a node

of interest usually requires 𝑘 independent temporal random walks.

At each step of these walks, the destination nodes are selected by

the Weighted Neighbor Sampling (WNS) technique [18, 45]. At

time 𝑡 , the weighted neighbor set of node 𝑢 is defined as N𝑢 =

{(𝑣, 𝜏,𝑤) | (𝑢, 𝑣) ∈ E, 𝜏 < 𝑡}. Each node 𝑣 is an out-neighbor of 𝑢

indicated by a specific 𝜏 < 𝑡 . In other words, the edge (𝑢, 𝑣) is added
to the graph at time 𝜏 and maintained at time 𝑡 . The associated

sampling weight is determined by 𝑤 = exp(𝜏/𝛼), where 𝛼 > 0 is

a hyper-parameter controlling the effect of temporal significance.

The current degree of node 𝑢 is denoted as 𝑑𝑢 = |N𝑢 |.
Different from previous GRL methods that directly implement

WNS by performing sampling from the entire neighborhood, we

adopt an equivalence between WNS and the technique for dynamic

weighted set sampling (DWSS) [12, 35, 38, 54]. The DWSS problem

aims to perform 𝑘 independent sampling with replacement from a

dynamic set of elements based on corresponding weights. Corre-

sponding to our context, it is equivalent to the WNS problem from

the node neighborhood N𝑢 .
Zhang et al. [54] propose a bucketing scheme [12, 35] for ef-

ficiently solving the DWSS problem. Candidate elements are al-

located into 𝑟 buckets in total based on their weights, where the

𝑏-th bucket is I𝑢,𝑏 = {(𝑣, 𝜏,𝑤) | (𝑣, 𝜏,𝑤) ∈ N𝑢 , exp(𝑏) ≤ 𝑤 <

exp(𝑏 + 1)}, and the bucket index 0 ≤ 𝑏 ≤ 𝑟 . Fetching an element

from the buckets follows a rejection sampling scheme FETCH: when
assessing an element 𝑣 from bucket I𝑢,𝑏 , the sampler either accepts

it with a probability of𝑤/exp(𝑏 + 1), or rejects it and repeats the

process until an element is accepted. [54] proves that the total com-

plexity for sampling 𝑘 elements can be bounded by 𝑂 (log𝑑𝑢 + 𝑘).

4 THE FRAMEWORK OF GENTI

In this section, we introduce GENTI by highlighting the GPU-

oriented and streaming update aspects of our method. First, we

present the overall framework of GENTI in Section 4.1 by introduc-

ing the relationship between different phases and data structures.

Then, we describe the designs related to graph storage, decoupled

sampling, and subgraph gathering in the following sections.
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4.1 GPU-powered Learning Pipeline

Figure 2 displays the overview of GENTI compared to typical walk-

based SGRL methods [18, 45]. Among the three consecutive stages

of the SGRL pipeline, i.e., subgraph extraction, feature generation,

and feature learning, the last one usually occurs on GPU devices, en-

joying efficient batch processing. In contrast, the former two stages

must be sequentially computed by the CPU. During subgraph ex-

traction, canonical SGRL performs random walk sampling directly

from the stored graph structure. The frequent graph access results

in a relatively high cache miss ratio. This stage hence becomes the

efficiency bottleneck in the SGRL deployment as shown in Figure 1,

even though its theoretical time complexity appears to be low.

To mitigate the imbalanced workload, we intend to exploit paral-

lel computation and propose disentangling the subgraph extraction

into two independent phases, one for sampling and the other for

gathering. By introducing new data structures and addressing their

dependency, the two stages can be executed in parallel on CPU and

GPU, respectively. In this way, we successfully transfer all subse-

quent stages onto the GPU for batch processing. Our GPU-efficient

pipeline of GENTI is shown in Algorithm 1. The tensor 𝑃 maintains

the candidate pool for subgraph extraction, with each row 𝑃 [𝑢] rep-
resenting the sampled neighbors of node 𝑢. For each timestamp, we

construct both the source and destination nodes of current queries

as a single batch U𝑡 and perform the batch subgraph gathering
algorithm BSGather to construct the collection of subgraphs 𝑅

for all queried nodes based on current pool 𝑃 . The usage of 𝑃 is

recorded in requests A, and the pool is updated on demand by

calling neighbor sampling algorithm Sample in a separate thread.

Simultaneously, the graph storage is updated according to tempo-

ral events, and the prediction of the query batch is composed by

learning from the generated features.

