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ABSTRACT
This paper addresses the challenges in interactive visual exploration

of large multi-variate time series data. Traditional data reduction

techniquesmay improve latency but can distort visualizations. State-

of-the-art methods aimed at 100% accurate visualization often fail

to maintain interactive response times or require excessive prepro-

cessing and additional storage. We propose an in-memory adaptive

caching approach, MinMaxCache, that efficiently reuses previous

query results to accelerate visualization performance within accu-

racy constraints. MinMaxCache fetches data at adaptively deter-

mined aggregation granularities to maintain interactive response

times and generate approximate visualizations with accuracy guar-

antees. Our results show that it is up to 10 times faster than current

solutions without significant accuracy compromise.
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1 INTRODUCTION
The visual analysis of time series data collected nowadays (e.g.

from IoT devices), presents significant challenges due to the vast

volume and multi-variate nature of the data. The latency associated

with processing and fetching the data for visualization can hinder

interactivity. Traditional approaches to reduce data and improve

visualization latency, such as sampling or aggregating at coarser

granularities, may distort the resulting time series visualization and

compromise the accuracy of the final representation compared with

the raw data visualization. The latter may affect the effectiveness of
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several exploration and visual analytic tasks, such as visual anomaly

detection or multivariate correlation analysis.

State-of-the-art techniques [15, 36], aim at minimizing latency

while ensuring 100% accurate visualization results. Visualization-

aware data aggregation M4 [15] takes into account the visualiza-

tion’s dimensions and aggregates data in pixel-wide time intervals.

However, M4 has a significant drawback, as shown in Figure 1 in

which a user visualizes a time series and performs a pan right oper-

ation: the data fetched cannot be cached to accelerate subsequent user
interactions, such as panning and zooming, which usually refer to

overlapping time intervals. Such operations alter the time interval

over which data are aggregated and mapped to pixels, and require

to process and re-fetch the data from the datastore. As a result, a

time overhead is incurred, which becomes a significant concern for

interactive response times [23] in large time series datasets.

Figure 1: Visual Exploration of Time Series: a) Non-
interactive, error-free visualization from M4 query over the
complete interval, b) Interactive, error-bounded visualiza-
tion reusing query results from prior operations.

To address these limitations, the recent work, OM3 [36] materi-

alizes a multi-level representation of the original time series and

proposes incremental query evaluation and progressive visualiza-

tion over it, eventually converging to an error-free result. Despite

this, OM3 lacks any error guarantees for intermediate visualiza-

tions, forcing users to wait until the final output for any accuracy

assurance. Further, OM3 requires a very long pre-processing stage
and additional storage space in the database to generate and store the
multi-level representation of the time series. These costs can be hard
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to justify, considering that users often focus on recent data and

OM3 does not support updates. Also, OM3 does not explicitly con-

sider the multivariate nature of time series data collected from IoT

devices, which often involve measurements of multiple variables.

Enhancing latency in time series querying can be accomplished

with generic caching methods like TSCache [22], which offers

interval-based caching of previous query results. However, such

generic approaches do not consider the specific requirements of

interactive visualization scenarios, where data are visualized in

adjacent time intervals. Being agnostic on how cached data can be

aggregated and reused for visualizing adjacent areas has impact on

the overall performance and the accuracy of the visualization.

This work considers that visualized results can be cached and

reused to approximate the rendering of subsequent user requests

and accelerate interaction in a user exploration session. Such an

approximation, however, may compromise the visualization quality

with respect to how the actual raw data would be rendered. The

bottom case in Figure 1 motivates this setting; previous visualized

results are used to offer faster response time with a slight decrease

(5%) in accuracy. This trade-off between speed and accuracy applies

in domains with large data volumes that hinder interactive explo-

ration. For example, in renewable energy parks, monitoring solar

panels and wind turbines requires exploration over numerous sen-

sor measurements, to spot performance degradation, or equipment

malfunctioning. Providing accuracy guarantees remains crucial for

the reliable assessment of such anomalies. Should analysts spot

potential issues during exploration, they can then refine their error

bounds to obtain an error-free visualization for verification.

In our approach, we assume that the error bound constraints

are implicitly defined by the user. We identify the following key

challenges: i) how do we dynamically balance interaction time and
visualization accuracy in a multi-variate time series exploration

setting? ii) how do we compute error-bound guarantees for the
visualization accuracy? iii) how do we avoid offline preprocessing to

support online analysis of continuously generated data?

To address these challenges, we present MinMaxCache, an in-

memory adaptive caching approach that enables interactive visual

exploration of large multivariate time series data while adhering to

visualization accuracy constraints. Instead of caching data to pixel-

wide intervals, our method caches min-max aggregates at intervals

of dynamically determined granularities, which are then mapped

to pixels to generate the visualization. Upon receiving a query,

MinMaxCache leverages cached data to assess the visualization

error bound and guarantee the query’s accuracy requirements,

while maintaining interactive response times. In the same time, it

refines the granularity of the fetched data to enable reuse by future

interactions. The key contributions of this work are:

• We define the problem of approximate visualization of time

series with pixel error-bound guarantees, which offers a trade-

off between accuracy and performance of interactivity in visual

exploration of large time series datasets.

• We provide theoretical guarantees for an upper bound of pixel

errors, when previously visualized results are cached and reused.

• We propose a solution for a visualization-aware caching mech-

anism and an approximate visualization method that adapts

to user-specified error bounds, requires no preprocessing and

provides interactive visualizations over large time series data.

• We evaluate our approach with real and synthetic data. Our

results demonstrate our method is 6-10 times faster than com-

petitors, significantly improving interactivity.

Outline. Section 2 provides an overview of the system, Section

3 presents background information and the error-bounded time

series visualization problem. Section 4 describes the proposed cache

structure and query evaluation methods. Section 5 presents the ex-

perimental evaluation and key insights from our user study, Section

6 reviews related work, and, finally, Section 7 concludes the paper.

2 SYSTEM OVERVIEW
Figure 2 presents an overview of our system. MinMaxCache acts
as an intermediate layer between the visualization front-end and

the underlying data store. Its role is to manage data retrieval and

caching at appropriate granularities, thereby minimizing latency

and maintaining an acceptable level of visualization accuracy.

Upon user interaction, the Visualization Front-end sends the vi-

sual operation and several parameters to MinMaxCache, including

the time series dataset, the variables to be visualized, the requested

time interval, and some visualization- and analysis-specific param-

eters (i.e., width and height of the chart, upper error bound). The

Visual Operation Evaluation Module assesses the cached time series

data to ascertain whether it can be used to generate the required

visualization. The cache retains time series intervals and stores

min-max aggregates for each, adaptively determining aggregation

intervals to ensure visualization accuracy.

Based on the cached data, the system decides whether access to

the data store is needed to fetch either missing or all the data of the

query despite the interval being cached. This decision is dictated by

the appropriateness of the aggregation granularity in guaranteeing

the visualization accuracy, requested in the form of error bound

by the application. In case a query to the underlying data store is

required, the fetched results are integrated with the cached data

to deliver the query results to the visualization front-end and the

newly acquired data append the cache. The Cache Manager module

also maintains the cache within its defined size limits, replacing

less relevant data based on user operations.

MinMaxCache offers support for time series databases such as

InfluxDB, SQL databases like PostgreSQL (details in Section 5),

and a simple query interface (details in Section 4.2) that can easily

communicate with several visualization libraries and tools
1
.

3 ERROR-BOUNDED VISUALIZATION
In this section, we introduce our error-bounded time series visu-

alization approach. First, we provide a brief overview of the main

concepts and next we present our approach.

3.1 Preliminaries

Time series Data. Multivariate time series data is a sequence of 𝑛

data points, i.e.,𝑇 = {(𝑡1,𝑉1), (𝑡2,𝑉2), . . . , (𝑡𝑛,𝑉𝑛)}. Each point has a
timestamp 𝑡𝑖 and a set of 𝑑 numerical values𝑉𝑖 = (𝑣𝑖,1, 𝑣𝑖,2, . . . , 𝑣𝑖,𝑑 )
corresponding to variables 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑑 ) at 𝑡𝑖 .
1
Code and data are open sourced in https://github.com/athenarc/MinMaxCache
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Figure 2: Overview of the in-memory cache design and its use.

