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ABSTRACT
With the fast growth of parameter size, it becomes increasingly chal-
lenging to deploy large generative models as they typically require
large GPU memory consumption and massive computation. Un-
structured model pruning has been a common approach to reduce
both GPU memory footprint and the overall computation while
retaining good model accuracy. However, the existing solutions do
not provide an efficient support for handling unstructured sparsity
on modern GPUs, especially on the highly-structured tensor core
hardware. Therefore, we propose Flash-LLM for enabling low-cost
and highly efficient large generative model inference with the so-
phisticated support of unstructured sparsity on high-performance
but highly restrictive tensor cores. Based on our key observation
that the main bottleneck of generative model inference is the sev-
eral skinny matrix multiplications for which tensor cores would be
significantly under-utilized due to low computational intensity, we
propose a general Load-as-Sparse and Compute-as-Dense method-
ology for unstructured sparse matrix multiplication (SpMM). The
basic insight is to address the significant memory bandwidth bottle-
neck while tolerating redundant computations that are not critical
for end-to-end performance on tensor cores. Based on this, we de-
sign an effective software framework for tensor core based unstruc-
tured SpMM, leveraging on-chip resources for efficient sparse data
extraction and computation/memory-access overlapping. Extensive
evaluations demonstrate that (1) at SpMM kernel level, Flash-LLM
significantly outperforms the state-of-the-art library, i.e., Sputnik
and SparTA by an average of 2.9× and 1.5×, respectively.(2) At end-
to-end framework level on OPT-30B/66B/175B models, for tokens
per GPU-second, Flash-LLM achieves up to 3.8× and 3.6× improve-
ment over DeepSpeed and FasterTransformer, respectively, with
significantly lower inference cost.
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1 INTRODUCTION
Generative models have demonstrated their effectiveness across
a wide range of language and data management tasks [3, 34, 45,
52, 53]. However, with the rapid growth of the parameter size (e.g.
GPT-2 [45] 1.5 billion, GPT-3 [3] 175 billion, and Megatron-Turing
NLG [50] 530 billion), it becomes increasingly challenging to effi-
ciently deploy these models. On one hand, their weights could be
too large to be placed on GPUs. For example, GPT-3 model requires
350GB memory to store only the parameters with FP16 data type,
whereas the NVIDIA A100 GPU [36] only has up to 80 GB memory.
On the other hand, these models also cause high inference latency
due to the massive amounts of computation and memory access.

There are three basic characteristics for practical model infer-
ence: accuracy, efficiency (i.e., latency and throughput), and cost
(i.e., how much hardware resource it consumes). The common ap-
proach to deploy large models by partitioning the model weights
onto multiple devices [49, 63] could suffer from high cost and low
efficiency. On one hand, for data-center production scenarios, using
multiple GPUs for a single inference of a single model leads to a low
ROI (return on investment) and can be too costly in practice. On the
other hand, this conventional approach requires extra cross-device
communication, further exacerbating the efficiency problem. GPU
memory offloading and swapping is another approach to support
large weights given limited GPU memory [1, 48]. However, the of-
floading and swapping approaches usually result in a long inference
latency and thus can be impractical for online inference services.
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The weight pruning methods [16] (sparsification) have been
demonstrated to be effective in reducing memory usage and compu-
tations for model inference while retaining good accuracy through
removing a portion of less salient connections in neural networks.
In practice, unstructured pruning typically retains better accuracy
than more restrictive structured pruning [8, 12, 14, 16, 28, 51, 54].
However, it is difficult to support unstructured sparsity on mod-
ern GPU architectures efficiently. Thus, this design direction has
been largely neglected so far since a practical speedup is tough
to achieve. For example, the state-of-the-art unstructured SpMM
implementations (e.g. cuSPARSE [40], Sputnik [10]) can not even
outperform their dense counterpart (cuBLAS [39]) until the model
sparsity is higher than 98% and 86%, respectively.

To address this critical issue that bottlenecks LLM inference
performance, we propose Flash-LLM, an efficient GPU library to
support unstructured sparsity on tensor cores for large generative
model inference. With unstructured sparsity, Flash-LLM addresses
the memory footprint problem which leads to lower costs while
retaining high model accuracy. By leveraging tensor cores’ high
peak performance, Flash-LLM achieves lower latency for unstruc-
tured SpMM compared to the existing sparse/dense MatMul (Matrix
Multiply) solutions. The high-level design insight of Flash-LLM is
the Load-as-Sparse and Compute-as-Dense strategy. We observe that
the key MatMuls in generative model inference are very skinny.
Furthermore, the performance of these skinny MatMuls is bound by
global memory bandwidth rather than the computation capability
of tensor cores. Thus, we propose to support unstructured sparsity
on tensor cores by leveraging sparse memory load to reduce global
memory access while effectively utilizing the dense tensor cores
for high-performance computations (Section 3.2).

Given the insight above, it is still challenging to actually de-
sign and implement this high-level Load-as-Sparse and Compute-
as-Dense approach. First, it requires a well-designed data format
for efficient sparse data storage and extraction. The sparse data
extraction is also non-trivial, which requires a sophisticated design
to load and extract sparse data with minimal access cost in the
hierarchical GPU memory given limited on-chip memory resources.
It also introduces new challenges in designing the MatMul com-
putation pipeline beyond conventional dense MatMul strategies.
In Flash-LLM, we propose a new sparse format called Tiled-CSL
to support the tile-by-tile SpMM execution with tensor cores (Sec-
tion 4.3.1). Based on Tiled-CSL, we then design the sparse-to-dense
transformation approach carefully by using the distributed registers
and shared memory as buffers for sparse data extraction (Section
4.1). Then, an efficient two-level overlapping strategy of memory
and computation is introduced to coordinate the sparse-to-dense
transformation on weights, the dense feature map data loading, and
the tensor core operations with a full software pipeline (Section
4.2). Finally, we propose an ahead-of-time sparse data reordering
approach to reduce shared memory bank conflicts (Section 4.3.3).
In summary, this paper makes the following contributions:
• We propose Flash-LLM, the first cost-effective and highly effi-

cient software framework for large generative model inference,
opening up the scope of enabling unstructured sparsity explo-
ration on high-performance tensor cores.

• We propose a general Load-as-Sparse and Compute-as-Dense ap-
proach to reduce memory footprint and increase the efficiency of
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Figure 1: (a) Generative model inference; (b) KV-Cache.

the key skinny MatMuls by leveraging the insight of addressing
the major memory bandwidth bottleneck in LLM inference.

• We propose an efficient software pipeline design to enable Flash-
LLM by effectively leveraging our new sparse format, the sparse-
to-dense transformation, and a two-level overlapping strategy.

• Flash-LLM is implemented and integrated into FasterTransformer
for ease-of-use. Extensive evaluation results have shown that
(1) at the kernel level, Flash-LLM outperforms the state-of-the-
art solutions Sputnik and SparTA by an average of 2.9× and
1.5×, respectively. (2) At end-to-end framework level on OPT-
30B/66B/175B models, for tokens per GPU-second, Flash-LLM
achieves up to 3.8× and 3.6× improvement over DeepSpeed and
FasterTransformer, with significantly lower inference cost.

2 BACKGROUND
2.1 Generative Model Inference
Inference Procedure of Modern Generative Models.Modern
generative models’ inference is typically conducted in two phases:
prompt processing and token generation. As illustrated in Figure 1a,
the generative model first performs prompt processing to process
user input sequences (‘I love dogs’) and generates the first new
token (‘and’). Then the model turns into the auto-regressive token
generation phase, where the single output token generated in step i-1
will be taken as input to generate the new token in step i iteratively.

In the prompt processing phase, multiple tokens within the input
sequence will be processed at the same time, resulting in input
tensors with shape [𝐵, 𝐿, 𝐻 ] (Figure 1a). 𝐵, 𝐿, and 𝐻 indicate the
inference batch size, prompt sequence length, and the model hidden
dimension, respectively. Whereas in the token generation phase,
only a single token will be taken as input thus forming the input
tensors in the shape of [𝐵, 1, 𝐻 ]. To prevent re-computations on KV
vectors1 , a pre-allocated memory buffer (a.k.a. KV-Cache shown in
Figure 1b) is usually used during token generation. At each step, a
new KV pair is generated (in yellow) and written to the KV-Cache.
Inference PerformanceHotspot of LLMs. Figure 2 illustrates the
typical decoder architecture of a single layer in modern attention-
based generative models. There are four major MatMuls: QKV Pro-
jection, Output Projection, MLP1, and MLP2. Unlike encoder-centric
non-generative language models (e.g., BERT [22]), generative model
1K and V vectors of previous tokens are needed due to attention [55] mechanism.
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Figure 2: Decoder Layer Architecture. The H here means the
hidden dimension aka. model dimension, which equals 12K
for GPT-3. The B refers to the inference batch size which is
typically small for real-time inference, e.g. 8, 16, or 32.

inference’s performance is heavily bounded by these four MatMuls.
According to our experiments on OPT-66B [61] inference, these
four MatMuls are the top contributors to the end-to-end inference
latency (76.8%) and the overall GPU memory consumption (83.8%).