Among the operations, the Sample and Update are processed

by CPU, while all other stages are conducted by GPU utilizing the

power of batch computation. It is noteworthy that the two major

data structures, i.e., the graph storage on RAM and the sampled

neighbor pool on GPU, are updated asynchronously. Therefore, the

subgraph learning on GPU is ensured to receive the up-to-date

data to accommodate the dynamic graph changes. Meanwhile, the

workload is considerably balanced to prevent cross-device blockage.

Algorithm 1: GENTI

Input: Graph G(V, E, 𝑋 ), queries {(𝑢, 𝑣, 𝜏)}
Output: Predictions 𝑌̂

1 for each 𝑢 ∈ V do 𝑃 [𝑢] ← Sample(𝑢, 𝜅)
2 for each timestamp 𝑡 do
3 U𝑡 ← {𝑢, 𝑣 | 𝜏 = 𝑡}
4 AppendU𝑡 with negative queries if required

5 𝑅,A ← BSGather(𝑃, U𝑡 )

6 for each (𝑢, 𝑘𝑢 ) ∈ A do in separate thread
7 𝑃 [𝑢] ← Sample(𝑢, 𝑘𝑢 )
8 end

9 G ← Update(U𝑡 )
10 𝑌̂ ← PREDICT(𝑅,𝑋 )
11 end

12 return 𝑌̂
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Figure 3: (a) Bucket-based graph storage I𝑢 for maintaining
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are maintained to track the top and bottom indices of the

current sliding window, ensuring that only buckets inside it

are active, and stale ones are removed. (b) Sampling is per-

formed by successively fetching nodes from corresponding

buckets to construct the sampled neighborhood.

4.2 Bucket-based Dynamic Graph Storage

Conventional SGRL stores graph on RAM by sparse matrix struc-

tures such as the compressed sparse row (CSR) format [50, 60].

We however note that it is not optimized for performing walk-

based sampling, as walking on the graph requires iteratively ac-

cessing neighboring nodes. This process renders a time complexity

of 𝑂 (𝑘ℓ𝑑𝑚𝑎𝑥 ) when generating 𝑘-many ℓ-length random walks

for each source node, where 𝑑𝑚𝑎𝑥 is the maximum degree of vis-

ited nodes [42]. In addition, live update on the graph structure is

also of prohibitive overhead due to the continuous layout. As a

consequence, dynamic SGRLs [18, 45] have to preprocess all the

timestamps and maintain the entire temporal information, which

inevitably causes computation and memory redundancy.

We mainly look into two abilities of the dynamic storage scheme:

(1) efficient sampling for the neighborhood of given nodes; (2) online

update of edge addition and deletion. Inspired by the DWSS process

introduced in Section 3.2, we employ the bucketing scheme as our

graph storage on RAM. As illustrated in Figure 3, we store out-

neighbors of each node 𝑢 by a linked list of non-empty buckets

I𝑢,𝑏 . Inside each bucket, we also maintain a lookup table for fast

accessing the individual element. The index 𝑏 of a bucket indicates

its time interval and determines the temporal sampling weight

𝑤𝑢,𝑏 =
∑︁
(𝑣,𝜏,𝑤 ) ∈I𝑢,𝑏 𝑤 . The total weight of all buckets with respect

to node 𝑢 is 𝑤𝑢 =
∑︁
𝑏 𝑤𝑢,𝑏 . Each traversal of the linked list starts

from the most recent non-empty bucket with the largest index

𝑟 . Denote the hyperparameter representing duration length of a

bucket as 𝛼 and the current timestamp as 𝑡 , there is 𝑟 = ⌊𝑡/𝛼⌋.
Bucket number 𝜆. An inherent merit of the bucketing storage

is that, it is naturally sorted in temporal order, and only a certain

number of buckets representing most recent updates are frequently

accessed for sampling at the current timestamp. According to [54],

the desired samples are likely to exist with high probability in

buckets with index range 𝑟 − 2⌈ln𝑑𝑢⌉ ≤ 𝑏 ≤ 𝑟 . Therefore, we can

apply a sliding window scheme that only maintains 𝜆 = 2⌈ln𝑑𝑢⌉
buckets in this time frame and progressively drops those stale ones.