Mapping data points to pixels.We assume that the boundaries

of the visualization canvas of width𝑤 and height ℎ pixels are de-

termined by the min and max timestamps and values of the time

series. The canvas refers to the area dedicated to rendering the

actual time series line, excluding elements such as axes, labels, and

other non-data components. The line chart is generated by mapping

data points to discrete pixels (i.e., foreground pixels) and rasterizing

the lines between consecutive data points to create a continuous,

connected representation of the time series. For the mapping of a

data point (𝑡, 𝑣) to its corresponding pixel (𝑝𝑥 (𝑡), 𝑝𝑦 (𝑣)), most vi-

sualization clients employ the following geometric transformation:

𝑝𝑥 (𝑡) = ⌊𝑤 · 𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡

𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡
⌋, 𝑝𝑦 (𝑣) = ⌊ℎ · 𝑣 − 𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
⌋ (1)

For simplicity, we focus on two-color, or binary line charts, which

use a color (e.g. black) for foreground pixels and white for back-

ground. We also experimented with anti-aliased techniques that

render foreground pixels with different hues, finding that the error

was smaller than of binary ones, as it is also reported in [15].

A pixel column is a one-pixel wide vertical slice of the canvas,

spanning its entire height (h pixels), rendering theminimum time in-

terval in the line chart visualization. Foreground pixels are rendered

either due to inner-column lines, connecting data points mapped

to the same pixel column, or due to inter-column lines, connecting
points across columns. Fig 3a shows in grey the foreground pixels

mapped from raw data points in a time series.

Based on the formula above, the range of inner-column fore-

ground pixels depends on the values of the data points within the

time interval of the pixel column, irrespective of their timestamps.

It spans from the bottom pixel, derived from the minimum data

point value, to the top pixel, derived from the maximum value. In

contrast, the inter-column foreground pixels are determined by the

line segment connecting data points across adjacent columns. This

segment may traverse additional pixels beyond the inner-column

range, depending on the timestamps and values of these data points.

Visual Operations. We consider an exploration setting where

a user visually explores a time series dataset on a 𝑤 × ℎ pixel

canvas, using interactive operations, such as panning (shifting the

visualized time interval), zooming in/out (altering the interval size),

showing/hiding a variable, and resizing the canvas dimensions.

While operations like similarity queries and pattern extraction can

be considered, our focus is on a locality-based exploration scenario

involving overlapping time series regions.

3.2 Determining Upper Bound for Pixel Errors
In this section, we first define the notion of equidistant groups,

which is used as an aggregation method for reducing the number

of data points at the scale of the pixel columns; then we employ

this method to create groupings with smaller time intervals than

a pixel column width and define the notion of fully and partially

overlapping intervals. Finer min-max aggregations of data can be

cached and reused for subsequent visualizations without querying

the database. This method however may introduce errors. We, thus,

present two types of errors and calculate an upper bound based on

cached data in finer-than-pixel-wide groupings. We show that this

bound can be computed based on the already cached data, without

resolving to raw data in the database (Theorems 3.3 and 3.4).

Definition 3.1 (Equidistant Time Series Grouping). Given a time se-

ries𝑇 of length𝑛, an equidistant grouping of𝑇 in 𝑘 non-overlapping

groups is denoted by G𝑘 (𝑇 ) = (𝐵1, 𝐵2, . . . , 𝐵𝑘 ). Each group 𝐵𝑖 con-

tains the data points with timestamps in its interval, such that

𝐵𝑖 = {(𝑡 𝑗 ,𝑉𝑗 ) | 𝑡 𝑗 ∈ [𝑡1 + (𝑖 − 1)𝜏, 𝑡1 + 𝑖𝜏)} for 𝑖 = 1, 2, . . . , 𝑘 − 1 and

𝐵𝑘 = {(𝑡 𝑗 ,𝑉𝑗 ) | 𝑡 𝑗 ∈ [𝑡1 + (𝑤 − 1)𝜏, 𝑡𝑛]}, where 𝑡1 and 𝑡𝑛 are the

starting and ending times of the time series 𝑇 , and 𝜏 =
𝑡𝑛−𝑡1
𝑘

is the

length of the interval of each group.

Fig. 3a depicts a 4 × 4 pixels chart. M4[15] defines that an error-

free visualization can be obtained by grouping the data in𝑤 equidis-

tant groups and mapping the data points corresponding to the first

and last timestamp, and to the min and max values, to pixels. In

this case, we employ a grouping G4 (𝑇 ) since𝑤 = 4. The resulting

visualization is the same with the one produced by retrieving and

rendering to pixels all data points in the time series (Fig 3a depicts

an error-free visualization produced by raw data; the data points

that would be selected by M4 are highlighted in green).

Definition 3.2 (Fully-contained and Partially-contained Intervals).
Let G𝑤 (𝑇 ) and G𝑘 (𝑇 ) be two equidistant groupings of a time series

𝑇 , with𝑤 and𝑘 representing the number of groups in each grouping,

respectively. We define a group 𝐵𝑘
𝑖
in G𝑘 (𝑇 ) to be fully-contained

in a group 𝐵𝑤
𝑗
in G𝑤 (𝑇 ) if its time interval is completely contained

within the time interval of 𝐵𝑤
𝑗
. We denote this as 𝐵𝑘

𝑖
⊆ 𝐵𝑤

𝑗
. A group

𝐵𝑘
𝑖
is partially-contained in a group 𝐵𝑤

𝑗
if their corresponding time

intervals intersect. We denote this as 𝐵𝑘
𝑖
∩ 𝐵𝑤

𝑗
≠ ∅ and 𝐵𝑘

𝑖
⊈ 𝐵𝑤

𝑗
.

Fig. 3b depicts a secondary grouping G7 (𝑇 ) of 7 groups overlap-
ping (either fully or partially) with the G4 (𝑇 ) pixel-based grouping.
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(a) (b) (c) (d)

Figure 3: Pixel errors: White rectangles for background pixels, gray for foreground, and red borders for errors. Visualization
using: (a) raw data, while green are the points selected by M4; (b) Min Max Aggregation with k=7 groups, having four pixel
errors (dashed lines mark grouping intervals); (c) k=9 groups, showing only one error, demonstrating improved accuracy with
finer granularity. Additionally, (d) examines potential pixel errors: Green rectangles mark correct foreground pixels from
fully-contained groups. Red zones highlight areas of potential inaccuracies in partially-contained groups that may lead to both
inner- and inter-column errors. Red lines depict incorrect inter-column lines that can lead to false inter-column pixels.

Min Max Aggregation with Mid-Interval Timestamps. Our
method groups data in groupings with smaller intervals than the

pixel width, resulting in partially and fully contained intervals in

the pixel-wide ones. Also, in contrast to the M4 methods presented

in [15], it retrieves and caches for each group only two values,

the min and max value of 𝑦, ignoring the timestamps of these
datapoints, as well as the first and last data points in this group. We

arbitrarily assign the middle of the group’s interval as a timestamp

to these two values. In the case of a partially contained group 𝐵𝑘
𝑖

within two consecutive pixel columns 𝐵𝑤
𝑙

and 𝐵𝑤
𝑗
, the selection of

a timestamp representative can influence the determination of the

pixel column, which the group’s min and max 𝑦 values are mapped

to. Selecting the middle of the group’s interval ensures that the

majority-overlapping pixel column maps the min and max 𝑦 values

of the group. Fig 3b shows our approach with the min and max

values for the G7 (𝑇 ) grouping, overlapping the pixel columns.

This approach speeds up queries both in relational and time

series databases, as aggregate values, such as min and max, are

usually precomputed in table statistics and can be fast retrieved.

However, to select the specific datapoints (timestamps) that corre-

spond to the min and max values of 𝑘 groups requires to lookup

these values in the underlying time series table
2
.

Errors due toMinMax aggregation.Using the above aggregation
method, we can utilize the min-max values of the fully-contained

groups, to accurately determine at least a subset of the inner-column

pixels. Since these groups are completely within a pixel column,

their min-max ranges fall within the min-max range of the pixel

column, thus contributing to the range of inner-column pixels.

