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ABSTRACT
Recently, Bessa et al. (PODS 2023) showed that sketches based on co-
ordinated weighted sampling theoretically and empirically outper-
form popular linear sketching methods like Johnson-Lindentrauss
projection and CountSketch for the ubiquitous problem of inner
product estimation. We further develop this finding by introducing
and analyzing two alternative sampling-based methods. In contrast
to the computationally expensive algorithm in Bessa et al., our meth-
ods run in linear time (to compute the sketch) and perform better in
practice, significantly beating linear sketching on a variety of tasks.
For example, they provide state-of-the-art results for estimating
the correlation between columns in unjoined tables, a problem that
we show how to reduce to inner product estimation in a black-box
way. While based on known sampling techniques (threshold and
priority sampling) we introduce significant new theoretical analysis
to prove approximation guarantees for our methods.
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1 INTRODUCTION
We study methods for approximating the inner product ⟨a, b⟩ =∑︁𝑛
𝑖=1 a𝑖b𝑖 between two length 𝑛 vectors a and b. We are interested

in algorithms that independently compute compact sketches S(a)
and S(b) of a and b, and approximate ⟨a, b⟩ using only the infor-
mation in these sketches. S(a) and S(b) should take much less
than 𝑛 space to store, allowing them to be quickly retrieved from
disk or transferred over a network. Additionally, both the sketching
procedure a → S(a) and the estimation procedure that returns an
approximation to ⟨a, b⟩ should be computationally efficient, ideally
running in linear time. We note that computing an inner product
between two length 𝑛 vectors naively takes just𝑂 (𝑛) time. As such,
the goal of sketching methods is not to speed up a single inner
product but rather to speed up many. The methods we study can
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compute sketches of size𝑚 for a collection of 𝐷 length-𝑛 vectors
in 𝑂 (𝑛𝐷) time. We can then estimate all pairwise inner products
between those vectors in 𝑂 (𝐷2𝑚) time, significantly faster than
the baseline 𝑂 (𝐷2𝑛) time when 𝑚 ≪ 𝑛. Sketching methods for
the inner product have been studied for decades and find appli-
cations throughout data science and databases. They can be used
to quickly compute document similarity, to speed up evaluation
of machine learning models, and to estimate quantities like join
size [1, 4, 25, 50, 51]. Recently, inner product sketching has found
applications in scalable dataset search and augmentation, where
sketches can be used to estimate correlations between columns in
unjoined tables [52]. In such applications, we have a large reposi-
tory of 𝐷 vectors that we wish to compare against a query vector
using inner products. By sketching the database, we can evaluate
new queries much more efficiently than the naive 𝑂 (𝐷𝑛) time.

1.1 Prior Work
Inner Product Estimation via Linear Sketching. Until recently,
all sketching algorithms with strong worst-case accuracy guaran-
tees for approximating the inner product between arbitrary inputs
were based on linear sketching. Such methods include Johnson-
Lindenstrauss random projection (JL) [1, 28], the closely related
AMS sketch [3, 4], and the CountSketch algorithm [11, 23]. These
methods are considered “linear” because the sketching operation
a → S(a) is a linear map, meaning that S(a) = 𝚷a for a matrix
𝚷 ∈ R𝑚×𝑛 . 𝚷 is typically chosen at random and its row count
𝑚 is equal to the size of the sketch S(a). To estimate the inner
product between a and b, the standard approach is to simply return
⟨S(a),S(b)⟩ = ⟨𝚷a,𝚷b⟩. For all common linear sketching methods
(including those listed above), it can be shown (see e.g., [5]) that, if
we choose the sketch size𝑚 = 𝑂

(︁
1/𝜖2

)︁
, then with high probability:

|⟨S(a),S(b)⟩ − ⟨a, b⟩| ≤ 𝜖 ∥a∥2∥b∥2 . (1)

Here ∥x∥2 =
√︂∑︁𝑛

𝑖=1 x
2
𝑖
denotes the Euclidean norm of a vector x.

Better Accuracy via Weighted MinHash.While (1) is a strong
guarantee, it was recently improved by Bessa et al. [6], who intro-
duce a method based on the popular Weighted MinHash (WMH) al-
gorithm [14, 35, 46, 54]. Like unweighted MinHash and techniques
such as conditional random sampling [8, 43], the WMH sketch
contains a subsample of entries from a and b that can be used to
approximate the inner product. Importantly, entries with higher
absolute value are sampled with higher probability, since they can
contribute more to the inner product sum ⟨a, b⟩ = ∑︁𝑛

𝑖=1 a𝑖b𝑖 . Using
sketches of size 𝑂 (1/𝜖2), WMH achieves accuracy:

|⟨S(a),S(b)⟩ − ⟨a, b⟩| ≤ 𝜖 max (∥aI ∥2∥b∥2, ∥a∥2∥bI ∥2) . (2)
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Table 1: Comparison of error guarantees and computational cost for sketching methods when used to estimate the inner
product between vectors a and b. Note that 𝜖 ·max (∥aI ∥2∥b∥2, ∥a∥2∥bI ∥2) is always a better guarantee than 𝜖 · ∥a∥2∥b∥2, and often
significantly so when a and b are sparse with limited overlap between non-zero entries. Our Threshold and Priority Sampling
methods obtain this better bound while matching or nearly matching the fast runtime of the less accurate CountSketch method.

Method High probability error guarantee for
sketch of size𝑚 = 𝑂 (1/𝜖2 )

Time to compute sketch for length 𝑛
vector with 𝑁 non-zero entries

Strict bound on
sketch size?

JL Projection/AMS Sketch [4, 5] 𝜖 · ∥a∥2 ∥b∥2 𝑂 (𝑁𝑚) ✓

CountSketch/Fast-AGMS [11, 23] 𝜖 · ∥a∥2 ∥b∥2 𝑂 (𝑁 ) ✓

Weighted MinHash (WMH) [6] 𝜖 · max ( ∥aI ∥2 ∥b∥2, ∥a∥2 ∥bI ∥2 ) 𝑂 (𝑁𝑚 log𝑛) ✓

Threshold Sampling 𝜖 · max ( ∥aI ∥2 ∥b∥2, ∥a∥2 ∥bI ∥2 ) 𝑂 (𝑁 ) ✗

Priority Sampling 𝜖 · max ( ∥aI ∥2 ∥b∥2, ∥a∥2 ∥bI ∥2 ) 𝑂 (𝑁 log𝑚) ✓

Here I = {𝑖 : a[𝑖] ≠ 0 and b[𝑖] ≠ 0} is the set of all indices in
the intersection of the supports of a and b, and aI and bI denote
the vectors restricted to the indices in I.1 Since we always have
∥aI ∥2 ≤ ∥a∥2 and ∥bI ∥2 ≤ ∥b∥2, the error in (2) is always less or
equal to the error in (1) for the linear sketching methods.

As confirmed by experiments in [6], the improvement over linear
sketching can be significant in applications where a and b are sparse
and their non-zero entries only overlap at a small fraction of indices.
I.e., when |I | is much smaller than the number of non-zeros in a
and b. This is common when inner product sketches are used for
data discovery, either to estimate join-sizes or correlations between
unjoined tables [9, 59, 61]. In these applications, overlap between
non-zeros in a and b corresponds to overlap between the keys of
the tables being joined, which is often small. For example, consider
a setting where we want to find additional data for use in taxi
demand prediction. Given a table of 2022-2023 taxi trip data, we
would like to augment it using weather information available in a
table of historical weather data from the last 50 years; this leads to
just a 4% overlap in keys. More examples are discussed in Section 4.
Limitations of WMH sketches. While WMH provides better
accuracy than linear sketching, it has important limitations. No-
tably, the method has high computational complexity, requiring
𝑂 (𝑁𝑚 log𝑛) time to produce a sketch of size 𝑚 from a length 𝑛
vector a with 𝑁 ≤ 𝑛 non-zero entries. While this nearly matches
the 𝑂 (𝑁𝑚) complexity of a JL projection or AMS sketch (which
require multiplying a by a dense matrix), it is far slower than meth-
ods like CountSketch or the 𝑘-minimum values (KMV) sketch [7],
which can be applied in 𝑂 (𝑁 ) or 𝑂 (𝑁 log𝑚) time, respectively. It
is possible to reduce the complexity of WMH to 𝑂 (𝑁 +𝑚 log𝑚)
using recent work [15, 31]. However, as shown in Section 5, even
these theoretically faster methods are orders of magnitude slower
in practice than the simpler sketches introduced in our work.

Beyond computational cost, another disadvantage of WMH is
that it is complex, both to implement and analyze. For example,
while a high probability bound is obtained in [6], they are unable
to analyze the variance of the method. This makes it difficult, for
example, to compute confidence intervals. Also, while it does not
effect the Big O claim that a sketch of size 𝑂 (1/𝜖2) achieves error

1Prior to the work of [6], the stronger guarantee of (2) was known to be obtainable
for the special case of inner product of binary vectors, which corresponds to the set
intersection problem [49].

guarantee (2), the practical accuracy ofWMH is negatively impacted
by the fact that it samples entries from a and b with replacement,
which can lead to redundancy in the sketches S(a) and S(b).

1.2 Our Contributions
Methods and Theory. In this paper, we present and analyze two al-
gorithms for inner product sketching that eliminate the limitations
of WMH sketches, while maintaining the same strong theoretical
guarantees. Both are based on existing methods for weighted sam-
pling of vectors without replacement, but our choice of sampling
probabilities, estimation procedure, and theoretical analysis are
new, and tailored to the problem of inner product estimation.