As a result, the memory usage in RAM remains 𝑂 (𝑚 + 𝜆), as each
edge is added only once and is deleted permanently upon expiration.
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Sampling. As elaborated in Section 3.2, we innovatively uti-

lize DWSS to implement the walk-based sampling. Instead of con-

ducting 𝑘 independent sampling, our storage scheme is capable of

acquiring 𝑘 samples at once as shown in Algorithm 2. To achieve

this, we generate 𝑘 random numbers uniformly within the overall

weight range 𝑧 ∼ 𝑈 (0,𝑤𝑢 ). The amount of samples drawn from

each bucket is decided by the amount of numbers 𝑧 falling in the

corresponding bucket-wise weight range. Therefore, we are able

to sample all 𝑘 neighbors of the given node in a single traverse of

buckets through the maintained pointers. As the number of buckets

is 𝜆 = 2⌈ln𝑑𝑢⌉, the total time complexity of Sample is𝑂 (log𝑑𝑢 +𝑘).
Figure 3 illustrates a running example for the sampling request

A = (𝑢, 4) enquiring 𝑘 = 4 neighbors of source node 𝑢. At the

current timestamp, the index range of active buckets is 1 ≤ 𝑏 ≤ 𝑟 .

The time range and weight range of each bucket can be directly

derived from its index, and 𝑘 = 4 random numbers are generated

accordingly. Among them, both 𝑧1 and 𝑧2 are within the weight

Algorithm 2: Sample

Input: Storage I, source node 𝑢, number of samples 𝑘

Output: Updated neighbor pool 𝑃 [𝑢]
1 Z ← {𝑧1, · · · , 𝑧𝑘 | 𝑧 𝑗 ∼ 𝑈 (0,𝑤𝑢 ), 1 ≤ 𝑗 ≤ 𝑘}
2 𝑏 ← 𝑟 ,𝑤𝑠𝑢𝑚 ← 𝑤𝑢

3 whileZ ≠ ∅ do
4 𝑤𝑠𝑢𝑚 ← 𝑤𝑠𝑢𝑚 −𝑤𝑢,𝑏

5 Z𝑏 ← {𝑧 ∈ Z | 𝑧 ≥ 𝑤𝑠𝑢𝑚},Z ← Z \Z𝑏

6 for 𝑖 from 1 to |Z𝑏 | do
7 𝑣 ← FETCH(I𝑏 )
8 𝑐𝑢,𝑡𝑎𝑖𝑙 ← (𝑐𝑢,𝑡𝑎𝑖𝑙 + 1) mod 𝜅

9 𝑃 [𝑢, 𝑐𝑢,𝑡𝑎𝑖𝑙 ] ← 𝑣

10 end

11 𝑏 ← I𝑢,𝑏 .𝑛𝑒𝑥𝑡
12 end

13 return 𝑃

Algorithm 3: Update

Input: Storage I, update events S = {(𝑢, 𝑣, 𝑡, 𝑜𝑝)}
Output: Up-to-date storage I

1 for each (𝑢, 𝑣, 𝑡, 𝑜𝑝) ∈ S do

2 𝑏 ← ⌊𝑡/𝛼⌋
3 if 𝑜𝑝 = ‘insert’ then
4 if I𝑢,𝑏 = ∅ then insert I𝑢,𝑏
5 I𝑢,𝑏 ← I𝑢,𝑏 ∪ {𝑣}
6 𝑤 ← exp(𝑡/𝛼),𝑤𝑢,𝑏 ← 𝑤𝑢,𝑏 +𝑤
7 end

8 if 𝑜𝑝 = ‘delete’ then
9 I𝑢,𝑏 ← I𝑢,𝑏 \ {𝑣}

10 if I𝑢,𝑏 = ∅ then remove I𝑢,𝑏
11 𝑤𝑢,𝑏 ← 𝑤𝑢,𝑏 − exp(𝑡/𝛼)
12 end

13 remove I𝑢,𝑏′ for 𝑏′ < 𝑟 − 2⌈ln𝑑𝑢⌉
14 end

15 return I
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Figure 4: Example of one step of BSGather by computing

indices and accessing the sampled neighbor pool. All opera-

tions are implemented on the GPU via batch processing.

range of I𝑢,𝑟 , while 𝑧3 and 𝑧4 correspond to I𝑢,𝑟−1 and I𝑢,1, re-
spectively. We perform 2, 1, 1 times of retrieval FETCH from these

buckets by successively accessing them in the linked list. Eventually,

four neighbors are sampled and loaded into the pool 𝑃 [𝑢].
Update. The dynamic Update operation can be found in Algo-

rithm 3. Thanks to the temporal order of our bucket storage, the

target bucket corresponding to incoming and stale edges can be

immediately indexed based on the timestamp. The lookup table

then locates and manages the specific neighbor within the bucket

to perform neighbor addition or deletion. At the end, stale buckets

are removed since they are rarely accessed in the future. This is

implemented by accessing the bucket with the lowest index in the

linked list and setting its pointer to nil, marking its data as deleted.