However, in our approach, both inner- and inter-column pixel er-

rors may occur. Inner-column errors arise when a group is partially-

contained in two adjacent pixel columns. Using the mid-interval

timestamp for a group’s min and max values (instead of their actual

timestamps) may lead to either mistakenly omitted or falsely added

foreground pixels for the columns overlapping the smallest and

biggest part of the group, respectively. In the first case, the min-max

2
In our experiments, we found that, both in PostgreSQL and InfluxDB, fetching the

timestamps of themin andmax values typically resulted in doubling the query duration.

range for the pixel column might be smaller than its actual range,

while in the second, errors may arise when the partially contained

group’s min-max range exceeds that column’s actual range.

On the other hand, inter-column errors result from our aggrega-

tion method’s omission of the first and last data points in each pixel

column, leading to incorrect inter-column line segments. These er-

rors occur when connecting the last min or max values from groups

in one column to the first of such values in the adjacent column. For

example, in Figure 3b, errors 𝐸1 and 𝐸2 could be avoided with cor-

rect inter-column line rasterization, while 𝐸3 and 𝐸4 also occur due

to difficulties in determining the accurate min-max range within the

first two pixel columns because of the partially-contained group.

Based on the types of errors, it’s evident that increasing the
number of groups can generally reduce the errors. Decreasing the

group size relative to the pixel columns results in increasing the fully

contained groups and thus mapping more min max points to a pixel

column. Although the maximum number of partially contained

groups remains constant—at most one between two adjacent pixel

columns— still the area that each partially contained group overlaps

with the pixel columns is reduced; therefore contributing to less

uncertainty. This result is illustrated in Figure 3c, which shows a

decrease in pixel errors from 4 to 1 as the number of groups (𝑘)

increases from 7 to 9 compared to Figure 3b.

Error bounds. The following two theorems provide the upper

bound for inner and inter-column errors. The first theorem calcu-

lates the inner-column error bound by evaluating the differences

between the ranges of partially and fully contained groups within a

pixel column. The second theorem assesses potential inter-column

errors, focusing on inaccuracies at intersections between adjacent

columns. It measures the divergence of our approximated from the

actual data lines, accounting for both falsely added and mistakenly

omitted foreground pixels at these intersections.

Theorem 3.3 (Inner-column errors). Assume a two-color line
chart of a time series variable 𝑦 generated using the min and max
values for 𝑦 on a grouping G𝑘 (𝑇 ). The potential inner-column pixel
errors 𝐸𝑖

𝑖𝑛𝑛𝑒𝑟
in a pixel column 𝑝𝑖 is the set difference of the pixel
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ranges 𝑃 of the left and right partially overlapping groups 𝑙 , 𝑟 (𝐵𝑘
𝑙
∩

𝐵𝑤
𝑖

≠ ∅, 𝐵𝑘𝑟 ∩ 𝐵𝑤
𝑖

≠ ∅, and 𝐵𝑘
𝑙
⊈ 𝐵𝑤

𝑖
, 𝐵𝑘𝑟 ⊈ 𝐵𝑤

𝑖
) and the pixel range

of the fully-contained groups in 𝑝𝑖 , respectively. Given the following
pixel ranges:

𝑃𝑙 = [𝑝𝑦 (𝐵𝑚𝑖𝑛
𝑙

), 𝑝𝑦 (𝐵𝑚𝑎𝑥
𝑙

)], 𝑃𝑟 = [𝑝𝑦 (𝐵𝑚𝑖𝑛
𝑟 ), 𝑝𝑦 (𝐵𝑚𝑎𝑥

𝑟 )],

𝑃𝑖 =


𝐵𝑘
𝑗
∈G𝑘 (𝑇 ) |𝐵𝑘

𝑗
⊆𝐵𝑤

𝑖

[𝑝𝑦 (𝐵𝑚𝑖𝑛
𝑗 ), 𝑝𝑦 (𝐵𝑚𝑎𝑥

𝑗 )]

The potential inner-column pixel errors are given by

𝐸𝑖𝑖𝑛𝑛𝑒𝑟 = (𝑃𝑙 ∪ 𝑃𝑟 ) \ 𝑃𝑖

Proof. Consider a pixel column 𝑝𝑖 in a two-color line chart of

the time series variable 𝑦. Let 𝑃𝑖 be the set of foreground pixels

derived frommin andmax𝑦 values of fully-contained groups within

𝑝𝑖 , and 𝑃𝑙 and 𝑃𝑟 the sets of potential foreground pixels contributed

by the left and right partially-overlapping groups 𝑙 and 𝑟 .

Using the known min and max 𝑦 values for 𝑙 and 𝑟 , these sets

correspond to the following pixel ranges determined using Eq. 1:

𝑃𝑙 = [𝑝𝑦 (𝐵𝑚𝑖𝑛
𝑙

), 𝑝𝑦 (𝐵𝑚𝑎𝑥
𝑙

)], 𝑃𝑟 = [𝑝𝑦 (𝐵𝑚𝑖𝑛
𝑟 ), 𝑝𝑦 (𝐵𝑚𝑎𝑥

𝑟 )] .
The foreground pixels in 𝑝𝑖 must cover at least 𝑃𝑖 . However,

data points within the min and max values of partially-overlapping

groups may potentially contribute to 𝑝𝑖 , with an upper limit of (𝑃𝑙 ∪
𝑃𝑟 ) \𝑃𝑖 . To account for timestamp inaccuracies (using the midpoint

of the interval), we consider the worst-case scenario, resulting in a

maximum set of additional potential foreground pixels, which is

equivalent to (𝑃𝑙 ∪ 𝑃𝑟 ) \ 𝑃𝑖 . Thus, the maximum set of potential

inner-column pixel errors 𝐸𝑖
𝑖𝑛𝑛𝑒𝑟

corresponds to (𝑃𝑙 ∪ 𝑃𝑟 ) \ 𝑃𝑖 . □

To understand missing inner-column pixels, we examine the

partially-contained groups intersecting the pixel column bound-

aries. Figure 3d illustrates how we determine potential errors, using

the same raw time series data depicted in Figure 3a, and the same

min-max aggregation on G7 (𝑇 ) as shown in Figure 3b.

In the figure, gray pixels are foreground pixels resulting from

intersecting the line, while green pixels are correctly visualized

inner-column pixels from fully-contained groups. For example,

pixels 𝑝1,0 and 𝑝2,0 are correct foreground pixels, as the first group

of the grouping is fully-contained within the first pixel column, and

its min-max values are guaranteed to be included in the min-max

value of the overall pixel column. These are inner-column pixels.

However, partially-contained groups, such as 𝐵1 group, present

challenges as the exact mapping of min-max values to the two adja-

cent pixel columns is uncertain. If the actual data point with the min

or max values lie in the second pixel column and its range exceeds

the min-max range of all fully contained groups in the pixel column,

then exceeding inner-column pixels will not be rendered (missing

inner-column pixels). For instance, considering Figure 3a, 𝑝0,1 is an

inner-column pixel that is missing from the line chart generated

using G7 (𝑇 ) (Fig. 3b). Simultaneously, because we approximate the

timestamp with the middle of each group, we have a false inner-

column pixel (𝑝0,0) that is rendered as a foreground by incorrectly

including within it the min value of the partially-contained group.

To illustrate potential inner-column pixel errors, red zones are

drawn over Figure 3d. These areas cover the partially-contained

groups and are vertically delimited by their min-max ranges. Pixels

overlapped by these zones and not green (i.e., true foreground pixels

derived from the fully-contained groups) are considered as potential

inner-column pixel errors. Thus, we can determine that pixels 𝑝0,0,

𝑝0,1, 𝑝2,1, 𝑝2,2, 𝑝2,3, and 𝑝1,3 are potential inner-column pixel errors.

