
Oasis: An Optimal Disjoint Segmented Learned Range Filter
Guanduo Chen

1

Fudan University

gdchen22@m.fudan.edu.cn

Zhenying He

Fudan University

zhenying@fudan.edu.cn

Meng Li
2

Nanjing University

meng@nju.edu.cn

Siqiang Luo
†

Nanyang Technological University

siqiang.luo@ntu.edu.sg

ABSTRACT
The learning-enhanced data structure has inspired the development

of the range filter, bringing significantly better false positive rate

(FPR) than traditional non-learned range filters. Its core idea is to

employ piece-wise linear functions that uniformly map the entire

key space into a bitmap sequentially. Nonetheless, such uniform

mapping can be space-ineffective, impacting FPRs.

This paper introduces Oasis, a novel learned range filter that

divides the key space into disjointed intervals by excluding large

empty ranges explicitly and optimally maps those unpruned in-

tervals into a compressed bitmap. The configuration optimality in

Oasis is guaranteed by a careful theoretical analysis. To enhance the

versatility of Oasis, we further propose Oasis+, which integrates

the design space of both learned and non-learned filters, delivering

robust performance across a wide range of workloads. We evaluate

the performance of both Oasis and Oasis+ when integrated into the

key-value system RocksDB, using a diverse set of real-world and

synthetic datasets and workloads. In RocksDB, Oasis and Oasis+

improve the performance by up to 1.4× and 6.2× when compared

to state-of-the-art learned and non-learned range filters.

PVLDB Reference Format:
Guanduo Chen, Zhenying He, Meng Li, Siqiang Luo. Oasis: An Optimal

Disjoint Segmented Learned Range Filter. PVLDB, 17(8): 1911 - 1924, 2024.

doi:10.14778/3659437.3659447

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Woooooow-Pro/Oasis-RangeFilter.

1 INTRODUCTION
Range Filters are essential for data-intensive applications.
Range queries are fundamental database operations that retrieve all

records within a specified query range [𝑙, 𝑟] from a key setD. Range
queries have diverse applications, such as similarity search [51] and

1
Work done when the author was working as a research assistant under the supervi-

sion of Siqiang Luo.

2
Meng Li is affiliated with the State Key Laboratory for Novel Software Technology

at Nanjing University.

†
Siqiang Luo is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 8 ISSN 2150-8097.

doi:10.14778/3659437.3659447

anomaly detection [22] in time-series data, spatial network [39],

block-chain database [52], web application [7], and distributed stor-

age [43]. However, range queries are also I/O expensive operations,

which involve scanning the whole dataset to identify all qualified

records. To address this issue, range filters [1, 18, 21, 33, 37, 47,

50, 54] have been proposed. Range filters can quickly determine

whether any records fall within a given query range, potentially

returning false positives but guaranteeing no false negatives. Once

a range filter confirms that no elements exist within the range, the

overall range query can be safely terminated immediately without

accessing the disk. This early termination avoids unnecessary data

scanning, largely improving query efficiency.

Notably, the growing interest in Log-Structured Merge-trees

(LSM-trees) [2, 4, 5, 9, 24, 30, 32, 36, 40–42, 44, 49, 55, 56, 58] by both

the research and industrial communities has spurred architectural

adaptations. LSM-trees employ Bloom filters [3] to enhance point

query efficiency [8, 13, 14], which extracts the value for a given

key. However, the demand for range queries in LSM-tree based

applications has prompted either architectural redesigns to support

range queries efficiently [59] or the replacement of these Bloom

filters with general range filters capable of effectively supporting

both point and range membership queries [13, 21, 33, 37, 47, 54].

State-of-the-art range filters. The state-of-the-art range filters
can be classified into two types: prefix-based range filter (i.e., en-
coding the key prefix) [10, 21, 33, 37, 50, 54] and learning-based

range filter (i.e., encoding empty ranges with a monotonical learned-

model) [47]. The Succinct Range Filter (SuRF) [54] is a prefix range

filter based on a compact trie structure. Rosetta [33] enhanced SuRF

regarding short range queries by employing a series of stacked

prefix Bloom filters, each with a unique prefix length. Following

Rosetta, REncoder [50] and bloomRF [37] improve long range query

performance by partially memorizing the key suffixes. Further, by

assuming that the queries can be sampled, Proteus [21] augments

SuRF with an appended prefix-based Bloom filter, whose optimal

configuration is decided according to the sampled queries.

Rather than solely focusing on enhancing prefix-encoding effi-

ciency, SNARF [47] first introduces the learned Range Filter (LRF),

which cuts down the false positive rate (FPR)
1
by more than one

order of magnitude when compared with state-of-the-art prefix-

based filters. The general idea of SNARF is learning-based range

encoding: (1) dividing the whole key space into multiple adjoined

intervals, each containing the same number of keys; (2) allocating

each interval a fixed-length bitmap segment; (3) training a linear

function for each interval that maps each key within the interval to

1
FPR is calculated as the ratio of false positive results to the total number of negatives.

1911

https://doi.org/10.14778/3659437.3659447
https://github.com/Woooooow-Pro/Oasis-RangeFilter
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3659437.3659447
https://www.acm.org/publications/policies/artifact-review-and-badging-current

a specific bit in its corresponding bitmap segment and sets that bit

to 1. This approach maps the empty range
2
between two adjoined

keys onto a series of consecutive zero bits in the bitmap segment.

During the range query process, the left/right boundary is mapped

onto a single bit in the bitmap segment, followed by verifying the

presence of any non-zero bits between the two mapped bits.

Encoding large empty ranges is space-inefficient. Although
the range encoding method in SNARF works well for small ranges,

space cost becomes an issue when it encounters queries with large

ranges. To better illustrate this issue, we provide a series of simple

examples, all based on the same set of nine keys, as depicted in

Figure 1. In each sub-figure, the right side exhibits one workload

comprising four true negative range queries. Queries highlighted in

red signify instances where the filter fails to correctly identify them

as empty, while those in green indicate successful identification.

The example at the top of Figure 1 shows how SNARF encodes a

key space, with the key space divided into two adjoined intervals

having the same number of keys: interval [0, 1100] and interval

[1100, 1500]. The boundaries 0, 1100, 1500 are highlighted in blue.

Notably, SNARF’s intervals share boundaries with its left and right

neighborhoods, overlapping with each other at boundaries. In this

example, two intervals share the boundary of 1100. Also, SNARF

uniformly allocates a 40-bit bitmap segment to each interval. Each

interval is then assigned a model for mapping within-interval keys

to the corresponding bitmap segment. In addition, the model of the

first interval maps its interval boundary 0 (or 1100) to the 0
th
(or

40
th
) bits, while the model of the second interval maps its interval

boundary 1100 (or 1500) to the 40
th
(or 79

th
) bits, respectively.

In this example, SNARF encodes the large empty range (20, 1000)
into a 35-bit bitmap segment, from the 1

st
bit to the 35

th
bit, con-

suming nearly half of the space budget. As a result, other relatively

smaller empty ranges will suffer from bits starvation (i.e., smaller

space budget) due to the exploitation from such a large empty range.

Then, once queries fall within these small ranges, they will suffer

from a higher FPR. As shown in Figure 1, each query’s bitmap posi-

tions overlap with those of existing keys, leading to all four queries

returning false positive answers. This motivates us to consider: are

there better ways to optimize the space usage for higher range filter

quality? To answer this question, we have three proposals.

Proposal 1: recording rather than encoding. To avoid excessive
memory consumption by large empty ranges, we propose to record

the range boundaries directly rather than encoding the whole range

into a long bitmap segment. For instance, in Figure 1, SNARF al-

locates excessive bits to encode an empty range from 20 to 1000.

Our solution, the space pruning method, avoids encoding such large

empty ranges by explicitly recording its boundaries (20 and 1000).

As shown in Figure 1(A), the key space is partitioned into two dis-

joint intervals: [0, 20] and [1000, 1500]. This allows us to project

the range query [4, 6] to the 4
𝑡ℎ
-6
𝑡ℎ

bits, which are all zero and

thus enable correct answers. Similarly, query [24, 26] immediately

returns empty, as it falls in the pruned range (marked by strike-

through green). However, recording the boundaries may introduce

extra space overhead, and hence, it is a challenge to balance the

portions of encoding and recording for desired query performance.

2
The empty range indicates the absence of any existing keys within it.

Figure 1: Learned range filter examples: SNARFwith a bitmap
of 80 bits; (A) LRF with range pruning method; (B) Oasis: LRF
with interval bitmap allocated using Robin Hood assignment
method. Blue Keys = stored interval boundary keys; Green
Range Queries = true negatives; Red Range Queries = false
positives for queries; Strikethrough Green Range Queries =
true negatives produced by range pruning.

Proposal 2: sharing rather than exploitation. With those large

ranges being pruned, the remaining key space is then divided into

multiple disjoint intervals, which then raises another question: how

to allocate a memory budget for the bitmap of each interval, as

these intervals may contain different numbers of keys. One naive

approach is to allocate bits to each interval proportionally to the

number of keys its contains, similar to Rosetta and SNARF. However,

such a strategy may fall short when the distance between adjoined

keys varies significantly. For example, in Figure 1(A), the first small

interval [0, 20] contains only three keys, while the second, 25×
larger interval [1000, 1500], has just six keys. Consequently, each
bit in the second interval needs to cover a much larger space than a

bit in the first interval, leading to an imbalance in bit utilization. To

tackle this issue, we introduce a metric named BitSpan Resolution
(BsR) and a method to optimize the overall BsR. BsR represents

the average range length covered by one bit within an interval,

calculated as the interval length divided by the number of bits in its

bitmap. A lower BsR indicates better query performance (i.e., lower
FPR). To achieve a global optimal query performance, we propose

a bitmap assignment method called the Robin Hood assignment,
which robs bits from intervals with lower BsRs to those with higher

BsRs. For example, in Figure 1(B), by redistributing bits from the

first interval to the second, we can accurately answer the first three

queries. To achieve a desired performance, the challenge lies in

how to achieve optimal bitmap assignment across intervals via the

Robin Hood assignment method.

Proposal 3: making the best of both worlds – combining
learning-based methods and prefix-based methods. The ineffi-

ciency of learning-based range encoding for large ranges prompts

us to consider the suitability of different encoding methods for dif-

ferent key distributions. We have noticed a lack of comprehensive

comparisons between the performance of these methods across

various key distributions. To bridge the gap, we develop an analysis

framework capable of estimating the FPR of both encoding methods

1912

for a given key distribution. Our preliminary findings suggest that

the learning-based one is more suitable for dense key distributions,

while the prefix-based one is better for sparse distributions. In par-

ticular, a sparse distribution implies a small number of keys within

a fixed-length range, while a dense distribution indicates a large

number of keys within the same range. As shown in Figure 1(B), the

first interval [0, 20] represents a dense distribution, while the sec-
ond interval [1000, 1500] exemplifies a sparse distribution. Building

upon this insight, we propose that the prefix-based and learning-

based range encodings can be strategically combined for a more

robust query performance. The challenge here lies in choosing the

desired encoding method for each interval.

Oasis. Based on our previous insights, we propose Oasis (Optimal
Disjoint Segmented Learned Range Filter), a novel learned range

filter incorporating space pruning and Robin Hood assignment

methods. Further, we formulate the problem of optimizing Oasis’

configuration and solve it by integrating a segmentation algorithm

that establishes the optimal configuration while maintaining con-

sistent performance across different query distributions. Oasis out-

performs state-of-the-art filters in terms of FPR across a range of

workloads, covering point and range queries, with improvements of

up to 100×. Additionally, it exhibits relatively low operation latency

and moderate construction time.