Overall, this scheme completes a single update event in 𝑂 (1) time.

4.3 Sampled Neighbor Pool

The sampled neighbor pool is a novel data structure we design to

expedite the subgraph extraction, which serves as an intermediate

storage for the sampled neighbors on GPU and supports asyn-

chronous gathering and updating. The pool is denoted as tensor

𝑃 ∈ R𝑛×𝜅 , where 𝜅 is the width of the pool. Each row of the tensor

𝑃 [𝑢] represents a queue containing out-neighbors with respect

to source node 𝑢. Two indices 𝑐𝑢,ℎ𝑒𝑎𝑑 , 𝑐𝑢,𝑡𝑎𝑖𝑙 maintain the current

access points of BSGather and Sample processes, respectively.

During subgraph extraction, the separate thread Sample loads

the sampling results onto GPU and append them to the end of

the queue in a streaming fashion. In contrast, the GPU process

BSGather consumes neighbors stored in 𝑃 to construct subgraphs.

Pool elements positioned between the two pointers 𝑐𝑢,ℎ𝑒𝑎𝑑 , 𝑐𝑢,𝑡𝑎𝑖𝑙
are available for the following subgraph construction since they

are freshly sampled and have not been accessed by previous gather-

ing. The disentangled read and write operations towards the pool

prevent BSGather from waiting for neighbor sampling to provide

the updated data and thereby enjoys better throughput.

Pool width 𝜅. The width 𝜅 of queues in the pool has the follow-

ing requirements: (1) it should be as small as possible to save GPU

memory usage; (2) it should be large enough to accommodate the

neighbor consumption by BSGather for applicable cases. As de-

scribed in Section 4.4, the gathering procedure carries out 𝑘-many

ℓ-length random walks for each query node. A naive selection is

thence 𝜅 = 𝑘ℓ , resulting in a memory expense of 𝑂 (𝑛𝑘ℓ) as in
[50, 51] for the entire static graph.
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By referring to the cache strategy in the two-pass streaming ran-

dom walk [6], we are able to reduce the overhead with a tightened

bound for 𝜅. We distinguish the storage schemes into two types

based on the consumption status of pool elements. Heavy nodes

are source nodes being likely to visit more than 𝜅 neighbors. Hence

we directly access all the neighbors with size 𝑑𝑢 of these nodes

during walks. On the contrary, candidate neighbors for light nodes
are handled by the pool since they will not exhaust the 𝜅-length

queue during gathering. [6] derive the following lemma:

Lemma 1 ([6]). Under the boundary 𝜅 ∼ 𝑂 (
√
ℓ), the sum of out-

going degrees of all heavy nodes 𝑢 is bounded by
∑︁
𝑢 𝑑𝑢 ≤ 𝑂 (𝑛

√
ℓ).

In our implementation, we set 𝜅 = 𝑘
√
ℓ as the pool width. Con-

sequently, the total GPU memory usage for all nodes in the graph,

including both heavy and light ones, has a complexity of 𝑂 (𝑛𝑘
√
ℓ).

4.4 Batch Subgraph Gathering

In this section, we highlight the GPU-efficient batch subgraph gath-

ering BSGather as illustrated in Algorithm 4. It returns a shape

|U𝑡 | × 𝑘 × ℓ tensor 𝑅 containing subgraphs formed by 𝑘-many ℓ-

length random walks with respect to |U𝑡 | query nodes. The tensor

𝑅 can be directly used by the subsequent feature generation and

learning pipeline, thereby boosts the GPU batch processing.

According to the selective caching strategy adapted in Section 4.3,

in each walk step, we split the current nodes into heavy and light

multisetsUℎ𝑒𝑎𝑣𝑦 andU𝑙𝑖𝑔ℎ𝑡 by comparing the pointers 𝑐𝑢,ℎ𝑒𝑎𝑑 and

𝑐𝑢,𝑡𝑎𝑖𝑙 . Different from [6] requiring an individual round of walk to

identify heavy nodes, our splitting scheme of the multiset can be

instantly completed in 𝑂 (1) time. We then perform discriminative

sampling for these nodes as one step of walk. For heavy source

nodes, we gather all their neighbors directly from the graph struc-

tureI𝑢 . For light nodes, the sampled neighbor pool can be employed

to provide 𝑘𝑢,𝑖 number of active neighboring nodes based on the

multiplicity 𝑘𝑢,𝑖 , i.e., occurrence of source node 𝑢 in the multiset.