Theorem 3.4 (Inter-column errors). For two adjacent pixel
columns 𝑝𝑖 and 𝑝 𝑗 in a two-color line chart generated using the min-
max values of a variable 𝑦 on a grouping G𝑘 (𝑇 ), the potential inter-
column pixel errors for column 𝑝𝑖 because of a missing or false inter-
column line between 𝑝𝑖 and 𝑝 𝑗 are given by:

𝐸
𝑖, 𝑗
𝑖𝑛𝑡𝑒𝑟

= (𝐹𝑖, 𝑗 ∪𝑀𝑖, 𝑗 ) \ 𝑃𝑖
where 𝐹𝑖, 𝑗 denotes the pixels in column 𝑝𝑖 , resulting from rasterizing
the line segment between the min or max 𝑦 values of G𝑘 (𝑇 ) before
and after the 𝑝𝑖 − 𝑝 𝑗 intersection, 𝑀𝑖, 𝑗 the maximum set of pixels
potentially affected by the missing correct inter-column line, and
𝑃𝑖 the set of inner-column foreground pixels that can be accurately
determined by the fully-contained groups of G𝑘 (𝑇 ) in column 𝑝𝑖 .

Proof. In a two-color line chart using min-max 𝑦 values from

a grouping G𝑘 (𝑇 ), the correct inter-column line between adjacent

pixel columns 𝑝𝑖 and 𝑝 𝑗 cannot be determined. Instead, a line con-

necting themin ormax𝑦 values across their intersection is rendered,

which can introduce both missing and false foreground pixels in 𝑝𝑖 .

Define 𝐹𝑖, 𝑗 as the set of pixels in 𝑝𝑖 affected by this approximation,

determined by rasterizing this false line and identifying intersecting

pixels in 𝑝𝑖 . Excluding accurately determined inner-column fore-

ground pixels 𝑃𝑖 from fully-contained groups, the potential false

foreground pixels due to the approximation are 𝐹𝑖, 𝑗 \ 𝑃𝑖 .
Let 𝑀𝑖, 𝑗 denote the maximum set of potentially missing fore-

ground pixels in column 𝑝𝑖 due to the absence of the correct inter-

column line. This calculation varies based on two scenarios: (i) With

a single partially-contained group (𝐵𝑖 𝑗 ) at the intersection of 𝑝𝑖 and

𝑝 𝑗 , missing pixels are within 𝐵𝑖 𝑗 ’s vertical range, defined as𝑀𝑖, 𝑗 =

[𝑝𝑦 (𝐵𝑚𝑖𝑛
𝑖 𝑗

), 𝑝𝑦 (𝐵𝑚𝑎𝑥
𝑖 𝑗

)]. (ii) Without a partially-overlapped group,

but with fully-contained groups adjacent across the intersection (𝐵𝑖
in 𝑝𝑖 and 𝐵 𝑗 in 𝑝 𝑗 ), the missing line may start from any point in 𝐵𝑖
and extend towards 𝐵 𝑗 . The potential missing pixels are bounded

within the largest possible ranges defined by the min and max val-

ues of adjacent groups, resulting in𝑀𝑖, 𝑗 = [𝑝𝑦 (𝐵𝑚𝑖𝑛
𝑖

), 𝑝𝑦 (𝐵𝑚𝑎𝑥
𝑗

)]
or𝑀𝑖, 𝑗 = [𝑝𝑦 (𝐵𝑚𝑎𝑥

𝑖
), 𝑝𝑦 (𝐵𝑚𝑖𝑛

𝑗
)]. Excluding accurately determined

inner-column foreground pixels 𝑃𝑖 , the maximum potential missing

foreground pixels in 𝑝𝑖 are𝑀𝑖, 𝑗 \ 𝑃𝑖 .
Combining both potential false and missing pixels, the maximum

inter-column pixel errors in column 𝑝𝑖 due to the inter-column line

approximation at 𝑝𝑖 − 𝑝 𝑗 are represented by (𝐹𝑖, 𝑗 ∪𝑀𝑖, 𝑗 ) \ 𝑃𝑖 . □

The theorem aims to measure the maximum number of pixel

errors that arise between two adjacent pixel columns. In Figure

3d, the inter-column line segment between pixel columns 0 and 1

(depicted by the red line segment) designates pixel 𝑝2,1 as a fore-

ground pixel (shown in gray). However, this pixel is wrongly set

as a foreground pixel (𝐸3 in Figure 3b). since the inter-column line

does not match the one in the raw data visualization (Fig 3a).

Conversely, not rendering the correct inter-column line may lead

to missing pixels. For example, 𝑝2,2 is not set as a foreground pixel

as it is not crossed by an inner or inter-column line, although the
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correct inter-column line does pass from this pixel. This potential

missing pixel corresponds to an actual error (𝐸4 in Fig. 3b).

Next, we combine Theorems 3.3 and 3.4 to define the upper error

bound as the proportion of total pixels in the visualization canvas that
could be incorrect. Note that, we do not use SSIM (Structural Simi-

larity Index Measure) [37], as done in [15, 36], for determining the

upper error bound. SSIM measures image similarity by evaluating

changes in structural information, brightness, and contrast, focus-

ing on spatial pixel interdependencies to approximate human visual

perception. However, it requires a reference image (error-free) to

compute similarity, which we lack during query evaluation. Instead,

our theorems provide the maximum potential pixel errors, allowing

us to quantify the inaccuracy introduced by the aggregation method

without comparing to raw data visualization. This method, unlike

SSIM, estimates absolute pixel errors without explicitly considering

structural information and the human perception model. However,

in our experiments, we evaluate SSIM and show that our calculated

error bound is proportional to this metric.

Definition 3.5 (Upper Error Bound). Given a two-color line chart

visualization of a time series variable 𝑦 with a width𝑤 and height

ℎ pixels, let 𝐸𝑖 be the set of inner- and inter-column pixel errors in

the 𝑖𝑡ℎ pixel column, i.e., 𝐸𝑖 = 𝐸𝑖
𝑖𝑛𝑛𝑒𝑟

∪ 𝐸
𝑖−1,𝑖
𝑖𝑛𝑡𝑒𝑟

∪ 𝐸
𝑖,𝑖+1
𝑖𝑛𝑡𝑒𝑟

.

The use of sets and their unions in this calculation is to ensure

each pixel is counted only once, avoiding redundancy in caseswhere

a pixel could be part of both inner- and inter-column errors. Then,

the upper error bound is the ratio of the total number of errors in

all pixels columns to the number of pixels in the visualization:

𝜖 =

𝑤
𝑖=1 |𝐸

𝑖 |
𝑤 × ℎ

(2)

Problem Statement. Given a multi-variate time series 𝑇 of length

𝑛, a visualization canvas of width 𝑤 and height ℎ, a sequence of

visual interactions over the line chart visualization of 𝑇 with error

constraints ≤ 𝜖 with respect to the visualization accuracy, our

problem is an approximate visualization problem with pixel error-
bound guarantees, which aims at providing interactive response time

at each user operation (∼ 500ms [23]). This problem encapsulates

the challenge of balancing the interactivity and the accuracy of the

visualization, particularly in successive user interactions.

4 VISUALIZATION-AWARE CACHING
This section presents the proposed cache, query evaluation over it,

as well as the eviction and prefetching techniques employed.

4.1 MinMaxCache Design

Multi-Time Series Caching. Figure 2 depicts the structure of the
cache. It uses an interval tree [9] for indexing the data. A node

in the tree represents a grouping 𝐺𝑘 (𝑇 ), and stores its start and

end timestamps, aggregated metadata about its intervals as well as

pointers to its left and right subtrees. This tree allows to efficiently

find overlapping cached time intervals with the query interval. The

cache accommodates multiple variables in a time series by utiliz-

ing separate interval trees for each variable. A hash table maps

each unique combination of a time series key T𝑖𝑑 and a specific

variable 𝑦 to its corresponding interval tree. Employing separate

interval trees allows for more fine-grained control on how the data

is fetched, aggregated and cached, adjusting the unique patterns

of variables to different caching and aggregation granularities as

well as to different error bounds. Consequently, this method en-

hances MinMaxCache’s efficiency, as it aims to fetch only the data

necessary for the user’s current focus.

Cache Metadata. A node in the tree corresponds to a grouping

G𝑘 (𝑇 ′) of the subseries 𝑇 ′ ⊆ 𝑇 , where 𝑇 ′ = {(𝑡 𝑗 ,𝑉𝑗 ) | 𝑡 𝑗 ∈
[𝑡G𝑠𝑡𝑎𝑟𝑡 , 𝑡

G
𝑒𝑛𝑑

]}, and 𝑘 = ⌈ 𝑡end−𝑡start𝜏agg
⌉. Each node G stores:

• T𝑖𝑑 : The unique identifier of the time series interval tree to

which the node belongs.