2.2 Matrix Multiply in LLM Inference
SkinnyMatrixMultiply.TheMatrixMultiply (MatMuls) in Figure
2 can be formalized as 𝐶 = 𝐴 × 𝐵, where 𝐴 is the weight matrix
of shape [𝑀,𝐾] and 𝐵 is the feature map matrix of shape [𝐾, 𝑁 ].
In this paper, we call these MatMuls "Skinny MatMuls", as their 𝑁
dimensions are much smaller than the𝑀 and 𝐾 dimensions.2
Differences betweenTensor/SIMT cores. SIMT cores are general-
purpose execution units that handle a wide range of instructions for
parallel execution. In contrast, tensor cores [36, 38] are specialized
units, which provide significant acceleration for dense MatMuls.
Conventional techniques leveraging SIMT cores for sparse MatMuls
can not be directly applied to tensor cores as SIMT and tensor cores
work at very different granularity. SIMT cores work on the granu-
larity of scalar values. The per-element granularity makes it easy to
do computation skipping at the element level for SpMM. However,
tensor cores work at a much more coarse-grained granularity than
SIMT cores, e.g. performing a MatMul between two matrices of
shape 16 × 16 and 16 × 8 in a single instruction. Thus, tensor cores
do not allow skipping arbitrary element-level computations.

3 OPPORTUNITIES AND INSIGHTS
3.1 Unstructured Sparsity on Tensor Cores
There are two typical types of pruning principles. The most flexible
pruning strategy (unstructured sparsity) is to remove less salient ele-
ments without considering the distribution of the pruned elements
in the weight matrix. Taking magnitude pruning for example, we
rank all the elements in the matrix based on their absolute values
and then remove the weights with the smallest magnitude. Another
strategy (structured sparsity) is to prune the less salient weights,
but at the same time, enforce some kind of structural criteria. For

2For these MatMuls, 𝑀 and 𝐾 are integer multiples of hidden size while 𝑁 equals
inference batch size (typically orders of magnitude smaller than hidden size).
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example, the weight matrices can be split into non-overlapping 8×1
vectors [4, 25] or 32 × 32 blocks [13], and then each vector/block
is either kept or removed during pruning. In short, the major dif-
ference is that extra constraints must be satisfied for structured
pruning compared to unstructured pruning. Even though structured
sparsity is friendly for hardware acceleration, it suffers from more
severe model accuracy degradation [8, 12, 14, 16, 51, 54] as it limits
the freedom of deciding which element to prune. As shown in [28],
compared to structured sparsity which has a 5% accuracy drop,
unstructured sparsity only results in a 1% accuracy drop. In our
experiments, model accuracy could be greatly preserved through
finetuning-based unstructured pruning [15, 29] at 80% sparsity (e.g.,
the accuracy only decreases from 85.55% to 84.11% for OPT-30B).

However, the conventional techniques for supporting random
unstructured sparsity in SpMM execution are not effective since
they focus on leveraging SIMT cores without a sophisticated way
of utilizing high-performance tensor cores. Figure 3 shows the
performance comparison of different techniques for SpMM on an
OPT-66B inference task with batch size 8. Note that the standard
pruning for LLM inference typically requires a moderate level of
sparsity (e.g., 80%) to preserve model quality while reducing mem-
ory footprint. CuSparse [40], the NVIDIA SpMM library, shows
poor performance as it is mainly designed for scientific applica-
tions where matrices are extremely (99%+) sparse. Sputnik [10], the
state-of-the-art SIMT-core-centric design for unstructured SpMM
on deep learning tasks still cannot outperform cuBLAS(dense) until
a high sparsity is reached.

We observe that existing sparse MatMul kernels are usually
slower than their dense counterpart (cuBLAS[39]). The reason is
that cuBLAS have leveraged the tensor cores, while sparse MatMul
kernels are leveraging SIMT cores in state-of-the-art solutions. Note
that A100 GPU [36] can provide 16× higher computational through-
put using tensor cores than using SIMT cores for mixed-precision
dense MatMuls. Although Sputnik can effectively leverage SIMT
cores for unstructured sparsity processing, its performance is still
limited by the peak performance of SIMT cores.

Due to the clear peak performance discrepancy between SIMT
and tensor cores, there is a strong demand for high-performance
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unstructured SpMM support for LLM inference. However, it is non-
trivial to enable high-performance unstructured SpMM onto the highly
restrictive tensor cores as tensor cores do not allow skipping arbitrary
scalar-level computations (described in Section 2.2). Previous SpMM
works are based either on highly structured sparse matrices [4,
13, 18] (not random unstructured sparsity), or for extremely high
sparsity ratio [57] (i.e., >95%), rather than unstructured sparsity
at a moderate sparsity ratio range for high accuracy. SparTA[65]
leverages sparse tensor cores [32] for major computations. However,
it cannot effectively exploit high sparsity as sparse tensor cores
only support 50% sparsity (i.e., 2:4 sparsity). As shown in Figure 3,
the performance of SparTA is lower than Flash-LLM especially as
the sparsity increases.

3.2 Design Opportunities
Given that tensor cores can only support highly structured compu-
tations, it is not practical to directly map the unstructured sparse
computations to tensor cores. The unique design opportunity here
is that we can still achieve significant speedups without skipping any
computations compared to dense MatMuls, according to the work-
load characteristics of modern LLMs. The reason is that MatMuls in
modern LLMs inference are skinny and the execution of skinnyMat-
Muls is limited by off-chip memory bandwidth instead of arithmetic
throughput of tensor cores. The benefit of not skipping computa-
tion related to the pruned weights is that the computation will
be preserved as dense and structured. Based on this insight, we
proposed the Load-as-Sparse Compute-as-Dense (LSCD) ap-
proach. Specifically, weight matrices are loaded from global mem-
ory in sparse format with reduced size to mitigate the bandwidth
bottleneck. The corresponding dense format of weights is then
reconstructed in runtime before being consumed by tensor cores
for dense computations. We describe how off-chip memory transac-
tions become the performance bottleneck in Section 3.2.1, and how
much improvement can be achieved with LSCD in Section 3.2.2.

3.2.1 Performance Bottleneck of Skinny MatMuls in LLM Inference.
We analyze the performance bottleneck of skinny MatMuls execu-
tion starting from dense MatMul workloads in LLMs. According to
our profiling results for OPT-66B [61], the average utilization of ten-
sor cores is around 5.0%, 10.1%, 19.9%, and 39.7% under typical batch
sizes of 8,16,32 and 64 as shown in Figure 4, while the bandwidth
of global memory is already fully saturated. The underlying cause
for this is that the compute intensity (i.e., FLOP/Byte) of skinny
MatMul is very low. For a MatMul described in Section 2.2, the total
operations conducted are 2𝑀𝑁𝐾 floating-point operations (FLOP),
and the corresponding data read is 2(𝑀𝐾 + 𝐾𝑁 ) bytes with FP16
data type. Thus, the computational intensity (𝐶𝐼 ) is:

𝐶𝐼 =
𝑀 × 𝑁
𝑀 + 𝑁 (1)

According to Equation 1, it is easy to demonstrate that the overall
𝐶𝐼 of a MatMul can be easily restricted by either a small M or N
dimension. For instance, for a skinny MatMul where 𝑁 is 16,𝐶𝐼 will
have a strict upper bound of 16 no matter how big the𝑀 dimension
is. Note that in generative LLM models, the 𝑁 dimension equals
the inference batch size which is usually very small in production
environments. Thus, the𝐶𝐼 is strongly bounded by the𝑁 dimension
in real-time LLM inference. According to the roofline model [58],
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the performance of a kernel with low computational intensity will
be easily bounded by memory bandwidth.