All the sampled neighbors are combined and recorded as the 𝑖-th

step random walk result 𝑅 constituting the subgraph, and initiate

Algorithm 4: BSGather

Input: Storage I, sampled neighbor pool 𝑃 , walk number 𝑘 ,

walk length ℓ , seed nodesU𝑡

Output: Random walks 𝑅 of shape |U𝑡 | × 𝑘 × ℓ , requests A
1 Construct multisetV by repeating 𝑘 times for each 𝑢 ∈ U𝑡

2 for 𝑖 from 1 to ℓ do
3 Uℎ𝑒𝑎𝑣𝑦 ← {𝑢 | 𝑢 ∈ V, 𝑐𝑢,ℎ𝑒𝑎𝑑 = 𝑐𝑢,𝑡𝑎𝑖𝑙 }
4 Vℎ𝑒𝑎𝑣𝑦 ← {𝑣 | 𝑣 ∈ I𝑢 , 𝑢 ∈ Uℎ𝑒𝑎𝑣𝑦}
5 U𝑙𝑖𝑔ℎ𝑡 ←V \Uℎ𝑒𝑎𝑣𝑦 ,V𝑙𝑖𝑔ℎ𝑡 ← ∅
6 for each identical 𝑢 ∈ U𝑙𝑖𝑔ℎ𝑡 do

7 𝑘𝑢,𝑖 ← BINCOUNT(𝑢,U𝑙𝑖𝑔ℎ𝑡 )
8 A ← A ∪ {(𝑢, 𝑘𝑢,𝑖 )}
9 V𝑙𝑖𝑔ℎ𝑡 ←V𝑙𝑖𝑔ℎ𝑡 ∪ 𝑃 [𝑢, 𝑐𝑢,ℎ𝑒𝑎𝑑 : (𝑐𝑢,ℎ𝑒𝑎𝑑 + 𝑘𝑢,𝑖 )]

10 𝑐𝑢,ℎ𝑒𝑎𝑑 ← (𝑐𝑢,ℎ𝑒𝑎𝑑 + 𝑘𝑢,𝑖 ) mod 𝜅

11 end

12 V ← Vℎ𝑒𝑎𝑣𝑦 ∪V𝑙𝑖𝑔ℎ𝑡 , 𝑅 [:, :, 𝑖] ← V
13 end

14 return 𝑅, A

the next step. After the ℓ-length walk is finished, nodes accessed

during the process are marked as stale and are accordingly updated

by sending requests to the Sample thread. This is to ensure each

pool element is used once so that the walks for subgraph extraction

are mutually independent. Since there are ℓ iteration steps handling

𝑘-many random walks, the total complexity of BSGather is𝑂 (𝑘ℓ).
Note that for each walk step 𝑖 , all operations regarding the 𝑘

walks are performed in batches so that the GPU computation power

is fully utilized. An example for conducting a BSGather step is

provided in Figure 4. We first calculate the occurrence 𝑘𝑢,𝑖 of each

individual element in current node set U, which is then used to

update the head pointer and generate neighbor indices, both by

batch addition operation. As all of the nodes belong to the light

set, the algorithm constructsV by accessing entries in the pool 𝑃

based on the indices corresponding to source nodes.

5 EVALUATION

5.1 Experimental Setup

Task and Metric. In the main text, we focus on the CTDG link

prediction task and measure transductive and inductive average

precision (AP), in order to provide comparable results to previous

works [25, 44, 45, 53]. We utilize the overall training duration to

reflect the efficiency of learning pipeline, while prediction time

is used to particularly assess the speed of forward inference on

a single query. It is also noteworthy that GENTI demonstrates

applicability for various GRL tasks such as node classification with

minor amendments according to the input query, while the detailed

evaluation and discussion can be found in our technical report [1].

Datasets. We conduct experiments on 7 real-world dynamic

datasets, including 3 small-scale ones: UCI-MSG [39],Wikipedia [45],

and Reddit [45]; 4 large-scale ones: SuperUser [25], Wiki-Talk [25],

Tgbl-Comment [16] and MAG [60]. The statistics of datasets are

presented in Table 1. We utilize the same chronological split with

ratios 70%/15%/15% for train/validation/test sets as [45]. In the in-

ductive setting, we randomly select 10% of nodes and exclude the

corresponding temporal links from the training sets.