• 𝑦: The specific variable of the time series for which the node

stores aggregated min/max values, with 𝑦 ∈ 𝑌 , where 𝑌 is the

set of all variables of the multivariate time series.

• 𝑡
G
𝑠𝑡𝑎𝑟𝑡 , 𝑡

G
𝑒𝑛𝑑

: The start and end timestamps of the grouping.

• 𝜏𝑎𝑔𝑔 : The aggregation interval, i.e., the length of each 𝑘 time

interval in the grouping.

• V𝑚𝑖𝑛 andV𝑚𝑎𝑥 : An array of𝑘 size with themin andmax values

of the variable 𝑦 for each interval in the grouping.

To calculate the 𝑖𝑡ℎ time interval in the grouping G, we use:

(𝑡𝑖𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑖𝑒𝑛𝑑 ) = (𝑡G𝑠𝑡𝑎𝑟𝑡 + 𝑖 · 𝜏𝑎𝑔𝑔,min(𝑡G
𝑒𝑛𝑑

, 𝑡
G
𝑠𝑡𝑎𝑟𝑡 + (𝑖 + 1) · 𝜏𝑎𝑔𝑔)

4.2 Query Evaluation over MinMaxCache
In MinMaxCache, a query is the result of a user operation on the

visualized time series 𝑇 , from which the user selects a subset of

numeric variables𝑌𝑄 ⊆ 𝑌 , the query time interval 𝐼𝑄 = [𝑡𝑄
start

, 𝑡
𝑄

end
)

and the width𝑤 and height ℎ in pixels of the visualization canvas.

Figure 4 shows an example of a query 𝑄 to generate a visualiza-

tion with𝑤 = 3 pixels. The process involves the following steps: the

evaluation of the query on the cached data (step 1); the evaluation

of the error bound based on the cached data and fetching of missing

data (step 2); the final evaluation of the error and visualization

of the results (step 3). Note that these steps are applied to each

interval tree of a variable in 𝑌𝑄 . However, data access is optimized

by issuing a single query to fetch missing data for all variables 𝑌𝑄 .

Evaluate the query on the cache. In Step 1, the interval trees that

match the requested time series and variables in𝑄 are identified via

their unique identifiers, T 𝑖𝑑 and 𝑦 ∈ 𝑌𝑄 . For each variable 𝑦 in 𝑌𝑄 ,

its interval tree is either accessed or constructed (the first time is

visualized). The groupings that overlap with the query interval, 𝐼𝑄 ,

are identified in the interval trees [9]. Specifically, only groupings

with an aggregation interval 𝜏𝑎𝑔𝑔 ≤ 𝜏𝑝/2 are considered, where 𝜏𝑝 ,
representing the pixel column interval size, is defined by the query

interval as 𝜏𝑝 = (𝑡𝑄
end

− 𝑡
𝑄
start

)/𝑤 . This requirement arises from the

necessity to have at least one fully contained group in every pixel

column. Otherwise, it is not possible to identify a subset of correct

inner-column pixels; and thus, the error bound calculated based on

Theorems 3.3 and 3.4 could be excessively high.

The process, then, identifies for each variable the parts of the

query interval, for which no cached groupings exist and access to

the data is needed. In Figure 4,𝐺1, and𝐺2 cover only the blue parts

(first 2 pixel columns) of the query interval.
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Figure 4: Evaluation of a query 𝑄 for a visualization with 𝑤 = 3 pixels. Overlapped groupings 𝐺1 and 𝐺2 are retrieved from
the interval tree. Based on partial error, it can be a partial hit (case a), fetching only missing data, or a cache miss (case b),
triggering a query for the entire interval. In Step 3, total error 𝜖 is evaluated using cached and fetched data. If error still exceeds
the bound, we fetch min, max, first, and last data points for each pixel column, ensuring an error-free visualization.

Evaluate error and fetch missing data. Step 2 concerns the

evaluation of the error bound using the Theorems 3.3 and 3.4. We

distinguish three cases: i) The cache holds data for the entire query

interval across all variables. We compute a separate error bound for

each variable. If errors are within the constraints of each variable,

we compute the min-max values of each pixel column based on

the contained groupings and visualize the results. We consider this

case as complete cache hit; for space reason, this type of query is not
shown in the Figure. ii) The cache misses data for parts of the query

interval of a variable. Again, we compute the error bound based

on the groupings overlapping the query interval. If it is within

the expected limit (e.g., ≤ 5%), we only fetch the missing part of

the query from the datastore. This is a partial cache hit (Figure 4
Step 2a). Fetched data is aggregated into new groupings in their

corresponding interval trees. In the example, the new grouping 𝐺3

is cached into the variable’s tree and used for computing the min-

max values of pixel column 3. iii) Finally, if the partial or complete

error bounds exceed constraints, we fetch data for the entire query

interval, employing a new aggregation interval 𝜏 ′𝑎𝑔𝑔 < 𝜏𝑎𝑔𝑔 , which

reduces the error (Figure 4 Step 2b) . This case is a cache miss. The
new aggregation interval is determined by the Aggregation Factor.

Definition 4.1 (Aggregation Factor). The Aggregation Factor 𝐴𝐹 ,

is the ratio of the pixel column interval 𝜏𝑝 to the aggregation inter-

val of the grouping, 𝜏𝑎𝑔𝑔 , i.e., 𝐴𝐹 =
𝜏𝑝
𝜏𝑎𝑔𝑔

. AF ≥ 2, since 𝜏𝑎𝑔𝑔 ≤ 𝜏𝑝/2.

This metric quantifies the granularity of a grouping interval to

the pixel column interval. Determining a granularity for a new

grouping that would satisfy the error constraint, is particularly

challenging. It depends not only on the query interval and the

resolution of the visualization, but also on data characteristics,

which in streaming data scenarios cannot be usually determined

upfront. Also, the chosen factor must facilitate cached data reuse in

future queries, which are often not known beforehand, considering

the dynamic nature of exploratory workloads.

To address these complexities, MinMaxCache employs an adap-

tive approach, considering the aggregation factor of cached group-

ings overlapping the query. When multiple groupings overlap, the

aggregation factor of the grouping covering the largest portion of

the query interval is used to issue a query to the database with a

doubled aggregation factor. This method offers an adaptive way
of extending the cache with finer-granularity groupings for the

area the user explores. It enhances the likelihood of fetched results

satisfying the error bound, as well as the probability that these

results will comply with the error bound for future user operations

around the area (results are provided in experiments). For exam-

ple, grouping𝐺1 covers a larger part of 𝑄 compared to𝐺2, having

𝐴𝐹1 = 2, i.e., each pixel column interval is twice the length of each

group interval in 𝐺1. In case (a), with a partial hit and error ≤ 5%,

we fetch the missing data with𝐺1’s𝐴𝐹 ; otherwise (case b), we fetch

fine-grained data by doubling the value of 𝐺1 (𝐺4 with 𝐴𝐹=4).

When the cache lacks overlapping groupings for a new query,

an initial aggregation factor is set. Our experimental evaluation

indicates that while MinMaxCache can adaptively adjust the 𝐴𝐹

value, leading to consistent performance, an initial value of 4 tends

to yield optimal performance in most cases (Sec. 5.2).

This adaptive approach, including the computation of the ag-

gregation factor, is performed per variable. For example, a variable

might not violate the error bound and therefore does not require

the doubling of the aggregation factor. However, a single database

query is issued to minimize round trips and utilize database opti-

mizations. This unified query efficiently collects required data for

all variables, despite varying aggregation intervals.

Evaluate total error and visualize the results. After the query
is executed and the new groupings are cached, Step 3 concerns the

evaluation of the total error bound considering the new data fetched.

If the reevaluation still exceeds the error bound for some variables,

a final M4 query guarantees 100% accurate visualization. Although
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this can result in increased total query time, our experiments in-

dicate that this occurs in less than 5% of the queries. Importantly,

even with this two-step access to the data store, users can visualize

intermediate results before examining the results from the second

query, which are guaranteed to be 100% accurate.