The first method we study is based on Threshold Sampling [30,
34]. We show that, when used to sample vector entries with prob-
ability proportional to their squared value, this method produces
inner product sketches that yield the same accuracy guarantee as
WMH sketches. At the same time, the method is extremely simple
to implement and can be applied to a vector with 𝑁 non-zero en-
tries in linear 𝑂 (𝑁 ) time. Moreover, unlike WMH, the analysis of
the method is straightforward. Its only disadvantage is that Thresh-
old Sampling produces sketches that randomly vary in size. The
user can specify a parameter𝑚 and is guaranteed that the sketch
has size 𝑚 in expectation, and will not exceed 𝑚 + 𝑂 (

√
𝑚) with

high-probability. However, there is no hard bound.
We address this drawback with an alternative method based on

Priority Sampling, which has been widely studied in the sketching
and statistics literature [29, 48, 56]. Priority Sampling offers a hard
sketch size bound and can construct a size𝑚 sketch in near-linear
𝑂 (𝑁 log𝑚) time. While significantly more challenging to analyze
than Threshold Sampling, by introducing a new estimation pro-
cedure and building on a recent analysis of Priority Sampling for
a different problem (subset sum estimation) [27], we are able to
show that it enjoys the same guarantees as WMH. Our analysis of
Priority Sampling is the main theoretical contribution of this paper.
Experimental Results. In addition to theoretical analysis, we ex-
perimentally compare Threshold and Priority Sampling with linear
sketching algorithms like JL random projections and CountSketch,
as well as sampling-based sketches like 𝑘-minimum values (KMV)2,

2The KMV sketch is not typically thought of as a sketch for estimating inner products
between arbitrary vectors, but can be modified to do so. See [6] for details.
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MinHash, and WMH. We evaluate these on a variety of applica-
tions, including join size estimation and correlation estimation
between unjoined tables. We introduce an approach to perform
join-correlation estimation [52] using any inner product sketching
method (Section 4) that we believe may be of independent interest.

Our Threshold and Priority Sampling methods offer much better
accuracy than the baselines, beating both linear sketches andWMH
sketches. An optimized version of our sketches tailored to join-
correlation estimation outperforms the recent Correlation Sketches
method from [52], which is based on KMV.We also test the run-time
efficiency of our method for sketch construction. Even when WMH
is implemented using the efficient DartMinHash algorithm [15],
our methods are faster by more than an order of magnitude.

Our Approach. As in [6], sketches consist of samples from a and
b. We estimate the inner product

∑︁𝑛
𝑖=1 a𝑖b𝑖 using only a subset

of terms in the sum. Specifically, our estimators are of the form∑︁
𝑗∈T 𝑤 𝑗 · a𝑗b𝑗 , where T is a subset of {1, . . . , 𝑛} and {𝑤 𝑗 , 𝑗 ∈ T }

are appropriately chosen positive weights. To compute this estimate,
we need to store both a𝑗 in S(a) and b𝑗 and S(b). If a and b are
sampled independently at random, the probability of obtaining
matching indices in both sketches would be small, thus leading
to a small number of usable samples, and a poor inner product
estimate. Our Threshold and Priority Sampling methods avoid this
issue by using shared random seeds to sample from the vectors
in a coordinated way, which ensures that if entry a𝑗 is sampled
from a, it is more likely that the corresponding b𝑗 is sampled from
b. This idea is not new: coordinated variants of Threshold and
Priority Sampling have been studied in prior work on different
problems, as have coordinated variants of related methods like
PPSWOR sampling [17, 19]. What is new is how we apply and
analyze such methods for the problem of inner product estimation.

Besides WMH [6], we are only aware of one prior paper that
addresses the inner product estimation problem using coordinated
sampling: the “End-Biased Sampling” algorithm of [33] can be
viewed as a variant of Threshold Sampling where the 𝑖th entry
of a is sampled with probability proportional to the magnitude |a𝑖 |.
We instead use the squared magnitude |a𝑖 |2. While variance bounds
are shown in [33], due to this choice of sampling probability, they
fall short of improving on results for linear sketches, i.e., on Eq. (1).
Additionally, unlike our work, [33] does not address the issue of
how to obtain a fixed-size sketch. We discuss End-Biased Sampling
further in Section 5 and fully review related work in Section 6.

Paper Roadmap. Our contributions can be summarized as follows:

• We show how to apply two coordinated sampling methods,
Threshold and Priority Sampling, to the inner product sketch-
ing problem, invoking these methods with a specific choice of
sampling probabilities and estimation procedures.

• We prove that these methods enjoy better theoretical accuracy
guarantees than linear sketches, and match the best-known guar-
antees provided by WMH [6] (Section 2 and Section 3).

• We perform an empirical evaluation, showing that Threshold and
Priority Sampling outperform state-of-the-art sketches in both
accuracy and run-time on a variety of applications (Section 5).

• We show a black-box reduction from one such application, join-
correlation estimation, to inner product estimation (Section 4).

2 THRESHOLD SAMPLING
We begin by introducing an inner product sketch based on Thresh-
old Sampling, which is a method popularized in computer science
by [30], but long studied in statistics under the name “Poisson Sam-
pling”.3 Our algorithm based on Threshold Sampling is straight-
forward to implement and analyze, but still matches the strong
theoretical guarantees of WMH sketches [6], while improving on
runtime and performance. Its presentation serves as a warm-up for
our Priority Sampling method (Section 3), which is more difficult
to analyze, but has the advantage of a deterministic sketch size.
Sketching. As discussed, the goal of our sketching methods (and
of WMH) is to randomly sample entries from a and b, and to use
those samples to estimate the inner product sum ⟨a, b⟩ = ∑︁𝑛

𝑖=1 a𝑖b𝑖 .
To obtain strong guarantees, we need the samples to be both coordi-
nated and weighted. In particular, since they contribute more to the
inner product, entries with larger magnitude should be sampled
with higher probability. Moreover, coordination requires that b𝑗
is more likely to be sampled if a𝑗 is. Ensuring coordination is not
obvious because, in the sketching setting we consider, S(a) and
S(b) need to be computed completely independently from each
other: when we sample entries from b to form S(b), we have no
knowledge about what entries were sampled from a to form S(a).

Algorithm 1 Threshold Sampling
Input: Length 𝑛 vector a, random seed 𝑠 , target sketch size𝑚.
Output: SketchS(a) = {𝐾a,𝑉a, 𝜏a}, where𝐾a is a subset of indices

from {1, . . . , 𝑛} and 𝑉a contains a𝑖 for all 𝑖 ∈ 𝐾a.
1: Use random seed 𝑠 to select a uniformly random hash function
ℎ : {1, ..., 𝑛} → [0, 1]. Initialize 𝐾a and 𝑉a to be empty lists.

2: for 𝑖 such that a[𝑖] ≠ 0 do
3: Set threshold 𝜏𝑖 =𝑚 · a2𝑖

∥a∥22
.

4: if ℎ(𝑖) ≤ 𝜏𝑖 then
5: Append 𝑖 to 𝐾a, append a𝑖 to 𝑉a.
6: return S(a) = {𝐾a,𝑉a, 𝜏a} where 𝜏a =𝑚/∥a∥22.

Threshold Sampling achieves sampling that is both weighted and
coordinated using a simple technique. We first assume access to a
hash functionℎ : {1, . . . , 𝑛} → [0, 1] that maps indices to uniformly
random real numbers in the interval [0, 1]. Assuming access to
such a function is standard in the literature, and we note that, in
practice, ℎ can be replaced with a pseudorandom function that
maps to a sufficiently large discrete set, e.g., to {1/𝑈 , 2/𝑈 . . . , 1} for
𝑈 = 232 or some other large integer [7, 25]. As shown in Algorithm 1
and illustrated in Figure 1, we sketch the vector a by selecting a
threshold, 𝜏𝑖 for each index (Line 3). We then hash all indices 𝑖 for
which a[𝑖] ≠ 0 to the interval [0, 1], and keep as a sample all entries
of a for which the hash value ℎ(𝑖) is below the threshold (Line 4,5).

Concretely, we choose the threshold 𝜏𝑖 = 𝑚 · a2
𝑖
/∥a∥22. Here𝑚

is a fixed parameter that controls the size of the final sketch, S(a),
returned by Algorithm 1. So, we see that the threshold 𝜏𝑖 is higher
for indices 𝑖 where a2

𝑖
is larger. Thus, larger entries in the vector

are sampled with higher probability. Note that this is in contrast to

3A variant of Threshold Sampling with uniform probabilities was also studied under
the name “adaptive sampling” by Wegman in 1984 and later by Flajolet [34].
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index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a 0 0 2.5 0 0 2.3 0 4 0 0 0.5 0 3 0 0 -3.7
b 0 0 -3.1 0 0 0 0.4 -4.2 0 1.5 1 0 -2.6 -5.9 0 0

(a) Vectors a, b to be sketched. Their inner product is ⟨a, b⟩ = −31.85.
𝑖 ℎ (𝑖 ) 𝜏𝑖 (a) 𝜏𝑖 (b)
3 0.11 0.495 0.532
6 0.39 0.419 ✗
7 0.92 ✗ 0.009
8 0.14 1.268 0.977
10 0.42 ✗ 0.125
11 0.8 0.020 0.055
13 0.43 0.713 0.374
14 0.07 ✗ 1.928
16 0.23 1.085 ✗

𝐾a 𝑉a
3 2.5
8 4
13 3
16 -3.7
𝜏a = .079⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
S(a)

𝐾b 𝑉b
3 -3.1
8 -4.2
14 -5.9
𝜏b = .055⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
S(b)

(b) Example sketches S(a) and S(b) obtained using Algorithm 1
with target sketch size𝑚 = 4. Since the size of the sketch returned by
the method is random, S(a) has size 4, but S(b) is slightly smaller.
The columns 𝜏𝑖 (a) = 𝑚 · a2

𝑖
/∥a∥22 and 𝜏𝑖 (b) = 𝑚 · b2

𝑖
/∥b∥22 contain

the thresholds computed in Line 3 of Algorithm 1. Thresholds are
only computed for non-zero entries since we never sample entries
with value 0. The highlighted thresholds correspond to items that
are included in the sketch, i.e., the threshold is larger than the hash
value ℎ (𝑖 ) . If the sketches S(a) and S(b) above are used used in
our estimator from Algorithm 2, we obtain an approximate inner
product of -32.85, which is close to the true inner product of -31.85.