Baselines.We extensively evaluate 8 state-of-the-art GRL meth-

ods applicable on CTDGs with varying categories and designs. They

are: (1) GNN-based: JODIE [23], TGAT [48], TGN [40], APAN [44];

(2) Metric-based: Zebra [25], D-DGNN [59]; (3) Temporal walk-

based: CAW [45], NeurTWs [18]. We mainly utilize their released

source code and training configuration with the best prediction

performance, and perform evaluation on our platform.

Table 1: Statistics of dynamic graph datasets including the

number of nodes, temporal edges, the dimension of node

features, edge features, and timespan.

Dataset |V| |E | 𝑓𝑣 𝑓𝑒 𝑇

UCI-MSG 1,899 59,835 0 0 180 days

Wikipedia 9,227 157,474 172 172 30 days

Reddit 10,984 672,447 172 172 30 days

SuperUser 194,085 1,443,339 172 0 2773 days

Wiki-Talk 1,140,149 7,833,140 172 0 2320 days

Tgbl-Comment 994,790 44,314,507 172 0 1848 days

MAG 121,751,665 1,297,748,926 768 0 1826 days
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Table 2: Comparison of SGRL methods on small CTDGs. We present model performance metrics including transductive average

precision (%), inductive average precision (%), total training time (s) , and the number (#) of convergence epochs. The best and

second-best results in each column are marked with bold and underlined fonts, respectively. Particularly, "TLE" indicates a

time limit exceeded exception that one epoch of model training exceeds 24 hours.

Model

UCI-MSG Wikipedia Reddit

Trans AP Induct AP Time (#) Trans AP Induct AP Time (#) Trans AP Induct AP Time (#)

JODIE 80.27 ± 0.1 71.64 ± 0.6 431(12) 95.16 ± 0.4 93.13 ± 0.5 1985(18) 95.83 ± 0.3 93.20 ± 0.4 8320.4(12)
TGAT 60.25 ± 0.3 75.27 ± 2.3 689(25) 94.26 ± 0.1 92.88 ± 0.3 2428(29) 97.80 ± 0.2 96.08 ± 0.3 11138(24)
TGN 78.91 ± 0.1 75.47 ± 0.1 507(21) 98.58 ± 0.1 98.05 ± 0.1 1839(26) 98.66 ± 0.1 97.55 ± 0.1 8152(26)
APAN 84.02 ± 0.3 83.14 ± 0.5 266(25) 96.41 ± 0.5 96.06 ± 0.4 1352(21) 98.50 ± 0.2 97.62 ± 0.7 7728(9)
Zebra 92.74 ± 0.2 91.16 ± 0.3 483(31) 98.63 ± 0.1 98.65 ± 0.1 1329(32) 98.73 ± 0.1 98.42 ± 0.1 6207(25)

D-DGNN 90.41 ± 0.1 89.72 ± 0.1 14467(30) 99.16 ± 0.3 98.54 ± 0.2 15173(30) 98.93 ± 0.2 98.56 ± 0.1 50342(30)
CAW 95.33 ± 0.3 95.19 ± 0.2 1488(8) 99.18 ± 0.1 99.34 ± 0.1 3720(5) 98.80 ± 0.1 98.99 ± 0.1 30912(8)

NeurTWs 95.46 ± 0.3 95.70 ± 0.2 44064(12) 99.17 ± 0.1 99.32 ± 0.1 65448(9) 98.32 ± 0.2 98.05 ± 0.1 TLE

GENTI 95.36 ± 0.3 95.82 ± 0.3 394(8) 99.18 ± 0.1 99.37 ± 0.1 739(8) 98.87 ± 0.1 99.18 ± 0.1 5890(8)

Table 3: Comparison of representative SGRL methods on large CTDGs. We present the same performance metrics as Table 2,

with training times measured in hours. Particularly, “OOM” denotes the out-of-memory error.

