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ABSTRACT

Merkle Patricia Trie (MPT) is a type of trie structure that offers
efficient lookup and insert operators for immutable data systems
that require multi-version access and tamper-evident controls, such
as blockchains and verifiable databases. The performance of these
systems is critically dependent on the throughput of the underlying
index structure MPT. In this paper, we present a novel approach
to accelerate MPT by leveraging the massive parallelism of GPU.
However, achieving it is challenging as (i) lock-free data structures
are difficult to implement and (ii) traditional fine-grained locking
does not scale on GPU.

To address them, we first analyze the technical challenges of
accelerating MPT via GPU, including node splitting conflicts and
hash computing conflicts caused by parallel insert operations. We
then propose a lock-free algorithm PhaseNU and a lock-based al-
gorithm LockNU on GPU to resolve the node splitting conflict.
We also devise a decision model for users to choose the proper
one for different workloads. We next propose a GPU-based hash-
compute algorithm PhaseHC to avoid hash computing conflicts.
Last, we demonstrate the effectiveness of our proposed techniques
by: (i) integrating them into both the real-world blockchain sys-
tem Geth and verifiable database LedgerDB, and demonstrating
its superiority with corresponding workloads; and (ii) conducting
extensive experimental studies on two real-world datasets and one
synthetic dataset. Our proposed solutions significantly outperform
the deployed MPT solution in Geth in all datasets.
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1 INTRODUCTION

Merkle Patricia Trie (MPT) is a cryptographically authenticated
data index structure [78] for immutable data management, which
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provides efficient lookup and update operations on immutable data.
Specifically, MPT stores and manages KV bindings, and it also
maintains a cryptographic hash value for each node in it, which is
computed recursively after the insertion, to ensure tamper evidence
or verifiability. In recent years, MPT has been widely used in many
immutable data systems, e.g., blockchain systems [5, 7, 14, 15, 17],
and verifiable databases [1, 80, 84, 87]. The role of MPT for these
immutable data systems is an analogue of B-tree for traditional
database systems. For example, many blockchain systems (e.g.,
Ethereum [5], Near [14], Zilliga [17], and Quorum [15]) utilize
MPT to index immutable data, provide multi-version accesses and
tamper-evident controls. Moreover, Alibaba offers LedgerDB [80]
as a service on its cloud, in which MPT is employed to verify the
integrity of data, history, and query results [1, 84].

Both blockchain systems and verifiable databases, e.g., Con-
flux [53] and LedgerDB [80], are targeted for high throughput
transaction processing. The efficiency of the underlying data index
structure MPT of these immutable data systems plays a key role in
achieving that. In the literature, many recent studies [27, 83] have
been proposed to analyze, evaluate, and improve the performance
of the lookup and insert operators on MPT. At the same time, many
techniques [39-41, 59, 62, 65, 71] have been devised in recent years
to accelerate the performance of these immutable data systems by
exploiting the massive parallelism of GPU. In this work, we focus
on accelerating Merkle Patricia Trie (MPT) with GPU.

However, it is hard to achieve. The key reasons are two-fold. First,
as mentioned above, exploiting the massive parallelism of GPU to
accelerate the subroutines of these immutable data systems is a
common practice. For example, there is a GPU-based cryptographic
hash value computation library for Merkle Tree [6, 71], which
allows efficient and secure data content verification, and Baldur [40]
accelerates the signature verification with GPU [40]. However, none
of these techniques can be directly adapted to accelerate MPT with
GPU. We will shortly elaborate on the reasons via the technical
challenges of our studied problem. Second, it is known that it is
not easy to devise a high throughput concurrent index structure
on modern hardware (e.g., multi-cores, GPU) [51]. In particular,
the traditional fine-grained lock coupling approaches have poor
scalability, as the cost of synchronizations via locks dramatically
increases with the rising of concurrent data updates; and lock-free
approaches scale well but are extremely difficult to implement and
require many extra indirections (e.g., Bw-Tree [52]). To the best of
our knowledge, none of existing work provides a high throughput
concurrent MPT for these immutable data systems.

To accelerate MPT with GPU, we first identify the technical
challenges that hinder efficient GPU acceleration. These include
node splitting conflict and hash computing conflict during
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concurrent KV pair insertion. To address the node splitting conflict,
we propose two GPU-based methods, i.e., PhaseNU and LockNU.
In particular, PhaseNU resolves the node splitting conflict by proac-
tively expanding nodes before new KV pairs are inserted. It is a
lock-free algorithm as it only requires atomic instructions (e.g.,
atomicCAS) in CUDA to guarantee each node in MPT will be and
only be expanded and compressed once. LockNU resolves the node
splitting conflict by devising a GPU-based optimistic lock coupling
solution. It synchronizes new KV pair insertions from many con-
current threads by locking, but only sparingly. Moreover, we pro-
vide a decision model for users to choose the proper one between
PhaseNU and LockNU by taking the data distribution and den-
sity of the individual workload into consideration. To address the
hash computing conflict, we propose PhaseHC, a GPU-based algo-
rithm that supports parallel hash computing in MPT. In particular,
PhaseHC consists of two phases: (i) marking phase and (ii) com-
puting phase. In marking phase, it determines the dependency of
each node in parallel. In computing phase, it computes the hash
value in parallel via the dependency relationship. We introduce
a warp-based execution model that improves the performance of
PhaseHC as it significantly reduces the thread divergence on GPU.

Interestingly, the core algorithmic ideas of our proposed GPU-
based methods to accelerate MPT are generic, which can be utilized
by multi-core CPU to improve the performance of MPT. The reason
is that the success of accelerating MPT via GPU is achieved by
exploiting the single instruction multiple threads (SIMT) execution
model of GPU effectively. Nevertheless, it is also supported by
multi-core CPU. We will elaborate it shortly in Section 3.3.

In summary, the technical contributions of this work are:

To the best of our knowledge, this is the first work to accelerate
the cryptographically authenticated data index structure MPT
with GPU, which can be used to improve the performance of
many applications, e.g., blockchain systems, verifiable databases,
and collaborative data analysis.

We propose two GPU-based algorithms (PhaseNU and LockNU)
to resolve node splitting conflict and devise a GPU-based hash-
compute algorithm (PhaseHC) to avoid hash computing conflict
during parallel KV pair insertion in MPT.

We integrate the GPU accelerated MPT into two real-world
systems: a blockchain system Geth and a verifiable database
LedgerDB, to verify the effectiveness of our proposed techniques.

We conduct extensive experiments on two real-world datasets
(Wiki and ETHT) and one widely-used synthetic dataset (YCSB),
to demonstrate the superiority of our proposed solutions. For
instance, our experiments show that our two proposed solutions
achieve 19.79X and 29.69X speedup for the insert operator over
the deployed MPT in Geth.