To avoid the unnecessary computational cost of aggregating data

with an aggregation interval close to the sampling interval 𝜏𝑠 , we

fetch and cache raw data when

𝜏𝑎𝑔𝑔
𝜏𝑠

< 6. Yet, in our experiments,

such instances were very rare, only arising during highly zoomed-in

exploration, where the pixel column interval approached 𝜏𝑠 .

Step 3’s final stage involves mapping the cached data of each

variable in 𝑌𝑄 to pixel columns and visualizing the results. The

process iterates over the grouping intervals in each pixel column for

every variable, returning four key points: the minimum, maximum,

first and last values (the latter computed from the timestamps of

the first and last groupings within each pixel column).

The cache size for a single variable 𝑦 depends on the number of

cached groupings and the groups within each. Each group stores

two min-max values for 𝑦, with the number of groups 𝑘 determined

by the Aggregation Factor used during data retrieval, aligning with

the visualization’s resolution (𝑂 (𝐴𝐹 ·𝑤)). The number of cached

groupings is primarily driven by the query sequence. The worst-

case scenario arises when all queries result in cache misses, neces-

sitating new groupings with a doubled Aggregation Factor. Overall,

the cache size is bounded by the raw data (𝑂 (𝑛)), but fetching raw

data is very rare, mainly occurring during extensive zooming.

Complexity of Query Evaluation. Query evaluation complexity

depends on database access. For cache hits, it involves interval

tree searches (𝑂 (log𝑔 + 𝑜), with 𝑔 being the total groupings and

𝑜 the overlapping ones) and processing groups for error bound

calculation (𝑂 (𝑤) to𝑂 (𝑛𝑄 ), where 𝑛𝑄 is the number of data points

in the query interval, with the worst case occurring when the cache

stores non-aggregated data). While these operations are performed

per variable, the number of simultaneously visualized variables

can be considered constant. The overall worst-case complexity

simplifies to𝑂 (𝑛𝑄 ), considering𝑤 is limited by display resolutions

and 𝑛𝑄 is usually larger than 𝑔. In partial cache hits or misses,

complexity is driven by database fetches, scaling with the time

series size (𝑂 (𝑛)), which also applies to M4 queries.

4.3 Cache Eviction Policy
MinMaxCache employs an eviction policy to manage the memory

footprint. The policy targets locality-based exploration scenarios,

evicting nodes less likely to be used in subsequent user operations

that involve overlapping regions. It calculates the distance between

the centers of a cached grouping node and the interval of the last

visualized query, assigning the value of 0 if the grouping is entirely

within the query interval. The replacement policy operates by

evicting the node with the greatest distance when the cache is full.

4.4 Prefetching
There exist several prefetching approaches that model user behavior

and predict future operations and fetch data that might be needed

in the future [2, 5, 16]. MinMaxCache employs a simple prefetching

strategy, prefetching data to the left and right of the most recent

query. This strategy accelerates pan and zoom out operations; the

latter commonly use a zoom factor of 2 and usually result in addi-

tional data fetching. Then, we prefetch data, which are not already

cached with as much detail (i.e., aggregation granularity) as in the

last query. The aggregation granularity used for prefetching aligns

with the granularity of the previous query if the fetched data met

the error bound. Otherwise, we fetch data with the new aggregation

factor, adhering to our adaptive caching approach.

Prefetching can notably improve performance by reducing the

need for future data fetches. However, it could potentially increase

the latency of both the user’s query and the final visualization, since

resources are allocated to fetch data that may not be immediately

necessary. To ensure fast and interactive querying, we perform

prefetching during user idle times, i.e., while the user is examin-

ing the results of their prior operation. This method minimizes

the impact of prefetching on system responsiveness and allows

uninterrupted user interaction (see evaluation details in Section 5).

5 EXPERIMENTAL ANALYSIS
The goal of our evaluation is to assessMinMaxCache’s performance

in terms of response time and accuracy of the resulting visualization.

We evaluate MinMaxCache with respect to its various parameters

and against several competitors using both real and synthetic data.

5.1 Experimental Setup

Datasets. Our evaluation uses the datasets in Table 1: (i) Real
datasets: We used three datasets:MNF which contains data from an

electrical power sensor of a semiconductor manufacturing machine

(sensor MF03)[14], SOCC which contains measurements from a

speed sensor of a soccer ball [30], and INTLwhich includes readings
collected from sensors at the Intel Berkeley Research Lab [19]. Given

their smaller size, we expanded each by repeating the data 50 times.

(ii) Synthetic datasets: We generated 11 synthetic datasets using

random walks, starting at 1 million and scaling up to 1 billion

datapoints. The sampling interval was adjusted with each dataset

to double its size from the previous one, all representing a 4-year

span. These datasets are collectively referred to as SNT1M-1B.

Table 1: Dataset basic characteristics

Name
Sampling
Interval (s) # Fields # Datapoints

MNF 0.01 16 20M

INTL 30 4 115M

SOCC 0.5 11 350M

SNT1M-1B 0.125-120 5 1M-1B

Evaluation Metrics. The performance and quality of visualiza-

tions are evaluated using the following measures: (a) Query Re-
sponse Time: total time taken byMinMaxCache to evaluate the user
operation not including the rendering of the visualization; (b) Visu-
alization Quality: similar to [15], we use the normalized structural
similarity index (SSIM) [37] to measure the similarity between vi-

sualizations generated by MinMaxCache and those using raw data.

Competitors.We compare our approach with: (1) M4 [15], (2) OM3

[36], and (3) RawCache. The latter is a variation of our in-memory

cache which fetches and caches non-aggregated data points, similar
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to TSCache, [22] (code was not made available for evaluation).

RawCache serves as a baseline to demonstrate the limitations of a

visualization-agnostic caching approach.

Exploration Scenario. In our evaluation, we simulated a user ex-

ploration scenario involving sequences of 50 pan and zoom in/out

operations. Each query interval was either shifted (i.e., pan opera-

tion) by 10-50% or zoomed in/out by a zoom factor of 2 relative to

the preceding one. The next operation was randomly determined

with 35% probability for pan left, 15% for pan right, 20% for zoom in,

and 30% for zoom out. By default, our exploration scenario assumes

that the user visualizes a single variable of the time series data,

while a multi-variate scenario is considered in a separate experi-

ment. The first query was placed at the end of the data to mirror a

typical exploration scenario where the user begins from the most

recent data and navigates towards older data or zooms out for a

broader perspective. We define query selectivity as the percentage

of data points selected by the query relative to the total number

of data points, assuming a value of 10% for the first query. Finally,

unless stated otherwise, we use a default error bound (𝜖) of 5%.

Implementation Details. MinMaxCache is implemented on JVM

11. As a database, we employed PostgreSQL(v.15.2) which was also

used for M4 [15], and InfluxDB(v.2.6.1), a time series database also

considered in [36]. For visualization rendering, the Cairo(v1.17.8)
3

library was used. For our evaluation, the database was hosted in an

Ubuntu 20.04.06 server with an AMD Ryzen Threadripper 3970X 32-

Core Processor and 252GB RAM and 10TB SSD, and MinMaxCache

run on a MacBook Air 2020 laptop with an M1 processor and 16GB

RAM and 512GB SSD. Both devices were on the same network.

5.2 MinMaxCache Parameters
This section evaluates MinMaxCache’s performance regarding the

error bound constraint, initial aggregation factor, and prefetching.

We also assess MinMaxCache’s visualization accuracy, focusing on

results using InfluxDB, with similar outcomes for PostgreSQL.

Performance vs. Error Bound. In this experiment, we analyze

how varying the error bound 𝜖 affectsMinMaxCache’s performance.

Focusing on MNF on InfluxDB, Figure 5 shows execution times for

different error bounds. Higher 𝜖 generally shortens query execution

times as it allows fetching coarser data with lower latency while still

meeting the error constraint. It also enables more cached data reuse

and reduces processing and transfer times. Conversely, a tighter 1%

error bound increases evaluation times, often requiring fetching

aggregated data with a doubled 𝐴𝐹 or even a second database trip

to issue an M4 query, unlike with 5% or 10% bounds.