Model

SuperUser Wiki-Talk Tgbl-Comment MAG

Trans AP Induct AP Time (#) Trans AP Induct AP Time (#) Trans AP Induct AP Time (#) Trans AP Induct AP Time (#)

APAN 89.63 ± 0.5 86.32 ± 0.4 5.18(16) TLE TLE TLE TLE TLE TLE TLE TLE TLE

Zebra 93.34 ± 0.3 97.63 ± 0.2 0.92(21) 95.25 ± 0.1 97.56 ± 0.3 4.65(18) 91.32 ± 0.5 95.15 ± 0.3 18.4(10) OOM OOM OOM

CAW 93.12 ± 0.2 97.36 ± 0.4 10.9(5) 95.37 ± 0.1 98.07 ± 0.3 73.3(10) TLE TLE TLE TLE TLE TLE

GENTI 94.05 ± 0.2 98.27 ± 0.3 0.66(8) 95.53 ± 0.1 98.58 ± 0.2 3.70(8) 93.51 ± 0.3 95.61 ± 0.2 12.3(6) 94.88 ± 0.4 99.45 ± 0.1 192(10)

Hyperparameters. For a fair comparison, GENTI keeps con-

sistency in network settings with [18, 45], except for fixing the

encoder to correctly generate prediction on non-attribute graphs.

We employ a bucket length 𝛼 = ⌊𝑇 /100⌋ based on the maximum

timestamp 𝑇 . We set the batch size to 32 for small-scale datasets,

128 for million-scale datasets, and 512 for MAG, as an effort to

reproduce baselines without causing the out-of-memory error.

5.2 Main results

Table 2 and Table 3 present our key results of model performance

in the future link prediction task on 7 real-world dynamic graphs.

Due to the prolonged training times of most baselines on larger

graphs, we evaluate only efficient representatives on large CTDGs

in Table 3. We conduct a comparative analysis of GENTI against

the baselines in terms of both effectiveness and efficiency.

Prediction Accuracy. For GNN-based methods, the average

precision is similar to the evaluation in previous studies [25] since

we inherit the same experimental settings. It is worth noting that

GNN-based methods exhibit relatively inferior performance due

to the constraint of their aggregation scheme, which marks the

superiority of subgraph-based approaches. Among SGRL methods,

models with walk-based designs tend to outperform metric-based

ones with fewer epochs in most cases, particularly on non-attribute

graphs, where the ability to learn graph structural information is

pivotal. This superiority is brought by the employment of their

expressive structural encoding technique that utilizes the power of

temporal random walk. Our GENTI method successfully achieves

comparable or better model convergence speed and prediction accu-

racy as our implementation yields equivalent subgraph extraction

and feature learning results and guarantees the model efficacy.

Efficiency and Scalability. According to Table 2 and Table 3,

GENTI consistently achieves either optimal or suboptimal total

training time across all datasets compared to other GRL methods.

We highlight that GENTI exhibits notable improvements in the

running time of each training epoch when compared to other walk-

based methods, especially on large-scale graphs. Compared to its

predecessor CAW, it realizes approximately 3∼26× speedups across
all datasets. Benefiting from the GPU-oriented design that addresses

the pipeline bottleneck and boosts the subgraph extraction, GENTI

is the first walk-based method to complete training within 4 hours

for the million-size Wiki-Talk and accomplish a single training

epoch within 24 hours for the largest MAG. Conversely, other base-

lines face challenges related to either time constraints or memory

issues particularly on large-scale graphs. More comprehensive re-

sults including memory overhead are presented in our technical

report [1] due to page limitation.

Improvement of Subgraph Extraction.We specifically look

into the GENTI improvement on the subgraph extraction stage

that comprises the majority of SGRL overhead. Figure 5(a) illus-

trates the separate inference time of the subgraph extraction stage

among walk-based methods. The feature learning time is also plot-

ted for reference. The result highlights the scalability of GENTI,

as it achieves significantly shorter extraction latency and is less

sensitive to the increase of subgraph size. When the subgraph size is

large, we observe near 30× acceleration compared to the best SGRL

counterparts. GENTI is thus more feasible on large-scale graphs

thanks to the larger applicable batch size for computation.

Device Usage. We examine the CPU and GPU workload in

GENTI pipeline and compare device utilization with other walk-

based SGRL methods in Figure 5(b). It can be observed that during
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Figure 5: (a) Breakdown running time of the forward sub-

graph extraction stage of GENTI and walk-based SGRLmeth-

ods with different subgraph size during single prediction.

Overhead of the common feature learning stage is also plot-

ted. Note that the time axis is on a log scale. (b) Line chart

is the comparison on GPU utilization rate between GENTI

and baselines. Corresponding CPU and GPU running times

in GENTI forward pipeline are also plotted as bars.