2 PRELIMINARIES AND CHALLENGES
2.1 Merkle Patricia Trie

MPT is a variant of traditional radix tries, which is a cryptographi-
cally authenticated index structure. It is widely used to store KV
pairs in blockchains and verifiable databases [5, 14, 17, 80, 83, 84].
Figure 1 depicts the structure of MPT. For each node in MPT, its
key is encoded by hex encoding and appended with “0x10” at the
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Figure 1: Merkle Patricia Trie

end. For ease of presentation, we use “0xg” to replace “0x10” in the
key in this work. MPT consists of three types of nodes: Full Node,
Short Node, and Value Node. In particular, a Full Node includes
an array of 17 elements, as shown in Figure 1. Each element in
Full Node represents a branch that points to a child node, and the
17th (i.e., ‘0xg’th) element points to a leaf Value Node. A Short Node
includes a pointer to the next node and its key field stores a com-
pressed path, as we will elaborate on shortly. A Value Node stores
the value of the given key, i.e., Value Node 5 stores the value v0
of key “0”, whose hex encoding is “0x3 0x0 0xg”. In this work, we
interchangeably use “0x3 0x0 0xg” and “0x30g”, which only reserves
the first “0x” in its hex encoding.

The key difference between MPT and traditional Radix Tries is
that the cryptographic hash value of each node in MPT can be used
as tamper evidence. The hash value of the root node represents the
hash of an MPT. Specifically, the cryptographic hashes of different
node types are calculated by different methods. For a Value Node
with value V, its hash value is H (Value Node) = V. The hash value
of a Short Node encodes both its key and the hash value of its
child node, i.e., H(Short Node) = ByteH(E(key, H (child))), The
encoding function E encodes multiple byte arrays together into
a new byte array. For example, Ethereum employs the Recursive
Length Prefix (RLP) encoding [16]. The byte hash function ByteH
computes the hash value of the input bytes array Arr as follows.

Arr,
h(Arr),

if length(Arr) < 32;

otherwise,

ByteH(Arr) = {

where h maps a bytes array to a fixed-length bytes array, e.g.,
Ethereum uses keccak256 [23] as the hash function h. The hash
value of a Full Node encodes the hash value of all its child nodes,
i.e., H(Full Node) = ByteH(E(H (childo), - - - , H (childy))).

Next, we introduce two fundamental operators in MPT.

(I) Lookup Operator. Given a key, the lookup operator returns
its value in MPT. Suppose we want to lookup the key “0” from
MPT in Figure 1. First, the key “0” is encoded into “0x3 0x0 0xg”,
then it starts to lookup from the root. The key of root Short Node
1is “0x3”, which matches the prefix of the search key, and then it
moves to the root’s child Full Node 2. In the search key, the part
after matched “0x3” is “0x0”, thus it checks the ‘0x0’th element at
Full Node 2, and moves to its pointed Short Node 3. The last part of
the search key is “0xg”, it matches the key in Short Node 3, thus, it
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(b) Node splitting conflict in MPT
Figure 2: An example of C1: node splitting conflict

goes to Short Node 3’s child node, i.e., Value Node 5. Last, it returns
the value v0 as the result of lookup operator with search key “0”.

(II) Insert Operator. The insert operator consists of two subrou-
tines: (i) node-update and (ii) hash-compute. Specifically, the
node-update subroutine inserts a new KV pair into MPT, while
the hash-compute subroutine computes the hash value of each
affected node during the new KV pair insertion. Next, we illustrate
the insert operator by inserting KV pair (“10”, v10) into MPT in
Figure 1. First, the key “10” is encoded into “0x3 0x1 0x3 0x0 0xg”.
The node-update subroutine follows a similar procedure of lookup
operator to find the proper position for new node insertion. In par-
ticular, it starts from the root Short Node 1 and moves to Full Node
2. Then access the ‘0x1’st element of Full Node 2, which points to
Short Node 4. Since the key of Short Node 4 is “0xg”, which is not
“0x3” of the insertion key, a new Full Node 7 is created to replace
Short Node 4, and the last element in Full Node 7 points to the child
of Short Node 4. Next, the ‘0x3’rd element in Full Node 7 points
to a newly created Short Node 8, which stores the compressed
path of “0x0 0xg” of the insertion key, as “0x0g” shown in it. Last,
Short Node 8 points to a newly created Value Node 9, which stores
the value v10 of the insertion key “10”.

The hash value of every node in the path from the newly added
Value Node 9 to root Short Node 1 will be affected (see red colored
items in Figure 1). The hash-compute subroutine starts from the
newly inserted Value Node 9 and updates the hash values of all
affected nodes in that path. After that, the insertion of the KV pair
(“10”, v10) completes.

2.2 Technical Challenges with GPU

It is a common practice to exploit GPU for various applications [18,
32, 40, 42, 66, 71, 74]. In this work, we plan to exploit GPU to
accelerate the performance of lookup and insert operators in MPT.
For lookup operator, it is straightforward to utilize GPU as it only
needs to distribute the search keys into parallel-running threads of
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(b) Hash value computing conflict in MPT
Figure 3: An example of C2: hash computing conflict

GPU. However, it is not trivial for the insert operators, the technical
challenges are twofold:

C1: Node Splitting Conflict. Inserting a new KV pair into MPT
will affect many nodes. As the above node-update example in
Figure 1 shows, Short Node 4 is deleted and three new nodes are
created (i.e., Full Node 7, Short Node 8, and Value Node 9) during
KV pair (“10”, v10) insertion. We refer to this as node splitting, that
is, split Short Node 4 into three new nodes. Parallel insertion of
KV pairs into MPT on GPU obviously leads to severe node splitting
conflicts. Taking Figure 2 as an example, suppose we insert KV
pairs (“10”, v10) and (“11”, v11) into MPT concurrently. Figure 2(a)
illustrates the sequence of atomic operations in two threads A
and B. Accordingly, thread A will first split Short Node 4 into
Full Node 7 and insert Short Node 8 and Value Node 9 below it.
Then thread B will split Short Node 4 into Full Node 10 and insert
Short Node 11 and Value Node 12 below it. The insertion of thread
A is overwritten by thread B as two parallel insertion threads split
Short Node 4 in MPT without conflict control. Therefore, the first
technical challenge in this work is how to avoid node splitting conflict
during parallel insertions in MPT with GPU? We are aware that some
previous work studied GPU Patricia Trie (or Radix Trie) [19, 45].
However, they only focus on lookup operator and do not provide
solutions to handle insert operator on GPU.

C2: Hash Computing Conflict. After node-update subroutine
for every KV pair inserting, the hash value of every affected node in
MPT will be recomputed. A straightforward solution to exploit GPU
parallelism for hash-compute subroutine is assigning threads to
parallel compute the hash value of each node in every path from
the newly inserted leaf node to the root node. Figure 3 shows an
example. Thread A computes the hash values of the nodes in the
path from Value Node 5 to the root Short Node 1, and thread B
computes the hash values of the nodes on the path from Value Node
4 to the root Short Node 1. The sequence of the atomic operations
in two hash-compute subroutines are shown in Figure 3(a). While
computing the hash value of Full Node 2, thread A uses the out-
dated hash value of child g (i.e., h4,) instead of the updated hash
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value of child g (i.e., h4) computed by Line 6 in thread B. Thus, the
hash value of Full Node 2 is not correct after Line 8 as there is a
hash computing conflict when thread A and thread B run in paral-
lel. Moreover, this straightforward solution will compute the hash
value of a specific node more than once, i.e., Full Node 2. It incurs
significant computing overhead as a single hash value computing is
very expensive. Therefore, the second challenge in this work is how
to avoid hash value computing conflict for parallel hash-compute in
MPT with GPU? Geth provides a solution for the parallel hash com-
puting in MPT. Specifically, a Goroutine is created for each branch
and synchronized by a WaitGroup. However, it cannot apply to GPU
as it does not support dynamic thread creation and synchronizing.