Figure 1: Sketching with Threshold Sampling (Algorithm 1).

“End-Biased Sampling” [33], which sets 𝜏𝑖 =𝑚 · |a𝑖 |
∥a∥1 , where ∥a∥1 =∑︁𝑛

𝑖=1 |a𝑖 | is the ℓ1 norm. While this choice also aligns with the goal
that larger entries should be sampled with higher probability, it
does not lead to the same strong theoretical guarantees.

In addition to collecting a weighted sample, since the same hash
functionℎ is used when sampling from both a and b, the samples are
coordinated. If ℎ(𝑖) is small, we are more likely sample both a𝑖 and
b𝑖 . The same idea is present in common methods for unweighted
coordinated sampling like MinHash or the KMV sketch [7, 8].

Finally, we note that the sketch procedure in Algorithm 1 runs in
𝑂 (𝑁 ) time when a has 𝑁 non-zero entries, at least when the vector
is stored in a standard sparse-vector format (e.g., a key/value store)
which allows iteration over the non-zero entries in 𝑂 (𝑁 ) time.4

Estimation. Once our sketches S(a) and S(b) are computed, to
estimate the inner product between a and b, we simply compute a
weighted sum between entries that are sampled in both S(a) and
S(b) (see Algorithm 2). To ensure the sum equals the true inner
product ⟨a, b⟩ in expectation, the weight for index 𝑖 in the sum is
the inverse of the probability that both a𝑖 and b𝑖 were included in
the sketches S(a) and S(b). We can check that this probability is
equal to min

(︁
1,𝑚 · a2

𝑖
/∥a∥22,𝑚 · b2

𝑖
/∥b∥22

)︁
. This can be computed in

𝑂 (1) time, so overall the estimator can be computed in time linear
in the sketch size. Note that the estimator requires knowledge of
the scaling parameters𝑚/∥a∥22 and𝑚/∥b∥22, so we include these
numbers in our sketches S(a) and S(b) as 𝜏a and 𝜏b.

4One computational disadvantage of sampling methods like Threshold Sampling in
comparison to linear sketching is that they cannot be immediately implemented in
a streaming setting where entries in a and b are updated incrementally; we need to
know the magnitude of each entry in advance to perform sampling. We believe it is
possible to resolve this issue using streaming ℓ2 sampling algorithms (see e.g., [40] or
[21]). We leave the details of how to do so most effectively to future work.

Algorithm 2 Inner Product Estimator
Input: Sketches S(a) = {𝐾a,𝑉a, 𝜏a}, S(b) = {𝐾b,𝑉b, 𝜏b} con-

structed by Algorithm 1 or Algorithm 3 with the same seed 𝑠 .
Output: Estimate𝑤 of ⟨a, b⟩.
1: Compute T = 𝐾a ∩ 𝐾b. Note that for all 𝑖 ∈ T , 𝑉a and 𝑉b

contain a𝑖 and b𝑖 .
2: return

𝑊 =
∑︂
𝑖∈T

a𝑖b𝑖
min(1, a2

𝑖
· 𝜏a, b2𝑖 · 𝜏b)

.

Comparison to WMH. While both WMH and Threshold Sam-
pling use coordinated weighted sampling, WMH does so in a less
efficient way. It creates a variable number of copies of every entry
in a to ensure that larger entries are selected with higher probability.
Only an integer number of copies is possible, so this step requires
careful discretization of a’s entries. Our method, in contrast, en-
codes weight information more efficiently through the threshold 𝜏𝑖 .
Furthermore, to compute a sketch with𝑚 samples, WMH requires
applying𝑚 independent hash functions to every index 𝑖 where a
is non-zero. This accounts for its run-time dependence on 𝑂 (𝑁𝑚).
Threshold Sampling uses one hash function, so runs in 𝑂 (𝑁 ) time.

Another difference between Threshold Sampling and WMH is
that, when run with parameter 𝑚, Threshold Sampling returns
a sketch whose size is at most𝑚 in expectation (see Theorem 1).
However, since entries of a are sampled independently, the actual
size of the sketch will vary randomly around its expectation. In
contrast, WMH allows the user to set an exact sketch size. This
issue motivates our Priority Sampling method (Section 3), which is
similar to Threshold Sampling but has a fixed sketch size.
Theoretical Guarantees.Ourmain theoretical result on Threshold
Sampling is as follows:

Theorem 1. For vectors a, b ∈ R𝑛 and target sketch size𝑚, let
S(a) = {𝐾a,𝑉a, 𝜏a} and S(b) = {𝐾b,𝑉b, 𝜏b} be sketches returned
by Algorithm 1. Let𝑊 be the inner product estimate returned by
Algorithm 2 applied to these sketches. We have E [𝑊 ] = ⟨a, b⟩ and

Var [𝑊 ] ≤ 2
𝑚

max
(︂
∥aI ∥22∥b∥

2
2, ∥a∥

2
2∥bI ∥

2
2

)︂
.

Moreover, let |𝐾a | and |𝐾b | be the number of index/values pairs stored
in S(a) and S(b). We have E [|𝐾a |] ≤ 𝑚 and E [|𝐾b |] ≤ 𝑚.

Above, E [·] denotes expected value and Var [·] denotes variance.
Recall that I = {𝑖 : a[𝑖] ≠ 0 and b[𝑖] ≠ 0} and aI and bI denote
the vectors restricted to the indices in I. Theorem 1 shows that
the inner product estimate obtained using Threshold Sampling is
correct in expectation and has bounded variance. Moreover, if the
sketches are constructed with parameter𝑚, the expected number
of samples collected is always ≤ 𝑚. Since the sketch needs to store
two numbers for each sample (an index and a value), as well as the
scalar value 𝜏a, the expected storage size is thus 𝑂 (𝑚).

Given the expectation and variance bound in Theorem 1, we can
apply Chebyshev’s Inequality to obtain the following corollary:

Corollary 2. For any given values of 𝜖, 𝛿 ∈ (0, 1) and vectors
a, b ∈ R𝑛 , when run with target sketch𝑚, Threshold Sampling returns
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an inner product estimate𝑊 satisfying, with probability 1 − 𝛿 ,

|𝑊 − ⟨a, b⟩| ≤
√︃

2/𝛿
𝑚

max (∥aI ∥2∥b∥2, ∥a∥2∥bI ∥2) .

Setting𝑚 =
2/𝛿
𝜖2

, the error is 𝜖 ·max (∥aI ∥2∥b∥2, ∥a∥2∥bI ∥2).

This corollary matches the asymptotic guarantee of WMH [6],
improving on the bounds known for linear sketches like JL and
CountSketch [5]. At the same time, as we show in Section 5, Thresh-
old Sampling tends to perform better than WMH in practice. We
believe there are a number of reasons for this, including the fact that
Threshold Sampling selects vector entries without replacement, and
the fact that the variance bound in Theorem 1 has a small constant
factor of 2. We prove Theorem 1 below:

Proof of Theorem 1. Let I denote the set of all indices 𝑖 for
which a𝑖 ≠ 0 and b𝑖 ≠ 0. For any 𝑖 ∈ I, let 1𝑖 denote the indicator
random variable for the event that 𝑖 is included in both 𝐾a and
𝐾b. 1𝑖 = 1 if this event occurs and 0 if it does not. Note that, for
𝑖 ≠ 𝑗 , 1𝑖 is independent from 1𝑗 , since the hash values ℎ(𝑖) and
ℎ( 𝑗) are drawn uniformly and independently from [0, 1]. Moreover,
we claim that 1𝑖 is equal to 1 with probability:

𝑝𝑖 = min
(︄
1,
𝑚 · a2

𝑖

∥a∥22
,
𝑚 · b2

𝑖

∥b∥22

)︄
= min(1, 𝜏a · a2𝑖 , 𝜏b · b

2
𝑖 ) . (3)

To see why this is the case, assume without loss of generality that
a2
𝑖
≤ b2

𝑖
. Then, by examining Line 3 of Algorithm 1, we can see that

𝑖 is included in 𝐾a with probability min
(︁
1,𝑚 · a2

𝑖
/∥a∥22

)︁
. Moreover,

if 𝑖 is included in 𝐾a, it is guaranteed to be included in 𝐾b since
the threshold𝑚 · b2

𝑖
/∥b∥22 is at least as large as𝑚 · a2

𝑖
/∥a∥22. It fol-

lows that, when a2
𝑖
≤ b2

𝑖
, we have that 𝑝𝑖 = min

(︁
1,𝑚 · a2

𝑖
/∥a∥22

)︁
.

The analysis is identical for the case b2
𝑖
< a2

𝑖
, in which case 𝑝𝑖 =

min
(︁
1,𝑚 · b2

𝑖
/∥b∥22

)︁
. Combining the two cases establishes (3).

Let𝑊 be the estimate returned by Algorithm 2. We can write
𝑊 =

∑︁
𝑖∈I 1𝑖 · a𝑖b𝑖𝑝𝑖 , and applying linearity of expectation, we have:

E[𝑊 ] =
∑︂
𝑖∈I

𝑝𝑖 ·
a𝑖b𝑖
𝑝𝑖

=
∑︂
𝑖∈I

a𝑖b𝑖 = ⟨a, b⟩. (4)

Next, since each term in the sum𝑊 =
∑︁
𝑖∈I 1𝑖 · a𝑖b𝑖𝑝𝑖 is independent,

Var[𝑊 ] =
∑︂
𝑖∈I

Var
[︃
1𝑖 ·

a𝑖b𝑖
𝑝𝑖

]︃
=

∑︂
𝑖∈I

(a𝑖b𝑖 )2

𝑝2
𝑖

Var[1𝑖 ] .