Oasis+.Oasis+ offers a fresh perspective by combining prefix-based

and learning-based encoding methods to boost query performance.

Oasis+ employs a two-layer nested loop construction method. This

method effectively balances FPR performance, even when subjected

to different space budget constraints, at the cost of a slightly in-

creased construction time.

Contributions. Our contributions are as follows:

• We introduce a novel space-pruning method that strikes a bal-

ance between query performance and filter sizes. This method

optimizes filter performance and accelerates query processing.

• We propose a bitmap assignment (Robin Hood assignment) ap-

proach that enhances the robustness of different dataset distri-

butions and reduces the FPR.

• We present Oasis, a novel learned range filter incorporating space

pruning and Robin Hood assignment.

• We provide a detailed analysis of Oasis. Leveraging this analysis,

we introduce a segmentation algorithm that can determine the

optimal configuration without query sampling.

• We introduce Oasis+, a range filter that integrates the design

space of both learning-based and prefix-based filters.

• Wedemonstrate that Oasis andOasis+ achieve significantly lower

FPRs compared to state-of-the-art baselines across diverse work-

loads, consisting of both point and range queries.

• We illustrate the integration of Oasis and Oasis+ into RocksDB

and showcase up to 6.2× latency improvements compared to

state-of-the-art baselines.

2 OASIS
This section first presents the framework of Oasis and how it inte-

grates the space pruning and Robin Hood assignment methods into

its framework in Figure 2. Section 2.1 details the implementation of

the Oasis framework, and Section 2.2 illustrates its query process.

2.1 Oasis Framework
The fundamental framework of Oasis comprises a model array

and compressed bitmap, as shown in Figure 2. The model array

plays a pivotal role by recording the corresponding model for each

interval, contributing to both space pruning and the Robin Hood

assignment strategies. Each model in the array represents a linear

function, as defined in Equation 1, mapping disjoint key intervals

to unique segments on the uncompressed bitmap. In parallel, the

compressed bitmap efficiently utilizes compression techniques to

store the positions of bits set to 1.

2.1.1 Model Array. In Figure 2, Oasis first partitions the key space

into disjoint intervals, each of which has a unique linear model

projecting keys to a corresponding bitmap segment. Notably, seg-

ments mapped by neighboring models are adjoining and ordered

identically to the models themselves. As shown in Equation 1, each

model𝑖 maps a given key 𝑢 to a bit of the corresponding bitmap

segment. The offset of this bit from the starting point of the bitmap,

model𝑖 (𝑢), is represented by three parameters: a scale size parame-

ter, 𝛼𝑖 , and interval boundaries, beg𝑖 , and end𝑖 .

model𝑖 (𝑢) = 𝛼𝑖 ·
𝑢 − beg𝑖

end𝑖 − beg𝑖
, where 𝑢 ∈ (beg𝑖 , end𝑖) (1)

The scale size records the outcome of the Robin Hood assignment

strategy. Interval boundaries, derived from the key set, define the

bounds of the associated interval and support space pruning. On

the other hand, the model array organizes all models in ascending

order according to their interval’s left boundaries, facilitating the

positioning of models during querying, as depicted in the following:

models = {model1, . . . , model𝑚 } .

Scale Size. The scale size is the parameter required by the Robin

HoodAssignment process. It helps themodel tomap each interval to

a unique and consecutive bitmap segment on the bitmap. Also, the

scale size implicitly stores the offset of each segment. Specifically,

the scale size of model 𝑖 , denoted as 𝛼𝑖 , represents the number of

bits in the bitmap segment assigned to the 𝑖th model, as illustrated

in Figure 2. This bitmap segment starts at position

∑𝑖−1
𝑗=1 𝛼 𝑗 and

ends at

∑𝑖
𝑗=1 𝛼 𝑗 .

Interval Boundaries. The 𝑖th interval boundaries, denoted as beg𝑖
and end𝑖 , signify the left and right boundaries of the related inter-

val, defining the domain of the corresponding model. Additionally,

these parameters facilitate Oasis in implementing the space prun-

ing method. To elaborate further, the structure of Oasis’ intervals

ensures that no key exists between the upper bound of the 𝑖th in-

terval and the lower bound of the (𝑖 + 1)th interval. Consequently,

any queries falling between these two keys can be immediately

pruned, allowing the compressed bitmap to omit these pruning

spaces. This results in space conservation and enhanced query

processing efficiency.

In summary, the linear function of the 𝑖th interval passes through

points (beg𝑖 , 0) and (end𝑖 , 𝛼𝑖), and any data 𝑢 falling within this in-

terval is mapped to a position between 0 and 𝛼𝑖 . Therefore, the final

bitmap position of the data is calculated by adding the interval’s

offset in the bitmap and the position from the local linear model,

as presented in Equation 2,

pos = model𝑖 (𝑢) +
𝑖−1∑︁
𝑗=1

𝛼 𝑗 = 𝛼𝑖 ·
𝑢 − beg𝑖

end𝑖 − beg𝑖
+

𝑖−1∑︁
𝑗=1

𝛼 𝑗 . (2)

1913

Model2
beg2=64
end2=89

𝛼2 = 5
10 896430

Model1
beg1=10
end1=30

𝛼1 = 10
Pruned

Queries:
[14, 23]
[40, 50]

Step 3: Query pruned by Space Pruning.

Query on Model Array

𝛼i Bit Position: [2, 6]

1 1 1 1 1 1 1 1 1… …

batchjoffsetj batchj+1offsetj+1 batchj+2offsetj+2

Bitmap
(Virtual)

Model Array

Compressed Bitmap

Step3: Assign each interval bitmap
segment 𝛼 by Robin Hood Assignment.

Query on Compressed Bitmap

11 batchj+10 batch1

Queries:
[2, 6]
[7, 50]

Step 1: Check if the query is across multi-batches.
Step 2: Decode the batch and check existence.

Step 1: Identify the interval to which the query belongs.
Step 2: Check if the query is across the interval.

Step 4: Compute bitmap positions of query.

Key Space

Output

Modeli

begi = k1, endi= k6, 𝛼i

Modeli+1

begi+1 = k7, endi+1= k11, 𝛼i+1

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11

Key Space
…… Pruned

Step1: Determine which range to prune.
Step2: Determine how many ranges to prune.Space Pruning

Figure 2: Oasis framework and its query process.

2.1.2 Compressed Bitmap. Inspired by SNARF, Oasis meticulously

organizes 𝛽 consecutive bit positions in the bitmap as batches,

compressing each batch using the Elias-Fano Encoding [38, 46]

technique. To store these compressed batches, Oasis employs an

array named batch_list. Simultaneously, it utilizes another array,

batch_offset, to record the offset of each batch from the begin-

ning of the bitmap. The 𝑖th element in the batch_offset precisely

represents the position of the first bit in the 𝑖th batch. Furthermore,

since the number of keys in each batch is fixed, and their range

information can be obtained from the batch_offset, there is no
need to record the metadata of each batch. Hence, the memory

overhead of this chunking compressed method is acceptable.

2.2 Query on Oasis
In this section, we delve into the range query process of Oasis.

A point query can be considered a special case of a range query

where the left and right boundaries are equal. Therefore, we will

not separately discuss point queries. We begin by illustrating the

operations for each component of Oasis separately in Section 2.2.1

and Section 2.2.2. Subsequently, we demonstrate the overall range

query process of Oasis in Section 2.2.3.

2.2.1 Quering the Model Array. The querying process of the model

array involves four steps, as shown in the upper right of Figure 2.

Initially, the model array searches for the specific interval to which

the query belongs among interval boundary parameters. Then, the

process checks whether the query crosses the interval or falls within

the pruned spaces to facilitate the early pruning process. Finally, the

process uses Equation 2 to calculate the respective bitmap positions

corresponding to the query boundaries.

As shown in Algorithm 1, the query process starts by invoking

the FindInterval function to determine the index of the interval

corresponding to the query (line 2). Subsequently, the algorithm

evaluates the value of 𝑠𝑡𝑎𝑡𝑢𝑠 to determine if further processing

is necessary (line 3). A status value of 0 signifies that the query
falls within the bounds of the interval indexed by 𝑖𝑑𝑥 , requiring

additional processing. Utilizing the interval index 𝑖𝑑𝑥 and the query

boundaries, the model computes the bitmap positions (line 5).

The FindInterval begins by initializing the status to 0. It

then performs a binary search on each model’s beg parameter to

Algorithm 1 Range Query on Model Array

Input: 𝑙 , 𝑟 - the left and right bound of the range query.

Output: pos_l, pos_r - the bitmap position of the query’s left and right bound.

Output: status - result code, where 1 indicates the query across models, −1
indicates the query is empty, and 0 stands for an unknown result.

Function upBound(arr, 𝑢) - returns the first index that satisfies 𝑢 ≥ arr𝑖 .

1: procedureQuery(𝑙 , 𝑟)

2: status, 𝑖𝑑𝑥 ← FindInterval(𝑙, 𝑟)
3: if status ≠ 0 then
4: return status, −1, −1
5: pos_l, pos_r← getPos(𝑙, 𝑖𝑑𝑥), getPos(𝑟, 𝑖𝑑𝑥)
6: return status, pos_l, pos_r

7: procedure FindInterval(𝑙, 𝑟)
8: status← 0

9: 𝑖 ← upBound({beg
1
, . . . , beg𝑚 }, 𝑙)

10: if 𝑙 > end𝑖 and 𝑟 < beg𝑖+1 then
11: status← −1 ⊲ query falls within the empty range
12: if not (𝑙 > beg𝑖 and 𝑟 < end𝑖) then
13: status← 1 ⊲ query across multiple intervals
14: return status, 𝑖

15: procedure getPos(𝑢, 𝑖)
16: return 𝛼𝑖 · 𝑢−beg𝑖

end𝑖 −beg𝑖
+∑𝑖−1

𝑗=1 𝛼 𝑗

determine the interval in which the lower bound of the query falls.

Once the interval index 𝑖 is identified, the procedure evaluates

whether the query falls within the space between the 𝑖th and (𝑖 +
1)th intervals (line 10). If the conditions in line 10 are met, the

procedure sets the status to −1, indicating that the current query
is guaranteed to be empty. Conversely, if the query does not meet

the conditions, the procedure further examines whether the query

spans multiple intervals (line 12). If this condition is satisfied, the

procedure immediately assigns the status to 1, indicating that the

query range covers keys in the key set. The primary contributor

to the query cost of the model array is the FindInterval function.

Therefore, querying on the model array takes O (log𝑚), where𝑚
denotes the size of the model array.

Running Example. Take the range query [14, 23] as an exam-

ple. As shown in Figure 2, the model array (1) first identifies that

the query falls within the interval1 by searching on the interval

boundary parameters of the internal models within the array. (2)

Then, it invokes the corresponding model1, utilizing Equation 2 to

calculate the bitmap positions of the query’s left boundary,

pos_l = 𝛼1

14 − beg
1

end1 − beg
1

+
0∑︁

𝑖=1

𝛼𝑖 = 10 · 14 − 10

30 − 10

= 2,

1914

Algorithm 2 Range Query on Compressed Bitmap

Input: pos_l, pos_r - left and right bitmap positions of the query.

Output: exist - the presence of data within the range query.

Function batchQuery(batch, 𝑙 , 𝑟) - returns whether there is element between 𝑙

and 𝑟 for the given batch.