3 OUR PROPOSED SOLUTION

In this section, we present our solution to support parallel KV pair
insertions on MPT with GPU, which guarantees sequential consis-
tency [46]. The core idea to achieve parallel insert on MPT with
GPU is providing efficient and accurate parallel node-update (in
Section 3.1) and parallel hash-compute algorithms (in Section 3.2).

3.1 GPU-based Node Update Algorithms

In this section, we present our GPU-based lock-free (PhaseNU)
and lock-based (LockNU) algorithms for node-update subroutine
in insert operator, and the decision model for users to choose the
proper node-update algorithm for their workloads.

3.1.1 Lock-free node-update algorithm PhaseNU. To devise a
lock-free node update algorithm on MPT, we first analyze the prop-
erties of different node types in MPT. MPT is a variant of traditional
radix tries, which also holds that the path from the root node to a leaf
Value Node represents the key of the leaf. In particular, the alphabet
of MPT node key is a sized-17 set, i.e., {0x0, 0x1, ..., Oxe, 0x f, Oxg}.
For each Full Node in MPT, the position of the branch in the 17-
element array of it represents a character. For each Short Node
in MPT, its key field is a substring of the key, which is a com-
pressed path as it can be expanded to one or more Full Nodes and
each expanded Full Node has and only has one child. For example,
Short Nodes 1 and 3 in Figure 4(a) can be expanded to the Full Nodes,
see dotted boxes in Figure 4(b). This compression idea was proposed
at [63] to improve the space efficiency of trie structures.

Observation. Node splitting conflict is caused by multiple parallel
node-update subroutines that want to split the same Short Node si-
multaneously. Taking Figure 2 as an example, the node-update sub-
routines of inserting (“10”, v10) and (“11”, v11) both split Short Node
4, which cause a node splitting conflict.
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Combining the above observation and the property of Short Node
in MPT, we propose a lock-free node update algorithm PhaseNU,
which avoids node splitting conflict by expanding Short Nodes in
MPT to the corresponding Full Node sequences.

Example: Figure 5 shows the uncompressed version of MPT in
Figure 2. We insert KV pairs ("10”, v10) and (“11”, v11) into the
uncompressed MPT in Figure 5. The atomic operations of two node-
update threads A and B are shown in Figure 5(a). First, Full Node
7 and 10 are initialized in threads A and B, respectively. Then,
the atomic instruction compare-and-swap (atomicCAS) determines
which one to update MPT, see Lines 3 and 4. It ensures that only
one Full Node, see Full Node 7 in Figure 5(b), will be inserted
as the ‘0x3’rd child of Full Node 4. After that, threads A and B
load Full Node 7, and insert Full Node 8 and Full Node 11 as the
‘0x0’th and ‘0x1’st child, respectively. Last, the ‘0xg’th element of
Full Node 8 and Full Node 11 will point to their corresponding
Value Node 9 and Value Node 12. Until now, the parallel node-
update subroutines finished on uncompressed MPT and the node
splitting conflict has been resolved.

We then formally present our devised lock-free node-update
algorithm PhaseNU, which supports efficient and parallel node-
update on MPT with GPU. As shown in Figure 6, PhaseNU consists
of three phases: (i) expanding phase, it converts MPT to uncom-
pressed version by expanding necessary Short Nodes to correspond-
ing Full Node sequences, see Figure 6(b); (ii) inserting phase, it
inserts new KVs pairs to uncompressed MPT, see Figure 6(c); and
(iii) compressing phase, it transforms updated uncompressed MPT
to general MPT, see Figure 6(d). Unfortunately, it is not trivial to
unlock potential power of GPU in each phase. In subsequent, we
elaborate on technical challenges and our solutions one by one.

Phase I: Expanding Phase. For a batch of KV pair insertions,
a straightforward solution in expanding phase is expanding all
Short Nodes in MPT. Obviously, it is inefficient as some of them
may not be influenced during this insertion batch, see Short Node
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5 in Figure 6(a), and expanding them incurs extra overhead. Hence,
the main challenge of expanding phase in PhaseNU is how to
locate and expand these Short Nodes, which will be influenced, in
MPT efficiently. To locate all these Short Nodes quickly, we first
devise a node lookup operator (i.e., nodelookup). For a given key,
nodelookup returns the first mismatch node in MPT. Taking MPT
in Figure 6(a) as an example, if the input key is “Oxaag”, the result
of nodelookup is Short Node 4, as the prefix “Oxaa” of given key
“Oxaag” has been matched at Full Node 1 and Full Node 2, but the
character “g” in the key mismatched at Short Node 4.

As discussed in Section 2.2, parallel lookup on MPT can be easily
achieved. Hence, we use a similar way to parallel run nodelookup
operators for every key in the insertion batch. The result node
type of nodelookup operator is either Short Node or Full Node.
We directly skip Full Nodes and expand returning Short Nodes to
sequences of Full Nodes. To achieve parallel Short Node expansion,
We employ atomic compare-and-swap (atomicCAS) before expand-
ing them in each thread, which avoids concurrent modification and
ensures each Short Node only be split once.

Example: Considering MPT in Figure 6(a), suppose the insert KV
pairs are (“Oxag”, v4), (“Oxaag”, v5), (“‘Oxbcdfg”, v6), (“0xbcefg”, v7)
and (“Oxbcefag”, v8)3. In expanding phase, it first runs nodelookup
for five keys in parallel, and returns Full Node 2, Short Node 3,
and Short Node 4. Then we parallel expand Short Node 3 and
Short Node 4. Figure 6(b) shows the result after expanding phase.

Phase II: Inserting Phase. The inserting phase of PhaseNU inserts
all new KV pairs into the above returned uncompressed MPT. There
are only two inserting cases: (i) inserting a Value Node, e.g., for KV
pair (“Oxaag”, v5), it will create a Value Node v5 and insert it as the
‘0xg’th child of Full Node 4, as shown in Figure 6(c); (ii) inserting a
sequence of Full Nodes and a Value Node, e.g., for key value pair
(“oxbcedfg”, v6), it will create Full Node 10 as the ‘0xf’th child of
Full Node 8, then insert a Value Node v6 as the ‘0xg’th child of
Full Node 10, see Figure 6(c).

The first challenge in the inserting phase is to address the conflict
of inserting new nodes. In particular, when the keys of parallel
inserting threads share the same prefix, e.g., (“Oxbcefg”, v7) and
(“oxbcefag”, v8) share the same prefix “Oxbcef”, there will incur a
conflict when two threads are creating Full Node 9 concurrently.
We resolve it by using atomic compare-and-switch (atomicCAS),
which guarantees each Full Node will only be linked once.