3.2.2 Load as Sparse, Compute as Dense. Given that the bottleneck
of skinny MatMul comes from memory access/memory bandwidth
rather than arithmetic computation, we propose the basic idea of
Load-as-Sparse and Compute-as-Dense here which leverages the
performance boost from reduced memory access while enabling
the efficient use of tensor cores for unstructured sparsity (refer to
Section 4 for details). Under this idea, given the sparsity ratio 𝛽 , the
computational intensity can be improved to:

𝐶𝐼𝑆𝑝𝑎𝑟𝑠𝑒𝐿𝑜𝑎𝑑
3 =

𝑀 × 𝑁
𝑀 × (1 − 𝛽) + 𝑁 (2)

Figure 5 shows the CIs and their corresponding achievable tensor
core performance of a typical MatMul (𝑀 : 48k, 𝑁 : BS, 𝐾 : 12k) in
OPT-175B model inference with different batch sizes. According to
the figure, MatMuls in generative model inference with different
batch sizes all face memory wall issues. As a result, the dense
MatMuls kernels can only achieve 5.1%, 10.3%, 20.5%, and 40.1%
peak performance of tensor cores bounded by insufficient global
memory bandwidth. These theoretical values are consistent with
our actual measurements in Figure 4. In theory, with Load-as-Sparse
and Compute-as-Dense approach under 40% sparsity, the tensor
cores utilization can be improved to 8.5%, 17.1%, 34.2%, and 68.2%.
3It’s worth noting that we do not take sparse index overhead into the theoretical
consideration here. In practice, the real CI would be a bit lower than this equation.
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4 DESIGN METHODOLOGY
Flash-LLM leverages both SIMT cores and tensor cores effectively
for efficient unstructured SpMM computation. The flexible SIMT
cores are exploited for Sparse-to-Dense Transformation (i.e., Load-
as-Sparse) while tensor cores are used for compute-intensive tensor
computations (i.e., Compute-as-Dense). We give an overview of
the high-level optimizations of Flash-LLM in Section 4.1. Then we
describe the design of Flash-LLM’s computation pipeline in Section
4.2. We illustrate the novel sparse format and the memory access
techniques in Section 4.3. Finally, we described the end-to-end
inference system enabled by our Flash-LLM in Section 5.

4.1 Design Overview
We use the tiling-based approach for the SpMM computations in
Flash-LLM, shown in Figure 6a. Each thread block (TB) is in charge
of calculating a tile (e.g., the green tile in the shape of𝑀𝑇𝐵 ∗ 𝑁𝑇𝐵 )
in the output matrix 𝐶 . For each iteration, each thread block loads
𝐴𝑇𝑖𝑙𝑒 (shape [𝑀𝑇𝐵, 𝐾𝑇𝐵]) in sparse and 𝐵𝑇𝑖𝑙𝑒 (shape [𝐾𝑇𝐵, 𝑁𝑇𝐵])
in dense from global memory. 𝐴𝑇𝑖𝑙𝑒 is then transformed to dense
format with Sparse-to-Dense Transformation shown in Figure 6b and
stored in shared memory while 𝐵𝑇𝑖𝑙𝑒 is directly stored in shared
memory. Finally, each thread block consumes the dense data in
shared memory and generates the output tile. Figure 6b shows the
overall kernel behavior of Flash-LLM from the microarchitecture
aspect. Shared memory is used as the workspace for Sparse-to-
Dense Transformation, where all threads within the thread block
work together collaboratively to load sparse encoding (SE) 4 of
𝐴𝑇𝑖𝑙𝑒 from global memory and extract them to shared memory
with the dense format. Specifically, the basic idea of Sparse-to-Dense
Transformation is extracting non-zero elements from the sparse
encoding to their corresponding locations in the dense format on
shared memory while other locations are padded with zeros. We
use the distributed registers as the intermediate buffer to store the
sparse encoding before extracting them to shared memory. We do
not use shared memory as this intermediate buffer to avoid the
turn-around shared memory access of the sparse encoding.

4.2 Computation Pipeline Design of Flash-LLM
Given that each thread consumes a large fraction of the overall
registers/shared memory as buffers for tiling, the thread-level par-
allelism (TLP) is inherently low. Thus, it is important to optimize
the instruction-level parallelism. We describe the software pipeline
of Flash-LLM in this section where the memory accesses and tensor
core computations are processed in parallel efficiently.

4.2.1 Two-level Overlapping of Memory and Computation. It re-
quires several stages to load the sparse encoding from the global
memory to shared memory in dense format for each 𝐴𝑇𝑖𝑙𝑒 . Specifi-
cally, it requires loading sparse encoding from global memory to the
distributed registers (gmem2reg stage), resetting the shared mem-
ory buffer with zero (rst_smem stage), and extracting the sparse
encoding from registers to shared memory (extract stage). As for
𝐵𝑇𝑖𝑙𝑒 , which is already in dense format, it can be loaded directly
from global memory to the shared memory buffer (ld_dense stage).

4We refer to the data of 𝐴 in the sparse format as sparse encoding. Each tile of the
weight matrix is encoded into sparse encoding with fewer bytes than the dense format.

Finally, the smem2tc stage loads the 𝐴𝑇𝑖𝑙𝑒 and 𝐵𝑇𝑖𝑙𝑒 from shared
memory to registers for tensor core computations.

As shown in Figure 6c, Flash-LLM exploits a two-level overlap-
ping of the above memory and computation stages for efficient
execution. On one hand, it leverages double-buffering to overlap
off-chip memory loads with tensor core computation, called inter-
iteration overlapping. On the other hand, it overlaps the stages of
off-chip memory load within Sparse-to-Dense transformation for
more efficient memory activities, called intra-iteration overlapping.
The horizontal axis of Figure 6c represents the execution time while
the vertical axis represents the on-chip buffers. It uses two shared
memory buffers for 𝐴𝑇𝑖𝑙𝑒 (corresponds to A1 and A2) and 𝐵𝑇𝑖𝑙𝑒
(corresponds to B1 and B2), and one register buffer reused in differ-
ent iterations (corresponds to SE). Specifically, SE in Iteration-1/3
(SE in Iteration-2/4) and A1 (A2) correspond to the Sparse-to-Dense
transformation process of 𝐴𝑇𝑖𝑙𝑒 on the first (second) set of buffer,
and B1 (B2) corresponds to the data movement of 𝐵𝑇𝑖𝑙𝑒 on the first
(second) set of buffer. As for inter-iteration overlapping, as shown in
Iteration-2 in Figure 6c, while reading from the first set of buffers
(A1 and B1) and executing tensor core computations, Flash-LLM
loads and extracts data from global memory to the second set of
buffers (A2 and B2). As for intra-iteration overlapping, the activ-
ities of A1 and B1 are processed in parallel, and the gmem2reg
and rst_smem stages on 𝐴𝑇𝑖𝑙𝑒 are also processed in parallel. In this
way, the sparse/dense data loading and tensor core operations are
overlapped efficiently.

A critical design for Sparse-to-Dense transformation is explicitly
using registers as data buffers between global memory and shared
memory. In Flash-LLM, the sparse encoding movement from global
memory to shared memory is explicitly split into two stages, i.e.
LDG (loading data from global memory to registers) instructions
during gmem2reg and STS (storing data to shared memory from
registers) instructions during extract as shown in Figure 6c. On one
hand, the split two-stage design helps to increase instruction-level-
parallelism (ILP) to hide high global memory access latency. Note
that each pair of LDG and STS instructions has load-use dependency.
If we do not split the gmem2reg and extract into two stages but
launch each pair of LDG and STS instructions in the adjacent cycles
(e.g. directly storing to shared memory after loading from global
memory) , each GPU thread will execute instructions in the order of
𝐿𝐷𝐺0, 𝑆𝑇𝑆0, 𝐿𝐷𝐺1, 𝑆𝑇𝑆1, ... without effective ILP. By splitting the
two instructions into two stages as in Figure 6c, the execution order
will be 𝐿𝐷𝐺0, 𝐿𝐷𝐺1, ..., 𝑆𝑇𝑆0, 𝑆𝑇𝑆1, ... and results in a high ILP of
global memory load. On the other hand, splitting the datamovement
into gmem2reg and extract enables the overlapping opportunity
between gmem2reg and rst_smem. Note that STS instructions within
extract should not be launched before the completion of rst_smem
stage. Otherwise, the data written by STS instructions might be
overwritten by rst_smem incorrectly. The execution of gmem2reg
and rst_smem can be overlapped once the gmem2reg contains no
sharedmemorywrite (all STS instructions are assigned to the extract
stage), which further increases ILP.