1: procedureQuery(pos_l, pos_r)
2: if batch_offset.front > pos_r or batch_offset.back < pos_l then
3: return false ⊲ query out of range
4: 𝑖𝑑𝑥 ← upBound(batch_offset, pos_l)
5: if batch_offset[𝑖𝑑𝑥 + 1] <= pos_r then
6: return true ⊲ query across multiple compacted batches
7: offset_l← pos_l − batch_offset[𝑖𝑑𝑥]
8: offset_r← pos_r − batch_offset[𝑖𝑑𝑥]
9: return batchQuery(batch_lists[𝑖𝑑𝑥], offset_l, offset_r)

and right boundary, pos_r = 10 · (23 − 10)/(30 − 10) = 6.

2.2.2 Querying the Compressed Bitmap. The query process of the

compressed bitmap is detailed in Algorithm 2. The procedure be-

gins by checking whether the query falls outside the bitmap’s range

(lines 2-3). It immediately returns a negative result if the query is

not within the bitmap. Otherwise, the procedure employs a binary

search on the batch_offset to identify the batch to which the

left boundary of the query belongs (line 4). Once the procedure

determines the batch index of the query’s left boundary, it checks

whether the right boundary of the query falls within the current

batch (line 5). A positive outcome of the condition in line 5 signifies

that the query spans multiple batches, confirming the presence of

data within the queried range. Consequently, the procedure directly

returns a positive answer. Conversely, if the condition in line 5 is

unmet, the procedure will calculate the offset for both boundaries

(lines 7-8) and then decompress the batch corresponding to the

query and check for a set bit within the specified boundaries. No-

tably, the decoding time of a batch takes around O(𝛽), where 𝛽

denotes the number of bit positions in a batch of the compressed

bitmap, as mentioned in Section 2.1.2. Hence, the overall time com-

plexity is O(𝛽 + log𝑁 /𝛽). Here, 𝑁 is the size of the key set, and

𝑁 /𝛽 denotes the number of compressed batches.

2.2.3 Querying the Oasis. The execution process for a range query

in Oasis is detailed in Algorithm 3. Initially, Oasis utilizes the model

array component to determine bit positions corresponding to the

query’s left and right boundaries (line 2). The procedure checks

the return status of the model array to determine whether fur-

ther processing is required. If the return status is not equal to 0,

the algorithm immediately provides the result based on the status

value (lines 3-4). Recalling that a value of 1 denotes a non-empty

query, while −1 indicates an empty query. In cases where the model

array cannot perform early pruning, Oasis uses the compressed

bitmap to determine whether data exists within the range defined

by the model array, which finally determines the query’s mem-

bership status (line 5). Clearly, Oasis’ query time is the sum of

the time complexity of Algorithm 1 and Algorithm 2, which is

O(𝛽 + log𝑁 /𝛽 + log𝑚). Further, the pruning strategies in these

processes can reduce the practical query time.

3 FPR OPTIMIZATION FOR OASIS
In Section 3.1, we first analyze the FPR of Oasis and frame the

problem of minimizing FPR as an optimization problem. Then, we

provide a general solution for this optimization but with a high

time complexity. To address this, in Section 3.2, we introduce a

Algorithm 3 Range Query on Oasis

Input: 𝑙 , 𝑟 - the left and right bound of the range query.

Input: models - the model array of Oasis.

Input: comp_bitmap - the compressed bitmap of Oasis.

1: procedure RangeQuery(𝑙, 𝑟, models)
2: status, pos_l, pos_r← models.Query(𝑙, 𝑟)
3: if status ≠ 0 then
4: return status = 1

5: return comp_bitmap.Query(pos_l, pos_r)

segmentation algorithm that leverages the characteristics of the

optimization function to search for a near-optimal configuration

for Oasis.

3.1 FPR Analysis
We begin by examining a sorted key set D = {𝑘1, . . . , 𝑘𝑁 }. The
following terms and notations will be used in this subsection:

• 𝑝𝑖 - Probability of an empty query falling within the 𝑖th interval.

• 𝑥 - Denotes the correlation distance of an empty query. Formally,

for an empty query [𝑙, 𝑟], the adjacent keys to its left and right

boundaries are 𝑘𝑖 , 𝑘𝑖+1, where 𝑘𝑖 < 𝑙 < 𝑟 < 𝑘𝑖+1. The correlation
distance of this query is defined as min (𝑙 − 𝑘𝑖 , 𝑘𝑖+1 − 𝑟).

• 𝐹 (𝑥 ≤ 𝑋) - The cumulative percentage of empty queries with a

correlation distance 𝑥 ≤ 𝑋 .

• 𝑚 - Denotes the number of intervals in Oasis.

• 𝜌𝑖 - The BitSpan Resolution of the 𝑖th interval.

• O𝐸 = {𝑜1, . . . , 𝑜𝑚} is used to indicate the subscripts of each

interval’s right boundary. For example, an interval 𝑖 in the Oasis

can be represented as [𝑘𝑜𝑖−1+1, 𝑘𝑜𝑖].
• A = {𝛼1, . . . , 𝛼𝑚}, where 𝛼𝑖 denotes the range size of the corre-

sponding bitmap segment for the 𝑖th interval.

Analyze the FPR of Oasis. Recalling the query process of Oasis,

it is evident that false positive occurrences are confined within

the interval and do not extend across multiple intervals, as actual

keys bound the intervals, and hence, a query range that goes across

intervals will only lead to a true positive. Owing to themonotonicity

of linear models, false positive answers can exclusively arise at the

mapping positions of the query boundaries. This is the case when at

least one of these mapping positions is set to 1 by the filter. Hence,

unlike the hash-based prefix filter, Oasis’ FPR remains unaffected

by the length of the query. Put all these together, we can formulate

the FPR of Oasis in terms of workload distribution and the BsR, as

demonstrated in Equation 3.

𝐹𝑃𝑅 = 𝐹

(
𝑥 ≤

𝑚∑︁
𝑖=1

𝑝𝑖𝜌𝑖

)
. (3)

However, in many cases, we cannot obtain the workload distribu-

tion; BsR becomes the only factor that affects the FPR. Since Oasis

uses a linear model for each interval, the BsR can be determined by

dividing the interval’s range by its corresponding bitmap mapping

range as we did in Section 1. Specifically, for an interval 𝑖 in an

Oasis instance assigned with a bitmap segment length of 𝛼𝑖 , the

BsR of the 𝑖th interval is defined by Equation 4.

𝜌𝑖 =
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

𝛼𝑖
. (4)

Therefore, the FPR of the Oasis can be formalized as follows:

𝐹𝑃𝑅 = 𝐹

(
𝑥 ≤

𝑚∑︁
𝑖=1

𝑝𝑖 ·
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

𝛼𝑖

)
. (5)

1915

The optimization problem. Drawing on our prior Oasis analysis,

optimizing its FPR is equivalent to minimizing the expected value

of the overall BsR. This equivalence is due to the monotonicity of

the cumulative distribution function 𝐹 (𝑥 ≤ 𝑋). Therefore, within
a given space requirement, the optimal filter configuration can be

formulated as an optimization problem:

argmin

𝑚,O𝐸,A

𝑚∑︁
𝑖=1

𝑝𝑖 ·
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

𝛼𝑖

s.t. 𝑚 · kCost + 𝜏 ·
𝑚∑︁
𝑖=1

𝛼𝑖 ≤ kMemBudget.

In this context, kCost represents the memory overhead associated

with the stored interval metadata. Specifically, in Oasis, we employ

two 64-bit integers to represent the boundaries of an interval, along

with an additional 64-bit integer to record the length of the bitmap

segment corresponding to the interval. Here, 𝜏 denotes the com-

pression ratio associated with the bitmap’s compression algorithm,

specifically using Elias-Fano encoding as described in [38]. On the

other hand, kMemBudget signifies the allocated memory for the

entire filter, which equals the product of the key numbers and the

bits-per-key assigned to the filter.

Optimize FPR.When the workload distribution and 𝑝𝑖 are known,

we consider a scenario where the optimized key set segmentation

has been established, but the bitmap’s mapping assignment remains

unresolved. In this case, we are left with the task of determining the

optimal A to minimize the FPR, which can be restated as follows.

argmin

A

𝑚∑︁
𝑖=1

𝑝𝑖 ·
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

𝛼𝑖

s.t.

𝑚∑︁
𝑖=1

𝛼𝑖 ≤ kMemBudget′,

where kMemBudget′ = (kMemBudget −𝑚 · kCost)/𝜏 represents a

constant value.

By applying the Cauchy–Schwarz inequality [6]
3
, the lower

bound of the objective function is established as follows:
𝑚∑︁
𝑖=1

©­«
√︄
𝑝𝑖

𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1
𝛼𝑖

ª®¬
2

[
𝑚∑︁
𝑖=1

(√
𝛼𝑖

)
2

]
≥ ©­«

𝑚∑︁
𝑖=1

√︄
𝑝𝑖

𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1
𝛼𝑖

· √𝛼𝑖ª®¬
2

=⇒
𝑚∑︁
𝑖=1

𝑝𝑖 ·
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

𝛼𝑖
≥

(∑𝑚
𝑖=1

√︃
𝑝𝑖

(
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

))2
kMemBudget′

. (6)

When equality holds, we attain the minimum value of the objec-

tive function. Applying Cauchy–Schwarz inequality, the optimal

configuration AOPT = {𝛼OPT
1

, . . . , 𝛼OPT𝑚 } can be computed in O(𝑚)
time using the following equation:√︃

𝑝𝑖
(
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

)
𝛼OPT
𝑖

=

∑𝑚
𝑙=1

√︂
𝑝𝑙

(
𝑘𝑜𝑙 − 𝑘𝑜𝑙−1+1

)
kMemBudget′

. (7)

Then, plug AOPT
into the initial optimization problem mentioned

earlier simplifies the problem to:

argmin

𝑚,O𝐸

𝜏 ·
(∑𝑚

𝑖=1

√︃
𝑝𝑖 ·

(
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

))2
kMemBudget −𝑚 · 𝑘𝐶𝑜𝑠𝑡 (8)

s.t. kMemBudget −𝑚 · kCost ≥ 0.

3
(∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖
)
2 ≤

(∑𝑛
𝑖=1 𝑥

2

𝑖

) (∑𝑛
𝑖=1 𝑦

2

𝑖

)
, For 𝑥𝑖 , 𝑦𝑖 > 0, the equality holds when

𝑥1/𝑦1 = 𝑥2/𝑦2 = · · · = 𝑥𝑛/𝑦𝑛 .

In order to find the optimal segmentation for a fixed number of

intervals𝑚, we can iterate through all

(𝑁−1
𝑚

)
possible combinations.

This gives us the final optimal solution for O𝐸 . To address the

optimization problem, we proceed as follows: for each value of𝑚,

we identify the optimal segmentation method and compute the

corresponding upper bound of the FPR using Equation 6. We then

select the value of𝑚 that yields the smallest upper bound for the

FPR, along with its corresponding segmentationmethod, as the final

optimal solution for O𝐸 . Finally, we calculate the optimal bitmap

segment setting for each interval using Equation 7, obtaining the

optimal solution for A.

3.2 Segmentation Algorithm
In Section 3.1, a general solution is presented for obtaining the opti-

mal configuration of the filter under any scenario in a time complex-

ity of O(∑𝑀
𝑚=1

(𝑁−1
𝑚

)
), where𝑀 = kMemBudget/kCost represents

the maximum number of intervals. However, this time complexity

is too high for practical use. Next, we develop an algorithm capa-

ble of providing a near-optimal solution within a reasonable time

complexity is essential.