3For the sake of presentation, we use hex encoding of those keys directly.
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The second challenge in the inserting phase is to efficiently al-
locate the memory of Full Nodes. The Full Nodes are frequently
created and allocated in the global memory of GPU during the
inserting phase. Following previous work [22], the memory of each
Full Node is allocated from a global memory pool. Each malloc op-
eration in it updates its metadata, e.g., the allocated flags. Conflicts
of concurrent metadata updating are handled by atomic operations.
A straightforward strategy is to call malloc when creating each
Full Node, we refer to it as device-based allocator. Obviously, it incurs
severe contention on memory pool since it is shared by all threads
in kernel. An alternative strategy is thread-based allocator, i.e., a
local buffer is allocated for each thread at first, and all Full Nodes
are allocated from the local buffer. It minimizes contention in mem-
ory pool. However, it is also inefficient as its uncoalesced global
memory access results in low memory throughput. In particular,
the Full Nodes that are accessed simultaneously by adjacent threads
are physically far apart in GPU memory. To improve it, we devise
block-based allocator based on the shared memory in GPU. Specifi-
cally, it invokes malloc once to allocate a local memory pool for
each block, whose metadata resides in the shared memory and is
used by all threads within the block. The benefits of our block-based
allocator are three-fold: (i) the memory pool contention is limited
within a block; (ii) the atomic operations on GPU to access the
shared memory are more efficient than those to access the global
memory; and (iii) it reduces uncoalesced memory access.

Example: Figure 6(c) shows the result after inserting all KV pairs
in the uncompressed MPT in Figure 6(b).

Phase III: Compressing Phase. With the returning uncompressed
MPT after the above inserting phase in PhaseNU, the compressing
phase converts it to the general MPT, which guarantees memory
efficiency. However, the challenges of providing an efficient algo-
rithm for compressing phase are two-fold: (i) it accesses MPT nodes
by the path from leaf to root, then how to determine the entry nodes
of compressing threads efficiently? and (ii) how to parallel compress
the corresponding Full Nodes in uncompressed MPT efficiently?
We first identify the entry nodes of all compressing threads to
address the first challenge. On one hand, the correctness of MPT
cannot be guaranteed if we miss some of the entry nodes. On the
other hand, it incurs expensive compressing overhead and wastes
the computing power of the GPU if all leaf nodes are considered
entry nodes. Specifically, the entry nodes in uncompressed MPT
can be generated in both expanding phase and inserting phase. For
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example, Value Node v1 in Figure 6(c) is an entry node as its parent
Short Node 4 was expanded at the expanding phase. Meanwhile,
Value Node 7 and Value Node 8 in Figure 6(c) are entry nodes as
they are newly inserted in the inserting phase. In PhaseNU, we
employ a hash container to on-the-fly record all these generated
entries nodes during expanding phase and inserting phase, instead
of identifying them at the beginning of the compressing phase.
Taking Figure 6 as an example, the hash container includes all entry
nodes in compressing phase, i.e., Value Nodes v1, v3, v4, v5, v6,
v7, and v8, in which Value Nodes v1 and v3 are obtained from
expanding phase, and the rest are from the inserting phase.

We next compress the corresponding Full Nodes to address the
second challenge. Specifically, in each compressing thread, a com-
pressing Short Node is created at first, then Full Nodes with one
child on the path are continuously marked “compressed”, and these
marked Full Nodes will be replaced by the compressing Short Node
when a Full Node with multiple children is encountered on the
path. Taking Figure 6(c) as an example, for the compressing thread
with entry Value Node v6, a compressing Short Node is created and
Full Node 10 is marked as “compressed” as it only has one child.
Then, the compressing Short Node will replace Full Node 10 as the
parent of Full Node 10 has multiple children. To parallel run these
compressing threads, we employ atomicCAS to guarantee all nodes
in MPT are only marked and compressed once.

Example: For all entry nodes in the hash container, see Figure 6(c),
it runs above compressing thread in parallel, and the compressed
MPT is shown in Figure 6(d). Up till this point, all the KV pairs
have been inserted into the MPT by our lock-free node-update
algorithm PhaseNU.

3.1.2  Lock-based node-update algorithm LockNU. Our above
lock-free node-update algorithm PhaseNU enjoys excellent per-
formance for node updating in MPT with GPU. However, it incurs
overhead to expand and compress MPT. In this section, we propose
a lock-based node-update algorithm LockNU as an alternative so-
lution. Specifically, we devise a GPU-based optimistic lock coupling
algorithm LockNU for parallel node updating in MPT.

The Overview of LockNU. Inspired by optimistic lock coupling [49,
51] for concurrent data structures in multi-core CPU, we devise a
GPU-based optimistic lock coupling algorithm for parallel node-
update in MPT with GPU. Returning to the node-update subrou-
tine in the insert operator, given a KV pair, it first finds the destina-
tion node and then inserts the new nodes accordingly. To resolve
the node splitting conflict during parallel node-update subroutines
on GPU, each node in MPT is augmented with a version counter,
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which is the building brick of our GPU-based optimistic lock cou-
pling algorithm LockNU. In particular, the core idea of LockNU is
two kinds of locks: (i) optimistic read lock and (ii) pessimistic write
lock. Each reader or writer in node-update subroutine acquires
the corresponding lock of the node.

Optimistic read lock: It is a conceptual lock, i.e., it does not
actually acquire or release a lock. In fact, it only reads the version
counter of a node. For each reader in the GPU thread of node-
update subroutine, it acquires an optimistic read lock of a reading
node by node.ReadLockOrRestart() at first. If the lock is not free,
i.e., a writer is updating the node, it fails and restarts from the root.
Otherwise, it returns the version counter of the node. The optimistic
read lock is released by node.ReadUnlockOrRestart(version),
which compares the previous version counter, i.e., returned by
node.ReadLockOrRestart (), with the current version counter. If
the previous version counter is obsolete, the thread of node-update
subroutine fails and restarts from the root node. Besides that, the
optimistic read lock of a node may be upgraded to a pessimistic
write lock when the node should be updated by itself or the changes
of its child nodes in MPT. We will elaborate on it shortly.

Pessimistic write lock: It provides mutual exclusion by physically
acquiring the lock. For each writer in the GPU thread of node-
update subroutine, we guarantee a pessimistic write lock can only
be upgraded from an optimistic read lock. The node lock upgrading
is achieved by node.UpgradeToWriteLockOrRestart(version).
The reason is that, for node-update in MPT, it first acquires the
optimistic read lock of the node, then reads the node, and checks
whether the key of the node matches with the inserting key or
not. If it returns false, the node will be modified (e.g., splitting to a
Full Node or inserting a new Value Node). Thus, the optimistic read
lock will be upgraded to a pessimistic write lock. Specifically, the
upgrading function first verifies whether the node is changed or
not after it acquires an optimistic read lock by its version counter.
If it is changed, the thread of node-update subroutine fails and
restarts from the root node. Otherwise, it acquires the pessimistic
write lock of the node and modifies the node. After that, the node
releases its pessimistic write lock by node.WriteUnlock() and its
version counter is incremented.

Example: Next, we utilize Figure 7 to illustrate how to insert a
new KV pair (“Oxabcefg”, v3) in MPT via GPU-based optimistic lock
coupling algorithm LockNU.

Step 1: the thread acquires the optimistic read lock of Short Node
0. Since its key “Oxa” matches with the inserting key, the thread
then acquires the optimistic read lock of its child, i.e., Full Node 1.
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As shown in Figure 7(a), both nodes have optimistic read locks. The
thread visits the ‘0xb’th element of Full Node 1, which points to
Short Node 3. The optimistic read lock of Short Node 0 is released
as it will not be updated as its child Full Node 1 will not change.

Step 2: the thread acquires the optimistic read lock of Short Node 3.
Its key “Oxcdg” differs from the inserting key “Oxcefg”, thus it will be
split. As a result, its parent Full Node 1 will be updated accordingly.
Thus, the optimistic read locks of Short Node 3 and Full Node 1 are
upgraded to pessimistic write locks, see Figure 7(b). The pessimistic
write locks guarantee mutual exclusion, which resolves conflicts
from concurrent node-update threads.