4.2.2 Minimum Range of Synchronizations and Memory Barriers.
Given the complex pipeline in Figure 6c, it requires a set of thread
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Figure 6: Design Overview.

synchronizations and memory barriers to ensure correctness. Flash-
LLM inserts the minimum range of synchronizations and memory
barriers to ensure correctness while keeping the overlapping.

To prevent the data written by extract from being overwritten
incorrectly by rst_smem, Flash-LLM inserts the explicit thread-block
level synchronization between the two stages to ensure that all the
threads have finished their work resetting the A1/A2 buffer in
shared memory, shown as the first blue line in each iteration in
Figure 6c. Meanwhile, it also requires another synchronization to
ensure that all data movements and tensor core operations of the
current iteration are completed before starting the next iteration,
shown as the second blue line in each iteration. Take Iteration-1 as
an example, it must be ensured that all threads have finished writing
the A1 and B1 shared memory buffers before we start Iteration-2,
as the data in A1 and B1 will be used by tensor cores in Iteration-2.
Besides, we have to make sure that all threads have finished reading
the data from the SE buffer for extract in Iteration-1 before letting
the SE buffer be overwritten by the gmem2reg in Iteration-2.

In addition to the synchronizations, it also requires memory bar-
riers after asynchronous copy activities of global-to-shared data
movement. Flash-LLM makes use of the asynchronous copy prim-
itives for the overlapping of data movement and other activities.
Note that the asynchronous copy primitive cp.async, starting from
NVIDIA Ampere GPU [36], allows moving data from global mem-
ory to shared memory in the background asynchronously while
executing other computations in the foreground. Specifically, both
the rst_smem and ld_dense stages use the cp.async primitives. To
enable a fine-grained pipeline execution, Flash-LLM uses different
async-copy barriers for rst_smem and ld_dense stages. As shown
in Figure 6c, the extract stage waits for the completion of only
rst_smem, while the final thread-block barrier of each iteration
waits for the completion of all previous cp.async operations. In this
way, the extract stage could be overlapped with the ld_dense stages.

4.2.3 Overall Implementation. Algorithm 1 shows the implemen-
tations of the pipelined computation in Flash-LLM. In line 3, the
software pipeline will be initialized, preparing the data of 𝐴𝑇𝑖𝑙𝑒
and 𝐵𝑇𝑖𝑙𝑒 on shared memory for the tensor core computations of
the first iteration in the main loop. The main iterations described
in Figure 6c are implemented in lines 7-28. For each iteration, it
issues the instructions for the asynchronous data loading for the

Algorithm 1 Flash-LLM SpMM kernel pseudo code.
1: Inputs: SparseMatrix 𝐴, Matrix 𝐵
2: Output: Matrix 𝐶
3: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 ( ) ;
4: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 𝑠𝑢𝑏𝐴𝑟𝑟𝑎𝑦 (𝐴.𝑜 𝑓 𝑓 𝑠𝑒𝑡 ) ;
5: int 𝑠𝑡𝑎𝑟𝑡𝑝𝑟𝑒𝑓 𝑒𝑡𝑐ℎ = 𝑜 𝑓 𝑓 𝑠𝑒𝑡 [1];
6: int 𝑛𝑛𝑧𝑝𝑟𝑒𝑓 𝑒𝑡𝑐ℎ = 𝑜 𝑓 𝑓 𝑠𝑒𝑡 [2] − 𝑜 𝑓 𝑓 𝑠𝑒𝑡 [1];
7: for int 𝑖𝑑 = 0; 𝑖𝑑 < 𝐾𝐺𝑙𝑜𝑏𝑎𝑙 /𝐾 ; 𝑖𝑑 + + do
8: //Prefetch startIdx and nnz.
9: int 𝑠𝑡𝑎𝑟𝑡 = 𝑠𝑡𝑎𝑟𝑡𝑝𝑟𝑒𝑓 𝑒𝑡𝑐ℎ ;
10: int 𝑛𝑛𝑧 = 𝑛𝑛𝑧𝑝𝑟𝑒𝑓 𝑒𝑡𝑐ℎ ;
11: 𝑠𝑡𝑎𝑟𝑡𝑝𝑟𝑒𝑓 𝑒𝑡𝑐ℎ = 𝑜 𝑓 𝑓 𝑠𝑒𝑡 [𝑖𝑑 + 2];
12: 𝑛𝑛𝑧𝑝𝑟𝑒𝑓 𝑒𝑡𝑐ℎ = 𝑜 𝑓 𝑓 𝑠𝑒𝑡 [𝑖𝑑 + 3] − 𝑜 𝑓 𝑓 𝑠𝑒𝑡 [𝑖𝑑 + 2];
13: //Set pointers for double-buffer.
14: half* 𝑠𝑚𝑒𝑚_𝑤 = 𝑠𝑚𝑒𝑚 + ( (𝑖𝑑 + 1)%2) ∗𝑂𝐹𝐹𝑆𝐸𝑇 ;
15: half* 𝑠𝑚𝑒𝑚_𝑟 = 𝑠𝑚𝑒𝑚 + (𝑖𝑑%2) ∗𝑂𝐹𝐹𝑆𝐸𝑇 ;
16: //Launch Asynchronous Memory Operations.
17: 𝐼𝑛𝑖𝑡𝑆ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚 (𝑠𝑚𝑒𝑚_𝑤 ) ; ⊲ rst_smem
18: 𝑐𝑝_𝑎𝑠𝑦𝑛𝑐_𝑐𝑜𝑚𝑚𝑖𝑡 ( ) ;
19: 𝐶𝑜𝑝𝑦𝐺𝑙𝑜𝑏𝑎𝑙2𝑅𝑒𝑔 (𝐴.𝑛𝑧 + 𝑠𝑡𝑎𝑟𝑡, 𝑛𝑛𝑧 ) ⊲ gmem2reg
20: 𝐶𝑜𝑝𝑦𝐺𝑙𝑜𝑏𝑎𝑙2𝑆ℎ𝑎𝑟𝑒𝑑 (𝑠𝑚𝑒𝑚_𝑤, 𝐵.𝑑𝑎𝑡𝑎) ⊲ ld_dense
21: 𝑐𝑝_𝑎𝑠𝑦𝑛𝑐_𝑐𝑜𝑚𝑚𝑖𝑡 ( ) ;
22: //Math Computations.
23: 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑑_𝑆ℎ𝑎𝑟𝑒𝑑2𝑅𝑒𝑔_𝑇𝑒𝑛𝑠𝑜𝑟𝐶𝑜𝑟𝑒𝑂𝑝𝑠 (𝑠𝑚𝑒𝑚_𝑟 ) ;
24: //barrier: initSharedMem()
25: 𝑐𝑝_𝑎𝑠𝑦𝑛𝑐_𝑤𝑎𝑖𝑡<1>( ) ; __𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ( ) ;
26: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟2𝑆ℎ𝑎𝑟𝑒𝑑 (𝑠𝑚𝑒𝑚_𝑤 ) ⊲ extract
27: //barrier: copyGlobal2Shared().
28: 𝑐𝑝_𝑎𝑠𝑦𝑛𝑐_𝑤𝑎𝑖𝑡<0>( ) ; __𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ( ) ;
29: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠_𝑅𝑒𝑔2𝐺𝑙𝑜𝑏𝑎𝑙 (𝐶.𝑑𝑎𝑡𝑎) ;

next iteration and does the tensor core computation of the current
iteration in a double buffer manner. Specifically, one 𝐴𝑇𝑖𝑙𝑒 for the
next iteration will be loaded and extracted from global memory to
shared memory (rst_smem, gmem2reg, and extract), and one dense
𝐵𝑇𝑖𝑙𝑒 will be loaded directly from global memory (ld_dense). The
rst_smem stage is in line 17, where each thread issues cp.async oper-
ation to set buffer A to zeros. In line 19, gmem2reg is accomplished,
where sparse encoding is loaded from global memory to the dis-
tributed registers. The ld_dense stage is in line 20, where the data for
𝐵𝑇𝑖𝑙𝑒 is loaded from global memory to shared memory buffer with
cp.async operations. After launching these asynchronous memory
operations, tensor core operations are launched in line 23. Note
that we load dense matrices from shared memory to registers us-
ing ldmatrix.sync instruction and utilize tensor cores for the core
computations by explicitly launching mma.sync instruction in the
function Pipelined_Shared2Reg_TensorCoreOps().
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Figure 7: Tiled-CSL Format for sparse matrices.