Varying the Initial Aggregation Factor. We conducted exper-

iments assessing how the initial Aggregation Factor (𝐴𝐹 ) affects

MinMaxCache’s performance, testing initial 𝐴𝐹 values of 2, 4, and

8. Recall that𝐴𝐹 is the ratio of pixel column interval to aggregation

interval and determines data granularity relative to pixel column

interval length. Figure 6 presents the MNF dataset results in In-

fluxDB, as other datasets show similar behavior. An initial 𝐴𝐹 of 4

slightly outperforms 2 and 8 in cumulative time for the workload. A

lower initial 𝐴𝐹 fetches coarser data, potentially failing to meet the

3
https://www.cairographics.org/

error bound, requiring a doubled aggregation factor for fetching the

entire query interval. Conversely, an 𝐴𝐹 of 8 may fetch excessively

fine-grained data initially, increasing database query latency.

Examining query 0 with a cold cache highlights 𝐴𝐹 ’s impact on

latency. Initially, a higher aggregation factor raises query times

due to more processing and database data transfer. However, this

trend does not generally hold in subsequent queries, since cached

data can be reused, especially when it’s finer-grained, reducing

the interval that needs fetching from the database. For example,

in query 2, an initial 𝐴𝐹 of 8 requires less time as finer-grained

cached data can be used for the non-cached interval. Conversely,

𝐴𝐹 values of 2 and 4 necessitate retrieving the entire query interval

with a doubled 𝐴𝐹 due to the error bound data violation.

However, when considering the cumulative times for the entire

workload for all aggregation factors, we see that its effect is not

so significant, since MinMaxCache’s ability to adaptively determine
the appropriate granularity yields consistent performance across the
majority of queries, regardless of the initial aggregation factor.

Prefetching Strategy. In this experiment, we evaluated the impact

of prefetching on performance. Prefetching fetches data to the left

and right of the canvas during user idle time and is particularly

beneficial for queries in previously unexplored areas. We vary the

prefetch ratio from 0% (no prefetching) to 75%. Figure 7 shows the

cumulative time for increasing prefetch ratios. We present the re-

sults for InfluxDB using the INTL dataset for brevity, though similar

behavior was observed in the other settings. As anticipated, larger

prefetch ratios result in smaller evaluation times. However, values

beyond 50% do not yield further time improvements, as each query

is either shifted (i.e., pan operation) by 10-50% or zoomed in/out

by a factor of 2 relative to the preceding one. Should a scenario

permit zooming out by more than a factor of 2, larger prefetch

values might prove advantageous. In our experiments, prefetching,
on average, improves query performance by about 30%.

Visualization Quality. Figure 8 shows a box plot of the SSIM

values of visualizations generated by MinMaxCache compared to

those produced using raw data. We present MinMaxCache’s results

for all 50 consecutive queries at error bounds of 10%, 5%, and 1%.

SSIM increases as the error bound becomes tighter, supporting

our case for the effectiveness of MinMaxCache in adhering to er-

ror constraints. Furthermore, by achieving high SSIM values with
smaller error bounds, MinMaxCache demonstrates its ability to strike
a balance between data accuracy and aggregation efficiency.

Specifically, for SOCC and INTL, all queries exhibit SSIM greater

than 0.99, indicating visualization results nearly identical to precise

visualizations. For MNF, SSIM remains high, and any discrepancy

with the other datasets can be attributed to the frequent spikes

and rapid value changes in this dataset. Considering Theorems 3.3

and 3.4, such variable changes, especially in partially-contained

groups or between adjacent columns, may lead to more inner- and

inter-column pixel errors. However, as the error bound tightens,

SSIM increases, closely approximating an error-free visualization

even for MNF’s highly variable data.

Figure 9 shows the error bound 𝜖 value (orange dashed line)

calculated for each query in the exploration scenario with a 5%
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Figure 5: Evaluation Time per query vs.
error bound (MNF)

Figure 6: Varying the initial Aggregation
Factor (𝐴𝐹 ) for MNF

Figure 7: Effect of prefetching on query
response time (INTL)

Figure 8: SSIM at different error bounds Figure 9: Max vs. Actual Error (MNF) Figure 10: Memory Consumption (MNF)

upper error bound. This value is compared to the actual error, de-

termined by comparing each visualization’s pixels with those of the

visualization produced using raw data. As depicted, the actual error
consistently falls below the error bound calculated, demonstrating

our method’s accuracy in evaluating maximum error.

Memory Footprint. In Figure 10, we evaluate MinMaxCache’s

memory usage against RawCache for the MNF dataset (with other

datasets performing similarly).MinMaxCache exhibited significantly
lower memory usage, being two orders of magnitude more efficient
than RawCache. This arises from our adaptive caching strategy,

which fetches data proportional to visualization width using the

Aggregation Factor, instead of relying on the total size of the time

series as RawCache does. The memory growth is logarithmic, ben-

efiting from effective eviction policies. This pattern indicates that

MinMaxCache can handle increasing cached data volumes effi-

ciently, without excessive memory overhead.

5.3 Performance in Exploration Scenarios
Next, we compare MinMaxCache against competitors, with an ini-

tial aggregation factor of 4 and prefetching 50% of the data enabled.

Overall Comparison. Figure 11 shows execution time per query

and cumulative time across all three real datasets during the ex-

ploration scenario on PostgreSQL. OM3 was only tested on Post-

greSQL as there was no open-source InfluxDB implementation

available
4
. The results highlight that MinMaxCache consistently

outperforms all competitors in query execution time. Compared to

M4, MinMaxCache performs notably better. M4 queries the data-

base in every user action and, despite returning at most 4𝑤 tuples,

requires aggregating all data within each𝑤 interval. MinMaxCache

was generally 6 − 10× faster, with a more pronounced difference in

PostgreSQL compared to InfluxDB. This difference was expected,

as InfluxDB is optimized for handling large time series data, while

4
https://github.com/Ideas-Laboratory/om3/tree/main

PostgreSQL, a generic database, requires complex self-join opera-

tions for M4 queries to fetch corresponding timestamps for min,

max, first, and last values.

Compared to RawCache, MinMaxCache performs significantly

better. RawCache experiences increased latency as it fetches raw

data, unlike MinMaxCache’s use of aggregated data. RawCache’s

system failure while processing the SOCC dataset highlights its

difficulties in managing large data volumes, while MinMaxCache

efficiently caches data provides rapid responses.

OM3 faced heap space limitations indexing datasets exceeding

20 million data points, thus, comparison was restricted to the MNF

dataset. As OM3 employs progressive visualization, we report the

time needed for OM3 to achieve a SSIM of 1. MinMaxCache dis-

played promising results compared to OM3, with most queries

being faster, except for the initial query from a cold cache and three

queries exploring areas with minimal cached data. A key drawback

of OM3 is its preprocessing time, highlighted separately in the plot,

where constructing the multi-level representation of the time series

introduces significant initial delays. Unlike OM3, MinMaxCache
requires no preprocessing, enabling users to immediately start visual-
izing time series data and improving overall performance.

Varying the error bound vs. Competitors. Figure 16 displays
MinMaxCache’s cumulative time against competitors for 10%, 5%,

and 1% error bounds for MNF on PostgreSQL. Even at 1% error

bound, MinMaxCache significantly outperforms both M4 and Raw-

Cache. The same behavior was consistently observed across all

datasets and in InfluxDB. Compared to OM3, MinMaxCache ex-

hibits shorter cumulative times in all error bounds, with perfor-

mance at 1% similar to that of OM3 (19.69 vs. 20 seconds for OM3).

However, considering OM3’s lengthy initialization time, our ap-

proach offers clear advantages. This consistent outperformance

across varying error bounds demonstrates that even in near error-
free visualization requirements, (∼ 1%) ourmethods achieves a notable
improvement in the performance of the entire exploration sequence.
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(a) INTL (b) MNF (c) SOCC

Figure 11: MinMaxCache vs. Competitors on PostgreSQL

Figure 12: Varying number of
variables (MNF)

Figure 13: Varying Time Series
Length (SNT1M-1B)

Figure 14: Varying initial
query selectivity (MNF)

Figure 15: Varying canvas size
(MNF)

Figure 16: Varying Error Bound vs. Competitors (MNF)

Handling Multi-Variate Exploration Scenarios. Next, we con-
sider the scenario where a user visualizes multiple variables on a

multi-series (multiple axes or stacked) line chart, and each oper-

ation adjusts the visualization canvas for all variables. Figure 12

presents the total time for evaluating all queries in the default explo-

ration scenario, with respect to an increasing number of variables.