Step 3. As illustrated in Figure 7(c), Short Node 3 is split into
Short Node 6, Full Node 7, and Short Node 8, and the ‘0xb’th
element of Full Node 1 points to the newly created Short Node
6. The ‘0xd’th element of Full Node 7 points to Short Node 8, which
points to Value Node 5. After that, the changing of Full Node 1
completes, and the thread releases the write lock and increments
its version counter, see red colored 1 in it.

Step 4: the thread acquires the optimistic read lock of Full Node 7
and upgrades to a pessimistic write lock for inserting the new key
“Oxabcefg”. Accordingly, the ‘0xe’th element of Full Node 7 points
to the newly created Short Node 9, which points to Value Node 10.
The thread releases the pessimistic write lock of Full Node 7 and
increments its version counter, see Figure 7(d).

The Implementation of LockNU. To the best of our knowledge,
this is the first work that implements a GPU-based optimistic lock
coupling algorithm for parallel node-update subroutine in MPT.
Specifically, the lock is implemented as a 64-bit number stored
in every node. The least significant bit indicates the pessimistic
write lock, and other bits form a version counter. In particular, the
atomic load and store instructions are not provided by CUDA [4].
We implement them via __threadfence and volatile.

3.1.3  Decision model for node-update algorithm choosing. Until
now, we have two algorithms for parallel node-update in MPT
with GPU: PhaseNU and LockNU. They utilize different meth-
ods to resolve the conflict of parallel node-update. In particular,
PhaseNU resolves conflicts by proactively splitting the nodes, and
LockNU addresses conflicts by lock coupling. Thus, the overhead
of PhaseNU is introduced by splitting and compressing the nodes,
but the overhead of LockNU is introduced by the locks. It is not
trivial for users to choose the proper one for their workloads. In
subsequent, we propose a simple yet effective decision model via
our empirical experience. We first analyze the key factors which
will influence the overhead of PhaseNU and LockNU as follows:

o Key distribution. it captures the probability of occurrence of

difference keys, i.e., uniform distributed, or clustered distributed.

Key density. it reveals the number of keys in a given range of
key values, i.e., if the bitmap of all values in the given range
contains mostly zeroes, it is sparse. Otherwise, it is dense.
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Figure 8 depicts the decision model to choose proper node-
update algorithm for different cases. There are three key observa-
tions about the decision model.

Observation I: if keys are clustered distributed, PhaseNU is better
than LockNU, as the rightmost path in Figure 8 shown.

LockNU is a GPU-based optimistic lock coupling solution. In
particular, when modifying a branch of Full Node via LockNU, it
acquires a pessimistic write lock and restarts all the other threads
that are accessing this Full Node. Thus, the performance of LockNU
will obviously degenerate when the pessimistic write lock is fre-
quently acquired to modify the Full Node. When key distribution is
clustered, e.g., Gaussian distribution, Full Nodes in MPT will prob-
ably be locked with pessimistic write lock many times as the hex
encoding of these clustered keys shares similar prefixes. Thus, the
overhead of LockNU is significantly larger than that of PhaseNU.

Observation II: if keys are uniformly and sparsely distributed,
LockNU is better than PhaseNU, see the leftmost path in Figure 8.

The reasons why LockNU outperforms PhaseNU when the keys
are uniformly and sparse distributed are two-fold: (i) the node
splitting conflicts in LockNU are significantly reduced as the hex
encodings of keys are quite different; and (ii) for PhaseNU, proac-
tively expanding MPT generates a large number of intermediate
Full Node nodes, which incurs lots of unnecessary overhead.

Observation III: if keys are uniformly and densely distributed,
PhaseNU is better than LockNU, as shown in Figure 8.

The reasons why PhaseNU is better in this case are similar
to the reasons of Observation I. Combining Observation II and
Observation III, the superiority of PhaseNU becomes obvious with
the rising of key density.

3.2 GPU-based Hash-compute Algorithm

In this section, we present our GPU-based hash-compute algo-
rithm PhaseHC to avoid the hash computing conflict for parallel
insert operators of MPT on GPU.

We first analyze the underlying reason for hash computing con-
flict. According to the hash computing equations in Section 2.1, the
hash value of each Short Node or Full Node is computed from itself
and the hash value(s) of its child(ren). Thus, the correct hash value
of a node depends on the updated hash value of every child after
inserting new KV pairs. The illustrated example of hash computing
conflict in Figure 3 (see Section 2.2) also confirms that, i.e., the
wrong hash value of Full Node 2 is caused by the out-of-date hash
value of Value Node 4.

To resolve the hash computing conflict, we devise a GPU-based
hash-compute algorithm PhaseHC. It consists of two phases: (i)
marking phase, it parallel marks the dependency of each influenced
node during the previous node updating part; (ii) computing phase,
it parallelly computes the hash value of these nodes efficiently. Next,
we present the technical details of these two phases in PhaseHC.

Phase I: Marking Phase. We augment MPT by attaching a de-
pendency counter (initialized to 0) for every node, which indicates
the number of dependent child nodes. As per our previous anal-
ysis, the hash value of the newly inserted Value Node will affect
all the nodes in the path from it to the root node. To count the
number of dependencies of each influenced node, a straightforward
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solution is traversing MPT in a depth-first manner. It is obviously
inefficient as it is sequential. To utilize the massive parallelism of
GPU, we propose a parallel marking procedure. Specifically, we
assign a thread for each entry node in the hash container, which
is obtained from node-update subroutine, as threads T1 to T7
shown in Figure 9(a). Each thread is responsible for updating the
dependency of every node in the path from its entry node to the
root node. For each node, it increments the dependency counter
of its parent node as the hash value of its parent depends on it.
For example, the dependency counter of Short Node 7 will be 1
after thread T1 visits Value Node v1, as shown in Figure 9(b). We
use atomicAdd in CUDA to guarantee the atomicity of the depen-
dency counter calculated by multiple threads. To guarantee that
each node only increments its parent’s dependency counter once,
we employ an extra atomic flag in every node to indicate whether
it has incremented its parent’s dependency counter or not. Each
thread terminates whenever it reaches the root node. Figure 9(b)
depicts the MPT after marking phase, e.g., the dependency counter
of Full Node 8 is 2 as its hash value depends on the hash values of
Full Node 10 and Value Node v3.

Phase II: Computing Phase. We parallel run hash computing
subroutines for every entry node and compute the hash value of
every node in the path from the entry node to the root node. For
each node, it decrements its parent dependency counter after com-
puting its hash value, which means it is an updated hash value
and can be used by its parent. In addition, each hash computing
subroutine guarantees that it only computes the node whose depen-
dency counter is 0. Otherwise, it will be terminated. However, it is
not trivial to design an efficient computing phase. The reasons are
three-fold: (i) the number of memory accesses is large as it incurs
many memory accesses to compute the hash value of the node; (ii)
thread divergence is obvious, different threads execute different
instructions when they are computing hash value of different nodes;
and (iii) the cost of the hash function in MPT is naturally expensive.

