
Raising the ClaSS of Streaming Time Series Segmentation
Arik Ermshaus

Humboldt-Universität zu Berlin

Berlin, Germany

ermshaua@informatik.hu-berlin.de

Patrick Schäfer

Humboldt-Universität zu Berlin

Berlin, Germany

patrick.schaefer@hu-berlin.de

Ulf Leser

Humboldt-Universität zu Berlin

Berlin, Germany

leser@informatik.hu-berlin.de

ABSTRACT
Ubiquitous sensors today emit high frequency streams of numerical

measurements that reflect properties of human, animal, industrial,

commercial, and natural processes. Shifts in such processes, e.g.

caused by external events or internal state changes, manifest as

changes in the recorded signals. The task of streaming time series

segmentation (STSS) is to partition the stream into consecutive

variable-sized segments that correspond to states of the observed

processes or entities. The partition operation itself must in perfor-

mance be able to cope with the input frequency of the signals. We

introduce ClaSS, a novel, efficient, and highly accurate algorithm for

STSS. ClaSS assesses the homogeneity of potential partitions using

self-supervised time series classification and applies statistical tests

to detect significant change points (CPs). In our experimental evalu-

ation using two large benchmarks and six real-world data archives,

we found ClaSS to be significantly more precise than eight state-of-

the-art competitors. Its space and time complexity is independent

of segment sizes and linear only in the sliding window size. We also

provide ClaSS as a window operator with an average throughput of

1𝑘 data points per second for the Apache Flink streaming engine.
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1 INTRODUCTION
Over the past two decades, the decreasing costs of sensors and

the growing digitalization of industry, science, and society has

led to an enormous increase in applications that analyse streams

of sensor recordings. For example, modern smartphones contain

inertial measurement units (IMUs) with triaxial accelerometers,

gyroscopes, and magnetometers that can track human activities [5].

Seismology relies on globally distributed stations to provide high-

resolution waveform recordings used for earthquake detection and

early warning [64]. In cardiology, electrocardiographs (ECG) cap-

ture heart beats from subjects over long periods of time to obtain

insights into cardiac dynamics such as arrhythmias [39]. Regardless

of the domain, the underlying sensors emit continuous sequences
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of real-valued measurements at a given frequency, called sensor

data (series) or time series (TS). The literature offers a rich selec-

tion of technologies to store, manage, analyse, visualize and search

in collections of TS [1, 15, 37, 62, 66, 67]. Common basic opera-

tions are the detection of unusual stretches called anomalies [45],
of repetitive structures called motifs [52], and of homogeneous

subsequences called segments [23].
TS methods can be broadly classified into batch or streaming.

Methods for the batch analysis of TS, used in applications such

as gait or sleep stage analysis [30, 57], can largely ignore latency,

runtime and memory requirements and use complex preprocessing

based on global statistics (e.g. frequency filtering or signal decom-

position). This is different in the streaming case, where infinite TS

must be processed in real-time relative to the measurement fre-

quency and where the complexity of operations must not depend

on the length of sequences [60].

This is especially unfortunate for the task of TS segmentation

(TSS), a common preprocessing step between data collection [49]

and knowledge discovery from TS [38]. TSS allows inferring the

latent states of an underlying process by analysing sensor measure-

ments, as signal shifts from one segment to another are assumed to

be caused by state changes in the process being monitored, such

as a transition from one human activity to another or from one

machine state to another. In the batch case, TSS aims to partition a

given TS into consecutive regions such that each region is homo-

geneous in itself yet sufficiently different from the neighbouring

regions. It is typically performed by focusing on the detection of

change points (CPs) separating segments [3]. State-of-the-art meth-

ods for TSS rely on global statistics of the TS, value distributions,

densities or learned features [57], and often exhibit a high compu-

tational complexity. Recent accurate contributions, e.g. FLUSS [23]

or ClaSP [16], are quadratic in runtime regarding the TS length.

For the streaming case such statistics are not available and such

complexities clearly are not feasible, i.e., for segmenting streams of

TS (STSS) [27, 41, 43]. Real-time processing is essential for STSS, yet

challenging. For instance, IoT devices may emit measurements with

hundreds of Hertz (Hz) [4, 24, 54, 64]. STSS requires algorithms

that process data points faster than they arrive, utilizing only a

constant amount of memory. The problem was first formulated

by Kifer et al. in the context of change detection [32]. The basic

approach is to constrain the analysis to the last𝑑 observations using

a slidingwindow and to continuously emit detected CPs, which each

defines the end of a segment [3]. Following this seminal work, many

follow-up methods considered stream segmentation as a part of IoT

workflows [10, 12, 61] or studied drift or CP detection [3, 20]. The

best methods, however, only work on temporal data with a suitable

value distribution (e.g. BOCD [2]), can only detect very limited

change or drift types (e.g. NEWMA [31]), or rely on thresholding
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ClaSS detects the condition within 1.2k timepoints (under 5 seconds)

Figure 1: An electrocardiogram (ECG) recording of a human
subject demonstrating the transition from normal heartbeats
(in blue) to ventricular fibrillations (in orange) [42]. The
ClaSS algorithm continuously scores the TS stream within a
sliding window (shown in red), and at 𝑡 = 11.2𝑘 a significant
change in the signal shape is detected and immediately re-
ported to the user. This split effectively divides the stream
into a fully processed segment and one that evolves.

as segmentation procedures (e.g. FLOSS [23]), which is not robust

for real-world signals.

We present ClaSS (Classification Score Stream), a domain-

agnostic, highly accurate and efficient algorithm that approaches

STSS as a self-supervised learning problem. It continuously scores

the homogeneity of hypothetical sliding window split points and

identifies statistically significant CPs using hypothesis testing to

find the ends and beginnings of segments. Notably, the algorithm

only scores the last detected segment and tests if it should be fur-

ther split into two, thereby reducing model complexity and saving

runtime. The core of this approach lies in an efficient calculation of

ClaSP (Classification Score Profile) [17], which was originally con-

strained to batch analysis. ClaSS achieves much higher efficiency

than ClaSP, as necessary for the streaming case, by efficiently cross-

validating a novel streaming 𝑘-nearest neighbour (𝑘-NN) that re-

uses the results of calculations from previous overlapping sliding

windows. Time and space complexity of ClaSS are both linearly

dependent only on the sliding window size, thus fulfilling the re-

quirements of STSS. While some competitors exhibit sublinear slid-

ing window update runtimes surpassing ClaSS, their segmentation

models are restricted to basic methods (e.g. statistical parameter

deviation), limiting their accuracy. Conversely, ClaSS trades this

runtime gap to incorporate more advanced data mining techniques,

resulting in significantly higher accuracy at sufficient speeds.

Figure 1 exemplifies how ClaSS segments a sliding window into

homogeneous regions. The data set [42] shows an ECG recording

sampled at 250 Hz from a human subject, who experienced ventric-

ular fibrillations after 40 seconds (𝑡 = 10𝑘). The global maximum in

the profile (Figure 1 bottom) captures the start of the condition, and

is detected and reported as a significant change around 5 seconds

after the ventricular fibrillations begin (𝑡 = 11.2𝑘); dividing the

stream into segments with normal and abnormal cardiac activity.

Specifically, this paper makes the following contributions:

(1) We introduce ClaSS, a novel, efficient and domain-agnostic

method for STSS, which scores sliding windows using self-

supervised TS classification to detect and report statistically

significant CPs with low latency. The scoring process anno-

tates the sliding window with the likelihood of CPs. Besides

being necessary for STSS, this makes it easy for humans to

understand and suitable for decision-support systems.

(2) We present two technical advancements that enable ClaSS

to meet the stringent performance criteria for STSS: the

first exact streaming TS 𝑘-nearest neighbour algorithm

that runs in O(𝑘 · 𝑑) for a single sliding window (of length

𝑑) update, substantially improving upon the current-best

O((𝑘 + log𝑑) · 𝑑) solution [23], and a novel algorithm for

cross-validating a self-supervised 𝑘-NN classifier in O(𝑑),
outperforming the prior best O(𝑑2) approach [17].

(3) We analysed the accuracy of ClaSS using 592 real-world TS

from two benchmarks and six experimental studies. Com-

pared to eight state-of-the-art competitors (FLOSS, DDM,

ChangeFinder, NEWMA, BOCD, HDDM, ADWIN and a

sliding window baseline), ClaSS significantly outperforms

all other competitors, exhibits the highest overall segmen-

tation accuracy and improves the state of the art by 13.7 pp

(percentage points).

We make all of our used source codes, including a stand-alone

Python implementation and a comparably fast Apache Flink win-

dow operator of ClaSS, the evaluation framework, Jupyter Note-

books, as well as all experiment data and visualizations openly

available on our supporting website [11] to foster the reproducibil-

ity of our findings and replicability for follow-up works. The rest

of the paper is structured as follows. In Section 2, we provide back-

ground and definitions for this work. Section 3 introduces our ClaSS

algorithm and its components. Section 4 describes results from an

extensive experimental evaluation and Section 5 details related

work. Finally, we conclude in Section 6.

2 BACKGROUND AND DEFINITIONS
This section formally introduces the concepts of time series streams,

sliding windows, subsequences, the streaming time series segmen-

tation (STSS) problem and self-supervision. We also briefly recapit-

ulate the idea behind ClaSP [17] upon which ClaSS is based.

Definition 1. A TS stream 𝑆 produces a new real-valued data
point 𝑡𝜏 ∈ R at evenly spaced time intervals, which enqueues in a
continuous sequence < . . . , 𝑡𝜏−1, 𝑡𝜏 > of values. The data points are
also called observations or measurements.

The main characteristic of a TS stream is its infinite length.

However, in practice, only a finite number of measurements can be

stored and processed at any time (i.e., 𝑡𝜏 ). This necessitates efficient

data mining techniques that can quickly analyse incoming data.