Var[1𝑖 ] = 𝑝𝑖 − 𝑝2𝑖 , which is 0 when 𝑝𝑖 equals 1. If 𝑝𝑖 ≠ 1, then
Var[1𝑖 ] ≤ 𝑝𝑖 =𝑚 ·min

(︁
a2
𝑖
/∥a∥22, b

2
𝑖
/∥b∥22

)︁
. So we have:

Var[𝑊 ] ≤
∑︂

𝑖∈I,𝑝𝑖≠1
∥a∥22∥b∥

2
2

(a2
𝑖
/∥a∥22) (b

2
𝑖
/∥b∥22)

𝑚 ·min(a2
𝑖
/∥a∥22, b

2
𝑖
/∥b∥22)

=
∑︂

𝑖∈I,𝑝𝑖≠1
∥a∥22∥b∥

2
2
max(a2

𝑖
/∥a∥22, b

2
𝑖
/∥b∥22)

𝑚

≤
∥a∥22∥b∥

2
2

𝑚

∑︂
𝑖∈I

a2
𝑖

∥a∥22
+

b2
𝑖

∥b∥22
.

Rearranging, this bound is equal to 1
𝑚

(︁
∥b∥22∥aI ∥

2
2 + ∥a∥22∥bI ∥

2
2
)︁
,

and we obtain our final bound on Var[𝑊 ] by upper bounding the
sum by 2x the maximum. Finally, we prove our claim on the

expected sketch size. We have that |𝐾a | =
∑︁𝑛
𝑖=1 1[𝑖 ∈ 𝐾a] , where

1[𝑖 ∈ 𝐾a] is an indicator random variable that is 1 if 𝑖 is included
in 𝐾a and zero otherwise. By linearity of expectation, we have that:

E [|𝐾a |] =
𝑛∑︂
𝑖=1
E [1[𝑖 ∈ 𝐾a]] =

𝑛∑︂
𝑖=1

min(1,𝑚 · a2𝑖 /∥a∥
2
2) ≤ 𝑚. (5)

An identical analysis shows that E [|𝐾b |] ≤ 𝑚, which completes the
proof. In the extended version of this paper [26], we further prove
that |𝐾a | and |𝐾b | are less than𝑚+𝑂 (

√
𝑚) with high probability. □

Practical Implementation. In Theorem 1, we show that the ex-
pected sketch size is upper bounded by𝑚. As apparent from (5), it
will be less than𝑚 if there are entries in a for which a2

𝑖
/∥a∥22 > 1/𝑚.

This is not ideal: we would like a sketch whose size is as close to our
budget𝑚 as possible. Fortunately, Threshold Sampling can be mod-
ified so that the expected sketch size is exactly𝑚. We simply use
binary search to compute𝑚′ such that

∑︁𝑛
𝑖=1min

(︁
1,𝑚′ · a2

𝑖
/∥a∥22

)︁
=

𝑚. Then, we replace 𝑚 in Lines 3 and 6 of Algorithm 1 with 𝑚′.
Doing so does not increase our estimator’s variance. Further details
are provided in the extended version of this paper [26].

3 PRIORITY SAMPLING
While a simple and effective method for inner product sketching,
one limitation of Threshold Sampling is that the user cannot ex-
actly control the size of the sketch S(a). We address this issue by
analyzing an alternative algorithm based on Priority Sampling, a
technique introduced in computer science by [29], and studied in
statistics under the name “Sequential Poisson Sampling” [48].
Sketching. To motivate the method, observe from rearranging
Lines 3 and 4 in Algorithm 1, that Threshold Sampling selects
all entries from a for which ℎ(𝑖)/𝑎2

𝑖
falls below a fixed “global

threshold”, 𝜏a = 𝑚/∥a∥22. There will be at most𝑚 such values in
expectation, but there could be more or less depending on the
randomness in ℎ. Priority Sampling (Algorithm 3) removes this
variability by simply selecting the𝑚 smallest values of ℎ(𝑖)/𝑎2

𝑖
. It

then treats the (𝑚 + 1)st smallest value as the global threshold 𝜏a.
Estimation. Given sketches S(a) and S(b) computed using Pri-
ority Sampling, we can actually use the exact same estimator for
⟨a, b⟩ as Threshold Sampling (Algorithm 2). In particular,

𝑊 =
∑︂

𝑖∈𝐾a∩𝐾b

a𝑖b𝑖
min(1, a2

𝑖
· 𝜏a, b2𝑖 · 𝜏b)

(6)

(computed on Line 2 of Algorithm 2) remains an unbiased esti-
mate for the inner product. However, analyzing the variance of the
estimator is a lot trickier. Notably, we no longer have that the sum-
mation terms in (6) are independent; they all depend on the same
random numbers 𝜏a and 𝜏b, which were previously fixed quantities
for Threshold Sampling. Moreover, bounding the variance of each
term in the sum is complicated by the presence of random variables
in the denominator. These issues arise in earlier applications of
Priority Sampling, like subset-sum estimation [29]. For this prob-
lem, an optimal variance analysis proved elusive, until finally being
given in a tour de force result by Szegedy [2, 55].
Theoretical Analysis. Building on a new analysis of Priority Sam-
pling for subset sums [27], we are able to overcome these obstacles
for inner product estimation as well, proving the following:
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Algorithm 3 Priority Sampling
Input: Length 𝑛 vector a, random seed 𝑠 , target sketch size𝑚.
Output: SketchS(a) = {𝐾a,𝑉a, 𝜏a}, where𝐾a is a subset of indices

from {1, . . . , 𝑛} and 𝑉a contains a𝑖 for all 𝑖 ∈ 𝐾a.
1: Use random seed 𝑠 to select a uniformly random hash function
ℎ : {1, ..., 𝑛} → [0, 1]. Initialize 𝐾a and 𝑉a to be empty lists.

2: Compute rank 𝑅𝑖 = ℎ(𝑖)/a2𝑖 for all 𝑖 such that a𝑖 ≠ 0.
3: Set 𝜏a equal to the (𝑚 + 1)st smallest value 𝑅𝑖 , or set 𝜏a = ∞ if

a has less than𝑚 + 1 non-zero values.
4: for 𝑖 such that a𝑖 ≠ 0 do
5: if 𝑅𝑖 < 𝜏a then
6: Append 𝑖 to 𝐾a, append a𝑖 to 𝑉a.
7: return S(a) = {𝐾a,𝑉a, 𝜏a}

Theorem 3. For vectors a, b ∈ R𝑛 and sketch size𝑚, let S(a) =
{𝐾a,𝑉a, 𝜏a} and S(b) = {𝐾b,𝑉b, 𝜏b} be sketches returned by Algo-
rithm 3. Let𝑊 be the inner product estimate returned by Algorithm 2
applied to these sketches. We have that E [𝑊 ] = ⟨a, b⟩ and

Var [𝑊 ] ≤ 2
𝑚 − 1 max

(︂
∥aI ∥22∥b∥

2
2, ∥a∥

2
2∥bI ∥

2
2

)︂
Moreover, let |𝐾a | and |𝐾b | be the number of index/values pairs stored
in S(a) and S(b). We have |𝐾a | ≤ 𝑚 and |𝐾b | ≤ 𝑚, with equality
in the typical case when a and b have at least𝑚 non-zero entries.

Theorem 3 almost exactly matches our Theorem 1 for Thresh-
old Sampling, except that the leading constant on the variance is
2

𝑚−1 instead of 2
𝑚 . Again, we can apply Chebyshev’s inequality to

conclude that if we set𝑚 =
2/𝛿
𝜖2

+ 1, then |𝑊 − ⟨a, b⟩| is bounded
by 𝜖 ·max (∥aI ∥2∥b∥2, ∥a∥2∥bI ∥2) with probability ≥ 1 − 𝛿 . The
matching theoretical results align with experiments: as seen in Sec-
tion 5, Priority Sampling performs almost identically to Threshold
Sampling, albeit with the added benefit of a fixed sketch size bound.

Proof of Theorem 3. We start by introducing additional nota-
tion. Let A = {𝑖 : a𝑖 ≠ 0} denote the set of indices where a is
non-zero and let B = {𝑖 : b𝑖 ≠ 0} denote the set of indices where
b is non-zero. Recall that 𝜏a as computed in Algorithm 3 is the
(𝑚+1)st smallest value of ℎ(𝑖)/𝑎2

𝑖
over all 𝑖 ∈ A. For any 𝑖 ∈ A, let

𝜏𝑖a denote the𝑚th smallest of ℎ( 𝑗)/𝑎2
𝑗
over all 𝑗 ∈ A \ {𝑖}. IfA\{𝑖}

has fewer than𝑚 values, define 𝜏𝑖a = ∞. Define 𝜏𝑖b analogously for
all 𝑖 ∈ B. Let T = 𝐾a ∩ 𝐾b be as in Algorithm 2. Later on we will
use the easily checked fact that, for all 𝑖 ∈ T , 𝜏𝑖a = 𝜏a and 𝜏𝑖b = 𝜏b.

The estimate𝑊 returned by Algorithm 2 can be rewritten as:

𝑊 =
∑︂

𝑖∈A∩B
𝑤̂𝑖 where 𝑤̂𝑖 =

{︄
a𝑖b𝑖

min(1,a2
𝑖
𝜏a,b2𝑖 𝜏b )

𝑖 ∈ T
0 𝑖 ∉ T .

(7)

From (7), we can see that, to prove E[𝑊 ] = ⟨a, b⟩ = ∑︁
𝑖∈A∩B a𝑖b𝑖 ,

it suffices to prove that, for all 𝑖 ∈ A∩B, E[𝑤̂𝑖 ] = a𝑖b𝑖 . To establish
this equality, first observe that for 𝑖 to be in T , it must be that both
ℎ(𝑖)/a2

𝑖
and ℎ(𝑖)/b2

𝑖
are among the𝑚th smallest ranks computed

when sketching a and b, respectively. In other words, it must be
that ℎ(𝑖)/a2

𝑖
< 𝜏𝑖a and ℎ(𝑖)/b2𝑖 < 𝜏𝑖b. So, conditioning on 𝜏

𝑖
a and 𝜏𝑖b,

Pr
[︁
𝑖 ∈ T | 𝜏𝑖a, 𝜏𝑖b

]︁
= Pr

[︁
ℎ(𝑖)/a2𝑖 < 𝜏𝑖a ∩ ℎ(𝑖)/b2𝑖 < 𝜏𝑖b

]︁
= min(1, a2𝑖 𝜏

𝑖
a, a

2
𝑖 𝜏
𝑖
b).