To reduce (i) the cost of memory accesses, we load the encoding
of the node into the shared memory before computing its hash value,
and write the hash value to global memory after the computation.
We devise a warp-based solution to address (ii) and (iii). Specifically,
a warp is a group of threads that can only execute the same instruc-
tion at a time on the same GPU core. We assign a warp to each
node, instead of a single thread in the marking phase, see W1 to W7
in Figure 9(b). Threads in the same warp collaboratively compute
the hash value of the node and synchronize with the __shfl_sync
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primitive. After the computing phase, the hash values of influenced
nodes are updated, see the red rectangles in Figure 9(c). Benefits
of the warp-based solution are two-fold. First, all the threads in a
warp execute the same instruction to compute the hash value of
a node, which alleviates the thread divergence problem. Second,
the hash computing of a node in MPT can be distributed into a
warp of threads with the efficient GPU hash algorithm [26], which
improves the performance of node hash value computation.

3.3 Discussion and Extension

The success of accelerating MPT via GPU is achieved by exploiting
the single instruction multiple threads (SIMT) execution model on
it. Specifically, the execution logic of insert operator is inherently
complex, and it is not trivial to provide a high throughput MPT
inherently. We divide the complex logic of the insert operator into
5 SIMT-friendly phases, i.e., expanding, inserting, and compress-
ing phases in PhaseNU, and marking and computing phases in
PhaseHC, to fully exploit the massive parallelism of GPU. Besides,
our proposed techniques (i.e., PhaseNU, LockNU, and PhaseHC)
also exploit the following characteristics of GPU: (i) efficient atomic
instructions (i.e., atomicCAS and atomicAdd), (ii) efficient memory
allocation, see block-based allocation strategy in Section 3.1, and
(iii) warp-based computation optimization in Section 3.2.

We next present the extensibility of our proposed techniques.
All these techniques can be extended to improve the performance
of MPT on multi-core CPU as the SIMT execution model also is
supported on it. To achieve high parallel node-update of MPT
with multi-core CPU, both LockNU and PhaseNU algorithms can
be directly used. For implementation-wise, we use parallel_for,
which is provided by the Intel Thread Building Block (TBB) [13], to
distribute tasks to different threads, and std: :atomic to control
concurrent access of MPT nodes on multi-core CPU. To accelerate
hash-compute of MPT with multi-core CPU, we slightly revise
PhaseHC algorithm as multi-core CPU does not have warp-based
execution and shared memory schemes of GPU. In particular, we use
CPU-based threads in both marking phase and computing phase of
PhaseHC algorithm. In addition, our proposed LockNU algorithm
also can be used to provide parallel access to other data structures
(e.g., B-Tree [29] and SkipList [70]) on GPU.

4 CASE STUDY ON REAL-WORLD SYSTEMS

In this section, we integrate our proposed solutions into two real-
world immutable data systems: Geth [9] and LedgerDB [80].
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4.1 Case Study of Geth

Transaction Processing of Geth: We use the left part of Figure 10
to illustrate the transaction processing of Geth. In the beginning,
each worker (i.e., miner node) gets a batch of transactions from the
transaction pool, which stores all the user-submitted transactions,
then executes them. During execution, first, the balance of accounts
in cached state hash table will be updated accordingly. To ensure
tamper evidence and provide cryptographic authentication, Geth
next update three MPTs in the main memory of the worker, i.e.,
state trie, receipt trie, and transaction trie. Then Geth packs the
updated hash value of their roots and the batch of transactions
into a block, and broadcasts the block to other workers for further
processing. Last, the MPT nodes of state trie are asynchronously
encoded into RLP encoding [16] and persisted into the KV store.

Integrating GPU-accelerated MPT to Geth: To integrate GPU-
accelerated MPT to Geth, we replace these three in-memory MPTs
with our proposed GPU-accelerated MPT, as shown in the right
part of Figure 10. For transaction processing procedure on Geth
with GPU-accelerated MPTs, we first process input KV pairs (i.e.,
transactions, receipts, and account states) into continuous arrays
and transfer them to GPU global memory. Then, these KV pairs are
updated into corresponding MPTs via our proposed algorithms. We
employ cross-language library cgo [3] to transfer data and controls
between Go on CPU and C++ on GPU. Last, updated hash values of
these roots on GPU are transferred to CPU for further processing.
Similarly, we asynchronously encode and persist state trie on GPU.

Performance Evaluation: We compare the elapsed time of the
original Geth and the Geth with GPU-accelerated MPT by running
real-world transactions in Ethereum. Specifically, we collect all
the regular transactions that start from 15th, November 2022 in
blockchain system Ethereum. The number of transactions in each
batch ranges from 1.5K to 320K in our experiments. We compare the
original Geth with two versions of our GPU-accelerated Geth:

o Geth-Phase: it uses node-update algorithm PhaseNU and hash-
compute algorithm PhaseHC for GPU-accelerated MPT.

1864

e Geth-Lock: it uses node-update algorithm LockNU and hash-
compute algorithm PhaseHC for GPU-accelerated MPT.

We report the time of function Engine.FinalizeAndAssemble()
in Geth, Geth-Phase, and Geth-Lock, respectively. It measures the
elapsed time of gray parts (see Figure 11) of transaction processing,
which includes: (i) the cost of processing and transferring the data
from CPU to GPU, (ii) the cost of updating three MPTs and (iii) the
cost of transferring root hash values from GPU to CPU. We ignore
the time cost of encoding and persisting of state trie as it works in an
asynchronous manner, i.e., its cost will not affect the performance
of transaction processing. The results are plotted in Figure 11(a).
In summary, the speedup times of the GPU-accelerated Geths (i.e.,
Geth-Phase and Geth-Lock) over the original Geth range from 1.6X
to 3.4X. Even though the improvements in real-world blockchain
system Ethereum are good, it can be further improved, see our
empirical evaluation results in Section 5, as the data process and
transfer cost can be further reduced in GPU-accelerated Geth, e.g.,
designing both CPU- and GPU-friendly data layout. However, it is
out of the research scope of this work and we left it as future work.

GPU Memory Consumption: We measure the peak GPU memory
consumption during the processing of a block on the real Ethereum
state in 22nd, November 2023. The results are plotted in Figure 11(b).
First of all, the memory consumption of PhaseNU and LockNU is
less than the GPU memory size even with a large block size of 320K.
Secondly, it is not surprising that LockNU outperforms PhaseNU
in terms of memory consumption in all tested cases. The reason is
that many intermediate Full Nodes are allocated in PhaseNU.

4.2 Case Study of LedgerDB

Transaction Processing and Verification of LedgerDB: We use
the left part (CPU part) of Figure 12 to illustrate transaction pro-
cessing and verification in Alibaba LedgerDB. For transaction pro-
cessing, the client first commits transactions to LedgerDB, which
includes querying and updating specific key values. LedgerDB ex-
ecutes the transactions on the clue index, which stores the value
and the corresponding transaction ids of each key. After that, the
executing result (i.e., new “txn id”) is returned to the client for
further verification. To protect the data integrity, LedgerDB asyn-
chronously collects the processed transactions and updates the
authenticated data structures (ADS) in batch. In particular, ADS in-
cludes a batch-Accumulated Merkle Tree (bAMT) and a clue-counter
MPT (ccMPT) in LedgerDB. For verification, the client periodically
requests the ADS proofs of the committed transactions and keys
and then verifies them locally. Only the transactions that persisted
in ADSs can be successfully verified.