We focus on univariate streams that are sampled at equidistant

time stamps (e.g. 50 Hz), with the same temporal duration between

consecutive measurements. It is worth emphasizing that any finitely

long TS can be treated as a TS stream and analysed accordingly.

Definition 2. Given a TS stream 𝑆 , a sliding window 𝑆𝜏−𝑑+1,𝜏
is a buffer of size 𝑑 that stores the latest 𝑑 data points produced by 𝑆 .
As a new data point appears in 𝑆 , the corresponding 𝑆𝜏−𝑑+1,𝜏 expels
the oldest observation and appends the youngest one.

The size of the window 𝑑 is a hyper-parameter that will be

discussed in Subsection 3.5. This choice directly affects the amount

of information and thus the runtime and memory of the algorithms

applied to 𝑆𝜏−𝑑+1,𝜏 . For an example of a sliding window, see Figure 2.
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Figure 2: A TS stream 𝑆 from which the last 𝑑 = 10𝑘 observa-
tions are buffered in a sliding window 𝑇 = 𝑆𝜏−𝑑+1,𝜏 , depicted
as the red frame. Older (or yet to arrive) data points are greyed
out. The sliding window is further cut into subsequences of
width𝑤 = 200, to be analysed for segmentation.

Note that we represent a window as a finite TS𝑇 = 𝑆𝜏−𝑑+1,𝜏 of size

𝑑 , from which we can access values at offsets [1 . . . 𝑑].

Definition 3. Given a sliding window 𝑇 = 𝑆𝜏−𝑑+1,𝜏 , a subse-

quence 𝑇𝑠,𝑒 of 𝑇 with start offset 𝑠 and end offset 𝑒 consists of the
contiguous values of 𝑇 from position 𝑠 to position 𝑒 , i.e., 𝑇𝑠,𝑒 =

(𝑡𝜏−𝑑+𝑠 , . . . , 𝑡𝜏−𝑑+𝑒 ) with 1 ≤ 𝑠 ≤ 𝑒 ≤ 𝑑 . The length of 𝑇𝑠,𝑒 is
|𝑇𝑠,𝑒 | = 𝑒 − 𝑠 + 1.

We refer to the length of subsequences as width. Figure 2 il-

lustrates subsequences in a sliding window. Periodic TS streams

generally repeat a subsequence of values after a constant period of

time, which we refer to as a temporal pattern (or period). However,

periods can vary or drift, and local parts of TS may differ in terms

of period length, shape or amplitude.

Definition 4. A segmentation of a TS stream 𝑆 produces the
latest completed segment of 𝑆 as a variable-sized interval 𝑠−1 =

[𝑡𝑐−2 , . . . , 𝑡𝑐−1 ] where 𝑐−2 < 𝑐−1 ≤ 𝜏 are the two last discovered
change points (or splits). For consistency, we consider the first ob-
served value from 𝑆 as the first change point.

The location and amount of CPs in 𝑆 is unknown and must be

inferred by evaluating the last 𝑑 data points in the sliding window

𝑆𝜏−𝑑+1,𝜏 . Change points and the respective segments are continu-

ously reported until 𝑆 is aborted. Note that, by definition, the latest

reported segment may stretch until before the current window.

Definition 5. The problem of streaming time series segmentation
(STSS) is to find ameaningful segmentation of a given TS stream 𝑆 such
that the change points between two subsequent segments correspond
to state changes in the observed process.

The notion of beingmeaningful depends on the domain, typically

relating to the shape or value distribution of potential segments.

Following [22], we assume that a natural process has discrete states

that lead to changes in measured values. An example are sequences

of human emotional states, that can switch between (a) resting, (b)

amused or (c) stressed and influence biosignals, as studied in [54].

The task of STSS would be to track e.g. the last 10 seconds of a

subject’s respiration signal and report the last completed segment

(e.g. resting), as soon as another one (e.g. stressed) emerges. This

differs from other problems such as trend detection [57].

STSS algorithms must maintain efficient data structures with

constant memory requirements and minimal latency to be able

to report segmentations in real-time. They must also possess the

ability to decide when they have seen enough data points to predict

a CP, using only the limited information available from 𝑆𝜏−𝑑+1,𝜏 .

2.1 Self-supervised Time Series Segmentation
In order to detect the last completed segment, we must be able to

differentiate it from the newly evolving one. ClaSS enumerates po-

tential binary segment candidates (splits of 𝑆𝜏−𝑑+1,𝜏 into two parts).

We assess the distinctiveness between candidates using a hetero-

geneity score, selecting the segmentation with the most dissimilar

segments, provided the score surpasses a predefined threshold.

Our scoring methodology draws inspiration from self-supervised

change analysis, as formulized by Hido et al. [26]. In self-supervised

learning, an unsupervised learning variant, the data itself generates

supervision labels. Consider two data sets,𝑋𝐴 and𝑋𝐵 , representing

subsequences from different segment candidates. We assign label 0

to 𝑋𝐴 instances and 1 to 𝑋𝐵 instances, facilitating a binary classifi-

cation evaluation using cross-validation. A TS classifier, trained on

labelled subsequences, predicts labels for unlabelled instances. We

employ cross-validation, wherein the classifier is trained on (𝑘 − 1)
portions of the data and tested on the remaining part. A 𝑘-NN clas-

sifier, for instance, collects and aggregates subsequence labels from

train instances. This process repeats 𝑘 times, covering all combina-

tions, with the average of the 𝑘 evaluation scores (e.g., F1-scores)

representing the classifier’s performance. This value measures the

classifier’s ability to distinguish between data sets 𝑋𝐴 and 𝑋𝐵 . A

high score implies high dissimilarity and unique characteristics

between the segments, while a lower score indicates similarities,

suggesting the data sets may belong to the same segment.

2.2 Classification Score Profile
ClaSS is based on the idea of the self-supervised TSS algorithm

”Classification Score Profile” (ClaSP), as introduced for the batch

setting in [51]. We briefly recapitulate the concept of ClaSP. In

Section 3, we describe how ClaSS efficiently computes ClaSP to

address the streaming case.

Definition 6. Given a TS 𝑇 , |𝑇 | = 𝑛 and a subsequence width𝑤 ,
a ClaSP is a real-valued sequence of length 𝑛 −𝑤 + 1, in which the
𝑖-th value is the cross-validation score 𝑐 ∈ [0, 1] of a classifier trained
on a binary classification problem with overlapping labelled subse-
quences [(𝑇1,𝑤 , 0), . . . , (𝑇𝑖−𝑤+1,𝑖 , 0), (𝑇𝑖−𝑤+2,𝑖+1, 1), . . . (𝑇𝑛−𝑤+1,𝑛, 1)],
with labels 0 and 1.

Conceptually, a ClaSP is the result of a sequence of self-

supervised TS classifications, summarized in a profile that anno-

tates 𝑇 , where every offset (or split point) 𝑖 reports how well a

TS classifier can differentiate the left from the right subsequences

(see Figure 1 bottom). ClaSP quantifies the heterogeneity between

potential segments as a profile.

The main drawback of ClaSP is its high runtime complexity

of O(𝑛2). Directly applying it for the streaming case on high-

frequency streams with a sliding window (of length 𝑑) is impracti-

cable, as it requires O(𝑑2) computations for each new observation

in the TS stream 𝑆 . Furthermore, such an approach would force the

method to take decisions on CPs only based on the current sliding

window, which leads to false positives.

3 CLASSIFICATION SCORE STREAM
We propose Classification Score Stream (ClaSS), a novel method for

fast and accurate STSS. ClaSS uses a sliding window to update a
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Figure 3: The conceptual ClaSS workflow for a human respi-
ration recording that captures the transition from a neutral
to an excited state [54]. (a) The streaming 𝑘-NN classifier in
ClaSS is updated with the newest subsequence (magenta). (b)
For every possible offset, the sliding window (red) is trans-
formed into hypothetical binary classification problems eval-
uated using cross-validation. (c) The result, ClaSP, annotates
the sliding window.

Algorithm 1 Classification Score Stream

𝑡ℎ𝑖𝑠 .𝑁 ← array of length (𝑑 −𝑤 + 1) × 3 ⊲ 𝑘-NN indices

𝑡ℎ𝑖𝑠 .𝐶 ← array of length (𝑑 −𝑤 + 1) × 3 ⊲ 𝑘-NN correlations

1: procedure class(𝑆 , 𝑑)
2: 𝑐𝑝𝑙 ← 𝑑

3: 𝑤 ← learn_subseqence_width(𝑆, 𝑑)
4: while has_next(𝑆) do
5: 𝑆𝜏−𝑑+1,𝜏 ← retrieve last 𝑑 time points from 𝑆

6: 𝑐𝑝𝑙 ← max(1, 𝑐𝑝𝑙 − 1) ⊲ Account for shift in 𝑆𝜏−𝑑+1,𝜏
7: update_streaming_knn(𝑡ℎ𝑖𝑠 .𝐶, 𝑡ℎ𝑖𝑠 .𝑁 , 𝑆𝜏−𝑑+1,𝜏 ,𝑤, 3)
8: ClaSP← cross_val_scores(𝑡ℎ𝑖𝑠 .𝑁𝑐𝑝𝑙 ,𝑑−𝑤+1,𝑤)
9: if has_significant_CP(ClaSP) then
10: 𝑐𝑝 ← 𝑐𝑝𝑙 + argmax(ClaSP) − 1
11: report(𝜏 − 𝑑 + 𝑐𝑝)
12: 𝑐𝑝𝑙 ← 𝑐𝑝

13: end if
14: end while
15: end procedure

streaming 𝑘-nearest neighbour (𝑘-NN) classifier (with correlation

as similarity measure) from continuous TS streams, computing the

homogeneity of hypothetical sliding window splits and applying

hypothesis testing to determine statistically significant CPs. A high-

level overview of the workflow of ClaSS is illustrated in Figure 3

and presented by pseudocode in Algorithm 1.