We report on the MNF dataset in InfluxDB, with other datasets

showing similar behavior. Unfortunately, we were unable to run

this experiment for OM3, due to previously mentioned reasons.

As the number of variables increases, query execution time rises.

Notably, this increase is more pronounced for M4 and RawCache,

whereas less significant for MinMaxCache. Although the time to

fetch the aggregated data for multiple variables from the data store

is higher, the effective caching per variable mitigates this issue,

enabling better management of the data that needs to be fetched

from the database and ultimately reducing the overall latency of

database access.

Performance vs. Time Series Length. This experiment evaluated

MinMaxCache’s performance with increasing time series length 𝑛,

utilizing the SNT1M-1B datasets. Figure 13 displays these results

for InfluxDB, revealing that MinMaxCache scales logarithmically
with the time series length. In contrast, M4 scales linearly due to

increasing numbers of datapoints it aggregates per query. However,

MinMaxCache effectively reuses cached data, thereby reducing the

number of datapoints the database query needs to process and fetch.

For RawCache, we could run the experiment up to the size of 64

million data points (it fails for larger datasets).

Varying the initial query selectivity. In this experiment, we

evaluate the impact of initial query selectivity—the percentage of

data selected, maintaining the same sequence of operations. Figure

14 presents the total time for evaluating all 50 queries in the scenario,

with respect to the initial query selectivity. For brevity, we present

results for the MNF dataset on InfluxDB. As the initial selectivity

increases, the query interval of each subsequent operation becomes

proportionally larger and subsequently, the amount of the data

fetched for each query increases. As expected, total evaluation

time increases for all competitors as initial selectivity increases. M4

exhibits the largest increase, as each query requires aggregating

more data in the database. On the other hand, both MinMaxCache

and RawCache demonstrate smaller increases due to the reuse of

cached data. However, MinMaxCache outperforms as it is adapting

to increased initial query selectivity. Notably, the evaluation time for
MinMaxCache remains within acceptable interactive response times
even for high selectivity, demonstrating its scalability and ability to

effectively handle large amounts of data.

Performance vs. Canvas Size. Next, we examine the impact of

the canvas size on MinMaxCache and its competitors using the

MNF dataset on PostgreSQL (Figure 15). As canvas size increases,

the aggregation interval—determined by the aggregation factor

(AF) and the pixel column interval, which depends on the visual-

ization canvas’s width𝑤 in pixels—decreases. This requires retriev-

ing more data points from the database in both our approach and

M4, with the latter needing to fetch 4 × 𝑤 data points for every

query. Consequently, larger visualization canvas sizes lead to a
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slight increase in query evaluation time for both methods. Raw-

Cache performance does not depend on canvas size as it fetches and

caches non-aggregated data points. In contrast, OM3’s scalability

is inferior to our method; notably, at a canvas size of 4000 × 2400,

its performance falls below even that of RawCache. Overall, our

method outperforms competitors, even with larger canvas sizes.

5.4 User Evaluation
We conducted a user study to assess MinMaxCache’s effectiveness

and user acceptance of error-bounded visualizations. Using a pro-

totype visualization tool, 12 participants interacted with a multi-

variate time series dataset, comparingMinMaxCache-updated charts

to error-free charts generated by the M4 approach. The study fo-

cused on evaluating interactive performance, the perception of

accuracy between error-bounded and error-free visualizations, and

confidence in using approximate visualizations for analysis. Tasks

were performed at an error bound of 5% and 1%.

Participants favored MinMaxCache for its responsiveness, not-

ing that it enhanced interactivity without significant accuracy loss.

Differences between error-bounded and error-free visualizations

were subtle and did not affect analytical tasks, such as identify-

ing trends or outliers. Further feedback indicated that tighter er-

ror bounds slightly reduced responsiveness without notably im-

proving accuracy. Overall, users expressed willingness to use the

error-bounded approach for interactive exploration, suggesting

they would resort to error-free visualization for validating selected

insights. They also highlighted challenges in understanding the

error guarantees, indicating a need for more intuitive presentation

of potential errors—issues similarly discussed in prior studies on

approximate and incremental visualization [10, 29, 33]. More de-

tails about the study and its findings are presented in the paper’s

supplementary material
5
.

6 RELATEDWORK
Related work includes data reduction, caching, and approximate

query processing techniques over time series data for enhancing

interactive visualization performance and accuracy. The challenges

of interactivity in the context of large data however, are also en-

countered in many distinct fields. For example, work in the field of

genomics explores challenges associated with interactive search-

ing, browsing, and visualization within large-scale genomic data

[6, 28]. In contrast, we focus on dynamic, multivariate time series

data, aiming to reduce network latency and ensure visualization

accuracy guarantees, thus addressing different analysis goals.

Data Reduction. Data reduction techniques [17], [13] can im-

prove visualization latency, by transferring sampled, aggregated,

or model-based data subsets to the front-end. Such methods, how-

ever, can distort the original shape of the data. M4 [15] adopts a

pixel-oriented strategy, preserving the shape of the line chart, while

reducing latency. Yet, M4 lacks support for reusing results for opera-

tions like panning and zooming, which can affect interactivity with

large time series data. OM3 [36] proposes a pre-computed, multi-

level min-max representation for progressive visualization. Besides

5
https://github.com/athenarc/MinMaxCache/blob/main/paper_supplementary_

material.pdf

the preprocessing phase, its limitations include large disk space

requirements, and no support for updates and streaming data. Line

simplification techniques, [8, 11, 35] are effective for visualization

accuracy, but computationally intensive for large datasets.

Several works propose memory-oriented variations[20, 21, 31]

of the data cube structure [12] for interactive visualization, but face

challenges like high memory consumption, lengthy preprocessing,

and inadequate support for data updates and streaming data. A time

series-specific variation is presented in [27], addressing updates and

streaming data, and adopting a temporal hierarchy-based material-

ization strategy. However, it depends on predefined calendar-based

aggregation levels (e.g., month, day) and cannot represent raw data

with satisfactory accuracy. Similarly, [34] suggests a calendar-based

multi-level aggregation structure for visualizing solar panel data.

In another context, memory-based indexing approaches for inter-

active exploration of raw data files are introduced in [3, 4, 24–26, 32].

Despite dynamically determining data granularity for stored aggre-

gated metadata, these methods are predominant in 2D scenarios.

Caching. Caching has been widely studied to reduce database

latency. Works like [38] and TSCache [22] propose time-range-

based caching for time series data to improve query execution

time by reusing cached results. Unlike our work, these generic

approaches overlook the unique challenges specific to visualization

of time series data and do not incorporate data aggregation in order

to reduce query latency while adjusting the aggregation granularity

to maintain an acceptable accuracy in the final visualization.

Approximate Query Processing (AQP). Various AQP-based ap-

proaches have been proposed for faster visualization interaction

while computing precise results[7, 10, 18, 29, 33]. Our approach

differs by considering the mapping from value to pixel space and

defining an error bound in terms of pixel differences relative to ac-

curate visualization. While some works consider human perception

[1, 18], their objectives differ from ours. [18] focuses on quickly gen-

erating approximate bar charts, preserving pairwise bar ordering,

while [1] proposes an online sampling algorithm that learns human

perception error to provide visualizations with perceptually indis-

cernible error. Our work on the other hand employs pixel-aware

aggregation to guarantee the accuracy constraints and allow the

reuse of cached data to minimize query latency.

7 CONCLUSIONS
In this paper, we presented MinMaxCache, an adaptive caching ap-

proach for interactive exploration of large time series data, adher-

ing to visualization accuracy constraints. Our approach leverages

cached min-max aggregates of time series intervals at dynamically

adjusted granularities. Upon receiving a query,MinMaxCache com-

putes a visualization error bound using cached data and fetches

additional data at appropriate granularity to balance accuracy and

response times. Evaluations indicate that our method outperforms

existing solutions, providing up to 10 times faster query evaluation.
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