Integrating GPU-accelerated MPT to LedgerDB: We replace the
ccMPT with our proposed GPU-accelerated MPT, as shown in the
right gray part (GPU part) of Figure 12. For transaction processing,
the input KV pairs (i.e. info of clue index) to ccMPT are updated into
the ccMPT in GPU via our proposed algorithms. For verification,
we implemented a parallel algorithm to get the proof of each key in
ccMPT, which contains all nodes in the search path of the key. The
algorithm includes two kernels. The first one searches all keys in
parallel, to calculate the size of all proofs and the expected location
of each proof in the output buffer. An output buffer is then allocated
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according to the size. The second kernel searches all keys again and
writes the proofs into their pre-calculated positions in parallel. For
all operations on GPU-accelerated ccMPT, LedgerDB reorganizes
the inputs and outputs, and transfers them among GPU and CPU
by following the method in Geth (see Section 4.1).

Performance Evaluation on VeriBench: We use YCSB workload
in VeriBench [84] to investigate the performance of LedgerDB with
GPU-accelerated MPT. In the experiments, a client keeps commit-
ting and verifying transactions to a LedgerDB server. Each trans-
action consists of operations to 10 KVs with a balanced read-write
ratio. A transaction is considered completed only if it is commit-
ted and verified successfully. The delay of the periodic verification
ranges from 100ms to 1000ms. We compare original LedgerDB (de-
noted as LDB) with two versions of our GPU-accelerated LedgerDB:

o LDB-Phase: it uses node-update algorithm PhaseNU and hash-
compute algorithm PhaseHC for GPU-accelerated MPT.

e LDB-Lock: it uses node-update algorithm LockNU and hash-
compute algorithm PhaseHC for GPU-accelerated MPT.

We measure the end-to-end throughput by running each experi-
ment for two minutes. As shown in Figure 13(a), The throughput
speedup of two GPU-accelerated LedgerDBs (i.e. LDB-Phase, LDB-
Lock) over the original LedgerDB ranges 1.47X to 1.78X. Moreover,
the gap in the throughput between the original LedgerDB and the
GPU-accelerated LedgerDB becomes obvious with the rising of the
verification delay. In Figure 13(b), we report the time cost of two key
operations in LedgerDB, i.e., ADS update and ADS get proof. It is
clear that the time cost on MPT dominates the total cost of both ADS
update and ADS get proof. Interestingly, our GPU-accelerated MPTs
reduces the cost of ADS update and ADS get proof significantly,
which are no longer the performance bottleneck of LedgerDB.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setting

Datasets. We use the same three datasets as [83] in our experimen-
tal evaluation. In particular, Wiki is a real-world dataset. It contains
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Table 1: Dataset Information

Dataset Average length Key Tested
Key (hex) | Value (Byte) | distribution range
Wiki 32 10894 clustered 2.5K - 320K
ETHT 65 1073 uniform 5.0K - 640K
YCSB 47 523 uniform 10.0K - 1280K

all contents from Wikipedia website. Each KV pair in it represents a
particular revision of a page. Each KV pair of ETHT is a transaction
in Ethereum, one of the largest blockchains in the world. In partic-
ular, the value field is all data in the transaction. We use YCSB to
generate data as synthesized KV pairs in this work. Keys in YCSB
are uniformly generated. Table 1 summarizes detailed information.

Experimental Configurations. Our experiments are conducted
on a Ubuntu server with two Intel(R) Xeon(R) Gold 6230R CPUs
(2.10GHz), 128GB RAM, and an NVIDIA Tesla V100 GPU with
32 GB device memory. In particular, each CPU unit is equipped
with 26 cores. Hence, the server could run up to 104 threads. We
implemented all our proposed GPU accelerated algorithms in C++
with CUDA 11.7.

5.2 Performance Evaluation

5.2.1 The evaluation of insert operator in MPT. In this section, the
initialized MPT is empty, and we take the KV pairs movement
cost from host memory and device memory into account when
measuring the end-to-end throughput.

Throughput of Node-update Subroutine. We first evaluate the
throughput of node-update subroutine in three datasets. We com-
pare three existing or adapted approaches with our proposed lock-
free and lock-based node-update algorithms on GPU (i.e., PhaseNU
and LockNU) by varying the number of inserted key-value pairs. In
particular, the first compared method GethNU is the node-update
approach in real-world blockchain system Geth, which uses a single
CPU thread. We also adapt two traditional lock coupling methods
(i.e., SpinLC and RestartLC) to GPU as our competitors. Both meth-
ods hold at most 2 locks at a time during MPT updating. SpinLC
keeps spinning until it acquires the lock while RestartLC restarts
from the root when it fails to acquire the lock.

Figure 14 depicts the experimental results. There is no doubt
our proposed GPU-based algorithms PhaseNU and LockNU outper-
form all competitors in every tested case. In particular, the speedup
times of PhaseNU and LockNU over GethNU up to 132.28X and
164.68X, respectively. The traditional fine-grained lock-based meth-
ods (SpinLC and RestartLC) perform even worse than CPU-based
algorithm GethNU, we omit them in subsequent experiments. Inter-
estingly, PhaseNU outperforms LockNU at Wiki, see Figure 14(a).
The reason is that the distribution of keys in Wiki is clustered. It
confirms the Observation I of the decision model in Section 3.1.3.
However, LockNU is better than PhaseNU on ETHT and YCSB, see
Figures 14(b) and (c). The reason is that the keys of both ETHT and
YCSB are uniformly and sparely distributed, which is Observation II
in Section 3.1.3. Specifically, the key of ETHT and YCSB is the hash
result of Keccak256 [23] and Fowler_Noll_Vo [8], respectively.

Throughput of Hash-compute Subroutine. We next evaluate the
throughput of hash-compute subroutine by varying the number
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Figure 16: End-to-end throughput of insert operator

of inserted KV pairs. In particular, we compare our proposed GPU-
based hash-compute method PhaseHC with the hash-compute
approach in Geth (i.e., GethHC), which is a parallel method via
Goroutine. It uses all 104 threads of the server in this evaluation.

As reported in Figure 15, our GPU-based algorithm PhaseHC is
better than CPU-based algorithm GethHC by up to 25.20X, 10.99X,
91.88X in Wiki, ETHT and YCSB, respectively. Interestingly, the
improvement of PhaseHC over GethHC in YCSB (56.38X to 91.88X)
is significantly larger than the corresponding improvements it made
in both Wiki (6.19X to 25.20X) and ETHT (2.19X to 10.99X). The
major reason is that the total number of MPT nodes in YCSB is
larger than that in both Wiki and ETHT when we insert the same
number of KV pairs into the initial empty MPT.

End-to-end Throughput of Insert Operator. We last measure
the end-to-end throughput of insert operator in those three datasets
by varying the number of inserted key-value pairs. Since this is the
first work that exploits GPU to accelerate the performance of MPT,
we use the CPU-Geth, which combines the official implementation
of node-update and hash-compute algorithms (i.e., GethNU and
GethHC) in Geth, and run it on a high-end CPU server with 104
threads as a performance indicator to show the superiority of our
proposed GPU-Phase and GPU-Lock, which uses PhaseNU and
LockNU as the GPU-based node-update algorithms, respectively.
Both GPU-Phase and GPU-Lock employ the same GPU-based hash-
compute algorithm PhaseHC.