Let us consider a scenario where the workload follows a uniform

distribution, meaning that the left boundary of the query occurs

with equal probability at any position within the key space. Thus,

the probability of a query falling within an interval is proportional

to the interval’s range size (i.e., 𝑝𝑖 ∝ (𝑘𝑜𝑖 −𝑘𝑜𝑖−1+1)). In this uniform
workload scenario, we can adapt the optimization problem defined

in Equation 8 to:

argmin

𝑚,O𝐸

𝜏 ·
[∑𝑚

𝑖=1

√︃(
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

)
2

]
2

kMemBudget −𝑚 · kCost

=
𝜏 ·

[∑𝑚
𝑖=1

(
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

)]
2

kMemBudget −𝑚 · kCost (9)

s.t. kMemBudget −𝑚 · kCost ≥ 0.

From Equation 9, the objective function is inversely related to

the cumulative sum of lengths of empty ranges between adjacent

intervals. In other words, with a uniform workload assumption,

a larger cumulative sum corresponds to a lower FPR. This aligns

with Oasis’ original intent to eliminate large empty ranges between

adjacent keys. Consequently, under a uniform workload and fixed

interval count (𝑚 is fixed), optimal segmentation is achieved by

selecting the top-𝑚 distances between neighboring keys. These𝑚

key pairs then define interval boundaries, allowing estimation of

the lower bound for the optimization problem’s objective function

as follows:

𝜏 ·
(
𝑘𝑁 − 𝑘1 −

∑
top-𝑚 𝛿

)
2

kMemBudget −𝑚 · kCost , (10)

where 𝛿 represents the distance between adjoined keys within D.
To find the optimal value of𝑚, we iterate through all possible

values (from𝑀 to 0) and select the one that minimizes Equation 10.

Having identified the optimal𝑚, we set𝑚th
largest adjacent key

distances as the threshold. Neighboring keys with distances exceed-

ing this threshold are designated as boundaries between adjacent

intervals and directly recorded, yielding the optimal segmentation.

After finding the optimal segmentation, the optimal bitmap segment

assignment of the uniform workload is as follows:

𝛼𝑖 =
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

𝑘𝑁 − 𝑘1 −
∑

top-𝑚 𝛿
· (kMemBudget −𝑚 · kCost) /𝜏 . (11)

1916

Algorithm 4 Segmentation

Input: D - the sorted key set, where D = {𝑘1, . . . , 𝑘𝑁 }.
Input: kMemBudget - the memory budget for the entire filter.

Input: kCost - the memory overhead associated with storing interval metadata.

Function: TopDst(𝑚,D) - returns top-𝑚 adjacent key distances in acending order.

Output: models - the model array of Oasis.

1: procedure Segmentation(D,kMemBudget, kCost)
2: 𝑀 ← kMemBudget / kCost
3: min_heap← TopDst(𝑀 , D)
4: delta_sum← 𝑘𝑁 − 𝑘1 −

∑
min_heap

5: mem_budget← kMemBudget − kCost ·𝑀
6: threshold, best_e← min_heap.top, delta_sum2/mem_budget
7: while not min_heap.Empty() do ⊲ solve𝑚
8: delta_sum← delta_sum + min_heap.top
9: mem_budget← mem_budget + kCost

10: cur_e← delta_sum2

mem_budget
11: if cur_e < best_e then
12: threshold, best_e← min_heap.top, cur_e
13: min_heap.Pop()
14: delta_sum← 𝑘𝑁 − 𝑘1
15: models.begins.Append(𝑘1) ⊲ solve O𝐸

16: for 𝑖 ∈ {1, . . . , 𝑁 − 1} do
17: if 𝑘𝑖+1 − 𝑘𝑖 ≥ threshold then
18: models.begins.Append(𝑘𝑖+1)
19: models.ends.Append(𝑘𝑖)
20: delta_sum← delta_sum − (𝑘𝑖+1 − 𝑘𝑖)
21: models.ends.Append(𝑘𝑁)
22: b_array_range← 1

𝜏
(kMemBudget − kCost · models.ends.size)

23: for each interval [begin, end] do ⊲ solve A
24: 𝛼 ← end−begin

delta_sum · b_array_range
25: models.size_array.Append(𝛼)
26: return models

Algorithm 4 outlines our method. It employs a min-heap to main-

tain the top-𝑀 neighboring key distances as threshold candidates

(lines 2-3), where𝑀 denotes the maximum number of intervals the

model can store. The algorithm then identifies the optimal thresh-

old through the following steps: it iterates through the candidate

set in descending order (lines 4-13), calculating the corresponding

lower bound for the FPR under each candidate threshold using

Equation 10. The candidate that yields the lowest estimated FPR

is selected as the optimal threshold. Once the optimal threshold is

determined, the algorithm segments the keys into multiple intervals

(lines 15-21). Neighboring keys whose distance exceeds the thresh-

old are designated as boundaries between adjacent intervals. Finally,

the algorithm computes the optimal bitmap range assignment (lines

22-25). It iterates through all intervals while utilizing Equation 11.

The overall time complexity of our algorithm is O(𝑁 log𝑀).

4 OASIS+
As mentioned earlier, learning-based filters show efficiency in en-

coding dense key distributions, while prefix-based filters excel with

sparse ones. Motivated by this, we introduce Oasis+, a novel range

filter that integrates both the learning- and prefix-based methods,

offering a solution that can adapt to a broader range of scenarios.

4.1 Oasis+ Framework
The key insight of Oasis+ is replacing learning-based encoding

methods for sparse intervals with prefix-based ones. Specifically,

Oasis+ utilizes Oasis to encode dense intervals and Proteus to en-

code sparse intervals. As shown in Figure 3, the Oasis+ framework

closely resembles Oasis, comprising both a bitmap and a model

array, but it differs in several aspects, described as follows.

Key Space
……… …

Learning-Basedj Prefix-Based Learning-Basej+1

i i+1 i+2

Pruned Pruned

Learning-Based Bitmap Prefix-Based Bitmap
Bitmap (bpk ⋅ N bits)

n1 ⋅ bpk (N - n1) ⋅ bpk

Figure 3: Framework of Oasis+.

4.1.1 Bitmap. The bitmap structure in Oasis+ accommodates dis-

tinct representations for learning- and prefix-based filters. It achieves

this by dividing the bitmap into two adjoining segments, allocating

space budgets based on the number of keys each filter type stores.

For example, if the learning-based filter encodes 𝑛1 keys, and the

prefix-based filter encodes 𝑛2 keys, Oasis+ allocates segments based

on the ratio𝑛1/𝑛2, with one segment assigned to the learning-based

filter and the other to the prefix-based filter.

4.1.2 Model Array. Like Oasis, Oasis+ divides the key space into

disjoint intervals, storing their left and right boundaries. To identify

the filter type of each interval, Oasis+ introduces an extra filter

indicator. Further, the scale size parameter is exclusive to intervals

encoded by the learning-based filter.

Filter Indicator. The filter indicator is a bitmap that records the

filter type for each interval. The 𝑖th bit corresponds to the 𝑖th inter-

val, with a set bit indicating the use of the learning-based filter and

an unset bit indicating the prefix-based filter.

In the encoding process of the Oasis model (as per Equation 2),

calculating the bitmap segment offset for a specific interval requires

accumulating the scale size of previous intervals in the model array.

Given the different filter types in Oasis+, Equation 2 needs slight

modification. The bit position𝑢 within the 𝑖th interval, representing

the 𝑗 th interval encoded by Oasis, can be expressed as follows:

pos = 𝛼 𝑗 ·
𝑢 − beg[𝑖]

end[𝑖] − beg[𝑖] +
𝑗−1∑︁
𝑙=1

𝛼𝑙 . (12)

4.2 Range Query on Oasis+
Algorithm 5 outlines the operation of Oasis+. It first uses the

FindInterval function to determine the query’s interval index

(line 2). Then it evaluates the need for further query steps based on

the value of status (lines 3-4). If further processing is required, it

checks the filter indicator to decide the interval’s filter type (line

5). When the current interval 𝑖 is encoded by Proteus, the query

is directly sent to Proteus, and its outcome is returned (line 6).

However, if Oasis encodes the current interval, Oasis+ calculates

the bitmap positions of the query’s boundaries using Equation 12

Algorithm 5 Oasis+ Range Query

Input: 𝑙, 𝑟 - the left and right bound of the range query.

Input: models - the model array of Oasis+.

Input: bitmap - the bitmap of Oasis+.

1: procedure RangeQuery(𝑙, 𝑟 , models, bitArray)
2: status, 𝑖 ← models.FindInterval(𝑙, 𝑟)
3: if status ≠ 0 then
4: return status = 1

5: if models.filter_indicator[𝑖] = 0 then ⊲ encoded by Proteus
6: return bitmap.Proteus.Query(𝑙, 𝑟)
7: else ⊲ encoded by Oasis
8: pos_l, pos_r← models.getPos(𝑙, 𝑖), models.getPos(𝑟, 𝑖)
9: return bitmap.Ranger.comp_bitmap.Query(pos_l, pos_r)

1917

(line 8). Finally, the query is addressed by applying these bitmap

positions to Oasis’ compressed bitmap (line 9).

4.3 Constructing Oasis+
Like Oasis, the construction strategy decides the upper bound of

Oasis+’s performance. However, there is a crucial difference from

Oasis’ segmentation strategy outlined in Section 3.2. In Oasis, the

goal is to find the optimal interval settings, whereas, in the con-

struction of Oasis+, we go a step further by searching the optimal

filter type for each interval. Here, we follow the uniform workload

assumption mentioned in Section 3.2 and further employ the Oasis’

segmentation strategy to build up the intervals of Oasis+.

Here, we first present methods for estimating the FPR of both

filters (Oasis and Proteus) without query sampling. Subsequently,

we use these methods to establish our construction algorithm. Fi-

nally, we prove that an Oasis+ constructed by our algorithm will

be at least as good as the best-performing filter between Oasis and

Proteus when used individually.

4.3.1 FPR Estimation without Sampling. Consider a scenario where
Oasis+ has established its intervals. The remaining space budget

for each filter is given by bpk′ = bpk−𝑚 · kCost′/𝑁 . Here, kCost′

denotes thememory overhead of interval metadata in Oasis+, which

consists of two 64-bit unsigned integers for interval boundaries and

a 1-bit filter type indicator denoted as I𝑡 (𝑖) for brevity.
Simulate Query Correlation Distance Distribution. The dis-
tribution of query correlation distances can be simulated using

key space distribution information. Since empty queries are con-

fined to the intervals between adjacent sorted keys, the correlation

distance 𝑥 within a range of 𝛿 must satisfy 2𝑥 ≤ 𝛿 . Assuming a

uniform workload distribution, the expected correlation distance

for a query within a range of length 𝛿 is 𝛿/4. Hence, we can simulate

the distribution of query correlation distances using the cumulative

distribution function (CDF) of adjoined key distances as follows:

𝐹 ′ (𝑥 ≤ 𝑋) =
∑𝑁 −1

𝑖=1 I𝛿𝑖 ≤4𝑋

𝑁 − 1

, (13)

where 𝐹 ′ (·) denotes the estimated CDF of query correlation dis-

tances; I
cond

is the indicator function that equals 1 when its cond

is met and 0 otherwise.