Combined with the fact discussed earlier that, conditioned on
𝑖 ∈ T , 𝜏a = 𝜏𝑖a and 𝜏b = 𝜏𝑖b, we have:

E[𝑤̂𝑖 ] = E
𝜏𝑖a,𝜏

𝑖
b

[︁ a𝑖b𝑖
min(1, a2

𝑖
𝜏a, a2𝑖 𝜏b)

min(1, a2𝑖 𝜏
𝑖
a, a

2
𝑖 𝜏
𝑖
b)

]︁
= a𝑖b𝑖 .

As desired, E[𝑊 ] = ⟨a, b⟩ follows by linearity of expectation.
Next, we turn our attention to bounding the variance of 𝑊 .

As discussed, this is complicated by the fact that 𝑤̂𝑖 and 𝑤̂ 𝑗 are
non-independent. However, it is possible to show that the random
variables are pairwise uncorrelated, which will allow us to apply
linearity of variance to the sum in (7). I.e., we want to show that,
for all 𝑖, 𝑗 , E[𝑤̂𝑖𝑤̂ 𝑗 ] = E[𝑤̂𝑖 ] E[𝑤̂ 𝑗 ]. For any 𝑖, 𝑗 ∈ A define 𝜏𝑖, 𝑗a to
equal the (𝑚 − 1)st smallest of ℎ(𝑘)/𝑎2

𝑘
over all 𝑘 ∈ A \ {𝑖, 𝑗}, or∞

if there are not𝑚 − 1 values in A \ {𝑖, 𝑗}. Define 𝜏𝑖, 𝑗b analogously
for 𝑖, 𝑗 ∈ B. As in our expression for Pr [𝑖 ∈ T ], it can be seen that
Pr[𝑖, 𝑗 ∈ T | 𝜏𝑖, 𝑗a , 𝜏

𝑖, 𝑗

b ] = min(1, a2
𝑖
𝜏
𝑖, 𝑗
a , b2

𝑖
𝜏
𝑖, 𝑗

b ) ·min(1, a2
𝑗
𝜏
𝑖, 𝑗
a , b2

𝑗
𝜏
𝑖, 𝑗

b ).
Furthermore, conditioned on 𝑖, 𝑗 ∈ T , 𝜏𝑖, 𝑗a = 𝜏a and 𝜏𝑖, 𝑗b = 𝜏b. So,

E[𝑤̂𝑖𝑤̂ 𝑗 ] = E
𝜏
𝑖,𝑗
a ,𝜏

𝑖,𝑗

b

[︄
a𝑖b𝑖

min(1, a2
𝑖
𝜏
𝑖, 𝑗
a , b2

𝑖
𝜏
𝑖, 𝑗

b )
a𝑗b𝑗

min(1, a2
𝑗
𝜏
𝑖, 𝑗
a , b2

𝑗
𝜏
𝑖, 𝑗

b )
· . . .

. . . Pr
[︂
𝑖, 𝑗 ∈ T | 𝜏𝑖, 𝑗a , 𝜏

𝑖, 𝑗

b

]︂ ]︄
= a𝑖b𝑖a𝑗b𝑗 = E[𝑤̂𝑖 ] E[𝑤̂ 𝑗 ],

as desired. Since E[𝑤̂𝑖𝑤̂ 𝑗 ] = E[𝑤̂𝑖 ] E[𝑤̂ 𝑗 ] for all 𝑖, 𝑗 we can apply
linearity of variance to conclude that Var[𝑊 ] = ∑︁

𝑖∈A∩B Var[𝑤̂𝑖 ].
So, it suffices to establish individual bounds on Var[𝑤̂𝑖 ] for 𝑖 ∈

A ∩ B. To do so, first observe that, conditioned on 𝜏𝑖a and 𝜏𝑖b,

E
[︁
𝑤̂2
𝑖 | 𝜏𝑖a, 𝜏𝑖b

]︁
=

(︄
a𝑖b𝑖

min(1, a2
𝑖
𝜏𝑖a, b2𝑖 𝜏

𝑖
b)

)︄2
· Pr

[︁
𝑖 ∈ T | 𝜏𝑖a, 𝜏𝑖b

]︁
=

a2
𝑖
b2
𝑖

min(1, a2
𝑖
𝜏𝑖a, b2𝑖 𝜏

𝑖
b)

= a2𝑖 b
2
𝑖 max

(︄
1, 1
a2
𝑖
𝜏𝑖a
,

1
b2
𝑖
𝜏𝑖b

)︄
.

We can thus rewrite Var [𝑤̂𝑖 ] = E
[︁
𝑤̂2
𝑖

]︁
− E [𝑤̂𝑖 ]2 = E

[︁
𝑤̂2
𝑖

]︁
− a2

𝑖
b2
𝑖
:

Var [𝑤̂𝑖 ] = a2𝑖 b
2
𝑖 E

[︄
max

(︄
1, 1
a2
𝑖
𝜏𝑖a
,

1
b2
𝑖
𝜏𝑖b

)︄]︄
− a2𝑖 b

2
𝑖

= a2𝑖 b
2
𝑖 E

[︄
max

(︄
0, 1
a2
𝑖
𝜏𝑖a

− 1, 1
b2
𝑖
𝜏𝑖b

− 1
)︄]︄

≤ a2𝑖 b
2
𝑖 E

[︄
1

a2
𝑖
𝜏𝑖a

+ 1
b2
𝑖
𝜏𝑖b

]︄
= a2𝑖 E

[︄
1
𝜏𝑖b

]︄
+ b2𝑖 E

[︃
1
𝜏𝑖a

]︃
.

So, we have reduced the problem to bounding the expected inverse
of 𝜏𝑖a and 𝜏𝑖b. Doing so is not straightforward: these are complex
random variables that depend on all entries in a and b, respectively.
However, it was recently shown in [27] (Claim 5) that E[1/𝜏𝑖a] ≤
∥a∥22/(𝑚 − 1) and E[1/𝜏𝑖b] ≤ ∥b∥22/(𝑚 − 1). Finally, we have:

Var[𝑊 ] =
∑︂

𝑖∈𝐴∩𝐵
Var[𝑤̂𝑖 ] ≤

∑︂
𝑖∈𝐴∩𝐵

a2𝑖 E
[︁
1/𝜏𝑖b

]︁
+ b2𝑖 E

[︁
1/𝜏𝑖a

]︁
≤

∑︂
𝑖∈𝐴∩𝐵

a2𝑖
∥b∥2
𝑚 − 1 + b2𝑖

∥a∥2
𝑚 − 1

=
1

𝑚 − 1

(︂
∥aI ∥22∥b∥

2
2 + ∥a∥22∥bI ∥

2
2

)︂
.
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Noting that for any 𝑐, 𝑑 , 𝑐+𝑑 ≤ 2max(𝑐, 𝑑) completes the proof. □

4 JOIN-CORRELATION ESTIMATION
In addition to our theoretical results, we perform an empirical eval-
uation of Threshold and Priority Sampling for inner product sketch-
ing. One of our main motivating applications is join-correlation
estimation [32, 52]. This problem has previously been addressed
using (unweighted) consistent sampling methods, like the KMV
sketch [52, 53]. In this section, we show how it can be solved us-
ing any inner product sketching algorithm in a black-box way,
expanding the toolkit of methods that can be applied to the task.
Problem Statement. The join-correlation problem consists of
computing the Pearson’s correlation coefficient between two data
columns that originally reside in different data tables. Specifically,
we are interested in the correlation between values that would
appear in the columns after performing an (inner) join on the
tables, i.e., values for which the same key appears in both tables.
We call this quantity the post-join correlation, or simply the join-
correlation. As a concrete illustration, consider the example tables in
Figure 2(a). The goal of join-correlation estimation is to approximate
the correlation 𝜌x,y between the vectors x and y from T𝐴⊲⊳𝐵 .

The join-correlation problem arises in dataset search applica-
tions, where the goal is to discover new data to augment a query
dataset, e.g., to improve predictive models [13, 38, 45]. In such appli-
cations, we typically want to estimate join-correlation for columns
in a query table and those in a large collection of other data tables.
Accordingly, the brute-force approach that explicitly joins tables
and computes the correlation between attributes is infeasible.

Prior work proposes to use sketching as an efficient alternative.
The idea is to pre-process (i.e., sketch) the collection of tables in
advance, so that join-correlation between columns in any two tables
T𝐴 and T𝐵 can be evaluated without explicitly materializing the
join 𝐴 ⊲⊳ 𝐵. Specifically, Santos et al. [52] propose an extension of
KMV sketches that uniformly samples entries from each table, and
then uses the join between the sketches to estimate correlation.
Unfortunately, just like inner product estimation, this approach
can suffer when T𝐴 and T𝐵 contain entries with widely varying
magnitude: larger entries often contribute more to the correlation,
but are not selected with higher probability by the KMV sketch.
Join-Correlation via Inner Product Sketching. We show an
alternative approach for attacking the join-correlation problem by
reducing it to inner product estimation. The reduction allows us
to take advantage of sketches like WMH, Threshold Sampling, and
Priority Sampling, which naturally make use of weighted sampling.