The first async-copy barrier in Figure 6c is in line 25, guaran-
teeing that all asynchronous operations launched in line 17 are
completed while the operations launched in line 20 can still be in
progress. The extract stage is in line 26, where the data in registers
are extracted to the shared memory buffer for 𝐴𝑇𝑖𝑙𝑒 . Finally, the
async-copy barrier and thread-block synchronization are called in
line 28 to make sure that all threads have completed their work in
this iteration.

Different from dense MatMul where the data size to be loaded
from global memory can be inferred by the tile sizes, the size of
sparse encoding is determined by the number of non-zeros (nnz)
within 𝐴𝑇𝑖𝑙𝑒 , which is unpredictable. Before loading the sparse
encoding of each tile, Flash-LLM identifies its start offset in global
memory and its size. Such information is maintained in TileOffsets
array, which is stored in global memory (more details in Section 4.3).
To avoid instruction stalls caused by long latency global memory
access, this metadata should be pre-fetched. In lines 5-6 and lines
11-12, the start offset and the size of sparse encoding are pre-fetched.
At the beginning of each iteration, the start offset and the size of the
current 𝐴𝑇𝑖𝑙𝑒 are updated using the value pre-fetched in advance.

4.3 Sparse Encoding and Runtime Parsing
4.3.1 Tiled-CSL Format. The design of the sparse format for 𝐴 ma-
trix is essential for efficient sparse data storage and Sparse-to-Dense
Transformation. We propose a tile-by-tile sparse encoding format to
support the optimizations in Section 4.2 effectively. The non-zero
elements are organized tile-by-tile, where each tile maintains its
non-zero elements accompanied by the sparse index. As shown in
Figure 7, the non-zeros of each tile within the sparse matrix are
encoded into a small array, and combining all tiles will form the
overall array (NonZeros Array). The TileOffsets Array maintains
the starting offset of each tile in NonZeros Array. The number of
non-zero elements for each tile is the difference of two adjacent
elements in TileOffsets Array. For each tile in NonZeros Array, each
element is stored along with its location within the tile. As shown
in Figure 7, each non-zero weight is a 16-bit float-point and each
location is encoded into a 16-bit short integer.

4.3.2 Register to Shared Memory Extraction. As described in Algo-
rithm 2, each thread extracts 𝑛𝑛𝑧_𝑡ℎ𝑟𝑒𝑎𝑑 non-zero values from its
sparse encoding buffer Reg[] to the shared memory buffer A with a
loop. The v() and idx() functions are used to extract the value (high
16 bits) and its location (low 16 bits). There are some special con-
siderations when using registers as intermediate buffers for sparse
encoding. Different from shared memory and global memory, GPU

registers are not addressable. Forcing an array defined in CUDA
into registers requires that, all the indices used to access the array
can be determined statically at compile-time. Otherwise, the array
will be stored in global memory instead. In line 1 of Algorithm 2,
#pragma unrol is used to notify the GPU compiler to fully unroll the
main loop, so that all the indices used to access the 𝑅𝑒𝑔[] can be de-
termined statically. Note that adding such compiling directive alone
is not enough as a loop with a variable number of iterations can not
be fully unrolled. Thus, we use a constant value #𝑅𝐸𝐺 (the upper
bound of the number of iterations, typically 32/64 in Flash-LLM) in
line 2 instead of using the variable value 𝑛𝑛𝑧_𝑡ℎ𝑟𝑒𝑎𝑑 .

Algorithm 2 ExtractRegister2Shared

1: #pragma unroll
2: for int 𝑖 = 0; 𝑖 < #𝑅𝐸𝐺 ; 𝑖 + + do
3: if 𝑖 ≥ 𝑛𝑛𝑧_𝑡ℎ𝑟𝑒𝑎𝑑 then
4: break
5: 𝐴[𝑖𝑑𝑥 (𝑅𝑒𝑔[𝑖 ] ) ] = 𝑣 (𝑅𝑒𝑔[𝑖 ] )

4.3.3 Ahead of Time Sparse Data Reordering. There are two types
of shared memory access for the sparse weight matrix 𝐴, including
the data reading in smem2tc stage and the data writing in extract
stage. It is essential to avoid bank conflict 5 for good performance.
However, the random sparsity makes it challenging to avoid bank
conflict for both smem2tc and extract stages.

As for smem2tc, it makes use of ldmatrix intrinsic for efficient
data loading from shared memory for tensor core computation.
Figure 8a shows the behavior of ldmatrix where eight threads col-
lectively load an 8×8matrix in FP16 from shared memory. This 8×8
matrix reading can be served by a single sharedmemory wavefront6
if there is no bank conflict. The bank-conflict-free memory load of
ldmatrix requires that all scalars within the 8× 8matrix can be read
from disjoint memory banks. Figure 8a shows an example shared
memory data layout demonstrating the bank assignment (bank ID
ranging from 1 to 32) to achieve bank-conflict-free ldmatrix, where
each scalar is assigned a bank ID according to its location in 𝐴𝑇𝑖𝑙𝑒 .

However, this memory layout requirement will easily cause bank
conflict of shared memory writing during extract stage due to the
random position of the non-zeros in matrix 𝐴. In other words, we
can guarantee the bank-conflict-free reading according to the lay-
out requirement of ldmatrix, but will cause bank-conflict writing
during extract. Figure 8b gives an example, where each non-zero
value should be stored in a target shared memory bank (SMem-
Bank) according to their relative position within 𝐴𝑇𝑖𝑙𝑒 to meet the
requirement of bank-conflict-free ldmatrix. As the distribution of
NonZeros is random, the target SMemBank for each NonZero value
is also random. As a result in Figure 8b, all WARPs (the NonZeros in
the same color are processed by the same WARP) suffer from bank
conflict and lead to multiple shared memory wavefront (SMemWF).

To reduce the bank conflict, we propose the ahead of time sparse
data reordering approach. The basic insight is that the bank-conflict-
free ldmatrix already determines the target bank of each data ele-
ment, we can thus reorder the data elements in each Tiled-CSL tile
5Shared memory is divided into multiple memory banks that can be accessed simul-
taneously. Bank conflict means multiple addresses of a memory request map to the
same memory bank, causing serialized accesses.
6A wavefront is the maximum unit of work that can pass through the GPU hardware
pipeline per cycle. At most 1,024 bits can be loaded per wavefront for shared memory.
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Figure 8: Ahead of time sparse data reordering.

so that elements correspond to different banks could be organized
into the same WARP for extract. Specifically, we iteratively select
the sparse element that corresponds to different memory banks
when generating the NonZeros sub-array for each Tiled-CSL tile.
Figure 8c shows an ideal case after data reordering where only one
shared memory wavefront is needed to serve one WARP executing
extract. Note that the data reordering here only changes the layout
of the sparse data but does not change the content of the corre-
sponding dense matrix. In short, it is a way to change the layout
on global memory for more efficient shared memory access.