Estimate the FPR of Oasis. Since Oasis+ assumes a uniform

workload during construction, we can use the analysis in Section 3.2

to estimate the FPR of Oasis portion using the following equation:

𝐹𝑃𝑅𝐿𝑅𝐹 = 𝐹 ′
(
𝑥 ≤

∑𝑚
𝑖=1 I𝑡 (𝑖) ·

(
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

)
BitmapSegmentLen

)
= 𝐹 ′

(
𝑥 ≤ 𝜏 ·

𝑚∑︁
𝑖=1

I𝑡 (𝑖) ·
𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1

bpk′ · (𝑜𝑖 − 𝑜𝑖−1) − kMeta

)
, (14)

where kMeta denotes the memory overhead for the parameter of

each Oasis’ model, specifically, one 64-bit unsigned integer to record

the scale size of the model.

Estimating the FPRof Proteus.TheContextual Prefix FPR (CPFPR)

model uses sampled queries to estimate FPR and determine the op-

timal Proteus configuration. In this FPR estimation process, CPFPR

considers two key workload attributes: query correlation distance

and query length. However, Oasis+’s construction lacks sampled

queries. To address this, we adapt CPFPR FPR estimation process.

Algorithm 6 Oasis+ Construction Algorithm

Input: min_heap - top-𝑀 adjacent key distances

Input: max_q_len - the maximum length of the query.

Input: D = {𝑘1, . . . , 𝑘𝑁 } - sorted key set.

Function: BuildArr(t, D) - returns model array and sum of their ranges.

Function: WorstIdx(indicator, models) - returns sparsest Oasis interval idx.
Function: LRFEst(bpk, models, indicator) - returns the FPR of Oasis.

1: procedure Construct(min_heap, max_q_len, D)
2: min_fpr←Max
3: best_configs← ∅
4: while not min_heap.Empty() do
5: models, delta_sum← BuildArr(min_heap.top, D)
6: bpk’← bpk − models.size × kCost′/𝑁
7: indicator← all 1 bit map of size model.size
8: p_config, p_fpr← CPFPR𝑤/𝑜 (bpk’, max_q_len, 𝐹𝑐𝑜𝑟)
9: cur_fpr← LRFEst(bpk’, models, indicator)
10: for 𝑖 ← WorstIdx(indicator, models) do
11: indicator[𝑖] ← 0

12: lrf_fpr← LRFEst(bpk’, mdoels, indicator)
13: delta_sum← delta_sum − (models.ends𝑖 − index.begins𝑖)
14: fpr← lrf_fpr · delta_sum + p_fpr · (sum − delta_sum)
15: if fpr < cur_fpr then
16: cur_fpr = fpr
17: else
18: indicator[𝑖] ← 1

19: break
20: if cur_fpr < best_fpr then
21: best_fpr = cur_fpr
22: best_configs = {models, indicator, p_config}
23: min_heap.Pop()
24: Oasis← BuildOasis(best_configs, D)
25: Proteus← BuildProteus(best_configs, p_config, D)

Firstly, we assume a uniform query length distribution with a

user-definable maximum length. Subsequently, we integrate it with

the aforementioned distribution function 𝐹 ′ to form the modified

CPFPR model and then estimate Proteus’ FPR as follows:

𝐹𝑃𝑅𝑃𝑟𝑜 = CPFPR𝑤/𝑜 (bpk, max_q_len, 𝐹 ′) , (15)

where CPFPR𝑤/𝑜 represents the no-sampling versioned of CPFPR.

Estimate overall FPR. Under the uniform query distribution as-

sumption, the overall FPR is calculated as the sum of the estimated

FPR for each filter, weighted by the probability of empty queries

falling within their respective intervals, given by:

𝑚∑︁
𝑖=1

𝑘𝑜𝑖 − 𝑘𝑜𝑖−1+1
𝑘𝑁 − 𝑘1

[I𝑡 (𝑖) · 𝐹𝑃𝑅𝐿𝑅𝐹 + (1 − I𝑡 (𝑖)) · 𝐹𝑃𝑅𝑃𝑟𝑜] . (16)

4.3.2 Oasis+ Construction Algorithm. Algorithm 6 shows the con-

struction process of Oasis+, which involves a two-layer nested loop.

The outer loop follows the Oasis segmentation algorithm, which tra-

verses all possible optimal interval settings of the Oasis. The inner

loop, however, requires a strategy to capture the best interval-type

assignment for a given segmentation.

As discussed in Section 1, the learning-based range encoding is

more suitable for dense key distribution intervals, while the prefix-

based one is better for sparse intervals. Following this, we propose

a greedy algorithm leveraging the above estimation methods to

identify the best interval-type assignment for Oasis+. Specifically,

the greedy algorithm first assumes that all intervals are encoded

by the learning-based method (line 7). It then iterates through all

intervals from the sparsest to the densest (line 10). In each iteration,

the algorithm tries to replace the encoding method for the current

interval if it can reduce the overall FPR (lines 11-15). Otherwise, it

reverts to the previous interval configuration (line 18). By iteratively

attempting such replacements, the algorithm aims to reach the

lowest overall FPR through localized optimizations.

1918

In conclusion, the construction algorithm initially iterates over

the top-𝑀 adjoining key distances in the outer to establish intervals

(line 5). For each iteration, the algorithm employs the aforemen-

tioned greedy strategy to determine the best interval-type assign-

ment and corresponding FPR (lines 5-22). If the current FPR is

lower than all previous ones, the algorithm updates the optimal

configuration (lines 20-22). Finally, after exiting the nested loop, the

construction algorithm proceeds to build the entire filter with the

optimal configuration (lines 24-25). Apparently, the time complexity

of Algorithm 6 in the worst case is O(𝑀2).

4.3.3 Proof of Robustness. Algorithm 6 ensures that Oasis+’s per-

formance matches or exceeds that of the better-performing filter

between Oasis and Proteus (without sampling). Firstly, the algo-

rithm’s outer loop is based on Oasis ’ segmentation strategy and

converges to Oasis’ optimal settings. While the last iteration treats

the entire key set as a single interval, aligning the space budget in-

put with the overall filter’s budget. Hence, it also optimizes Proteus’

configuration. The algorithm consistently selects the best-estimated

configuration, ensuring that Oasis+’s performance always matches

or exceeds that of the included filter types.

5 SUPPORT IN-PLACE UPDATE
Given the disjoint nature of our filters’ intervals, we approach

updates within and between intervals distinctly.

Updates within Intervals. For updates within the interval, Oasis

applies [47] solution, involving (1) locating the bitmap position

of the key to insert/delete and (2) subsequently adding/removing

it from the batch. Meanwhile, Oasis+ employs the corresponding

update mechanism based on the associated encoding method.

Deletion of Boundaries.When deletions occur at interval bound-

aries, both Oasis and Oasis+ designate the nearest key to the dele-

tion key as the new boundary. If no key remains within the current

interval after deletion, the entire interval will be removed.

Insertions between Intervals. For the insertion between intervals,
our filters try to merge it into the closest interval by setting the

insertion key as the new boundary of that interval and inserting the

old boundary into the bitmap. When the insertion occurs outside

the range of the current filter index, we update the filter’s boundary

with the new key and insert the old boundary into the bitmap.

6 STANDALONE EVALUATION
In this section, we evaluate Oasis and Oasis+ as standalone filters,

comparing them to state-of-the-art range filters. The results show

that Oasis consistently outperforms existing filters across various

scenarios, while Oasis+ exhibits robust and competitive perfor-

mance, often matching or surpassing the best-performing filter in

all tested situations. For all our experiments in both Section 6 and

Section 7, we use 64-bit unsigned integers as the data type.

6.1 Datasets and Workloads
Datasets. We selected real-world datasets from the Search on

Sorted Data (SOSD) benchmark [34] and followed the experimental

settings of Proteus [21] for synthetic datasets. Each dataset com-

prises 10M 64-bit unsigned integer data points as filter keys.

• Unif: Keys generated uniformly from the range

[
0, 264 − 1

]
.

• Norm: Keys generated from normal distribution with a mean of

2
63

and a standard deviation of 0.01 × 264.
• amzn: 800M Amazon book popularity data ranging in

[
0, 263

]
.

• face: 200M unsampled Facebook user IDs ranging in

[
0, 264 − 1

]
.

Workloads. In our experiments, queries are formulated in the fol-

lowing format: [left, left + offset). The offset is randomly se-

lected from a uniform distribution within the range (0, max_range].
The offset is set to 0 for the point query. We generate 1M queries

for each workload. The workloads used include:

• Unif: left is chosen uniformly from

[
0, 264 − max_range

]
.

• Real: For real-world datasets, we randomly select 10M data

points as keys, with an additional 1M data points chosen as the

left boundaries for the queries.

• Correlated:We randomly pick 1M keys from the key set and gen-

erate the left by uniformly choosing from [key + 1, key + cor],
where cor is set to a fixed value of 2

10
.

Baselines.We evaluate Oasis and Oasis+ against state-of-the-art

prefix-based range filters. For REncoder
4
, we use its enhanced ver-

sion, REncoderSE, with default settings as the baseline. SNARF
5
and

bloomRF
6
are configured with the default settings of their codebase.

Proteus
7
, Rosetta, and REncoder all employ a 0.02 query sample

proportion. We iteratively adjust the real-suffix bit length in SuRF
8

to determine the appropriate setting.

Setup. All the experiments were conducted on a machine with

Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz, 62GB RAM.

6.2 Experiments Analysis
6.2.1 False Positive Rate. We analyze Oasis and Oasis+’s FPR com-

pared to state-of-the-art range filters across diverse datasets and

workloads (Figure 4). Each row in the figure corresponds to a dataset

with different workloads, while each column represents workload

categories: point queries, short range queries ([2, 32]), long range
queries ([2, 512]), and a combination of very long range queries

([2, 1024]) with point queries.

Analyzing evaluation results of SOTA filters. Figure 4 shows
SuRF’s efficient handling of long range queries. However, suffix

truncation in SuRF results in higher FPR for short range and point

queries, dismissing crucial information for range identification.

Rosetta addresses short query deficiencies by storing prefix lengths

in separate Bloom filters, with an optimization strategy favoring

longer prefixes, performing well in short range and point query

workloads. Nevertheless, this strategy increases FPR in long range

queries. REncoder and bloomRF address this limitation by incor-

porating suffix information into short-prefix Bloom filter bitmaps.

However, in point query workloads, where a full-length Bloom filter

is most efficient, REncoder and bloomRF exhibit higher FPR than

Rosetta. Proteus, leveraging the CPFPR model, excels in identifying

the optimal design space for prefix-based filters, surpassing or at

least matching the performance of all such filters in every cases.

SNARF efficiently encodes approximate uniform datasets, making it

well-suited for uniform workloads (face-real and Unif-Unif). Its

4
https://github.com/Range-Filter/REncoder

5
https://github.com/kapilvaidya24/SNARF

6
https://github.com/awitten1/bloomRF

7
https://github.com/Eric-R-Knorr/Proteus

8
https://github.com/efficient/SuRF

1919

https://github.com/Range-Filter/REncoder
https://github.com/kapilvaidya24/SNARF
https://github.com/awitten1/bloomRF
https://github.com/Eric-R-Knorr/Proteus
https://github.com/efficient/SuRF

-4

-3

-2

-1

0
y Point Queries Range [2, 32] Range [2, 512]

face-Real

50% [2, 1024], 50% PQ

-4

-3

-2

-1

0

am
zn-Real

-4

-3

-2

-1

0

U
nif-U

nif

8 10 12 14 16 18

-5

-3

-1

8 10 12 14 16 18 8 10 12 14 16 18 8 10 12 14 16 18

N
orm

-U
nif

FP
R

(×
10

y)

BPK

Oasis+ Oasis Proteus SNARF bloomRF REncoderSE Rosetta SuRF

Figure 4: Filters FPR-space budgets (BPK) under different datasets and workloads.

uniform range encoding strategy performs exceptionally well with

normalized distributed datasets, as seen in Figure 4, where SNARF

demonstrates significantly lower FPR than Proteus in uniform and

normal dataset-workload use cases.