Referring again to Figure 2(a), consider the vectors x and y from
T𝐴⊲⊳𝐵 . Let 𝑥 (resp. 𝑦) denote the mean of x (resp. y), 𝑛 denote the
length of the vectors (number of rows inT𝐴⊲⊳𝐵 ), Σx (resp. Σy) denote
the summation of all values in x (resp. y), and Σx2 (resp. Σy2 ) denote
the summation of all squared values of x (resp. y). It can be verified
that correlation coefficient between x and y can be rewritten as:

𝜌x,y =
⟨x − 𝑥, y − 𝑦⟩

∥x − 𝑥 ∥2∥y − 𝑦∥2
=

𝑛⟨x, y⟩ − ΣxΣy√︂
𝑛Σx2 − Σ2x

√︂
𝑛Σy2 − Σ2y

. (8)

Our observation is that all of the values in Eq. (8) can be computed
using only inner product operations over vectors derived from ta-
bles T𝐴 and T𝐵 independently. The vectors are shown in Figure 2(b):

T𝐴
ka a
3 2.5
6 2.3
8 4
11 0.5
13 3
16 -3.7

T𝐵
kb b
3 -3.1
7 0.4
8 -4.2
10 1.5
11 1
13 -2.6
14 -5.9

T𝐴⊲⊳𝐵

k𝑎⊲⊳𝑏 x y
3 2.5 -3.1
8 4 -4.2
11 0.5 1
13 3 -2.6

(a) The table T𝐴⊲⊳𝐵 is the output of a join between tables T𝐴 and
T𝐵 . The goal of join-correlation estimation is to approximate the
Pearson’s correlation between the second two columns in T𝐴⊲⊳𝐵 .

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a 0 0 2.5 0 0 2.3 0 4 0 0 0.5 0 3 0 0 -3.7
a2 0 0 6.25 0 0 5.29 0 16 0 0 .25 0 9 0 0 13.69
1a 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1
b 0 0 -3.1 0 0 0 0.4 -4.2 0 1.5 1 0 -2.6 -5.9 0 0
b2 0 0 9.61 0 0 0 .16 17.64 0 2.25 1 0 6.76 34.81 0 0
1b 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0

(b) We define six sparse vectors a, a2, 1a, b, b2, and 1b that encode the
information in T𝐴 with T𝐵 . In Eq. (9), we show how to express the
join-correlation as a combination of inner products involving these
vectors, which can be estimated with a sketching method.

Figure 2: Join-Correlation via inner product sketching.

vectors a and b contain the values, with a𝑖 (resp. b𝑖 ) set to zero if
key 𝑖 was not present in table T𝐴 (resp. table T𝐵 ). Vectors 1a and 1b
are indicator vectors for the corresponding join keys in each table.
Finally, a2 and b2 are equal to a and b with an entrywise square
applied. Using these vectors, we can compute all components of
the correlation formula as inner products:

𝑛 = ⟨1a, 1b⟩, Σx = ⟨a, 1b⟩, Σy = ⟨1a, b⟩,
⟨x, y⟩ = ⟨a, b⟩, Σx2 = ⟨a2, 1b⟩, Σy2 = ⟨1a, b2⟩.

In particular, we can rewrite 𝜌x,y equivalently as:
⟨a, b⟩⟨1a, 1b⟩ − ⟨a, 1b⟩⟨1a, b⟩√︂(︁

⟨1a, 1b⟩⟨a2, 1b⟩ − ⟨a, 1b⟩2
)︁ (︁
⟨1a, 1b⟩⟨b2, 1a⟩ − ⟨b, 1a⟩2

)︁ . (9)

Given this formula, we can use any inner product sketching method
to approximate join-correlation. In particular, givenT𝐴 , we compute
three separate sketches, one for each of a, a2, 1a. When combined
with sketches for b, b2, 1b, we can estimate all of the inner products
in (9) separately, and combine them to obtain an estimate for 𝜌x,y.

For data discovery, the vectors described above are often ex-
tremely sparse with limited overlap between non-zero entries.
Therefore, they are amenable to the sampling-based sketches stud-
ied in this paper, and benefit from our improvements over (1). In
particular, the length of a, a2, and 1a equals the total universe of
possible keys, while the number of non-zeros in these vectors equals
the number of keys in T𝐴 . The overlap between the non-zeros in
a, a2, and 1a, and those in b, b2, and 1b is equal to the number of
keys in common between T𝐴 and T𝐵 , which can be very small. As
an example, consider a data augmentation task where were wish to
join a query data table, T𝐴 , with keys that are addresses in a single
neighborhood to a statewide database of addresses in T𝐵 .
Optimization for Sampling-Based Sketches. In Section 5, we use
the approach above to estimate correlation using linear sketching
methods like CountSketch and JL. Given sketch size budget 𝑚,
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we allocate𝑚/3 space to sketching each of the three vectors a, a2,
and 1a. Our final join-correlation sketch is then the concatenation of
the equally sized sketches S(a), S(a2), and S(1a). We take roughly
the same approach for Threshold and Priority Sampling. However,
in a sampling-based sketch, if we select index 𝑖 when sketching any
of the three vectors 1a, a, and a2, then we might as well use the
index in estimating inner products involving all three. In particular,
by storing the single key/value pair (𝑖, a𝑖 ), we can compute the
information (𝑖, 1), (𝑖, a𝑖 ), and (𝑖, a2

𝑖
) needed to estimate all inner

products. We take advantage of this fact to squeeze additional
information out of our sketches. Details of the resulting optimized
approach are included in the extended version of this paper [26].

5 EXPERIMENTS
Baselines. We assess the performance of our methods by compar-
ing them to representative baselines, all of which were implemented
in Python. We include both sampling and linear sketching methods
for inner product estimation:
• Johnson-Lindenstrauss Projection (JL): For this linear sketch,

we use a dense random matrix 𝚷 with scaled ±1 entries, which
is equivalent to the AMS sketch [1, 4].

• CountSketch (CS): The classic linear sketch introduced in [11],
and also studied under the name Fast-AGMS sketch in [23]. We
use one repetition of the sketch.5

• Weighted MinHash Sampling (MH-weighted): The method
described in [6], which is the first sketch with tighter theoretical
bounds than linear sketching for inner product estimation.

• MinHash Sampling (MH): Also described in [6], MH is similar
to Weighted MinHash, but indices are sampled uniformly at
random from a, not with probability proportional to a2

𝑖
.

• Uniform Priority Sampling (PS-uniform): The same as our
Priority Sampling method, but the rank of index 𝑖 in Algorithm 3
is chosen without taking the squared magnitude a2

𝑖
into account,

so indices are sampled uniformly. This method is equivalent to
the KMV-based inner product sketch implemented in [6].

• UniformThreshold Sampling (TS-uniform): The same as our
Threshold Sampling method, but a2

𝑖
is not taken into account

when computing 𝜏𝑖 , so indices are sampled uniformly.
To distinguish from the uniform sampling versions, our proposed
Threshold and Priority Sampling methods are called TS-weighted
and PS-weighted in the remainder of the section. In addition to
the baselines above, we implemented and performed initial experi-
ments using the End-Biased sampling method from [33], which is
equivalent to Threshold Sampling (Algorithm 1), but with proba-
bility proportional to |a𝑖 |/∥a∥1. More details on how to implement
this method, as well as TS-uniform and PS-uniform are included in
the extended version of this paper [26]. As shown in Section 5.1,
End-Biased sampling performed slightly worse than our version of
Threshold Sampling, which also enjoys stronger theoretical guar-
antees. So, we excluded End-Biased sampling from the majority
of our experiments for conciseness and plot clarity. We also note
that there are other versions of linear sketching designed to speed
up computation time in comparison to the classic JL/AMS sketch
[1, 50]. We focus on CountSketch/Fast-AGMS because it is one of
5While prior work suggests partitioning the sketch and taking the median of multiple
independent estimators [42], we found that doing so slightly decreased accuracy.

the most widely studied of these methods, and runs in 𝑂 (𝑛) time
with a small constant factor. As such, it offers a challenging baseline
for our sampling methods in terms of computational efficiency.
Storage Size. For linear sketches, we store the output of the matrix
multiplication 𝚷a as 64-bit doubles. For sampling-based sketches,
both samples (64-bit doubles) and hash values (32-bit ints) need to
be stored. As a result, a sampling sketch with𝑚 samples takes 1.5𝑥
as much space as a linear sketch with𝑚 entries. In our experiments,
storage size denotes the total number of bits in the sketch divided
by 64, i.e., the total number of doubles that the sketch equates to.
Storage size is fixed for all methods except Threshold Sampling, for
which we report the expected storage size. We note that there are
variants of linear sketching that further compress 𝚷a by thresh-
olding or rounding its entries, e.g., SimHash [10] and quantized JL
methods [39]. While an interesting topic for future study, we do not
evaluate these methods because quantization can be used to reduce
the sketch size of all methods. For instance, for sampling-based
sketches, we do not need to store full 64-bit doubles. Evaluating
optimal quantization strategies is beyond the scope of this work.
Estimation Error. To make it easier to compare across different
datasets, when estimating inner products, we define the following
error measure: the absolute difference between ground truth in-
ner product ⟨a, b⟩ and the estimate, scaled by 1/∥a∥2∥b∥2. Given
that most methods tested (except the uniform sampling methods)
achieve an error guarantee at least as good as Eq. (1), this scaling
roughly ensures that reported errors lie between 0 and 1.

5.1 Estimation Accuracy for Synthetic Data
Synthetic Data. We ran experiments on synthetic data to validate
the performance of our methods in a controlled setting. To contrast
the behavior of linear sketching and weighted sampling methods
like MH-weighted, TS-weighted, and PS-weighted, we generate
vector pairs a, b with varying amounts of overlap, I, between their
non-zero entries (1% to 100%). This allows us to verify our theoreti-
cal results: when |I | is large, we expect linear sketching and sam-
pling to perform similarly since the linear sketching error bound of
𝜖 ∥a∥2∥b∥2 is closer to our bound of 𝜖 ·max(∥a∥2∥bI ∥2, ∥a∥2∥bI ∥2).
When |I | is small, we expect a bigger difference.