The method takes a time series stream 𝑆 and the size of the

sliding window 𝑑 as inputs, and first learns a subsequence width𝑤

as a model-parameter from the first 𝑑 observations in the stream

(line 3, see Subsection 3.4). It then processes a single observation

from 𝑆 at a time (line 4). The procedure stores the last 𝑑 data points,

its sliding window, in the sequence 𝑆𝜏−𝑑+1,𝜏 (line 5) and updates

the position of the last CP 𝑐𝑝𝑙 that denotes the beginning index of

the yet unsegmented values (line 6). For consistency reasons, we

consider the first observed value from 𝑆 as the first CP. Note that

𝑆𝜏−𝑑+1,𝜏 contains a prefix of 𝑑 −1 known data points while only the

last measurement is new. We exploit this property later to speed

up computation. ClaSS maintains a 2-dimensional 𝑘-NN sliding

window profile 𝑁 and pairwise Pearson correlations 𝐶 (line 7). 𝑁

maps the 𝑖-th subsequence 𝑇𝑖,𝑖+𝑤−1 to its 𝑘-NN subsequences in

𝑆𝜏−𝑑+1,𝜏 .𝐶 stores the pairwise correlations between a subsequence

and its 𝑘-NNs. ClaSS computes the 𝑑 − 𝑐𝑝𝑙 −𝑤 + 2 cross-validation
scores for the most recent unsegmented observations in 𝑆 (line 8),

leaving only the newest𝑤 − 1 observations unscored. This scoring
process enables the method to determine the homogeneity of all

hypothetical splits since the last CP 𝑐𝑝𝑙 . This step is also the most

time-consuming component of the algorithm. Every local maximum

in this profile marks a potential CP, as it distinguishes between the

TS parts to its left and right with high accuracy. ClaSS checks for

a significant CP 𝑐𝑝 , and if so, immediately reports its time point

𝜏 − 𝑑 + 𝑐𝑝 to the user, resetting the last CP 𝑐𝑝𝑙 (lines 9–13). The

last discovered segment is then easily extracted with the last and

current CP. The applied hypothesis testing is conservative in its

predictions and reports CPs with high accuracy. The segmentation

is then repeated as long as 𝑆 produces new observations.

In the following subsections, we provide the details of the most

important steps performed by ClaSS. We describe in Subsections

3.1 and 3.2 how to update and evaluate the 𝑘-NN classifier as new

observations arrive, 3.3 shows how we apply statistical tests to filter

for false positive CPs, 3.4 explains how ClaSS automatically learns

𝑤 , and 3.5 discusses the setting of the hyper-parameter 𝑑 . Finally,

Subsection 3.6 analyses the runtime and space complexity of ClaSS.

3.1 Streaming 𝑘-Nearest Neighbours
In an offline setting, the computation of the 𝑘-NN profile can be

delegated to a pre-processing step, which is then used for scoring

hypothetical splits of the TS. This computation can be efficiently

executed using various exact or approximate optimization tech-

niques [53, 69], GPUs [68], or index structures [36]. However, in

a streaming context, such pre-processing becomes challenging as

𝑆𝜏−𝑑+1,𝜏 and 𝑘-NNs evolve with each time step. Upon the arrival of

a new data point, it is ingressed into the sliding window 𝑆𝜏−𝑑+1,𝜏
at position 𝑑 , while all preceding data points shift left by one, pos-

sibly egressing the oldest observation. The prevalent optimization

techniques fall short in accommodating sliding windows, or re-

quire a-priori construction of prediction models or complex data

structures, necessitating continuous updates.

We propose the first exact streaming TS 𝑘-NN algorithm that

runs in O(𝑘 · 𝑑), substantially improving upon the fastest exact

algorithm that requires O((𝑘 + log𝑑) · 𝑑) [23]. The central idea is
to establish and maintain data structures, as the stream evolves,

to incrementally compute 𝑘-NNs and update 𝐶 and 𝑁 accordingly.

To do so, we have to perform three key operations: (a) calculate

and store the 𝑘-NNs for the current (latest) subsequence to insert

it into the data structure; (b) shift the existing 𝑘-NNs left and deal

with out-of-range references that point out of the window; and

(c) update the outdated existing 𝑘-NNs that may now point to the

current subsequence. We first describe the mathematics of the simi-

larity measure computation used for 𝑘-NN determination, and then
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specify how to efficiently implement steps (a) to (c) in Algorithm 2.

The workflow is visualized in Figure 4 (a–b).

Similarity Calculation: For every incoming data point, we de-

termine the 𝑘-NNs between the newest subsequence 𝑇𝑑−𝑤+1,𝑑 and

the maximal𝑑−𝑤+1many subsequences (of size𝑤 ) in𝑇 = 𝑆𝜏−𝑑+1,𝜏
by calculating their mutual correlations. This can be naively com-

puted in O(𝑑 ·𝑤) or optimized using Fast Fourier Transform (FFT)

in O(𝑑 log𝑑) [66], which is the basis of [23]. However, we can fur-

ther improve the efficiency of this computation to O(𝑑) by adapting
ideas from the STOMP algorithm [69] to the streaming setting. The

Pearson correlation 𝑐𝑤
𝑖,𝑗

(Equation 4) between two 𝑤-length sub-

sequences starting at offset 𝑖 and 𝑗 in 𝑇 can be re-written using

the dot product 𝑞𝑤
𝑖,𝑗

[40]. This definition mainly depends on the

𝑤-length subsequence means `𝑤 , standard deviations 𝜎𝑤 and dot

products 𝑞𝑤 . Rakthanmanon et al. [47] showed that `𝑤
𝑙

and 𝜎𝑤
𝑙

can

be computed in O(1) from `𝑤
𝑙−1 and 𝜎

𝑤
𝑙−1 (independent of𝑤 ) using

so-called differencing cumulative running sums (Equation 1 and 2).

`𝑤
𝑙

=
1

𝑤
·
(︁
cumsum(𝑇

1,𝑙+𝑤−1) − cumsum(𝑇1,𝑙−1)
)︁

(1)

𝜎𝑤
𝑙

=

√︃
1

𝑤
·
(︁
cumsum

2 (𝑇
1,𝑙+𝑤−1) − cumsum2 (𝑇

1,𝑙−1)
)︁
− (`𝑤

𝑙
)2

(2)

Furthermore, Zhu et al. [69] demonstrated that the dot product

𝑞𝑤
𝑖,𝑗

can be calculated in O(1) from 𝑞𝑤
𝑖−1, 𝑗−1 (also independent of

𝑤 ) by reusing dot products from previous subsequences. Utilizing

these two findings from batch analysis, we establish them for the

streaming setting to compute the Pearson correlations between the

newest subsequence 𝑇𝑑−𝑤+1,𝑑 and its 𝑑 −𝑤 predecessors in O(𝑑)
based on accessible information from the previous update.

𝑞𝑤𝑖,𝑗 = 𝑞
(𝑤−1)
𝑖, 𝑗

+𝑇𝑖+𝑤−1 ·𝑇𝑗+𝑤−1 (3)

𝑐𝑤𝑖,𝑗 =
𝑞𝑤
𝑖,𝑗
−𝑤`𝑤

𝑖
`𝑤
𝑗

𝑤𝜎𝑤
𝑖
𝜎𝑤
𝑗

(4)

𝑞
(𝑤−1)
𝑖, 𝑗

= 𝑞𝑤𝑖−1, 𝑗−1 −𝑇𝑖−1 ·𝑇𝑗−1 (5)

To do so, we first compute the means `𝑤 and standard devia-

tions 𝜎𝑤 from differenced (squared) running sum sliding windows.

We then reuse the dot products between the (𝑤 − 1)-length sub-

sequences 𝑇𝑖,𝑖+𝑤−2 and 𝑇𝑑−𝑤+1,𝑑−1 from the last update, and add

𝑇𝑖+𝑤−1 · 𝑇𝑑 to obtain the 𝑤-length dot products needed for the

current iteration (Equation 3). Using the means, standard devia-

tions, and dot products, we calculate the correlations (Equation 4)

to determine the 𝑘-NNs for the current subsequence 𝑇𝑑−𝑤+1,𝑑 . We

then subtract𝑇𝑖 ·𝑇𝑑−𝑤+1 from the dot products to prepare them for

the next update (Equation 5). Keeping the dot products updated,

enables us to continuously reuse them to calculate correlations.

The similarity measure used in the streaming 𝑘-NN is not neces-

sarily restricted to Pearson correlation; it can easily be adapted to

(dis-)similarity functions that can be expressed with dot products,

such as (complexity-invariant) Euclidean distance [6]. We imple-

ment multiple measures that cover different stream properties.