Oasis’ segmentation algorithm always generates the opti-
mal setting for uniform workloads. For almost all uniform

workloads, Oasis outperforms existing range filters. Figure 4, while

SNARF excels in Unif-Unif and Norm-Unif cases, Oasis achieves
a better FPR (improved by factors of 1.5× and 3.2× on average).

This discrepancy for uniform workloads arises because a single

linear model effectively captures the distribution of the uniformly

distributed dataset. Additionally, in the normal workload’s dense in-

terval, one linear model suffices to distinguish true negative queries.

The excessive number of models in SNARF leads to space wastage

and increased overall BsR. Consequently, the fixed model number

approach limits SNARF’s performance. In contrast, Oasis, aided by

its segmentation algorithm, reduces the number of models for these

datasets, leveraging saved space budget from model metadata to

enhance accuracy, contributing to superior FPR performance.

The face dataset, following a roughly uniform distribution, ben-

efits SNARF with excellent performance and lower FPR when BPK

exceeds 12. However, unlike Unif datasets, occasional bursts be-

tween adjoining sorted keys impact SNARF’s FPR due to its adhesive

intervals structure. In contrast, Oasis ’ segmentation algorithm em-

ploys space pruning to efficiently exclude large empty ranges from

the bitmap. Further, it selects an appropriate pruning number (e.g.,

1063 intervals compared to SNARF’s 1000000 intervals), reducing

metadata overhead. Consequently, with an increased space budget,

Oasis achieves a rapidly dropping overall BsR, reaching an FPR as

low as 1.3 × 10−5 or even 0 when BPK exceeds 14.

While Proteus outperforms Oasis on the face dataset with a

limited space budget under a short queryworkload, Oasis eventually

surpasses Proteus as the query range increases under every space

budget. This is because, although Proteus’ inner SuRF can prune

the query range to some extent, it still needs to query its additional

prefix Bloom filter multiple times for a long range query. This multi-

stage query process diminishes its performance. In contrast, Oasis

operates only twice for any query range and remains unaffected by

variations in the query range, demonstrating superior performance

compared to Proteus and other filters as the query range expands.

In Figure 5(A), FPR improvement of Oasis over SNARF is il-

lustrated for short range query workloads. Here, improvement
is defined as the percentage reduction in Oasis’ FPR relative to

SNARF, calculated with respect to SNARF’s FPR. As shown in Fig-

ure 5(A), Oasis consistently achieves at least a 15.7% improvement

over SNARF, even on non-uniformly distributed workloads. Further,

given that Oasis is theoretically optimal under uniformly distributed

workloads, it outperforms SNARF with an average improvement of

50.5% for approximately uniform distributed workloads.

Oasis’ Space Pruning Enhances Memory Efficiency. Although
Oasis stores an additional key per model compared to SNARF, re-

moving large empty ranges from the bitmap enables Oasis to encode

the key spacemore efficiently with fewermodels. Table 1 depicts the

memory savings achieved through Oasis’ space pruning strategy

compared to SNARF, which is calculated by subtracting SNARF’s

compressed bitmap size from Oasis’ under equivalent memory bud-

gets and dataset constraints and then dividing the result by the

1920

8 10 12 14 16 18

0%

20%

40%

60%

80%

100%

(A) Oasis vs. SNARF

Im
pr
ov

em
en

t

face-Real
amzn-Real

8 10 12 14 16 18
(B) Oasis+ vs. best-case filter

Unif-Unif
Norm-Unif

BPK
Figure 5: (A) FPR improvement of Oasis against SNARF. (B)
Oasis+ compares to the best-case baseline on each workload
case by case. Both (A), (B) run on short range queries.

number of keys in the dataset. The table shows that the space prun-

ing method allows Oasis to achieve at least a 0.78 BPK improvement

compared to SNARF’s implementation in every case.

Oasis+ can effectively navigate the optimal design space be-
tween learning- and prefix-based filters. Figure 4 illustrates that
Oasis+ consistently achieves a low FPR that either matches or ex-

ceeds the performance of all other filters, including Oasis. As shown

in Figure 5(B), when comparing Oasis+’s FPR with the best-case

baseline filter (the filter with the lowest FPR at a given dataset-

workload pair and memory constraint) under various dataset-query

distributions for short range workloads, Oasis+ exhibits a slight

mismatch with the best-case baseline filter in one case (with a 7.3%

decrease). However, in nearly every case, Oasis+ either performs

comparably or significantly outperforms the best-case baseline filter

(achieving up to a 98.9% improvement). This remarkable perfor-

mance is attributed to Oasis+’s intelligent approach, which involves

identifying intervals unsuitable for learning-based range encoding

and substituting them with the prefix-based encoding method.

In short range and point query workloads on the face-real
dataset, Proteus and REncoder excel with small space budgets (BPK

< 12). However, as space budgets increase, Oasis outperforms all

baselines. In contrast, Oasis+ adapts to the optimal structure for any

situation.With limited space budgets, Oasis+ uses Proteus to encode

the majority of keys but switches to Oasis as the dominant encoding

method with expanded space budgets. This strategic adaptation

enables Oasis+ to consistently maintain robust FPR performance,

rivaling or surpassing the best filters in every case.

6.2.2 Build Time. Figure 6(A) presents the build time of each filter

on the face-real of queries ranging within [2, 32]. Notably, Oa-
sis’ build time is significantly lower than that of hash-based filters

because it processes each key only once during compressed bitmap

construction, while hash-based filters require multiple invocations

of hash functions for a single key. Also, the number of hash func-

tions used by hash-based filters increases with the space budget,

leading to a notable increase in build time with the space budget,

Table 1: Oasis space pruning method saved memory (in BPK)
compared to SNARF under various datasets.

BPK Workloads
face amzn Unif Norm

8 0.80888 0.881837 0.926188 0.784174

10 0.815124 0.888882 0.932608 0.791904

12 0.807982 0.882253 0.926146 0.785024

14 0.800834 0.875694 0.919322 0.779205

16 0.807037 0.882454 0.926074 0.785694

18 0.81339 0.889322 0.932573 0.79328

8 10 12 14 16 180

2

4

6

(A) BPK

Bu
ild

 T
im

e
(s

) Oasis+
Oasis
Proteus

SNARF
bloomRF
REncoderSE

Rosetta
SuRF

8 10 12 14 16 18

1

2

3

4

5

6

(B) BPK

Th
ro

ug
hp

ut
 (M

op
s/

s)

Oasis+
Oasis

Proteus
Rosetta

REncoderSE
SNARF/bloomRF
SuRF

8 10 12 14 16 18

-5

-4

-3

-2

-1

0

(C) BPK

FP
R

(×
10

y)

y

Oasis+
Oasis
SNARF
bloomRF

SuRF
REncoder
Proteus w/o
Rosetta w/o

Figure 6: (A) Build time (in s). (B) Filter throughput. (C) Filter
FPR on correlation workload. (A) and (B) on face-real short
range; (C) on face-correlated short range.

unlike Oasis. The drop in Oasis+’s build time at BPK 14 is because,

when the BPK is less than or equal to 12, Proteus dominants Oa-

sis+’s encoding strategy, while when the BPK exceeds 12, Oasis+

prefers to utilize the Oasis to encode most of the keys. Since Oasis+

involves an additional configuration search process (recalling the

nest loop in its construction algorithm) compared to Proteus and

Oasis, its build time is slightly higher than that of both filters.

6.2.3 Throughput. Oasis’ robust throughput is consistently main-

tained even with variations in the space budget. Both Oasis and

Oasis+ outperform most baselines in throughput. Hash-based fil-

ters exhibit lower throughput than Oasis due to the need to check

the existence of all unique prefixes within the range during range

queries. In contrast, Oasis checks only twice at query boundaries,

and its block-based compressed bitmap pruning strategy further

reduces query time. Despite Oasis’ high throughput, REncoder can

surpass it by applying SIMD instructions. Notably, Oasis achieves

significantly higher throughput than SNARF, approximately 2 to

3 times greater, thanks to Oasis’ space pruning strategy during

the query process. The fluctuations in Oasis+’s throughput are

attributed to Oasis+’s structure variations.

6.2.4 Correlated Workload. Here, we show that both Oasis and Oa-

sis+ can handle correlated workloads. To maintain fairness, none of

the filters in this experiment access workload information through

sampling. The evaluation focuses on the face-correlated work-
load, including queries from 2 to 32. In Figure 6(C), without sam-

pling, the FPR of both Oasis and Oasis+ is comparable to or even

surpasses those hash-based filters. This is because (1) most state-of-

the-art range filters heavily rely on sampling-based configuration

settings to adapt to workload variations, and (2) the keys in the

face dataset are densely distributed, resulting in Oasis construct-

ing an instance with a relatively small overall BsR. For Proteus,

however, without query sampling, it will use its default setup that

only encodes half of the entire key length, which is insufficient

to handle the correlation workload. While the performance gap

between bloomRF and other baseline methods primarily arises from

bloomRF’s unsuitability for the face dataset, a trend is also evident
in experiments on the face-real datasets.

1921

7 SYSTEM EVALUATION
In this section, we integrate Oasis and Oasis+ into RocksDB v6.20.3,

demonstrating their capacity to enhance RocksDB’s end-to-end

query performance. Compared to Proteus and SNARF, we achieve

up to 1.8× and 1.4× performance improvements, respectively.

Integrating Range Filter with RocksDB. RocksDB is an LSM-

tree storage engine based key-value database that stores data in

immutable files known as Sorted String Tables (SST). These files

are organized hierarchically, with each level containing multiple

files and subsequent levels having several times more files than

preceding levels. To integrate range filters into RocksDB seamlessly,

we follow the approach outlined in [33], exposing essential filter

APIs for populating and querying. Further, we extend support for

range filters in Seek operation, create a range filter instance for

each SST file, and maintain a dictionary to store each run’s filters.

Experimental Setup. The experiments in this section use datasets

and query workloads described in Section 6. Each key is assigned a

512-byte value, with half of its content set to zero, following the

approach in [21, 33]. In each experimental, we populate RocksDB

with 50M unsigned 8-byte keys. After the population phase, we

initially force flush the MemTables and wait for all compaction

processes to finish. Once these operations conclude, we conduct 5M

empty range queries on the stable state of the RocksDB instance.

For RocksDB configuration, we follow the settings outlined in [21].

End-to-End Performance. Here, we evaluate the end-to-end

range query latency of Oasis, Oasis+, SNARF, Proteus, and SuRF

across four dataset-workload pairs, as depicted in Figure 7. Rows in

the figure correspond to the Unif and Norm datasets, while columns

represent short range and long range query workloads. As Rosetta

is specialized for very short range queries (2 to 16), we exclude it

from experiments for fairness.