Algorithm 3 Tiled-CSL_Gen_AOTSparseDataReordering

1: Input: Matrix A in size𝑀 × 𝐾 ;
2: Output1: vector< vector<unsigned int> > NonZeros;
3: Output2: vecotr<int> TileOffsets;
4: vector<unsigned int> 𝑁𝑍_𝐵𝑢𝑐𝑘𝑒𝑡 [32];
5: for int 𝑖 = 0; 𝑖 < 𝑀/128; 𝑖 + + do
6: for int 𝑗 = 0; 𝑗 < 𝐾/64; 𝑗 + + do
7: // classifying NonZeros.
8: half ∗𝑇𝑖𝑙𝑒𝑃𝑇𝑅 = 𝐴 + 𝑖 ∗ 128 ∗𝐾 + 𝑗 ∗ 64;
9: for int 𝑥 = 0; 𝑥 < 128; 𝑥 + + do
10: for int 𝑦 = 0; 𝑦 < 64; 𝑦 + + do
11: 𝑣𝑎𝑙 = 𝑇𝑖𝑙𝑒𝑃𝑇𝑅 [𝑥 ∗𝐾 + 𝑦 ];
12: short 𝑙𝑜𝑐 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑖𝑛_𝑆𝑀𝑒𝑚 (𝑥, 𝑦) ;
13: int 𝐵𝑎𝑛𝑘𝐼𝐷 = (𝑥%8) ∗ 4 + (𝑦%8)//2;
14: 𝑁𝑍_𝐵𝑢𝑐𝑘𝑒𝑡 [𝐵𝑎𝑛𝑘𝐼𝐷 ] .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑣𝑎𝑙, 𝑙𝑜𝑐 ) ;
15: // iteratively picking 32 NonZeros as a group.
16: int 𝑁𝑁𝑍 = 𝑐𝑜𝑢𝑛𝑡_𝑁𝑁𝑍 (𝑁𝑍_𝐵𝑢𝑐𝑘𝑒𝑡 ) ;
17: for int 𝑔 = 0; 𝑔 < 𝑁𝑁𝑍/32; 𝑔 + + do
18: vector<unsigned int> 𝑁𝑍_𝑔𝑟𝑜𝑢𝑝 ;
19: for int 𝑏 = 0; 𝑏 < 32; 𝑏 + + do
20: int 𝑖𝑑 = 𝐵𝑎𝑛𝑘𝐼𝐷_𝑀𝑎𝑥 (𝑁𝑍_𝐵𝑢𝑐𝑘𝑒𝑡 ) ;
21: 𝑁𝑍_𝐺𝑟𝑜𝑢𝑝.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑁𝑍_𝐵𝑢𝑐𝑘𝑒𝑡 [𝑖𝑑 ] .𝑏𝑎𝑐𝑘 ( ) ) ;
22: 𝑁𝑍_𝐵𝑢𝑐𝑘𝑒𝑡 [𝑖𝑑 ] .𝑝𝑜𝑝_𝑏𝑎𝑐𝑘 ( ) ;
23: 𝑁𝑜𝑛𝑍𝑒𝑟𝑜𝑠.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑁𝑍_𝑔𝑟𝑜𝑢𝑝 ) ;
24: 𝑇𝑖𝑙𝑒𝑂𝑓 𝑓 𝑠𝑒𝑡 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑁𝑁𝑍 ) ;

Algorithm 3 shows the algorithm to generate Tiled-CSL format
from the pruned weight matrix with ahead of time sparse data
reordering applied. The input is the sparse matrix A with𝑀 rows
and 𝐾 columns in dense format, where some elements are already
set to 0 through model pruning. The outputs are NonZeros and
TileOffsets, the key components of Tiled-CSL format. NonZeros are
split into groups each of which contains 32 non-zeros. At lines 7-24,
the Tiled-CSL format of one tile (128 × 64) will be generated. At
lines 11-14, each non-zero within matrix A will be encoded into a
32-bit word containing (𝑣𝑎𝑙, 𝑙𝑜𝑐). Besides, non-zeros are distributed
to 32 different buckets (𝑁𝑍_𝐵𝑢𝑐𝑘𝑒𝑡 [32] at line 4) according to their
target shared memory bank ID ranging from 0 to 31 as calculated in
line 13. In line 16, the total number of non-zeros (NNZ) is counted.
At line 19-22, one group of non-zeros are formed by iteratively
picking non-zeros from NZ_Bucket[id] where 𝑁𝑍_𝐵𝑢𝑐𝑘𝑒𝑡 [𝑖𝑑] is
the bucket with the most non-zeros not processed at that time.

5 IMPLEMENTATION
We provide a set of C++ APIs for high-performance Flash-LLM ker-
nel. We integrate Flash-LLM kernel into FasterTransformer [37], en-
abling high-efficiency distributed inference with sparsified weight
matrices. Specifically, we extended its corresponding class defini-
tion (i.e. DenseWeight class) to support the Tiled-CSL format. Be-
sides, we extended its library wrapper (i.e., cuBlasMMWrapper class)
to support calling either the dense MatMul library or Flash-LLM
SpMM kernel. Flash-LLM can also be easily integrated into other
deep learning frameworks through library calls with Flash-LLM
API. We also provide a weight reformatting tool to generate sparse
matrices in Tiled-CSL format given the dense PyTorch model.

In our implementation, the size of𝑀𝑇𝐵 in Figure 6a is 128 or 256,
𝐾𝑇𝐵 is 64, and 𝑁𝑇𝐵 is 8/16/32/32 when the 𝑁 dimension of MatMul
(inference batch size) is 8/16/32/64. For larger 𝑁 dimensions, the
𝑁𝑇𝐵 is 64. The thread block size is 128. These configurations work
well for the workloads we evaluated in Section 6. The configuration
tuning is not in the research scope of this paper.

6 EVALUATION
We evaluate the performance of Flash-LLM on two levels: kernel-
level benchmarking and model-level evaluation. The evaluation is
conducted on the NVIDIA A100-SMX8-80GB platform (128-core
Intel Xeon Platinum 8369B CPU @2.90GHz, 8 NVIDIA A100 GPU
@80GB), with Ubuntu 18.04 and CUDA 11.8. We enable auto-mixed
precision (AMP) for all evaluations. We mainly do experiments on
NVIDIA A100 GPUs. However, the method we proposed is also a
good reference for the kernel design of TPU and Intel CPUs that
are equipped with customized hardware for matrix multiplication.

6.1 Kernel Performance
Workloads, baselines, and settings.We evaluate Flash-LLM on
MatMuls under different shapes, coming from the four MatMuls de-
scribed in Section 2.1 within OPT-30B, OPT-66B, and OPT-175B [61]
given four different batch sizes (8, 16, 32, and 64). For each MatMul
shape, we evaluate the kernel latency under 70%, 80%, and 90% of
random sparsity in the weight matrices. The baselines we compare
include cuSPARSE [40], Sputnik (commit: 46e380c) [10, 11], SparTA
(commit: 1f61a36) [64, 65], and cuBLAS [39]. CuSPARSE is part of
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Figure 9: Kernel Benchmarking (M/K/Sparsity; weight matrix: M × K).

the CUDA Toolkit for handling sparse matrices. Sputnik is a library
of sparse linear algebra kernels for deep learning, which achieves
state-of-the-art SpMM performance based on SIMT cores. SparTA
supports unstructured sparsity based on 2:4 structured sparsity on
tensor core [32]. As SparTA only supports FP32 precision, we ex-
tended SparTA to support input matrices in FP16. CuBLAS targets
dense MatMul rather than SpMM. We include it as a baseline here
to show the practical performance gains/losses compared to the
basic dense implementations of LLM inference.

Results. Figure 9 shows the kernel performance (TFLOPs) of
Flash-LLM and the baselines. Throughput is calculated by 2×𝑀×𝐾×
𝑁 /𝑘𝑒𝑟𝑛𝑒𝑙_𝑙𝑎𝑡𝑒𝑛𝑐𝑦. As shown in Figure 9, Flash-LLM performs the
best constantly compared to baselines. On average, Flash-LLM out-
performs Sputnik/SparTA by 3.6×/1.4×, 3.0×/1.4×, and 2.0×/1.6×
under 70%, 80%, and 90% sparsity respectively. Besides, Flash-LLM
can also outperform the state-of-the-art dense kernels cuBLAS with
tensor core enabled by 1.4×, 1.7×, and 2.1×. CuSPARSE shows poor
performance under such moderate-level sparsity, as it is designed
for matrices with >95% sparsity[40]. As for Sputnik, it is very chal-
lenging to outperform cuBLAS kernels with tensor core enabled. As
for SparTA, it leverages sparse tensor core [32] for the major part
of the computations, which can not effectively exploit the sparsity
available as sparse tensor cores only support 50% sparsity (2:4 spar-
sity). If the sparsity available is higher than 50%, SparTA has to pad
zeros to the sparse matrix resulting in redundant global memory
access during runtime. Besides, for the non-zeros that can not meet
the 2:4 requirement, another SIMT core based kernel is launched
for the corresponding computations, resulting in extra overhead.
Therefore, Flash-LLM outperforms SparTA in our evaluations.