Incremental 𝑘-NN Calculation: In the batch setting, we can

calculate initial dot products for all subsequences using FFT [66]

Algorithm 2 Streaming 𝑘-Nearest Neighbors

𝑡ℎ𝑖𝑠 .𝑅 = array of length 𝑑 ⊲ Cumsums

𝑡ℎ𝑖𝑠 .𝑅2 = array of length 𝑑 ⊲ sqrd. Cumsums

𝑡ℎ𝑖𝑠 .𝑄 = array of length 𝑑 −𝑤 + 1 ⊲ Dot products

1: procedure calc_knn(𝑆𝜏−𝑑+1,𝜏 ,𝑤 , 𝑘)

2: 𝑇, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 ← 𝑆𝜏−𝑑+1,𝜏 , 𝑑−length(𝑆𝜏−𝑑+1,𝜏 ) +1, 𝑑−𝑤 +1
3: if length(𝑇 ) < 𝑤 then return null, null end if
4: ` ← mean(𝑡ℎ𝑖𝑠 .𝑅) ⊲ Eqn. 1

5: 𝜎 ← std(𝑡ℎ𝑖𝑠 .𝑅, 𝑡ℎ𝑖𝑠 .𝑅2) ⊲ Eqn. 2

6: if 𝑠𝑡𝑎𝑟𝑡 > 1 then
7: 𝑡ℎ𝑖𝑠 .𝑄𝑠𝑡𝑎𝑟𝑡 ← dot(𝑇𝑠𝑡𝑎𝑟𝑡,𝑠𝑡𝑎𝑟𝑡+𝑤−2,𝑇𝑒𝑛𝑑,𝑑−1)
8: end if
9: add 𝑇𝑠𝑡𝑎𝑟𝑡+𝑤−1,𝑑 ·𝑇𝑑 to 𝑡ℎ𝑖𝑠 .𝑄𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 ⊲ Eqn. 3

10: 𝑐𝑜𝑟𝑟 ← pearson(𝑡ℎ𝑖𝑠 .𝑄,𝑤, `, 𝜎) ⊲ Eqn. 4

11: 𝑘𝑛𝑛 ← argkmax(𝑐𝑜𝑟𝑟, 𝑘,𝑤)
12: subtract 𝑇𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 ·𝑇𝑒𝑛𝑑 from 𝑡ℎ𝑖𝑠 .𝑄𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 ⊲ Eqn. 5

13: return 𝑐𝑜𝑟𝑟, 𝑘𝑛𝑛

14: end procedure

15: procedure update_streaming_knn(𝐶 , 𝑁 , 𝑆𝜏−𝑑+1,𝜏 ,𝑤 , 𝑘)

16: shift_add_last(𝑡ℎ𝑖𝑠 .𝑅, 𝑡ℎ𝑖𝑠 .𝑅𝑑 + 𝑆−1)
17: shift_add_last(𝑡ℎ𝑖𝑠 .𝑅2, 𝑡ℎ𝑖𝑠 .𝑅2

𝑑
+ 𝑆2−1)

18: 𝑐𝑜𝑟𝑟, 𝑘𝑛𝑛 ← calc_knn(𝑆𝜏−𝑑+1,𝜏 ,𝑤, 𝑘)
19: if length(𝑆𝜏−𝑑+1,𝜏 ) < 𝑤 + 𝑘 then return end if
20: shift_add_last(𝐶, 𝑐𝑜𝑟𝑟 [𝑘𝑛𝑛]), shift_add_last(𝑁,𝑘𝑛𝑛)
21: 𝑁

1,𝑑−𝑤 ← 𝑁
1,𝑑−𝑤 − 1

22: 𝑚𝑎𝑠𝑘 ← changed_nn_pos(𝐶, 𝑁, 𝑐𝑜𝑟𝑟, 𝑘𝑛𝑛)
23: update(𝐶,𝑚𝑎𝑠𝑘, 𝑐𝑜𝑟𝑟 ), update(𝑁,𝑚𝑎𝑠𝑘, 𝑑 −𝑤 + 1)
24: end procedure

and then update them to calculate 𝑘-NNs [69]. This preprocessing

is not possible in the streaming setting, where we need to com-

pute and update 𝑘-NNs as soon as new data points arrive and old

ones are evicted. Therefore, we first enlarge the dot products and

incrementally update them as outlined.

Algorithm 2 takes the 𝑘-NN correlations 𝐶 and 𝑘-NN indices 𝑁 ,

the sliding window 𝑆𝜏−𝑑+1,𝜏 , the subsequence width 𝑤 and num-

ber of neighbours 𝑘 as input from Algorithm 1. It maintains two

(squared) running sum sliding windows 𝑅 (or rather 𝑅2) as class

variables, which it updates and uses to calculate the Pearson cor-

relation efficiently (lines 16–17). Subsequently, the algorithm cal-

culates the correlations between the newest subsequence 𝑇𝑑−𝑤+1,𝑑
and the maximal 𝑑 − 𝑤 + 1 subsequences (of size 𝑤 ) in 𝑆𝜏−𝑑+1,𝜏
to identify its 𝑘-NNs. The calc_knn subroutine (lines 1–14) first

computes the start and end index of the data contained in the slid-

ing window (line 2) and then calculates the 𝑑 − 𝑤 + 1 means `

and standard deviations 𝜎 with 𝑅 (or rather 𝑅2) (lines 4–5). Simi-

larly, the procedure maintains 𝑑 −𝑤 + 1 dot products between the

(𝑤 −1)-length subsequences𝑇𝑖,𝑖+𝑤−2 and𝑇𝑑−𝑤+1,𝑑−1 at the 𝑖-th off-

set as a sliding window class variable 𝑄 . For the first 𝑑 data points,

it continuously enlarges 𝑄 to include the correct (𝑤 − 1)-length
dot products (lines 6–8). The algorithm adds 𝑇𝑠𝑡𝑎𝑟𝑡+𝑤−1,𝑑 · 𝑇𝑑 to

𝑄𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 to obtain𝑤-length dot products (line 9). It then calculates

the correlations between the newest and all other subsequences

and determines its nearest neighbours with 𝑘 sequential searches,
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considering an exclusion radius of the last
3

2
𝑤 observations to

avoid trivial matches (lines 10–11). Lastly, the subroutine subtracts

𝑇𝑠𝑡𝑎𝑟𝑡,𝑒𝑛𝑑 ·𝑇𝑒𝑛𝑑 from𝑄 to restore the (𝑤−1)-length dot products for
the next update and reports the correlations and𝑘-NNs (lines 12–13)

to update_streaming_knn. Being able to provide the dot products

in every iteration, is the central optimization that leads to linear

runtime, as opposed to recomputing them in log-linear time [23].

Figure 4 (a) shows an example of this process. In the last column,

the procedure stores themean and standard deviation for the newest

subsequence (magenta) and in the last two rows its pairwise dot

products and correlations with all previous subsequences.

𝑘-NN Shift: Having the 𝑘-NNs of the newest subsequence cal-
culated, the procedure updates the correlations 𝐶 and offsets 𝑁 for

the newest subsequence 𝑇𝑑−𝑤+1,𝑑 (line 20) and shifts the existing

ones left accordingly. This leaves the prior 𝑑 −𝑤 to be adjusted. The

algorithm decreases their offsets in 𝑁 by one, to account for the

shift (line 21), potentially producing negative out-of-range indices

that point to subsequences outside the sliding window. To avoid

this, we could constrain the nearest neighbour direction, as pro-

posed in [23]. However, for the 𝑘-NN classifier in ClaSS, we do not

even need the actual subsequences, but only their offsets, which

by design belong to class zero if they are negative. Thus, we may

safely ignore this issue.

𝑘-NN Update: Lastly, the algorithm checks if the newest subse-

quence is one of the 𝑘-NNs of the existing subsequences in 𝑇 . If so,

the correlations and offsets are updated (lines 22–23). This can be

done efficiently by locating the offsets that have 𝑘-NNs with lower

or equal correlations compared to the newest subsequence, and

inserting it in order of descending correlation, while expelling the

least correlated one. Subsequently, the correlations 𝐶 and offsets 𝑁

are updated with the new observation.

Figure 4 (b) illustrates an example of the updated offsets in 𝑁 .

The last column contains the 3-NN for the newest subsequence,

and it can now be a NN of previous subsequences.

3.2 Scoring the Sliding Window
The basic idea of self-supervised learning for obtaining scores for

hypothetical split points is to first assign artificial ground truth

labels to each subsequence up to (after) a split point, assigning

them to class zero (one). These labels are then used in a second

step to create the predictions of the classifier for every subsequence

by the 𝑘-NN rule, collecting and aggregating ground truth classes

into majority labels. In a third and final step, we calculate a clas-

sification score with both the ground truth and predicted labels.

This calculation is repeated for all possible splits, thus creating the

classification score profile (ClaSP).

For the at most 𝑑 −𝑤 + 1 subsequences in 𝑁 , the implementation

in [17] computes a single classification score in O(𝑑), re-using
the class-independent 𝑘-NN offsets and relabelling them according

to the changing ground truth labels. However, since this cross-

validation is executed (𝑑 − 2 ·𝑤 − 1) times, it becomes inefficient

in the streaming setting, resulting in O(𝑑2) computations at the

arrival of a single data point.

We propose a novel algorithm for cross-validating a self-

supervised 𝑘-NN classifier that runs in O(𝑑) time, exploiting the

observation that the label configurations for two consecutive splits
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Figure 4: A workflow example for the 𝑘-NN classifier update
and cross-validation computation in ClaSS. The TS stream
contains the beginning of the 2011 Tōhoku earthquake seis-
mogram, captured at Black Forest Observatory [7]. (a) The
streaming 3-NN updates its means, standard deviations, and
dot products to calculate the correlations between the latest
subsequence (magenta) and the previous ones. (b) The 3-NN
correlations and offsets are updated with the three highest
correlations and their locations. (c) The sliding window is
repeatedly divided into hypothetical splits and the updated
𝑘-NN classifier is evaluated to calculate the resulting classifi-
cation scores (d) that form the ClaSP.

only minimally differ. It computes this delta in amortized constant

runtime, as opposed to creating new labels for each cross-validation,

substantially accelerating the process while being exact. This key

idea is implemented in Algorithm 3, and visualized in Figure 4 (c–d).