We generate 100 pairs of synthetic vectors, each with 100,000
entries, 20,000 of which are non-zero. The locations of non-zero
entries are randomly selected with a specific overlap I, and their
values are uniformly drawn from the interval [−1, 1]. Then, 2%
of entries are chosen randomly as outliers. We include outliers to
differentiate the performance of weighted sampling methods from
their uniform counterparts (MH, TS-uniform and PS-uniform). If
all entries have similar magnitude, weighted and uniform sampling
are essentially the same. Outliers are chosen to be uniform random
numbers between 0 and 10, which are fairly moderate values. For
datasets with even larger outliers, we expect an even more pro-
nounced difference between weighted and unweighted sampling.
5.1.1 Inner Product Estimation. Figure 3 shows the scaled average
difference between the actual and estimated inner product for the
different techniques. The plot is consistent with our theoretical find-
ings: TS-weighted and PS-weighted are more accurate than all other
methods for all levels of overlap. They consistently outperform the
prior state-of-the-art sampling sketch, MH-weighted. For very low

2192



500 1000 1500 2000
Storage Size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Sc
al

ed
 A

ve
ra

ge
 D

iff
er

en
ce

(a) 1% overlap

500 1000 1500 2000
Storage Size

0.00

0.02

0.04

0.06

0.08

Sc
al

ed
 A

ve
ra

ge
 D

iff
er

en
ce

(b) 10% overlap

500 1000 1500 2000
Storage Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sc
al

ed
 A

ve
ra

ge
 D

iff
er

en
ce

(c) 50% overlap

500 1000 1500 2000
Storage Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Sc
al

ed
 A

ve
ra

ge
 D

iff
er

en
ce

(d) 100% overlap

Figure 3: Inner product estimation for real-valued synthetic
data. The lines for PS-uniform and TS-uniform overlap, as
do the lines for our PS-weighted and TS-weighted methods.
As predicted by our theoretical results, PS-weighted and TS-
weighted consistently outperform all other baselines.

overlap, even unweighted sampling methods (MH, TS-uniform, and
PS-uniform) outperform linear sketches (JL, CS), but this advantage
decreases as overlap increases. Note that when overlap is above 50%,
the performance of linear sketching is comparable to MH-weighted.
However, our proposed methods, TS-weighted and PS-weighted,
continue to outperform linear sketching, even in this regime.

5.1.2 Binary Inner Product Estimation. We also evaluate inner prod-
uct estimation for binary {0, 1} vectors, which can be applied to
problems like join size estimation for tables with unique keys [24]
and set intersection estimation. Set intersection has been studied
e.g., for applications like document similarity estimation [8, 44, 49].
We use the same synthetic data as before, except that all non-zero
entries are set to 1. Results are presented in Figure 4. Weighted
sampling methods (WMH, TS-weighted, and PS-weighted) are not
included because they are exactly equivalent to the unweighted
methods for binary vectors. All of the sampling methods clearly
outperform linear sketching, and the gap is most significant when
the overlap is small, as predicted by our theoretical results.
5.1.3 Join-Correlation Estimation. As discussed in Section 4, post-
join correlation estimation can be cast as an inner product estima-
tion problem involving three vectors derived from a data column,
which we denote a, a2, and 1a. We do not explicitly construct syn-
thetic database columns but instead generate vectors a and b as
before, and derive a2, 1a, b2, and 1b based on them. We set the
overlap between vector pairs to 10% and control the correlation be-
tween the vectors (which are generated randomly) using a standard
regression-based method for adjusting correlation [36]. For the lin-
ear sketching methods, we split the storage size evenly among the
sketches for all three vectors and estimate correlation as discussed
in Section 4. For the uniform sampling methods (MH, TS-uniform,
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Figure 4: Inner product estimation for synthetic binary data.
Weighted sampling methods are excluded since they are
equivalent to their unweighted counterparts for binary vec-
tors. Our PS-uniform and TS-uniform methods outperform
both linear sketches and MH for computing inner products.

and PS-uniform), we instead follow the approach from [52], com-
puting a single sketch for each of a and b and then estimating the
empirical correlation of the sampled entries. For TS-weighted and
PS-weighted, we use our new method described in Section 4.

As Figure 6 shows, MH, TS-uniform, and PS-uniform perform
well despite the lack of weighted sampling. This is consistent with
observations in prior work [52]. Even without weighting, these
sketches benefit from the advantage of data sparsity. Nonetheless,
our TS-weighted and PS-weighted outperform all other approaches
in terms of accuracy vs. sketch size. We use the optimized variants
of these methods discussed in Section 4.
5.1.4 Comparison to End-Biased Sampling. As mentioned, we also
considered adding End-Biased Sampling [33] as a baseline. This
method is equivalent to Threshold Sampling, but samples vector en-
tries with probability proportional to their magnitude, normalized
by the vector ℓ1 norm. We refer to this as ℓ1 sampling to high-
light the difference between our methods, which sample based on
squared magnitude normalized by the ℓ2 norm. A variant of Priority
Sampling can also be implemented using ℓ1 sampling. We found
that End-Biased Sampling performed similarly, but never signifi-
cantly better than, Threshold Sampling. This is shown in Figure 5,
which uses the same experimental setting as Figure 3.

5.2 Runtime Performance
As discussed in Section 1, it is also important to consider the time
required to compute inner product sketches. Threshold and Priority
Sampling compute a sketch of size𝑚 in time𝑂 (𝑁 ) and𝑂 (𝑁 log𝑚),
respectively, for a vector with 𝑁 non-zero entries, matching the
complexity of the fastest methods like CountSketch, and improving
on the𝑂 (𝑁𝑚) complexity of WMH [6]. To see how this theoretical

2193



500 1000 1500 2000
Storage Size

-0.00

0.00

0.00

0.00

0.01

0.01

Sc
al

ed
 A

ve
ra

ge
 D

iff
er

en
ce

(a) 1% overlap

500 1000 1500 2000
Storage Size

0.00

0.01

0.02

0.03

Sc
al

ed
 A

ve
ra

ge
 D

iff
er

en
ce

(b) 10% overlap

500 1000 1500 2000
Storage Size

0.00

0.02

0.04

0.06

0.08

Sc
al

ed
 A

ve
ra

ge
 D

iff
er

en
ce

(c) 50% overlap

500 1000 1500 2000
Storage Size

0.00

0.02

0.04

0.06

0.08

0.10

Sc
al

ed
 A

ve
ra

ge
 D

iff
er

en
ce

(d) 100% overlap

Figure 5: Comparison of End-Biased Sampling (TS-1norm)
and its Priority Sampling counterpart (PS-1norm) against
our TS-weighted and PS-weighted methods.
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Figure 6: Join-Correlation estimation for synthetic data. The
lines for PS-weighted and TS-weighted overlap, as do the
lines for our PS-uniform and TS-uniform methods, which
outperform all other baselines.
improvement translates to practice, we assess the run-time effi-
ciency of these methods using high-dimensional synthetic vectors
with 250,000 entries, 50,000 of which are non-zero. As above, non-
zero entries are random values in [−1, 1], except 10% are chosen as
outliers. However, for all methods considered, the precise values of
entries should have little to no impact on run-time.

In addition to our standard baselines, to evaluate runtime, we con-
sidered more efficient implementations of theWMH algorithm from
[6]. That paper uses a sampling method studied in [46] and [37] that
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Figure 7: Sketch construction time. We omit MH-weighted
since its slow time would make it difficult to see the other
lines. We see a clear linear dependence on the sketch size
for JL and MH, and a milder dependence for DartMH. The
run-time of CountSketch, Threshold Sampling, and Priority
Sampling does not noticeably scale with the sketch size.

1) requires 𝑂 (𝑁𝑚) hash evaluations, and 2) requires an expensive
discretization step. Several papers attempt to eliminate these limi-
tations [31, 54]. We implement a recent, improved method called
DartMinHash (DartMH) from [15], which runs in 𝑂 (𝑁 +𝑚 log𝑚).
Details on the method are discussed in the extended version [26].

The times required by different methods to create sketches of
varying sizes are shown in Fig. 7. As expected, both our weighted
and unweighted Threshold and Priority Sampling methods are
significantly faster than the 𝑂 (𝑁𝑚) time methods like WMH, un-
weighted MinHash (MH) and Johnson-Lindenstrauss (JL). With
an average runtime of .06 seconds across all sketch sizes, Priority
Sampling is competitive with the less accurate CountSketch, whose
average runtime is .05 seconds. Threshold Sampling was slightly
slower, with an average time of .21 seconds. While this method
has better asymptotic complexity than Priority Sampling (since
there is no need to sort ranks), its slower empirical performance is
due to the algorithm used to adaptively adjust the expected sketch
size to exactly equal𝑚 (discussed in Section 2). However, we em-
phasize that our results are primarily meant to illustrate coarse
differences in runtime. Evaluating small differences between Count-
Sketch, Priority Sampling, and Threshold Sampling would require
more careful implementation in a low-level language, an effort we
leave to future work. In any case, all algorithms offer extremely
good performance, with no dependence on the size of the sketch.

The WMH method from [6] is not competitive with any of the
other methods, requiring 43 seconds to produce a sketch of size
1000, and 213 seconds to produce a sketch of size 5000. As such,
it was omitted from Fig. 7. DartMH succeeds in speeding up the
method, but even this optimized algorithm is between 20x and 60x
more expensive than our Priority Sampling method.

Finally, for completeness, we evaluated the estimation time for
all sketches. As expected there are no significant differences, since
the estimation procedure for both sampling and linear sketches
amounts to a simple sum over the entries in the sketch. For sketches
of size 5000, estimation times ranged between 0.014ms and 0.052ms.
5.3 Estimation Accuracy for Real-World Data
In addition to synthetic data, we carry out experiments on real-
world datasets for practical applications. We use World Bank Group
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Figure 8: Join-correlation Estimation on World Bank data.
The best sampling-based sketch (our PS-weighted method)
captures correlations significantly more accurately than the
best linear sketching method we tested (CS).