GENTI execution, workload between the two devices is generally

balanced, and the average device utilization reaches 80% even with

a large subgraph size. In comparison, the CPU workload becomes a

bottleneck in the pipelines of CAW and NeurTWs when extracting

large subgraphs, leading to low device utilization. In summary, our

GENTI design contributes to balanced workloads and facilitates

parallelism of the streaming pipeline.

5.3 Effect of Parameters

In this section, we investigate the impact of important GENTI pa-

rameters on both efficiency and prediction performance to evaluate

our method design and provide guidance on the parameter choice.

Due to the page limit, we mainly discuss representative results of

transductive experiments on the Wikipedia dataset.

Walk Number 𝑘 . The value of 𝑘 determines the extent of neigh-

borhood information extracted by SGRL for feature generation and

learning. Figure 6(a) displays the effect of 𝑘 on GENTI transductive

average precision. The prediction precision is positively related to

the value of 𝑘 when 𝑘 ≤ 64. We deduce the optimal performance

when 𝑘 = 64 indicates that, generating such 𝑘-many random walks

is adequate for constructing the expressive subgraph of each seed

node, while a larger number will further introduce redundancy and

negatively affect feature learning. As a general conclusion, choos-

ing a small 𝑘 is ideal when embedding graphs with low-diversity

interaction patterns. Otherwise, a larger value can be applied for

sufficiently sampling the nodes and representing the subgraph.

Walk Length ℓ . A larger value of ℓ implies using a longer ran-

dom walk to form a subgraph, allowing for the exploration of more

distant information in the whole graph. According to Figure 6(a),

when ℓ is set to 3, we achieve the best performance in the future link

prediction task, which is a general observation across all datasets in

our experiment. Intuitively, this preference indicates that the local

neighbors are greater importance compared to those nodes at longer

distances. We believe that a generally small ℓ can be employed in

scenarios of a similar graph structure and prediction task.

Pool size 𝜅. The pool size 𝜅 can impact both prediction accuracy

and algorithmic efficiency since it decides the heavy-light splitting

scheme in BSGather. A small 𝜅 can save GPU footprint but results

in numerous heavy nodes that cannot be processed efficiently in a
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Figure 6: (a) Impact of the randomwalk number 𝑘 and length

ℓ on GENTI prediction accuracy on Wikipedia. (b) Impact of

the pool width 𝜅 on GENTI prediction accuracy and single-

query prediction time when 𝑘 = 32 and ℓ = 4.

single batch. A larger 𝜅 tends to introduce more update and sam-

pling workload on CPU and undermines the balanced workload

between the two devices. We utilize the prediction time to specif-

ically present the impact of 𝜅 on the inference-time efficiency of

GENTI. According to our evaluation in Figure 6(b), when walking

with 𝑘 = 32 and ℓ = 4, the optimal value with regard to both accu-

racy and efficiency is achieved by 𝜅 = 32. Comparing to the original

selection 𝜅 = 𝑘
√
ℓ in Section 4.3, it is considerably smaller with a

4× reduction in memory overhead. The observation suggests that,

heavy nodes are uncommon in real-world graphs, and the sampled

neighbor pool scheme is competent as random walks rarely run

out of its items. In practice, 𝜅 can be empirically set to a relatively

low value to save GPU memory budget.

6 CONCLUSION

In this paper, we propose GENTI, a novel algorithm designed for

scalable subgraph-based graph representation learning on dynamic

graphs. GENTI decouples the subgraph extraction stage, commonly

the bottleneck of SGRL methods, into two asynchronous phases

and boosts GPU utilization. In specific, GPU processing incorpo-

rates the efficient BSGather for subgraph gathering in batches and

subsequent feature generation and learning. CPU is solely responsi-

ble for maintaining the dynamic graph structure with Sample and

Update operations in a streaming manner. We conduct extensive

experiments on various datasets to demonstrate GENTI’s scalability

in subgraph extraction and overall graph learning. GENTI achieves

up to 26× faster training time than the state-of-the-art walk-based

SGRL methods, without sacrificing prediction performance. No-

tably, GENTI efficiently processes the billion-scale graph MAG

within 24 hours, a significant improvement over existing solutions

unable to complete a single training epoch in the same timeframe.

Limitation and future direction. In real-world applications,

graphs are stored in distributed machines, potentially introducing

additional communication latency to the neighbor sampling stage of

GENTI. Therefore, extending GENTI to scenarios with distributed

graph storage stands as a potential future direction, enhancing the

applicability of GENTI for practical and general purposes.
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