Algorithm 3 receives the sliding window 𝑘-NN indices 𝑁 and the

subsequence width𝑤 as input from Algorithm 1. It initializes the

ground truth and predicted labels 𝑦𝑡𝑟𝑢𝑒 and 𝑦𝑝𝑟𝑒𝑑 as two arrays of

𝑑 −𝑤 +1 ones, and stores the label counts for each subsequence in a

2-dimensional array 𝑁𝑐𝑜𝑢𝑛𝑡 (line 2) of size (𝑑 −𝑤 + 1) × 2. This data
structure stores for the 𝑖-th subsequence 𝑇𝑖,𝑖+𝑤−1 the number of 0

and 1 labels within its 𝑘-NN. The procedure transposes the 𝑘-NN

indices 𝑁 to its reverse NN 𝑅, which retrieves all subsequences

that have a given offset as their 𝑘-NN (line 3). This information is

necessary for retrieving the relevant offsets during the relabelling
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Algorithm 3 Cross Validation Scores

1: procedure cross_val_scores(𝑁 ,𝑤 )

2: 𝑁𝑐𝑜𝑢𝑛𝑡 , 𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 ← init_labels(𝑁 )
3: 𝑅 ← transpose(𝑁 ) ⊲ Reverse NN

4: 𝑀 ← init_conf_matrix(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 )
5: ClaSP← initialize array of length 𝑑

6: for 𝑖 ∈ [𝑤 + 1, . . . , 𝑑 −𝑤 − 1] do
7: 𝑦𝑡𝑟𝑢𝑒 [𝑖 −𝑤] ← 0 ⊲ The updated label

8: for 𝑖𝑑𝑥 ∈ 𝑅 [𝑖 −𝑤] do ⊲ Affected NN

9: 𝑧𝑒𝑟𝑜𝑠, 𝑜𝑛𝑒𝑠 ← update_counts(𝑁𝑐𝑜𝑢𝑛𝑡 [𝑖𝑑𝑥])
10: 𝑦𝑝𝑟𝑒𝑑 [𝑖𝑑𝑥] ← 0 if 𝑧𝑒𝑟𝑜𝑠 ≥ 𝑜𝑛𝑒𝑠 else 1

11: update𝑀 with 𝑦𝑝𝑟𝑒𝑑 [𝑖𝑑𝑥]
12: end for
13: ClaSP[𝑖] ← score_function(𝑀)
14: end for
15: return ClaSP

16: end procedure

process. The algorithm also initializes a confusion matrix to store

the true positive (TP), false positive (FP), false negative (FN) and

true negative (TN) counts for both labels (line 4). For the 0 class, all

measures are initialized to 0 except the TN count, which is 𝑑 −𝑤 +1.
Conversely for the 1 class, the TP count is 𝑑 −𝑤 + 1 with all other

counts being 0. The confusion matrix is updated between cross-

validations and used to calculate the classification scores for each

split in constant time.

The relabelling procedure changes the ground truth label in

𝑦𝑡𝑟𝑢𝑒 from 1 to 0 for a given split index 𝑖 ∈ [𝑤 + 1, . . . , 𝑑 −𝑤 − 1]
(line 7), updating the relevant 𝑘-NN labels and the confusion matrix

in the process (line 8-12). The classification score resulting from

this is stored in the ClaSP (line 13). To achieve this efficiently, the

procedure retrieves the subsequence offsets with 𝑅 which have

the split index 𝑖 as one of their 𝑘-nearest neighbours (line 8). The

count of zero (one) labels is increased (decreased) by one to reflect

that the ground truth label changed from 1 to 0 at split point 𝑖

(line 9). The algorithm then computes their predicted𝑘-NNmajority

label, updating the predicted labels 𝑦𝑝𝑟𝑒𝑑 and confusion matrix𝑀

accordingly (line 10–11). This is done by subtracting (adding) the

old (new) prediction from (to) 𝑀 , and replacing it in 𝑦𝑝𝑟𝑒𝑑 . The

classification score for split point 𝑖 is computed and stored in ClaSP

(line 13). Evaluation scores such as accuracy and F1 can be calculated

with𝑀 in constant runtime. Lastly, the cross-validation scores are

returned, which constitute ClaSP for the current sliding window

in ClaSS (line 15). The central optimization in this routine exploits

the fact that although a subsequence can be a 𝑘-NN to many other

subsequences, the total number of nearest neighbours is bound by

exactly 𝑘 · (𝑑 −𝑤 + 1), the size of all lists from 𝑅.

Figure 4 (c) exemplifies how the label configuration changes

from split point 𝑖 to 𝑖 + 1. At this offset, the ground truth label

changes from 1 to 0. For all offsets that have the split point as a

NN, the procedure updates the label counts, confusion matrix and

computes new predictions. Lastly, it calculates the classification

score for the split point that is inserted in ClaSP (d) at offset 𝑖 + 1.

3.3 Detecting Significant Changes
In principle, every local maximum in the cross-validation scores is a

potential CP because it marks a sliding window split that separates

two differently-shaped segments. This observation is useful for

domain experts, who can use a visualization tool, such as [11], to

assess these points and to spot semantic changes in the incoming

stream. However, automatic change point detection (CPD) is es-

sential for stream segmentation to be incorporated as an IoT edge

analytics tool [33], or to uncover latent segmentations in signals

where no expert with domain knowledge is available.

To implement this in ClaSS (Algorithm 1, line 9), we first locate

the global maximum in the classification scores. We then use the

non-parametric two-sided Wilcoxon rank-sum test, as suggested

in [17], to check whether, for the associated sliding window split 𝑖

(from Algorithm 3, line 6), the difference in predicted label frequen-

cies 𝑦𝑝𝑟𝑒𝑑 after cross-validation between the left 𝑦𝑝𝑟𝑒𝑑 [1 . . . 𝑖 −𝑤]
and right 𝑦𝑝𝑟𝑒𝑑 [𝑖 − 𝑤 + 1 . . . 𝑑 − 𝑤 + 1] segment is likely due to

chance or not. In the ablation study (Subsection 4.2), we empirically

learn a significance level for this test. However, in the streaming

setting we run into the problem that the test statistics are calculated

with different sample sizes due to the sliding window procedure,

which takes 𝑑 as a hyper-parameter and only scores the most re-

cent observations beginning at the last CP 𝑐𝑝𝑙 (Algorithm 1, line 8).

Accordingly, the number of the predicted cross-validation labels

in ClaSP, with which the significance test is computed, is vari-

able, resulting in a bias, because the p-value tends to decrease with

increasing observations [55]. To control the variable sample size,

resampling is used. 1𝑘 labels are randomly chosen with replace-

ment from the cross-validation labels 𝑦𝑝𝑟𝑒𝑑 , maintaining the class

distribution, in order to make the significance level independent of

the sliding window size and increase accuracy.

3.4 Learning the Subsequence Width
Setting appropriate parameters is a crucial task for unsupervised

data mining algorithms in general and for STSS in particular [59].

Therefore, we propose methods to relieve users from this task and

study the impact. A model-parameter in ClaSS is the subsequence

width 𝑤 (Algorithm 1, line 3), needed to partition the TS stream

into overlapping subsequences that can be classified. By default,

we learn a proper value for 𝑤 on the first 𝑑 observations, under

the assumption that these initial observations are representative

of the characteristics of the entire stream. Multiple window size

selection (WSS) methods have been developed based on the idea

that a temporal pattern approximately repeats throughout a TS [16],

a presumption shared by ClaSS. We use the SuSS [17] algorithm

for WSS, due to its expected linear (and worst-case log-linear) run-

time complexity with respect to TS length. After the subsequence

width has been determined at the start of ClaSS, the sliding win-

dow segmentation algorithm processes the stream from the first

observation onward.

In settings where users expect or encounter concept drifts in

the TS stream, the subsequence width 𝑤 can be periodically re-

learned. Similar to the algorithm’s initial phase, the data points

from a newly evolving segment can be utilized to relearn𝑤 , and the

segmentation process resumes. This behaviour can be activated on

demand. Although we do not need to account for concept drifts in
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Table 1: Technical specifications of TS used for experiments.

Name No. TS Length No. Segments

TS Min/Median/Max Min/Median/Max

TSSB [17] 75 240 / 3.5k / 20.7k 1 / 3 / 9

UTSA [22] 32 2k / 12k / 40k 2 / 2 / 3

mHealth [4] 90 32.2k / 34.3k / 35.5k 12 / 12 / 12

Arr DB [39] 96 650k / 650k / 650k 1 / 10 / 207

VE DB [25] 44 525k / 525k / 525k 2 / 13 / 134

PAMAP [48] 135 37.5k / 132.1k / 175k 2 / 9 / 9

Sleep DB [30] 88 2.7M / 3.1M / 3.9M 83 / 138 / 231

WESAD [54] 32 2M / 2.1M / 2.1M 5 / 5 / 5

our experimental evaluation, it provides flexibility for applications

where they are a concern.

3.5 Setting the Sliding Window Size
Like most streaming algorithms [19], ClaSS requires a sliding win-

dow size hyper-parameter𝑑 (Algorithm 1, line 1).With larger values

for 𝑑 , ClaSS becomes more accurate, albeit slower, as the amount of

available information increases. In many real-world data streams,

this tradeoff exhibits a diminishing returns effect, where the accu-

racy of ClaSS initially improves as 𝑑 increases, but then tapers off

for even larger values. This stagnation is expected, as the amount

of information in a signal typically does not grow linearly with

its size due to the presence of repetitive substructures [16]. There-

fore, 𝑑 should be set to a value that covers multiple instances (10

to 100 times) of temporal patterns. If such knowledge is not avail-

able, ClaSS uses a default value of 10𝑘 , which we found to be robust

throughout many domains and sensor types in the experiments (see

Subsection 4.4), leading to fast and accurate stream segmentations.

3.6 Computational Complexity
In a streaming setting, the runtime and space complexity of a seg-

mentation procedure is of critical importance for its applicability,

as it must keep up with real-time requirements. The complexity

of ClaSS is mainly determined by the one-time subsequence width

selection (Algorithm 1, line 3) and the recurring scoring and extrac-

tion of the sliding window (lines 7–9). SuSS requires O(𝑑 log𝑤) to
learn the subsequence width from the initial 𝑑 observations.

The total runtime of the 𝑘-NN update is dominated by the dot

product calculation in O(𝑤) (Algorithm 2, lines 6–8) and 𝑘 sequen-

tial NN searches in O(𝑘 ·𝑑) (line 11). In the streaming setting, where

the routine is called 𝑛 ≫ 𝑑 times, its time complexity is O(𝑑), since
𝑘 is a small constant. The runtime of the shift operation (line 20)

is dominated by moving the data, which is in O(𝑘 · 𝑑) = O(𝑑) as
both 𝐶 and 𝑁 have the dimensionality (𝑑 −𝑤 + 1) × 𝑘 . Updating 𝐶
and 𝑁 (lines 22–23) relies on replacing and moving values, which

is also performed in O(𝑘 · 𝑑) and hence in O(𝑑).
The complexity of the sliding window scoring depends on rela-

belling and evaluating 𝑘-NN offsets. For a single cross-validation,

the amortized runtime is in O(1) (Algorithm 3, lines 7–13), as only

counts are updated and the score is calculated for a constrained

number of offsets in the reverse NN. For all (𝑑 − 2 ·𝑤 − 1) splits,
this leads to O(𝑑) total runtime for the entire algorithm.