As reported in Figure 16, GPU-based methods (both GPU-Phase
and GPU-Lock) outperform official solution of Geth (i.e., CPU-
Geth) in all cases. Specifically, average speedup times of GPU-Phase
over CPU-Gethis5.11X, 3.83X and 19.97X in Wiki, ETHT, and YCSB
while average speedup times of GPU-Lock over CPU-Geth is 4.85X,
5.44X and 29.69X in Wiki, ETHT, and YCSB, respectively.
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5.2.2  The evaluation of lookup operator in MPT. In this section,
we evaluate the performance of lookup workload and concurrent
lookup and insert workload on CPU-based and GPU-based MPT. In
particular, we build an MPT with 640K KV pairs and then perform
the corresponding workload with YCSB. lookup workload. In this

experiment, we compare the response time of CPU-based and GPU-
based lookup operators by varying the number of operations from
10K to 1280K. For the GPU-based lookup operator, we implement
it as the method we mentioned in Section 2.2. To provide a fair
comparison, we implement multi-thread lookup operators as the of-
ficial implementation of MPT in Geth only provides a single thread
lookup operator. Specifically, we uniformly assign all the lookup
requests to all 104 threads in the CPU server and parallel process
them. As shown in Figure 17(a), the speedup times of GPU-based
lookup operator over CPU-based method is 15.05X on average.

Mixed Lookup/Insert Workload. We next verify the performance
of CPU-based and GPU-based MPTs by supporting concurrent
lookup and insert operators. The total number of operations is 640K
in all tested cases and the ratio of lookup operator in it ranges from
0.1 to 0.9. To support mixed workload on the CPU-based MPT (ie.,
CPU-Geth) in the official implementation of Geth, the lookup and
the node-update subroutine of its insert operators are sequentially
executed in the workload. For GPU-Phase, the lookup operators run
with the nodelookup operator (see Section 3.1.1) in the expanding
phase of PhaseNU of the insert operators to support concurrent read
and write operations on it. For GPU-Lock, we employ an optimistic
read lock for each lookup operator in the mixed workload as the
node-update of LockNU also uses optimistic read locks. According
to the experimental results in Figure 17(b), we can conclude that
both GPU-based methods GPU-Phase and GPU-Lock outperform
the CPU-based method CPU-Geth when support concurrent lookup
and insert operators. The average speedup of GPU-Phase and GP U-
Lock over CPU-Geth is 18.61X and 22.07X, respectively.

5.3 Effectiveness Study

Effect of Multi-core CPU. We extend GPU-based algorithms
PhaseNU, LockNU, and PhaseHC to multi-core CPU by following
the ideas in Section 3.3. Thus, we have three CPU-based methods:
(i) CPU-Geth, the official implementation of Geth; (ii) CPU-Phase,
it adapts PhaseNU and PhaseHC to multi-core CPU; and (iii) CP U-
Lock, it employs LockNU and PhaseHC to multi-core CPU. As
illustrated in Figure 18, our proposed methods are obviously better
than CPU-Geth on both Wiki and YCSB. Interestingly, our CPU-
based methods (CPU-Phase and CPU-Lock) outperform GPU-based
methods (GPU-Phase and GPU-Lock) on Wiki, but GPU-based
methods outperform CPU-based methods on YCSB, as shown in
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Figures 18(a) and (b). The reason is that the value size of Wiki is
large (i.e., 10,894B on average) but that of YCSB is small (i.e., 523B
on average). The large value size in Wiki incurs significant data
transferring cost from CPU to GPU of the GPU-based methods, as
shown in Figure 18(c).

Effect of Warp-based PhaseHC Execution. We compare the
performance of our proposed warp-based PhaseHC with a thread-
based PhaseHC, which uses a single thread to compute the hash
value of each MPT node. As depicted in Figure 19(a), the throughput
of the warp-based PhaseHC is better than that of the thread-based
PhaseHC by up to 3.89X.

Effect of 0 in YCSB. We last evaluate the effect of 6 in YCSB. The
total number of operations is 960K, and MPT has 320K records at
the beginning in all tested cases. The ratio of lookup, insert, and
update operations are 0.4, 0.2, and 0.4 respectively. The results are
plotted in 19(b). It shows that the performance of LockNU falls with
the rising of 0, and PhaseNU performs stable as it is a lock-free
method. The reason is the LockNU incurs heavy contention of the
write lock on the parent of the leaf node when many threads are
updating the same key. It confirms our insights in Section 3.1.3 as
Zipf distribution is a clustered distribution.

6 RELATED WORK

Immutable Data Management. Inmutable data management has
many applications, e.g., blockchain systems [5, 7, 14, 15, 17, 64, 69],
verifiable databases [2, 20, 80, 82, 85] and collaborative data analy-
sis [10, 24]. The core of immutable data management is providing
tampered evidence control and muti-version access. Thus, many
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cryptographic data structures [5, 12, 54] (a.k.a., Structurally Invari-
ant and Reusable Indexes (SIRI) [83]) have been proposed to index
immutable data for different applications. Several techniques [6, 71]
have been proposed to accelerate Merkle Tree (MT) [61] via GPU.
However, these techniques for MT cannot adapt to MPT on GPU
as (i) they do not support insert and lookup operations and (ii) the
hash-compute algorithm requires all leaves must be the same level.

Parallel Indexes on CPU and GPU. Many studies [21, 22, 45,
48, 50-52, 60, 73] worked on parallel index structures on CPU and
GPU. On multi-core CPU, B"%-Tree[48] uses additional side links
to reduce conflicts in B-Tree. Bw-Tree [52] is a lock-free index
which avoids locks by using an indirection layer and appending
delta records to nodes. Optimistic lock coupling and read-optimized
write exclusion are proposed to synchronize the concurrent Adap-
tive Radix Trie [50, 51]. On GPU, Harmonia [79] improves cache
locality of B+Tree by dividing the tree into a key region and a child
region and storing the child region in the cache. Eirene [86] is a
concurrency control framework for B+Tree that guarantees lin-
earizability among concurrent requests and decreases the response
time. Unfortunately, existing techniques cannot be directly adapted
to accelerate MPT on GPU as they cannot efficiently resolve node
splitting conflict and hash computing conflict of MPT on GPU.

Query Processing with GPU. Exploiting GPU to accelerate query
processing is widely used in database community. For example,
optimizing relational operators on GPU (e.g., join [35, 37, 43, 57,
58, 68, 75, 76], aggregation [44, 72] and sort [34, 77]); designing
heterogeneous query engines to improve the analytical processing
performance with GPU [11, 28, 30-33, 38, 47, 55, 56, 67, 81]; and
enhancing the transaction processing performance [25, 36].

7 CONCLUSION

In this paper, we accelerated the performance of MPT by exploit-
ing the high parallelism of GPU. Specifically, we proposed lock-
free algorithm PhaseNU and lock-based algorithm LockNU for the
node-update subroutine and devised a GPU-based hash-compute
algorithm PhaseHC for hash-compute subroutine. We verified the
effectiveness of our proposed GPU-accelerated MPT by two case
studies on the real-world system Geth and LedgerDB and exten-
sive empirical experimental studies. The promising directions for
future work include (i) devising efficient solutions to process out-
of-GPU memory MPT, and (ii) exploiting our proposed techniques
to accelerate other cryptographic index structures.
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