6.2 Kernel Analysis.
Optimized GPU Utilization. Figure 10 shows the utilization of
GPU hardware units including tensor cores (TC), combined L1 and
shared memory (L1), L2 cache (L2), and global memory (HBM) dur-
ing Flash-LLM kernel execution. All the data is collected by the
NSight Compute profiler [43]. We present the profiling results of

N = 16 and N = 32 under 90% sparsity. We also include cuBLAS
here as the dense baseline (sparsity = 0%). cuSPARSE and Sputnik
are SIMT-based designs where tensor cores are not used. Although
Sputnik achieves good SIMT core utilization (29.8% at BS=16, 40.1%
at BS=32), it achieves much slower performance than other tensor-
core-based kernels as SIMT cores show much lower peak computa-
tional throughput than tensor cores. SparTA utilizes the tensor core
but with lower utilization than cuBLAS. For cuBLAS, the bandwidth
of the L2 cache and GPU DRAM is exhausted while the tensor cores
only reach 10.7% and 21.0% of its peak performance on average
when the N dimension is 16 and 32 respectively. In Flash-LLM,
the sparse matrices are in Tiled-CSL format (Section 3.2.2) with
reduced size in bytes. The global memory bandwidth is no longer
the bottleneck with the Load-as-Sparse Compute-as-Dense method.
On average, tensor core utilization is improved to 24.4% and 42.6%.
As tensor core utilization is improved, it consumes a higher band-
width of shared memory. In addition to that, the extract in Figure 6c
will cause extra shared memory writes. Thus, L1/shared-memory
bandwidth is exhausted by Flash-LLM, which prohibits further
performance improvements. Note that ahead of time sparse data
reordering (Section 4.3.3) is designed to increase shared memory
access efficiency, which helps to mitigate this bandwidth bottleneck.

Balanced pipeline for memory/tensor core operations. Flash-
LLM kernel contains three major types of operations: global mem-
ory access (Gmem), shared memory access (Smem), and tensor core
operations (TC). Ideally, these three types of operations should be
overlapped and conducted in parallel for maximum GPU hardware
utilization. As shown in Figure 11, We measure the latency of each
type of operation separately by erasing other computations in the
source code. We also re-implement the dense GeMM kernel based
on the design of NVIDIA cutlass [42], which achieves similar perfor-
mance compared to cuBLAS. Due to the Buckets effect, the overall
kernel time is mainly determined by the global memory operations
which require the longest execution time. With Load-as-Sparse
Compute-as-Dense method, the latency of Gmem operations is sig-
nificantly reduced, leading to overall performance improvements.
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Figure 10: Kernel utilization breakdown with four MatMul
shapes (indicated with different colors) from OPT-66B.
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Figure 11: Latency breakdown of Dense and Flash-LLM Ker-
nels (normalized to cuBLAS[39] kernel latency).

Although the Smem latency is increased due to the extra shared
memory access required by the extract in Figure 6c, it does not
prevent Flash-LLM kernel from achieving better performance than
cuBLAS. It is a good trade-off between global memory and shared
memory utilization. What’s more, Flash-LLM shows similar latency
with dense GeMM kernel in terms of tensor core operations as we
do not skip any computations. However, tensor core operations are
not the bottleneck for the overall kernel performance.

Performance on more MatMul shapes. As discussed in Section
3.2.1, we mainly want to mitigate the inefficiency caused by Skinny
MatMuls in common LLM inference. For more comprehensive un-
derstanding evaluations, we provide kernel performance on more
shapes even when the shape is not common for LLM inferences.
As shown in Figure 12, Flash-LLM becomes slower than cuBLAS
if the N dimension is larger than 256, noting the memory foot-
print of Flash-LLM is still smaller than dense counterparts. The
reason behind this is twofold. First, the inefficiency of cuBLAS is
no longer significant as the N dimension is large enough, which
makes cuBLAS more performant. Second, Flash-LLM has more com-
plicated kernel designs and extra shared memory access, which
slows it down a little bit. We also notice that Sputnik becomes much
slower than other tensor-core-based designs as the N dimension
increases. Even though SIMT-core-based solutions such as Sputnik
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Figure 12: Kernel speedups over cuBLAS [39] GeMM kernel
with different shapes (36K/9K/N, sparsity=80%).

Table 1: Peak GPU memory usage (GB).

Batch Size 8 16 32 64 128
Ours-1GPU 34.7 40.8 52.9 77.1 OOM
FT-1GPU 62.7 68.7 OOM OOM OOM
DS-1GPU 64.1 70.9 OOM OOM OOM
FT-2GPU 65.6 71.7 83.9 108.3 OOM
DS-2GPU 68.3 75.7 90.6 120.4 OOM

can skip computations exploiting sparsity, such computational sav-
ings still can not make up for the huge performance gap between
SIMT cores and tensor cores.

6.3 End-to-End Model Evaluation
Baselines.We include NVIDIA FasterTransformer (FT) (git commit:
9770d30) [37] and DeepSpeed (DS) [1] as baselines, the state-of-the-
art inference frameworks supporting model parallelism [49] to fit
large models that would otherwise not fit in GPU memory.

Workloads. We benchmark the end-to-end inference latency of
the OPT models [61], including OPT-30B, OPT-66B, and OPT-175B.
To accommodate only the model parameters in the dense format,
60/132/350GB GPU memory is required for OPT-30B/66B/175B.
Note that SOTA GPUs only have 80GB of memory each, at least
1/2/8 GPUs are required 7 for the inference of OPT-30B/66B/175B.
Besides, extra GPU memory is required to store the KV-Cache
(refer to Figure 1b, with its size positively related to inference
batch size) during runtime. According to Table 1, existing inference
frameworks can easily run out of GPUmemory during the inference
of OPT-30B for batch sizes larger than 16 if storing the model
in dense format. For all experiments, the input/prompt sequence
length is 64 and the output/generated sequence length is 512.

Metric.We propose the metric tokens per GPU-second to indicate
the normalized inference throughput with the consideration of both
execution time and hardware cost (i.e., the number of GPUs used).
It is calculated with the following equation:

𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑁𝑡𝑜𝑘𝑒𝑛∑𝑁𝐺𝑃𝑈

𝑖=1 𝑇𝑖

(3)

𝑁𝑡𝑜𝑘𝑒𝑛 means the number of tokens generated, whereas 𝑁𝐺𝑃𝑈 and
𝑇𝑖 mean the GPU number and the time spent on the i’th GPU for
execution. We use this metric to evaluate the system’s performance.
Note that for real-time inference serving, the inference throughput
is the higher the better once the inference latency is less than a
specific threshold.

6.3.1 Case Study: OPT-30B. Model Pruning. To show that the
pruned model has comparable performance with the original model,

7The number of GPUs must be a power of 2 for model parallelism[6].
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Figure 13: OPT-30B Inference Throughput.

we evaluate the accuracy of the pruned model with OPT-30B [61]
and GPT-NEOX-20B [2, 5] on Recognizing Textual Entailment task
in SuperGLUE [56]. To achieve better accuracy, we adopt the pop-
ular pruning method Taylor Pruning [33] to prune these models
and keep the front quarter and the last quarter feedforward input
layers dense. Based on that, we achieve 80% sparsity on OPT-30B
and GPT-NEOX-20B with only 1.44% and 0.72% accuracy decrease,
respectively. Specifically, accuracy decreases from 85.55% to 84.11%
on OPT-30B, and from 83.03% to 82.31% on GPT-NEOX-20B.

Results. As shown in Figure 13a, Flash-LLM achieves 3.4× and
3.3× higher performance than DeepSpeed (DS) and FasterTrans-
former(FT) with a single GPU. DS and FT can at most achieve 348
and 359 tokens per GPU-second with a single A100 GPU. If further
increase the inference batch size, DS/FT will run out of memory
as inference tasks with larger batch sizes need more GPU mem-
ory to store the cached-KV and activations. In contrast, Flash-LLM
achieves up to 1187 tokens per GPU-second on batch size 64. It is
because the memory used for storing model weights is reduced
with the Tiled-CSL format, and thus more Cached-KV and activa-
tions can be accommodated. We also compare the performance of
Flash-LLM to DS and FT with two-way model-parallelism[49], with
which DS and FT can support batch size 64. As shown in Figure
13b, FT and DS achieve similar performance in terms of tokens per
GPU-second. Compared to DS/FT, Flash-LLM achieves 1.91×/1.75×,
1.87×/1.70×, 1.67×/1.55×, and 1.54×/1.41× higher performance at
batch sizes 8, 16, 32, and 64 respectively. The detailed GPU memory
usage of Flash-LLM, FT, and DS are shown in Table 1.

Breakdown. To figure out why Flash-LLM can achieve better per-
formance, we conduct the time breakdown of end-to-end inference
shown in Figure 14a. Note that we conduct all the end-to-end break-
downs in this paper leveraging the NSight System [44]. Compared
to FT-2GPU (FasterTransformer with 2 GPU used), Flash-LLM with
1 GPU can achieve lower normalized inference latency 8 mainly
because of (1) the more efficient MatMul execution and (2) the
elimination of cross-GPU communication overhead.