Table 2: Specification of competitors; 𝑛 is the number of all
observed values, 𝑐 ≪ 𝑑 is an adaptive/custom window size.

Competitor Update Complexity Segmentation Method

BOCD [2] O(𝑛) Bayesian probability

FLOSS [22] O(𝑑 log𝑑) Matrix profile

ClaSS O(𝑑) Self-supervision

ChangeFinder [65] O(𝑐2) Moving averages

Window [57] O(𝑐) Autoregressive cost

NEWMA [31] O(𝑐) Moving averages

ADWIN [8] O(log 𝑐) Adaptive Statistics

DDM [18] O(1) Model error

HDDM [9] O(1) Hoeffding’s inequality

The Wilcoxon rank-sum test in ClaSS, which is used to detect

CPs (Algorithm 1, line 9), can also be implemented in O(𝑑), as
it mainly depends on ranking binary classes. This results in an

overall amortized runtime complexity of O(𝑑) for processing a

single observation and O(𝑛 · 𝑑) for segmenting 𝑛 measurements

with ClaSS. The space complexity is likewise linearly dependent

on the sliding window size.

4 EXPERIMENTAL EVALUATION
To evaluate the characteristics of ClaSS and to compare it to 8

state-of-the-art competitors, we measured accuracy, runtime and

scalability on large benchmark data sets as well as real-world an-

notated data archives from experimental studies. Subsection 4.1

outlines data sets, evaluation metrics and methods. We investigate

the influence of different design choices in Subsection 4.2 through

an ablation study. Subsections 4.3 and 4.4 further evaluate ClaSS

and 8 competitors in terms of accuracy, runtime, and throughput.

Lastly, Subsection 4.5 discusses a real-life use case to showcase the

features and limitations of ClaSS. Experiments were conducted on

an Intel Xeon 8358 with 2.60 GHz, 2 TB RAM, 128 cores, running

Python 3.8. To ensure reproducibility and foster follow-up works,

all source codes, Jupyter-Notebooks, TS used in the evaluation,

visualizations, raw measurement sheets and a technical report are

available on our supporting website [11].

4.1 Experiment Setup
Data Sets: We use 592 time series from two public TSS bench-

marks and six data archives from experimental studies (see Table 1)

to measure the quality of ClaSS and 8 competitors. In the follow-

ing evaluations, we simulated the streaming setting by processing

one data point at a time. The ground truth CP locations, used to

evaluate the algorithms, were annotated by domain experts. The

benchmark data sets from UTSA [22] and TSSB [17] consist of

107 preprocessed medium to large (240 to 40k) TS, representing a

dense collection of diverse problem settings featuring biological,

mechanical or synthetic processes from sensor, device, image, spec-

trogram and simulation signals. The data archives contain 485 very

large (32.2k to 3.9M) raw sensor signals from 10 sensors capturing

human subjects in experimental studies, such as human activity

or emotion recognition, medical condition monitoring, or sleep

analysis. These data sets are of particular interest, as they reflect
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a common application of STSS, in which researchers must first

segment instances of very large, heterogeneous recordings into

homogeneous subsequences and then apply advanced data mining

algorithms such as anomaly detection, forecasting, or classification.

Whilst the benchmarks encompass a variety of domains, the data

archives focus on human-centric processes.

Evaluation Metric: The literature contains multiple

classification- and clustering-based metrics to assess the

quality of segmentations; see [57] for a survey. Specifically, we use

the soft evaluation measure Covering [58]. This measure quantifies

the exact degree to which predicted vs annotated segments overlap

and allows the comparison of different-sized segmentations.

It is defined as follows: Let the interval of successive CPs

[𝑡𝑐𝑖 , . . . , 𝑡𝑐𝑖+1 ] denote a segment in 𝑇 and let 𝑠𝑒𝑔𝑠𝑝𝑟𝑒𝑑 as well as

𝑠𝑒𝑔𝑠𝑇 be the sets of predicted or ground truth segmentations, re-

spectively. For notational convenience, we always consider 𝑡𝑐1 = 0

as the first and 𝑡𝑐 |𝑠𝑒𝑔𝑠𝑇 |
= 𝑛+1 as the last CP to include the first (last)

segment. The Covering score reports the best-scoring weighted

overlap between a ground truth and a predicted segmentation (us-

ing the Jaccard index) as a normed value in the interval [0, . . . , 1]
with higher being better (Equation 6).

Covering =
1

∥𝑇 ∥
∑︂

𝑠∈𝑠𝑒𝑔𝑠𝑇
∥𝑠 ∥ · max

𝑠′∈𝑠𝑒𝑔𝑠𝑝𝑟𝑒𝑑

∥𝑠 ∩ 𝑠 ′∥
∥𝑠 ∪ 𝑠 ′∥ (6)

To aggregate results frommultiple data sets into a single ranking,

we compute the rank of the score for each method on each TS. We

then average the rank of each method across all data sets to obtain

its overall rank. Critical Difference (CD) diagrams [13], such as

Figure 5 (top), are used to statistically assess differences in the

mean ranks. The best approaches, which score the lowest average

ranks, are shown to the right of the diagram. Approaches that are

not significantly different in their ranks are connected by a bar,

based on a Nemenyi two-tailed significance test with 𝛼 = 0.05.

Competitors:We compare ClaSS with 8 state-of-the-art com-

petitors (see Table 2), learning optimal hyper-parameters for all

algorithms by testing multiple design choices on 20% randomly

chosen benchmark TS (21 out of 107), to prevent overfitting. See the

technical report [11] for details. For a fair comparison, we learned

the design choices of ClaSS on the same TS, described in Subsec-

tion 4.2. Some of the competitors (Window, BOCD, ChangeFinder

and FLOSS) do not specify online segmentation procedures, but

only present homogeneity scores for sliding window splits. We

learned a threshold for these scores and report splits with a certain

quality, considering an exclusion zone (as proposed in [23]) to pre-

vent series of closely located splits. Note that BOCD processes all

so far observed data points of length 𝑛, ClaSS and FLOSS require

a sliding window of size 𝑑 , whereas all other methods either use

adaptive / custom-sized sliding windows of length 𝑐 ≪ 𝑑 , or update

constant-sized statistics (see Table 2).

4.2 Ablation Study
ClaSS has seven major design choices that determine its perfor-

mance: (a) sliding window size, (b) subsequence width selection

method, (c) similarity measure, (d) number of 𝑘 neighbours used in

the streaming 𝑘-NN, (e) classification score to evaluate the cross-

validations, (f) significance level and (g) sample size used for the

detection of significant CPs. We tested ClaSS on the same randomly

chosen 20% of benchmark TS with varying values (or methods)

of each parameter while fixing the others to their default values.

We summarize the results of these extensive experiments and refer

the interested reader to our supporting website [11] for the raw

measurements and visualizations.

(a) Sliding Window Size: We computed ClaSS with sliding

window sizes ranging between 1𝑘 to 20𝑘 (steps of 1𝑘) data points.

This group of design choices does not show statistically significant

differences in ranks, ranging between 76.7% and 81.4% average

Covering performances, 13.2% and 17.4% standard deviations and

9 to 14 wins. We choose 𝑑 = 10𝑘 as a robust default parameter for

many scenarios. The user may adapt this parameter, however, to

control the throughput of ClaSS (see Subsection 3.5 and 4.4).

(b) Window Size Selection: We tested two whole-series based

methods from [16], the most dominant Fourier frequency (FFT) and

the highest autocorrelation offset (ACF), as well as two subsequence-

based algorithms, Multi-Window-Finder (MWF) [28] and Summary

Statistics Subsequence (SuSS) [17]. Our results show no significant

differences between the ranks of the methods. We choose SuSS for

WSS in ClaSS, as it achieves the most wins and best mean (standard

deviation) Covering performance of 79.1% (15.6%).

(c, d) k-Nearest Neighbours:We evaluated Pearson correlation,

Euclidean distance and CID as (dis-)similarity measures and 𝑘 ∈
[1, 3, 5, 7]. We found no significant differences between rankings;

Pearson correlation and a 3-NN score the best ranks and show the

best Covering performance. Therefore, we use both as the default.

Users may change the similarity measure to fit specific use cases.

(e) Classification Score: For the sliding window scoring, we

assessed the F1 score and accuracy. We used the macro formulation

for both scores, which computes them per label and then averages

the results, to tackle the inherent class imbalance in the ClaSP

calculated by ClaSS. We did not test the ROC/AUC score, used in

the batch ClaSP, as it is not computable in constant runtime from

the confusion matrix, which is a prerequisite for us to keep the

linear runtime complexity in ClaSS. F1 ranks are not significantly

better than accuracy, but show best results. Thus, we use it as the

default classification score.

(f, g) Significance Level: Lastly, we evaluated significance levels
in the range 1e-10 to 1e-100 (with steps of 1e-10) and sample sizes

(variable, 10, 100, 1k, 10k) for extracting significant CPs in the

sliding window stream segmentation. The variable sample size uses

the entire label configuration, as proposed in [17]. We found that

the range of thresholds between 1e-50 and 1e-100 as well as the

variable and 1k sample sizes substantially outperformed the other

options. The significance level of 1e-50 with 1k sample size achieved

the highest mean Covering score and the lowest standard deviation.

Thus, we use this configuration in ClaSS.

We conclude that the choice of the sliding window size, the

subsequence width, the 𝑘-NN and the classification score in ClaSS

have only negligible effects on its performance. For specific domains,

users may adjust the significance level to optimize results.