In read-only workloads with RocksDB, accessing SST files dur-

ing queries is the primary source of latency. Therefore, achieving

a lower FPR reduces overall system latency, as shown in Figure 7,

where latency trends align closely with FPR trends in standalone

experiments. Notably, in every scenario, Oasis and Oasis+ consis-

tently exhibit lower latency than other baselines, surpassing Proteus

and SNARF by up to 1.8× and 1.4×, respectively. However, as FPR
decreases, the probability of loading disk blocks into memory di-

minishes, leading to a higher proportion of CPU cost in end-to-end

latency. For instance, in Norm-Unif, when BPK is greater than or

equal to 12, SuRF’s FPR is higher than Proteus and SNARF. Nev-

ertheless, SuRF’s query throughput in this dataset surpasses both,

resulting in lower latency compared to Proteus and SNARF.

8 RELATEDWORK
Trie-based prefix range filter. The Adaptive Range Filter [1],

part of Project Siberia [26] within Hekaton [11], utilizes a binary

trie and additional information bits to cover the entire keyspace.

It uses query sampling for training to decide which nodes to keep

and encodes the entire tree into a bit sequence. However, ARF’s

encoding is space-consuming, and its training process can be time-

intensive. In contrast, SuRF [54] does not rely on query sampling

during construction. SuRF-Base uses [19] to encode common key

prefixes. SuRF-Hash enhances this approach by adding fixed hash

10

20

30

40

Range [2, 32]
Oasis+
Oasis
Proteus

SNARF
SuRF U

nif-U
nif

Range [2, 512]

8 10 12 14 16

2

3

4

8 10 12 14 16

N
orm

-U
nif

La
te

nc
y

(×
10

 s)

BPK
Figure 7: End-to-end performance on diverse workloads.

bits to reduce FPR in point query processing. SuRF-Real stores fixed

bits of the following suffix for each key to support range queries.

Hash-based prefix range filter. [10] records predefined prefix

lengths of each key in a series of Bloom filters. Rosetta [33] extends

this concept by storing each key’s prefix length in separate Bloom

filters, proposing an optimization method using sampled queries for

memory allocation. bloomRF [37], derived from Rosetta, extends

Bloom filter to preserve keys’ local order, accelerating queries and

enhancing long range queries performance. REncoder [50], like

bloomRF, maintains suffix information of keys with Bitmap Tree

encoding and utilizes SIMD instruction to improve query speed.

Hybrid prefix range filter. Proteus [21] integrates trie-based and
hash-based filter design space using the CPFPR model. It employs

a two-layer structure with SuRF in the upper layer and a prefix

Bloom filter in the lower layer. However, its reliance on sampled

queries limits practical applicability in real-world scenarios.

Learning-based range filter. SNARF [47] uses linear spline mod-

els to represent the CDF of the dataset, employing it as filter’s “hash

function”. It also utilizes compaction techniques like Elias-Fano [38]

and Golomb [17] to compress its sparse bit array, conserving space.

Learning-enhanced data structure. Learning-enhanced tech-

niques have been applied in indexing [12, 15, 16, 20, 23, 25, 29, 31,

45, 53, 57] and filters [23, 27, 28, 35, 48]. Like LRF, learned indexes

aim to model the eCDF of datasets. However, their complex training

process and excessive hyperparameters cause longer build time and

space inefficiency. Learned filters, created by classification models,

are not designed for range queries.

9 CONCLUSIONS
This paper presents Oasis, a novel learned range filter with ex-

cellent low FPR for both point and range queries. Oasis achieves

this by (1) pruning large empty ranges, (2) adaptively assigning

the space budget, and (3) utilizing a segmentation algorithm for

optimal configuration. Additionally, we enhance Oasis with Oasis+,

integrating the design space of learning- and prefix-based filters

for robust performance across various workloads.

ACKNOWLEDGMENTS
Guoduo Chen and Zhenying He was supported by NSFC (Grant No.

62272106). Siqiang Luo was supported by NTU-NAP startup grant

(022029-00001).

1922

REFERENCES
[1] Karolina Alexiou, Donald Kossmann, and Per-Åke Larson. 2013. Adaptive Range

Filters for Cold Data: Avoiding Trips to Siberia. Proc. VLDB Endow. 6, 14 (sep
2013), 1714–1725. https://doi.org/10.14778/2556549.2556556

[2] Sattam Alsubaiee, Alexander Behm, Vinayak Borkar, Zachary Heilbron, Young-

Seok Kim, Michael J. Carey, Markus Dreseler, and Chen Li. 2014. Storage

Management in AsterixDB. Proc. VLDB Endow. 7, 10 (jun 2014), 841–852.

https://doi.org/10.14778/2732951.2732958

[3] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable

Errors. Commun. ACM 13, 7 (jul 1970), 422–426. https://doi.org/10.1145/362686.

362692

[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.

Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst. 26, 2, Article 4 (jun 2008), 26 pages. https://doi.org/10.1145/1365815.1365816

[5] Lixiang Chen, Ruihao Chen, Chengcheng Yang, Yuxing Han, Rong Zhang,

Xuan Zhou, Peiquan Jin, and Weining Qian. 2023. Workload-Aware Log-

Structured Merge Key-Value Store for NVM-SSD Hybrid Storage. In 2023 IEEE
39th International Conference on Data Engineering (ICDE). 2207–2219. https:

//doi.org/10.1109/ICDE55515.2023.00171

[6] Wikipedia contributors. 2023. Cauchy–Schwarz inequality. https://en.wikipedia.

org/wiki/CauchyâĂŞSchwarz_inequality [Online; accessed December-2023].

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)

(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154.

https://doi.org/10.1145/1807128.1807152

[8] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018. Optimal Bloom

Filters and Adaptive Merging for LSM-Trees. ACM Trans. Database Syst. 43, 4,
Article 16 (dec 2018), 48 pages. https://doi.org/10.1145/3276980

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-Value

Store. In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating
Systems Principles (Stevenson, Washington, USA) (SOSP ’07). Association for

Computing Machinery, New York, NY, USA, 205–220. https://doi.org/10.1145/

1294261.1294281

[10] Sarang Dharmapurikar, Praveen Krishnamurthy, and David E. Taylor. 2003.

Longest Prefix Matching Using Bloom Filters. In Proceedings of the 2003 Confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications (Karlsruhe, Germany) (SIGCOMM ’03). Association for Computing

Machinery, New York, NY, USA, 201–212. https://doi.org/10.1145/863955.863979

[11] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mit-

tal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL

Server’s Memory-Optimized OLTP Engine. In Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data (New York, New York,

USA) (SIGMOD ’13). Association for Computing Machinery, New York, NY, USA,

1243–1254. https://doi.org/10.1145/2463676.2463710

[12] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Han-

tian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, David

Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned Index. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,

New York, NY, USA, 969–984. https://doi.org/10.1145/3318464.3389711

[13] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,

and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.. In CIDR,
Vol. 3. 3.

[14] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021. RocksDB:

Evolution of Development Priorities in a Key-Value Store Serving Large-Scale

Applications. ACM Trans. Storage 17, 4, Article 26 (oct 2021), 32 pages. https:

//doi.org/10.1145/3483840

[15] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-Index: A Fully-

Dynamic Compressed Learned Index with Provable Worst-Case Bounds. Proc.
VLDB Endow. 13, 8 (apr 2020), 1162–1175. https://doi.org/10.14778/3389133.

3389135

[16] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim

Kraska. 2019. FITing-Tree: A Data-Aware Index Structure. In Proceedings of
the 2019 International Conference on Management of Data (Amsterdam, Nether-

lands) (SIGMOD ’19). Association for Computing Machinery, New York, NY, USA,

1189–1206. https://doi.org/10.1145/3299869.3319860

[17] R. Gallager and D. van Voorhis. 1975. Optimal Source Codes for Geometrically

Distributed Integer Alphabets (Corresp.). IEEE Trans. Inf. Theor. 21, 2 (sep 1975),

228–230. https://doi.org/10.1109/TIT.1975.1055357

[18] Mayank Goswami, Allan Grønlund, Kasper Green Larsen, and Rasmus Pagh.

2015. Approximate Range Emptiness in Constant Time and Optimal Space.

In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (San Diego, California) (SODA ’15). Society for Industrial and Applied
Mathematics, USA, 769–775.

[19] G. Jacobson. 1989. Space-Efficient Static Trees and Graphs. In Proceedings of
the 30th Annual Symposium on Foundations of Computer Science (SFCS ’89). IEEE
Computer Society, USA, 549–554. https://doi.org/10.1109/SFCS.1989.63533

[20] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. 2020. RadixSpline: A Single-Pass Learned

Index. In Proceedings of the Third International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management (Portland, Oregon) (aiDM ’20).
Association for Computing Machinery, New York, NY, USA, Article 5, 5 pages.

https://doi.org/10.1145/3401071.3401659

[21] Eric R. Knorr, Baptiste Lemaire, Andrew Lim, Siqiang Luo, Huanchen Zhang,

Stratos Idreos, andMichael Mitzenmacher. 2022. Proteus: A Self-Designing Range

Filter. In Proceedings of the 2022 International Conference on Management of Data
(Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Machinery,

New York, NY, USA, 1670–1684. https://doi.org/10.1145/3514221.3526167

[22] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.

2019. Coconut Palm: Static and Streaming Data Series Exploration Now in Your

Palm. In Proceedings of the 2019 International Conference on Management of Data
(Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Machinery,

New York, NY, USA, 1941–1944. https://doi.org/10.1145/3299869.3320233

[23] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). As-
sociation for Computing Machinery, New York, NY, USA, 489–504. https:

//doi.org/10.1145/3183713.3196909

[24] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-

tured Storage System. 44, 2 (apr 2010), 35–40. https://doi.org/10.1145/1773912.

1773922

[25] Hai Lan, Zhifeng Bao, J. Shane Culpepper, and Renata Borovica-Gajic. 2023.

Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to

Design Choices. Proc. ACM Manag. Data 1, 2, Article 139 (jun 2023), 22 pages.

https://doi.org/10.1145/3589284

[26] Justin J. Levandoski, Per-Åke Larson, and Radu Stoica. 2013. Identifying hot and

cold data in main-memory databases. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). 26–37. https://doi.org/10.1109/ICDE.2013.6544811

[27] Meng Li, Deyi Chen, Haipeng Dai, Rongbiao Xie, Siqiang Luo, Rong Gu, Tong

Yang, and Guihai Chen. 2022. Seesaw Counting Filter: An Efficient Guardian for

Vulnerable Negative Keys During Dynamic Filtering. In Proceedings of the ACM
Web Conference 2022 (WWW ’22). Association for Computing Machinery, New

York, NY, USA, 2759–2767. https://doi.org/10.1145/3485447.3511996

[28] Meng Li, Wenqi Luo, Haipeng Dai, Huayi Chai, Rong Gu, Xiaoyu Wang, and

Guihai Chen. 2024. The Reinforcement Cuckoo Filter. In IEEE INFOCOM 2024 -
IEEE Conference on Computer Communications.

[29] Pengfei Li, Hua Lu, Rong Zhu, Bolin Ding, Long Yang, and Gang Pan. 2023.

DILI: A Distribution-Driven Learned Index. Proc. VLDB Endow. 16, 9 (may 2023),

2212–2224. https://doi.org/10.14778/3598581.3598593

[30] Junfeng Liu, Fan Wang, Dingheng Mo, and Siqiang Luo. 2024. Structural De-

signs Meet Optimality: Exploring Optimized LSM-tree Structures in A Colossal

Configuration Space. SIGMOD ’24 (2024). https://doi.org/10.1145/3654978

[31] Baotong Lu, Jialin Ding, Eric Lo, Umar FarooqMinhas, and TianzhengWang. 2021.