Finances data [58] to assess sketching methods for inner product
and join-correlation estimation. We also evaluate the performance
of Threshold and Priority Sampling for text similarity estimation
on the 20 Newsgroups dataset [47], and for join-size estimation on
the World Bank, Twitter [41], and TPC-H datasets [60].
5.3.1 World Bank Finances Data. This collection consists of 56
tables [58], from which we randomly sampled 3,000 column pairs
using the following approach (adapted from [52]). A column pair is
represented as (⟨𝐾𝐴,𝑉𝐴⟩, ⟨𝐾𝐵,𝑉𝐵⟩), where 𝐾𝐴 and 𝐾𝐵 are join keys
with temporal data, and 𝑉𝐴 and 𝑉𝐵 are columns with numerical
values from tables 𝐴 and 𝐵. Since there can be repeated keys in 𝐾𝐴
and 𝐾𝐵 , we pre-aggregate the values in 𝑉𝐴 and 𝑉𝐵 associated with
repeated keys into a single value by summing them. This ensures
that each key is associated with a single vector index
Inner Product Estimation.We first evaluate Threshold and Prior-
ity Sampling on the basic task of computing inner products between
the data columns. We normalize all columns to have unit Euclidean
norm, which ensures the inner products have a consistent scale
(and are upper bounded by 1). Then we construct sketches of size
400 for all methods, which are used to estimate inner products.
Table 2 shows the inner product estimation results ranked by the
average error over all pairs of columns (a single trial each). We
also include the 𝑅2 score, which measures the goodness of fit of
the estimated inner products to the actual inner products. The best
methods are our TS-weighted and PS-weighted, followed by WMH
and JL, which have average error roughly 3x larger. These results
underscore the effectiveness of the weighted sampling methods.
Join-Correlation Estimation.We also evaluate Threshold and Pri-
ority Sampling for join-correlation using the estimators described
in Section 4. We consider the same vectors used for evaluating
inner products, and again use sketches of size 400. Table 2 shows
the average error and 𝑅2 score for all methods. PS-weighted and TS-
weighted have the lowest average errors and PS-weighted has the
highest 𝑅2 score. They outperform the KMV-based sketch from [52],
which is the current state-of-the-art method for join-correlation. In
the table we refer to this method as PS-uniform since it is identical
to Priority Sampling with uniform weights. Figure 8 shows scatter
plots of correlation estimates for our PS-weighted method (the best
sampling-based method) and CS (the best linear sketching method).
We note that there are a large number of points around zero; this is
expected since many of the datasets are not correlated.
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(b) Documents > 500 words

Figure 9: Average error for text similarity estimation us-
ing the 20 Newsgroups data. The lines for PS-weighted, PS-
uniform, TS-weighted, and TS-uniform overlap in (a), as do
the lines for PS-weighted andTS-weighted in (b). PS-weighted
and TS-weighted outperform all baselines for documents
with more than 500 words.

Join Size Estimation. Finally, we evaluate our methods on the task
of join size estimation using the sameWorld Bank data, but without
aggregating keys. We use the standard reduction between join size
estimation and inner product computation with vectors containing
key frequencies [22]. Results are presented in Table 2. Since key
frequencies vary, our weighted sampling methods, TS-weighted
and PS-weighted, produce more accurate results. Linear sketching
methods like CountSketch and JL perform worst.
5.3.2 20 Newsgroups Dataset. We also assess the effectiveness of
Threshold and Priority Sampling for estimating document similarity
using the 20 Newsgroups Dataset [47]. We generate a feature vector
for each document that includes both unigrams (single words) and
bigrams (pairs of words). We use standard TF-IDF weights to scale
the entries of the vector [51] and then measure similarity using the
cosine similarity metric, which is equivalent to the inner product
when the vectors are normalized to have unit norm.

We sample 200,000 document pairs from the dataset and plot
average error. As Figure 9a shows, the linear sketching methods (JL
and CountSketch) perform worst. Threshold and Priority Sampling
obtain the best accuracy for all sketch sizes, although the difference
between the unweighted and weighted methods is negligible. As
shown in Figure 9b, this difference becomes more pronounced when
only considering documents with more than 500 words. For longer
documents, our TS-weighted and PS-weighted perform notably
better than their uniform-sampling counterparts. The larger perfor-
mance gap could be due to more variability in TF-IDF weights in
longer documents (which benefits the weighted sampling methods).

5.3.3 TPC-H Benchmark and Twitter Data. Finally, we evaluate
Threshold and Priority Sampling on two join size estimation tasks.
The first is the standard TPC-H benchmark [60]. TPC-H data was
generated with a scale factor of 1 and skew parameter 𝑧 = 2. The
join was performed between LINEITEM and PARTSUPP tables on
the key SUPPKEY. Average relative error for 200 trials are pre-
sented in Figure 10a. For moderate sketch sizes (up to ∼ 600) our
sampling based methods outperform linear sketching, and they al-
ways outperform MH and WMH. However, there is little difference
between the weighted and unweighted sampling versions of our
methods. We believe this is due to the fact that, even with skew, the
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Table 2: Inner product, correlation, and join size estimations for the World Bank data, ranked by average error. Our new
TS-weighted and PS-weighted methods (underlined) have both the least average error and the best 𝑅2 score for all three
problems, although differences are more pronounced for inner product and correlation estimation.

Inner Product Join-Correlation Join Size

Method Average Error 𝑅2 Score Method Average Error 𝑅2 Score Method Average Error 𝑅2 Score

TS-weighted 0.012 0.992 PS-weighted 0.079 0.828 TS-weighted 0.016 0.940
PS-weighted 0.012 0.991 TS-weighted 0.095 0.712 PS-weighted 0.021 0.867

CS 0.027 0.991 CS 0.112 0.798 TS-uniform 0.023 0.877
WMH 0.030 0.985 PS-uniform 0.124 0.613 PS-uniform 0.025 0.858
JL 0.033 0.988 TS-uniform 0.130 0.621 MH 0.030 0.432

TS-uniform 0.099 0.069 MH 0.142 0.448 WMH 0.030 0.833
PS-uniform 0.121 0.083 WMH 0.197 0.322 CS 0.039 0.775

MH 0.129 -0.275 JL 0.246 0.216 JL 0.040 0.775
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(b) Twitter Self-Join

Figure 10: Join size estimation for the Twitter and TPC-H
datasets. The lines for PS-weighted and TS-weighted over-
lap, as do the lines for PS-uniform and TS-uniform. Our
PS-weighted and TS-weighted methods are most reliable, per-
forming well in both experiments, the second of which in-
volves two tables with highly non-uniform key distributions.

TPC-H benchmark only has a non-uniform key distribution in the
LINEITEM table. The key distribution of the larger PARTSUPP table
remains uniform. Difference between the methods is much more
pronounced in our second experiment on estimating join sizes using
the Twitter dataset from [41]. This data consists of a list of tuples
(user, follower), representing the follower-followee relationship. We
sampled 14,000,000 (user, follower) tuples from the dataset, which
include approximately 420,000 users. Following the example in [12],
we perform a self-join of the table to identify all the 2-hop "follows"
relationships. Results are shown in Figure 10b. For all sketch sizes,
TS-weighted and PS-weighted have the smallest errors, followed by
the linear sketching methods, and then by WMH. The unweighted
sampling methods (MH, TS-uniform, PS-uniform) perform poorly,
since in this dataset there is a lot of variability in key frequencies.

6 ADDITIONAL RELATEDWORK
As discussed in Section 1, we are only aware of two previous papers
that directly address the inner product estimation problem using
sampling-based sketches: the WMHwork of [6] and the End-Biased
Sampling work of [33]. Some follow-up work on End-Biased Sam-
pling, such as Correlated Sampling [57] and Two-level Sampling
[12], can also be used to estimate inner products. However, the goal
of these works is to handle the more general problem of approxi-
mating data operations (such as SUM, COUNT, MEAN) with SQL
predicates (WHERE clauses). In our setting, the methods from [57]

and [12] degenerate to uniform sampling methods (i.e., KMV or
Threshold Sampling with uniform weights), as they do not take into
account the vector entries (i.e., a𝑖 and b𝑖 ) when selecting samples.

We also note that inner product estimation can be seen as a
special case of the predicate aggregation problem studied in [20].
While that work gives unbiased estimators based on Threshold and
Priority Sampling, inner product estimation is not considered specif-
ically, so there is no guidance on how probabilities should be chosen
or variance analyzed. Follow-up work in [16] can be used to analyze
variance given a choice of probabilities. However, in our setting, the
work leads to loose bounds that depend on max𝑖 |a𝑖b𝑖 |/min(a2

𝑖
, b2
𝑖
).

This value can be arbitrarily large in comparison to ∥a∥2∥b∥2, so
unlike our analysis, this prior work cannot be used to beat the linear
sketching guarantee of (1) for inner product estimation.

Beyond the problem of inner product estimation, our work is
more broadly related to the large body of work on coordinated
random sampling methods, which use shared randomness (e.g., a
shared hash function or random permutation) to collect samples of
two vectors a and b. Threshold and Priority Sampling are both ex-
amples of coordinated sampling, as is MinHash and the 𝑘-minimum
values (KMV) sketch. However, there are other methods, including
the coordinated random sampling method [18], conditional random
sampling [43], and coordinated variants of PPSWOR sampling [17].

7 CONCLUSION
We propose two simple and efficient sampling-based sketches for
inner product estimation. We prove theoretical accuracy guarantees
for both methods that are stronger than the guarantees of popular
linear sketching methods, and that match the best-known guaran-
tees of the state-of-the-art hashing-based WMH sketch [6]. At the
same time, our methods run in near-linear time, so are much faster
than WMH. They also perform better in our empirical evaluation.
In particular, our fixed-size Priority Sampling method provides
a new state-of-the-art for inner product estimation and related
applications, including join-correlation estimation.
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