4.3 Quantitative Analysis
We evaluate the performance of ClaSS and its 8 competitors sepa-

rately for the two benchmark data sets and six data archives from
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Figure 5: Covering segmentation ranks (top) and box plots
(bottom) on the 107 benchmark (left) and 485 archive (right)
TS for ClaSS (lowest rank) and the 8 competitors.

experimental studies. We remark that the data archives are, by far,

the harder scenario as they contain ambiguities, anomalies and

signal noise and are up to two orders of magnitude larger than

the benchmarks; note that algorithms are not fine-tuned to these

conditions. Detailed measurements and visualizations are reported

on our supporting website [11].

Benchmark Data Sets: The CD diagram in Figure 5 (top left)

illustrates the mean Covering ranks. Best results are obtained by

ClaSS (1.5) followed by FLOSS (3.5), Window (3.9), DDM (4.0),

ChangeFinder (4.0), NEWMA and BOCD (4.1), HDDM (5.0) and

ADWIN (5.1). The performance advance of ClaSS is statistically

significant, while the differences between the 2nd to 7th-ranking

approaches are not. Considering both benchmarks separately, ClaSS

still achieves the best performances, with an insignificant advance

for UTSA (32 TS), but a significant advance for TSSB (75 TS).

ClaSS wins or ties in 78 of the 107 cases, followed by FLOSS,

Window and ChangeFinder each with each 12 wins/ties, DDM (10),

NEWMA (9), BOCD (8), HDDM (5) and ADWIN (4). Counts do not

sum up to 107 due to ties. ClaSS achieves first place in four subcases

of STSS: TS with one segment (6 instances), two segments (46

instances), at least three segments (55 instances), and reoccurring

sub-segments (10 instances). In a pairwise comparison of ClaSS

against every competitor, ClaSS outperforms all competitors in at

least 77% of all cases (see [11]).

ClaSS achieves a mean Covering performance of 81.2%, with a

standard deviation of 19.0%. Figure 5 (bottom left) and Table 3 show

this to be the highest score, with a large margin of 27.7 pp over

the second-best method. The differences in median results are even

more pronounced. The summary statistics of the performances

are quite stable across the UTSA and TSSB data sets (data shown

on [11]). This shows that ClaSS is able to segment TS streams more

accurately than its counterparts on the benchmark data sets.

Data Archive Sets: For the 485 time series (TS) from the six

data archives, ClaSS (2.1) ranks first, followed by ChangeFinder

(3.1), FLOSS (3.7), Window (4.5), ADWIN (4.7), DDM (4.8), HDDM

(5.0) and NEWMA (5.4) (see Figure 5 top right). BOCD did not

finish within days, and was excluded. Again, ClaSS significantly

outperforms its competitors, with the 2nd and 3rd-best competitor

Table 3: Summary Covering performances for ClaSS (best
results) and its 8 competitors on the two benchmarks and six
data archives.

Benchmarks / Data Archives

mean (in %) median (in %) std (in %)

ClaSS 81.2 / 51.5 88.2 / 49.3 19.0 / 17.1

ChangeFinder 47.3 / 42.3 50.0 / 41.6 23.5 / 19.7

FLOSS 52.1 / 35.6 50.0 / 35.9 22.7 / 13.0

Window 46.1 / 29.1 47.4 / 22.0 24.7 / 27.7

DDM 53.5 / 26.2 51.3 / 17.1 16.9 / 24.5

BOCD 48.1 / - 49.4 / - 19.0 / -

ADWIN 38.3 / 26.2 34.2 / 20.6 20.6 / 20.5

HDDM 36.5 / 24.6 33.3 / 23.4 24.8 / 18.5

NEWMA 43.4 / 21.5 47.4 / 11.6 20.6 / 26.2

ChangeFinder and FLOSS also significantly outperforming the rest.

ClaSS ranks first in 5 out of 6 data archives, with 1 significant lead

on mHealth and 4 insignificant advances for WESAD, SleepDB,

MIT-BIH-VE DB and MIT-BIH-VE-Arr DB. ChangeFinder ranks

first on PAMAP, but only with an insignificant difference to ClaSS.

We aggregated the average Covering ranks by sensor type and

found that ClaSS outperforms its rivals for 7 out of 10 sensors (1

significant); the 3 it performs worse for are electrodermal activity,

respiration and body temperature, which are all contained in the

WESAD archive and represent just 4 TS per sensor. More annotated

TS from these sensors are needed to give a conclusive result on their

specific segmentation performance. In a pairwise comparison of

ClaSS against the 7 competitors on the data archives, ClaSS achieves

the best segmentations in at least 69% instances.

Considering the summary statistics in Figure 5 (bottom right)

and Table 3, all methods drop in mean and median Covering per-

formance but keep similar standard deviations on the data archives

compared to the benchmark results. ClaSS scores the highest mean

Covering performance of 51.5% and the second-smallest standard

deviation of 17.1%. The performance improvement of 9.2 pp com-

pared to the second-best method is substantial, however 18.5 pp

less than for the benchmark results.

Discussion: Our performance analysis shows that ClaSS out-

performs 8 other methods in 305 of 592 TS data sets. This superior

performance is attributed to two key characteristics:

(a) ClaSS uses a self-supervised, non-linear 𝑘-NN classifier for

segmenting TS streams, evaluating the likelihood of potential slid-

ing window prefixes being a completed segment. This method is

adept at understanding the diverse semantics of signals, unlike the

auto-regressive or statistical deviation models used by our competi-

tors, with the exception of FLOSS.

(b) For identifying CPs, ClaSS utilizes a non-parametric signif-

icance test rather than a fixed threshold. This approach allows

for more flexible adaptation to different data sets, a strategy not

adopted by our competitors except for HDDM.

A real-world example of the impact of these two design choices

of ClaSS is explored in Subsection 4.5.
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Figure 6: Runtime comparison regarding total time spent vs
quality (top left) and standalone data throughput (bottom
left) of competitors. Change in throughput (top right) and
Covering (bottom right) for different sliding window sizes.

4.4 Runtime and Throughput
STSS methods need to process sensor streams in real-time to be

useful in practice. We conducted experiments to measure the rela-

tionship between runtime and quality as well as data throughput

of ClaSS and its competitors on all 592 TS data sets.

Runtime: As shown in Figure 6 (top left), HDDM is the fastest

method (total of 4 hours), followed by DDM (5 hours), NEWMA (7

hours), ADWIN (10 hours), ChangeFinder (45 hours), Window (52

hours), ClaSS (109 hours) and FLOSS (1109 hours), for a total of 3.5

GB of 64-bit floating-point TS data on a single core. This ranking is

roughly aligned with the computational complexities and sliding

window sizes of the methods (see Table 2). The 4 fastest methods

build a cluster (bottom left) and produce low average Covering re-

sults from 25.4% to 31.1%. ChangeFinder and ClaSS trade runtime to

score substantially higher average Covering performances of 43.2%

and 56.9%, while being one order of magnitude slower. However,

ClaSS is more than 10 times faster and 18.3 pp more accurate than

FLOSS, although both methods process the same sliding window.

ClaSS needs 36/109 hours for the bespoke 𝑘-NN updates. Recomput-

ing dot products increases this runtime to 212 hours; naive distance

calculations take 2513 hours. Additionally, ClaSS spends 55/109
hours for the bespoke cross-validations. Using the original imple-

mentation from [17] was stopped after 5755 hours, segmenting 7

out of 8 data sets. This empirically validates the massive runtime

improvements of the central components.

Throughput: Figure 6 (bottom left) provides a visual represen-

tation of the methods’ data throughputs when operated in isolation.

On average, HDDM and DDM process 26,458 and 26,031 observa-

tions per second, followed by NEWMA and ADWIN with 15,949

and 12,958 measurements as well as Window, ChangeFinder, ClaSS

and FLOSS with 2,991 down to 378 data points. ClaSS, with an

average of 1,408 measurements per second, reaches a maximum

of 4,660 observations at times, as its segmentation procedure only

scores the unsegmented data points, which leads to throughput

peaks. Experiments with ClaSS in Apache Flink show comparable
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Figure 7: Scalability of ClaSS vs FLOSS considering Covering
performance (top left), subsequence width (top right), TS
length (bottom left), and number of CPs (bottom right).

results, averaging 1, 004 ± 310 values per second (see [11]). This

demonstrates that ClaSS can segment data streams with hundreds

of points per second with default parameters using a single core.

This is sufficient to segment many IoT or medical sensors that

output values in this range.

SlidingWindow Size: The line plots in Figure 6 (right) illustrate
the change in average throughput (top) and Covering (bottom) for

sliding window sizes from 1k to 20k (steps of 1k) in ClaSS. The

default value of 10k (red line) roughly marks the beginning of con-

verging Covering performance between 56% and 57%. Cutting it

in half to 5k, increases throughput to 2548 data points per second

(1.8x), loosing 1.8pp accuracy. Similarly, doubling the default slid-

ing window size to 20k decreases throughput to 863 data points

per second (0.6x), gaining 0.3pp of accuracy. We find that sliding

window sizes between 5k and 10k retain most of the accuracy while

providing scope for throughput optimizations.

Scalability: Figure 7 shows the scalability of ClaSS vs FLOSS per
TS in relation to Covering score, subsequence width, TS length and

amount of CPs. We omit a comparison against batch ClaSP, as its

quadratic runtime prohibits an application in our experiments (TS

with up to 3.9M values). FLOSS and ClaSS share a similar dispersion

of runtimes for the variables, shifted by their total difference. For

Covering and subsequence width, we do not observe clear relation-

ships. Conversely, for increasing TS length or number of CPs, both

algorithms need more runtime. As expected, ClaSS is consistently

faster than FLOSS for large TS. On [11], we additionally show that

ClaSS its runtime scales linearly for increasing TS length, which em-

pirically validates its time complexity stated in Subsection 3.6. The

runtime of ClaSS for segmenting very large offline data archives

can probably be accurately predicted using regression.