6.3.2 Case Study: OPT-66B Model. Result As shown in Figure
15a, Flash-LLM achieves 3.8× and 3.6× higher token generation
throughput than DS and FT with two GPUs. DS and FT can at
most achieve 139 and 144 tokens per GPU-second with batch size

8To also consider inference cost and compare the inference efficiency with different
system configs (e.g. different numbers of GPUs may be used), we sum the execution
time on all used GPUs as the normalized latency.
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Figure 14: Inference Time Breakdown. (MHA: multi-head
attention, Comm: cross-GPU communications)
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Figure 15: OPT-66B Inference Throughput.

16 as they will run out of memory if further increasing the batch
size. In contrast, Flash-LLM achieves up to 522 tokens per GPU-
second at batch size 64. We also compare the performance of Flash-
LLM to DS-4GPU/FT-4GPU where Flash-LLM still uses two GPUs,
while DS-4GPU/FT-4GPU uses four GPUs to enable bigger batch
sizes for the baselines. Compared to DS-4GPU/FT-4GPU, Flash-LLM
achieves 1.85×/1.68×, 1.78×/1.61×, 1.7×/1.58×, and 1.55×/1.45×
higher performance of tokens per GPU-second at batch sizes 8, 16,
32, and 64 respectively.

Breakdown. We conduct the time breakdown of end-to-end
inference with FT and Flash-LLM for OPT-66B as shown in Figure
14b. Compared to FT-4GPU (FasterTransformer with 4 GPU used),
Flash-LLM with two GPUs can achieve lower normalized latency
than FT-4GPU mainly because of (1) the reduction of MatMul time
and (2) the reduction of cross-GPU communication overhead.

6.3.3 Case Study: OPT-175B Model. Results & Breakdown We
successfully run the inference of OPT-175B models with Flash-LLM
using 4 A100 GPUs. In contrast, the weight of OPT-175B can not
fit into 4 A100 GPUs with traditional solutions. Thus, we do not
show the performance of FT/DS using 4 GPUs here as they all run
out of GPU memory. In addition, we failed to run OPT-175B with
DS using 8 GPUs. Figure 16a compares the performance of Flash-
LLM and FT where we only use 4 GPUs while FT uses 8 GPUs.
Compared to FT-8GPU, Flash-LLM achieves 2.0×, 1.9×, 1.7×, and
1.5× higher performance at batch sizes 8, 16, 32, and 64 respectively.
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Figure 16: OPT-175B Inference

As shown in Figure 16b, both the MatMul time and the cross-GPU
communication time are significantly reduced using Flash-LLM.

7 RELATEDWORK AND DISCUSSION
The parallel and distributed ML task execution is widely used for
model training [6, 7, 19–21, 24, 26, 27, 30, 31, 35, 46, 49, 60, 62].
With the growth of the model size, people start to support the LLM
inference through tensor parallelism [21, 49] to put parameters
onto distributed devices [1, 37]. However, the distributed execution
of model inference introduces high communication costs and high
economic investment. Some works support LLM inference on a sin-
gle GPU through memory offloading of data onto CPU memory and
even disk [1, 48]. The offloading approach only works for latency
non-sensitive applications (e.g. offline inference with large batch
size), rather than the online inference tasks demanding very low
latency. In this work, we enable efficient LLM inference execution
with fewer GPUs through efficient SpMM execution.

Model pruning is a common approach to reducing parameter
numbers. The structured sparsity is to enforce a structured distri-
bution of non-zero elements during pruning, which usually could
be friendly to hardware acceleration. NVIDIA Ampere GPU [36]
supports 2:4 structured sparsity [32] to execute on tensor cores.
CuSPARSE[40] can support structured SpMM on tensor cores based
on the Blocked-ELL [13] format, which is a coarse-grained struc-
tured sparsity where model parameters are pruned in the granular-
ity of squared blocks (e.g. 32 × 32). Some works prune the model
parameters in the granularity of vectors to form the structured
sparse format and make use of GPU tensor cores [4, 18, 25]. While
tensor cores can be enabled with certain structured sparsity, the
major concern is that deep learning models pruned with structured
sparsity usually suffer from more severe model accuracy degrada-
tion than unstructured sparsity [8, 12, 14, 16, 51, 54].

The unstructured sparsity is to prune the elements without form-
ing a structured distribution, which is usually hard to accelerate on
modern hardware architectures. STOREL [47] and TACO [23] are
CPU-based designs that can support SpMM with unstructured spar-
sity. Instead, Flash-LLM mainly focuses on the GPU-based SpMM
with unstructured sparsity, as GPU is more widely used for large-
scale deep-learning tasks since it usually has higher memory band-
width, computational throughput, and energy efficiency. The typical
approach to execute the unstructured SpMM on GPU is through
SIMT cores, e.g. cuSPARSE[40], ASpT[17], and Sputnik[10]. Under a

moderate level of sparsity (<90%), Sputnik significantly outperforms
cuSPARSE and ASpT, but it struggles to beat its dense counterpart
cuBLAS [39] as it cannot utilize tensor cores. TC-GNN [57] sup-
ports unstructured sparsity with tensor cores, which is customized
for GNN where the sparsity ratio is extremely high (e.g. >99%) and
is not efficient for generative models requiring moderate-level spar-
sity. SparTA [65] proposes to utilize both sparse tensor cores [32]
and SIMT cores to support unstructured sparsity by splitting the
original sparse matrix into a 2:4 structured sparse matrix for tensor
core execution (by cuSPARSELt [41])) and an unstructured sparse
matrix for SIMT core execution (by Sputnik[10])). However, if the
sparse ratio is high, it has to excessively pad zeros to the 2:4 sparse
matrix. Besides, if there are too many non-zeros that can not meet
the 2:4 requirement, the SIMT kernel would cause high latency
and slow down the overall processing. Flash-LLM supports the
moderate-level sparsity on tensor cores efficiently and does not
require the 2:4-like distribution. SparseTIR [59] supports unstruc-
tured sparsity with tensor cores by splitting sparse matrices into
8×1 column vectors and omitting the vectors containing only zeros.
It can not work well under moderate sparsity (e.g., 80%) as very few
vectors can be skipped. It can not outperform the dense baseline
cuBLAS until the sparsity is higher than 95%, while Flash-LLM can
outperform cuBLAS since 60% sparsity.

The fine-tuning-based pruning [15, 29] can achieve moderate-
level sparsity with good accuracy, while the post-training prun-
ing [8] can only achieve quite low sparse ratios. Flash-LLM aims to
optimize the SpMM with the moderate-level sparsity (e.g. 60%-90%)
generated with the fine-tuning-based pruning. The fine-tuning-
based pruning usually consumes a high fine-tuning cost, which as
a result becomes one limitation of Flash-LLM.

Model quantization [16] is another approach to reduce the mem-
ory and computation for ML models, by transforming the data
type into lower bits (e.g., 8-bits, 4-bits) [9, 25]. Model pruning and
quantization are two orthogonal and complementary approaches
to model compression. This paper mainly focuses on supporting
model pruning, which is orthogonal to model quantization.

8 CONCLUSION
We propose Flash-LLM, a library for efficient large generative model
inference through unstructured sparsity with tensor cores. We ob-
serve that MatMuls in generative models inference are usually
skinny, and are bounded by off-chip memory access. We propose
the Load-as-Sparse and Compute-as-Dense approach for tensor core
SpMM, reducing the global memory footprint and addressing the
memory access bottleneck without skipping any computation for
sparse MatMuls. We propose an effective software pipeline for un-
structured SpMM with tensor cores, efficiently leveraging on-chip
resources for sparse data extraction and coordinating sparse data ex-
traction, dense data loading, and tensor core computation in an over-
lapped manner. Flash-LLM outperforms cuBLAS/Sputnik/SparTA
by 1.4×/3.6×/1.4×, 1.7×/3.0×/1.4×, 2.1×/2.0×/1.6× under 70%, 80%
and 90% sparsity. We integrate Flash-LLM kernels into Faster-
Transformer for end-to-end generative model inference. For to-
kens per GPU-second, Flash-LLM achieves up to 3.8× and 3.6×
improvement over DeepSpeed and FasterTransformer on OPT-
30B/66B/175B models with significantly lower inference cost.
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