APEX: A High-Performance Learned Index on Persistent Memory. Proc. VLDB
Endow. 15, 3 (nov 2021), 597–610. https://doi.org/10.14778/3494124.3494141

[32] Chen Luo and Michael J. Carey. 2019. LSM-Based Storage Techniques: A Survey.

The VLDB Journal 29, 1 (jul 2019), 393–418. https://doi.org/10.1007/s00778-019-

00555-y

[33] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin,

and Stratos Idreos. 2020. Rosetta: A Robust Space-Time Optimized Range

Filter for Key-Value Stores. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2071–2086.

https://doi.org/10.1145/3318464.3389731

[34] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,

Alfons Kemper, Thomas Neumann, and TimKraska. 2020. Benchmarking Learned

Indexes. Proc. VLDB Endow. 14, 1 (sep 2020), 1–13. https://doi.org/10.14778/

3421424.3421425

[35] Michael Mitzenmacher. 2018. A Model for Learned Bloom Filters, and Optimizing

by Sandwiching. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates

Inc., Red Hook, NY, USA, 462–471.

[36] Dingheng Mo, Fanchao Chen, Siqiang Luo, and Caihua Shan. 2023. Learning to

Optimize LSM-trees: Towards A Reinforcement Learning based Key-Value Store

for Dynamic Workloads. Proc. ACM Manag. Data 1, 3, Article 213 (nov 2023),

25 pages. https://doi.org/10.1145/3617333

[37] Bernhard Mößner, Christian Riegger, Arthur Bernhardt, and Ilia Petrov. 2022.

bloomRF: On performing range-queries in Bloom-Filters with piecewise-

monotone hash functions and prefix hashing. arXiv preprint arXiv:2207.04789
(2022).

[38] Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned Elias-Fano Indexes.

In Proceedings of the 37th International ACM SIGIR Conference on Research &

1923

https://doi.org/10.14778/2556549.2556556
https://doi.org/10.14778/2732951.2732958
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1109/ICDE55515.2023.00171
https://doi.org/10.1109/ICDE55515.2023.00171
https://en.wikipedia.org/wiki/Cauchy–Schwarz_inequality
https://en.wikipedia.org/wiki/Cauchy–Schwarz_inequality
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3276980
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/863955.863979
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3483840
https://doi.org/10.1145/3483840
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1109/TIT.1975.1055357
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3514221.3526167
https://doi.org/10.1145/3299869.3320233
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/3589284
https://doi.org/10.1109/ICDE.2013.6544811
https://doi.org/10.1145/3485447.3511996
https://doi.org/10.14778/3598581.3598593
https://doi.org/10.1145/3654978
https://doi.org/10.14778/3494124.3494141
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1145/3318464.3389731
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.1145/3617333

Development in Information Retrieval (Gold Coast, Queensland, Australia) (SIGIR
’14). Association for Computing Machinery, New York, NY, USA, 273–282. https:

//doi.org/10.1145/2600428.2609615

[39] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. 2003. - Query

Processing in Spatial Network Databases. In Proceedings 2003 VLDB Conference,
Johann-Christoph Freytag, Peter Lockemann, Serge Abiteboul, Michael Carey,

Patricia Selinger, and Andreas Heuer (Eds.). Morgan Kaufmann, San Francisco,

802–813. https://doi.org/10.1016/B978-012722442-8/50076-8

[40] Ivan Luiz Picoli, Philippe Bonnet, and Pinar Tözün. 2019. LSM Management

on Computational Storage. In Proceedings of the 15th International Workshop
on Data Management on New Hardware (Amsterdam, Netherlands) (DaMoN’19).
Association for Computing Machinery, New York, NY, USA, Article 17, 3 pages.

https://doi.org/10.1145/3329785.3329927

[41] Xuecheng Qi, Huiqi Hu, Jinwei Guo, Chenchen Huang, Xuan Zhou, Ning Xu,

Yu Fu, and Aoying Zhou. 2023. High-availability in-memory key-value store

using RDMA and Optane DCPMM. Frontiers Comput. Sci. 17, 1 (2023), 171603.
https://doi.org/10.1007/S11704-022-1123-8

[42] Meta 2012. RocksDB. Meta. https://rocksdb.org/

[43] Russell Sears, Mark Callaghan, and Eric Brewer. 2008. Rose: Compressed, Log-

Structured Replication. Proc. VLDB Endow. 1, 1 (aug 2008), 526–537. https:

//doi.org/10.14778/1453856.1453914

[44] Russell Sears and Raghu Ramakrishnan. 2012. BLSM: A General Purpose Log

Structured Merge Tree. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (Scottsdale, Arizona, USA) (SIGMOD ’12).
Association for Computing Machinery, New York, NY, USA, 217–228. https:

//doi.org/10.1145/2213836.2213862

[45] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned Index: A Compre-

hensive Experimental Evaluation. Proc. VLDB Endow. 16, 8 (jun 2023), 1992–2004.

https://doi.org/10.14778/3594512.3594528

[46] Joy A. Thomas Thomas M. Cover. 2006. Elements of Information Theory (2 ed.).

Wiley-Interscience, 127—-128.

[47] Kapil Vaidya, Subarna Chatterjee, Eric Knorr, Michael Mitzenmacher, Stratos

Idreos, and Tim Kraska. 2022. SNARF: A Learning-Enhanced Range Filter. Proc.
VLDB Endow. 15, 8 (apr 2022), 1632–1644. https://doi.org/10.14778/3529337.

3529347

[48] Kapil Vaidya, Eric Knorr, Tim Kraska, and Michael Mitzenmacher. 2020. Parti-

tioned learned bloom filter. arXiv preprint arXiv:2006.03176 (2020).
[49] Ruihong Wang, Jianguo Wang, Prishita Kadam, M. Tamer Özsu, and Walid G.

Aref. 2023. dLSM: An LSM-Based Index for Memory Disaggregation. In 2023
IEEE 39th International Conference on Data Engineering (ICDE). 2835–2849. https:

//doi.org/10.1109/ICDE55515.2023.00217

[50] Ziwei Wang, Zheng Zhong, Jiarui Guo, YuhanWu, Haoyu Li, Tong Yang, Yaofeng

Tu, Huanchen Zhang, and Bin Cui. 2023. REncoder: A Space-Time Efficient Range

Filter with Local Encoder. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE). 2036–2049. https://doi.org/10.1109/ICDE55515.2023.00158

[51] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang,

and Huan Xu. 2020. Time series data augmentation for deep learning: A survey.

arXiv preprint arXiv:2002.12478 (2020).
[52] ChengXu, Ce Zhang, and Jianliang Xu. 2019. VChain: Enabling Verifiable Boolean

Range Queries over Blockchain Databases. In Proceedings of the 2019 International
Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19).
Association for Computing Machinery, New York, NY, USA, 141–158. https:

//doi.org/10.1145/3299869.3300083

[53] Geoffrey X. Yu, Markos Markakis, Andreas Kipf, Per-Åke Larson, Umar Farooq

Minhas, and Tim Kraska. 2022. TreeLine: An Update-in-Place Key-Value Store

for Modern Storage. Proc. VLDB Endow. 16, 1 (sep 2022), 99–112. https://doi.org/

10.14778/3561261.3561270

[54] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael

Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF: Practical Range

Query Filtering with Fast Succinct Tries. In Proceedings of the 2018 Interna-
tional Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18).
Association for Computing Machinery, New York, NY, USA, 323–336. https:

//doi.org/10.1145/3183713.3196931

[55] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu, Nanlong Yu, Gui Huang,

Tieying Zhang, Dengcheng He, Feifei Li, Wei Cao, Zhongdong Huang, and Jian-

ling Sun. 2020. FPGA-Accelerated Compactions for LSM-based Key-Value Store.

In 18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX
Association, Santa Clara, CA, 225–237. https://www.usenix.org/conference/

fast20/presentation/zhang-teng

[56] Xin Zhang, Qizhong Mao, Ahmed Eldawy, Vagelis Hristidis, and Yihan Sun. 2022.

Bi-Directional Log-Structured Merge Tree. In Proceedings of the 34th Interna-
tional Conference on Scientific and Statistical Database Management (Copenhagen,
Denmark) (SSDBM ’22). Association for Computing Machinery, New York, NY,

USA, Article 19, 4 pages. https://doi.org/10.1145/3538712.3538730

[57] Zhou Zhang, Zhaole Chu, Peiquan Jin, Yongping Luo, Xike Xie, Shouhong Wan,

Yun Luo, Xufei Wu, Peng Zou, Chunyang Zheng, Guoan Wu, and Andy Rudoff.

2022. PLIN: A Persistent Learned Index for Non-Volatile Memory with High

Performance and Instant Recovery. Proc. VLDB Endow. 16, 2 (oct 2022), 243–255.
https://doi.org/10.14778/3565816.3565826

[58] Fuheng Zhao, Leron Reznikov, Divyakant Agrawal, and Amr El Abbadi. 2023.

Autumn: A Scalable Read Optimized LSM-tree based Key-Value Stores with Fast

Point and Range Read Speed. arXiv preprint arXiv:2305.05074 (2023).
[59] Wenshao Zhong, Chen Chen, XingboWu, and Song Jiang. 2021. REMIX: Efficient

Range Query for LSM-trees. In 19th USENIX Conference on File and Storage
Technologies (FAST 21). USENIX Association, 51–64. https://www.usenix.org/

conference/fast21/presentation/zhong

1924

https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1016/B978-012722442-8/50076-8
https://doi.org/10.1145/3329785.3329927
https://doi.org/10.1007/S11704-022-1123-8
https://rocksdb.org/
https://doi.org/10.14778/1453856.1453914
https://doi.org/10.14778/1453856.1453914
https://doi.org/10.1145/2213836.2213862
https://doi.org/10.1145/2213836.2213862
https://doi.org/10.14778/3594512.3594528
https://doi.org/10.14778/3529337.3529347
https://doi.org/10.14778/3529337.3529347
https://doi.org/10.1109/ICDE55515.2023.00217
https://doi.org/10.1109/ICDE55515.2023.00217
https://doi.org/10.1109/ICDE55515.2023.00158
https://doi.org/10.1145/3299869.3300083
https://doi.org/10.1145/3299869.3300083
https://doi.org/10.14778/3561261.3561270
https://doi.org/10.14778/3561261.3561270
https://doi.org/10.1145/3183713.3196931
https://doi.org/10.1145/3183713.3196931
https://www.usenix.org/conference/fast20/presentation/zhang-teng
https://www.usenix.org/conference/fast20/presentation/zhang-teng
https://doi.org/10.1145/3538712.3538730
https://doi.org/10.14778/3565816.3565826
https://www.usenix.org/conference/fast21/presentation/zhong
https://www.usenix.org/conference/fast21/presentation/zhong

	Abstract
	1 Introduction
	2 Oasis
	2.1 Oasis Framework
	2.2 Query on Oasis

	3 FPR Optimization for Oasis
	3.1 FPR Analysis
	3.2 Segmentation Algorithm

	4 Oasis+
	4.1 Oasis+ Framework
	4.2 Range Query on Oasis+
	4.3 Constructing Oasis+

	5 Support In-place Update
	6 Standalone Evaluation
	6.1 Datasets and Workloads
	6.2 Experiments Analysis

	7 System Evaluation
	8 Related Work
	9 Conclusions
	ACKNOWLEDGMENTS
	References