4.5 Human Activity Recognition Use Case
We explore the segmentation results of an interesting use case from

the PAMAP [48] data archive to show the characteristics of ClaSS

compared to FLOSS and Window (2nd and 3rd best benchmark

competitors). Human activity recognition (HAR) is an important

subfield of ubiquitous sensing, with applications in medical con-

dition monitoring and decision-support in tactical scenarios [35].
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Figure 8: The TS (top) captures the X-axis acceleration of
human activity movement [49]. The aggregated profiles for
ClaSS, FLOSS and Window (2nd from top to bottom) are il-
lustrated with predicted CPs (green). See [11] for a video.

Figure 8 illustrates an example of HAR, showing accelerometer

readings from a 26-year-old male performing a sequence of 9 ac-

tivities (top). We computed the profiles and predicted CPs using

ClaSS, FLOSS and Window (2nd from top to bottom) and visual-

ized the max-aggregated scores for ClaSS and Window and the

min-aggregated values for FLOSS. A video of ClaSS’ real-time seg-

mentation is available online [11]. ClaSS has a smooth score profile

with accurate predictions, missing only a very subtle change from

lying to sitting and having two false positives. FLOSS generated

a noisy arc curve with more false positives, related to its greedy

CP extraction algorithm. Window accurately detected the first four

activity transitions, but then had many false positives due to the

discrepancymeasure misjudging the signal. This use case highlights

the accuracy and adaptability of ClaSS, as well as its interpretability

for human inspection.

5 RELATEDWORK
In the last two decades, a wealth of benchmarks [45], databases [46],

indices [15], compression algorithms [37], and data analytics [44]

have been developed by TS management and mining research. This

research is driven by the rapidly growing amount of sensor data

from IoT devices in smart applications for environments, healthcare

or factories [33]. Sensors, found in wearables or fixed installations,

include e.g. accelerometers, thermometers, or optical sensors. Their

data, sampled at varying rates, is wirelessly transmitted via Wi-Fi,

Bluetooth, or NFC to edge analytics for initial pre-processing and

fusion, before being sent to the cloud for advanced analysis [50].

STSS is a complex preprocessing step in many IoT workflows and

has been extensively researched in different settings, e.g. on edge

devices [12], for smart homes [61], and as a part in integrated HAR

systems [10, 34, 56]. Such workflows are typically implemented

with streaming platforms such as Apache Flink, Spark, or Storm to

manage and process vast amounts of TS data in real-time. Stream

processing systems mainly differ regarding their processing mod-

els, such as one-at-a-time and micro-batch, issued value delivery

guarantees (at-least vs. exactly-once) and order [63]. Karimov et

al. [29] conducted a benchmark comparing these systems in terms

of data skew, data arrival fluctuations, latency, and throughput.

They found that no single platform consistently outperformed the

others, with each possessing unique advantages and disadvantages.

For instance, Flink exhibits the lowest average latency but is less

effective at handling skewed data compared to Spark. Gehring et

al. [21] explored qualitative criteria, such as functionality, simplic-

ity, and documentation, when developing TS analytics using Flink

and Spark. Their findings indicate that Flink’s development API,

evaluation, and visualization functionality are better suited for TS

analysis workflows. Consequently, we implemented ClaSS in Flink

for integration with its stream processing system.

Besides its practical application, STSS has been studied concep-

tually as CP and drift detection problems [20, 32]. These formal-

izations focus on the point at which one segment changes into

another. Algorithms monitor the shape or value distributions of

sliding windows from a TS stream and report CPs once they sub-

stantially differ. The literature differentiates multiple categories of

methods [3, 57]. Parametric techniques measure the change in a

signal’s assumed probability distribution. Implementations include

Window [57], DDM [18], ADWIN [8] or BOCD [2], which estimates

the posterior distribution for the observations since the last CP and

can be extended to accommodate for short, gradual changes [14].

Non-parametric approaches do not assume a specific model, and

instead compute kernels, distances or rankings on the stream to

quantify drift. Algorithms include FLOSS [23], which estimates the

density of homogenous regions using nearest-neighbour arcs, or

our proposed method ClaSS, which utilizes self-supervised learn-

ing [26], and makes few assumptions about segments, e.g. being

mutually dissimilar. This is in contrast to the aforementioned exist-

ing methods, which are either domain-specific, parametric or lack

a robust segmentation procedure to handle observed noise.

6 CONCLUSION
We proposed ClaSS, a novel algorithm with minimal assumptions

for streaming time series segmentation (STSS) that is amenable to

human inspection. Our extensive experiments demonstrate that

it sets the new state of the art on two benchmarks with 107 TS,

five out of six data archives from experimental studies with 485

TS, and is fast and scalable. In addition to the streaming setting,

ClaSS can also be used for very long TS in the batch scenario where

computationally expensive TSS algorithms become infeasible.

Besides its strengths, weaknesses include the initial time points

needed to determine the subsequence width and the dependence on

the predictive power of the𝑘-NN classifier. ClaSS is solely applicable

to univariate TS. Many real-world use cases, however, capture

processes with a multitude of sensors, where temporal patterns

are distributed across various channels. It also has less throughput

compared to some competitors, which restricts its applicability for

sensors with extremely high sampling rates.

In future work, we plan to extend ClaSS to the multivariate

setting, exploring sensor fusion and dimension selection to improve

accuracy. We also plan to accelerate the streaming 𝑘-NN calculation

and significance test by simultaneously working on sliding window

partitions using multi-threading or GPUs.

REFERENCES
[1] Colin Adams, Luis Alonso, Benjamin Atkin, John P. Banning, Sumeer Bhola,

Richard W. Buskens, Ming Chen, Xi Chen, Yoo Chung, Qin Jia, Nick Sakharov,

1964



George Talbot, Nick Taylor, and AdamTart. 2020. Monarch: Google’s Planet-Scale

In-Memory Time Series Database. Proc. VLDB Endow. 13 (2020), 3181–3194.
[2] Ryan Prescott Adams and David JC MacKay. 2007. Bayesian online changepoint

detection. arXiv preprint arXiv:0710.3742 (2007).
[3] Samaneh Aminikhanghahi and Diane Joyce Cook. 2016. A survey of methods

for time series change point detection. Knowledge and Information Systems 51
(2016), 339–367.

[4] Oresti Baños, Rafael García, JuanAntonioHolgado Terriza,Miguel Damas, Héctor

Pomares, Ignacio Rojas, Alejandro Saez, and Claudia Villalonga. 2014. mHealth-

Droid: A Novel Framework for Agile Development of Mobile Health Applications.

In IWAAL.
[5] Oresti Baños, Claudia Villalonga, Rafael García, Alejandro Saez, Miguel Damas,

Juan Antonio Holgado-Terriza, Sungyong Lee, Héctor Pomares, and Ignacio

Rojas. 2015. Design, implementation and validation of a novel open framework

for agile development of mobile health applications. BioMedical Engineering
OnLine 14 (2015), S6 – S6.

[6] Gustavo E. A. P. A. Batista, Eamonn J. Keogh, Oben M. Tataw, and Vinicius M. A.

Souza. 2013. CID: an efficient complexity-invariant distance for time series. Data
Mining and Knowledge Discovery 28 (2013), 634–669.

[7] M. Beyreuther, Robert Barsch, Lion Krischer, Tobias Megies, Yannik Behr, and

Joachim Wassermann. 2010. ObsPy: A Python Toolbox for Seismology. Seismo-
logical Research Letters 81 (2010), 530–533.

[8] Albert Bifet and Ricard Gavaldà. 2007. Learning from Time-Changing Data with

Adaptive Windowing. In SDM.

[9] Isvani Inocencio Frías Blanco, José del Campo-Ávila, Gonzalo Ramos-Jiménez,

Rafael Morales Bueno, Agustín Alejandro Ortiz Díaz, and Yailé Caballero Mota.

2015. Online and Non-Parametric Drift Detection Methods Based on Hoeffding’s

Bounds. IEEE Transactions on Knowledge and Data Engineering 27 (2015), 810–

823.

[10] Hyunjeong Cho, Jihoon An, Intaek Hong, and Younghee Lee. 2015. Automatic

Sensor Data Stream Segmentation for Real-time Activity Prediction in Smart

Spaces. Proceedings of the 2015Workshop on IoT challenges in Mobile and Industrial
Systems (2015).

[11] ClaSS Code and Raw Results. 2023. https://github.com/ermshaua/classification-

score-stream.

[12] Roman Dębski and Rafał Dreżewski. 2021. Adaptive Segmentation of Streaming

Sensor Data on Edge Devices. Sensors (Basel, Switzerland) 21 (2021).
[13] Janez Demšar. 2006. Statistical Comparisons of Classifiers over Multiple Data

Sets. The Journal of Machine Learning Research 7 (2006), 1–30.

[14] Erick Draayer, Huiping Cao, and Yifan Hao. 2021. Reevaluating the Change

Point Detection Problem with Segment-based Bayesian Online Detection. Pro-
ceedings of the 30th ACM International Conference on Information & Knowledge
Management (2021).

[15] Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas,

and Houda Benbrahim. 2022. Hercules Against Data Series Similarity Search.

Proc. VLDB Endow. 15 (2022), 2005–2018.
[16] Arik Ermshaus, Patrick Schäfer, and Ulf Leser. 2022. Window Size Selection In

Unsupervised Time Series Analytics: A Review and Benchmark. 7th Workshop
on Advanced Analytics and Learning on Temporal Data (2022).

[17] Arik Ermshaus, Patrick Schäfer, and Ulf Leser. 2023. ClaSP: parameter-free time

series segmentation. Data Mining and Knowledge Discovery 37 (2023), 1262 –

1300.

[18] João Gama, Pedro Medas, Gladys Castillo, and Pedro Pereira Rodrigues. 2004.

Learning with Drift Detection. In Brazilian Symposium on Artificial Intelligence.
[19] João Gama and Pedro Pereira Rodrigues. 2007. Data stream processing. In

Learning from Data Streams. Springer, 25–39.
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