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ABSTRACT
Bipartite graph embedding (BGE), as the fundamental task in bi-

partite network analysis, is to map each node to compact low-

dimensional vectors that preserve intrinsic properties. The existing

solutions towards BGE fall into two groups: metric-based methods

and graph neural network-based (GNN-based) methods. The latter

typically generates higher-quality embeddings than the former due

to the strong representation ability of deep learning. Nevertheless,

none of the existing GNN-based methods can handle billion-scale

bipartite graphs due to the expensive message passing or com-

plex modelling choices. Hence, existing solutions face a challenge

in achieving both embedding quality and model scalability. Moti-

vated by this, we propose a novel graph neural network named

AnchorGNN based on global-local learning framework, which can

generate high-quality BGE and scale to billion-scale bipartite graphs.

Concretely, AnchorGNN leverages a novel anchor-based message

passing schema for global learning, which enables global knowl-

edge to be incorporated to generate node embeddings. Meanwhile,

AnchorGNN offers an efficient one-hop local structure modelling

using maximum likelihood estimation for bipartite graphs with ra-

tional analysis, avoiding large adjacency matrix construction. Both

global information and local structure are integrated to generate

distinguishable node embeddings. Extensive experiments demon-

strate that AnchorGNN outperforms the best competitor by up to

36% in accuracy and achieves up to 28 times speed-up against the

only metric-based baseline on billion-scale bipartite graphs.
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1 INTRODUCTION
Bipartite graphs naturally arise as a data structure to model re-

lationships between two types of entities (nodes) with a wide
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range of applications, covering recommender systems [26, 39],

search engines [9], drug discovery [44] and image object recog-

nition [13]. Bipartite graph embedding (BGE), which aims to learn

the vectorized representation of each node of the bipartite graph,

is a fundamental task that underpins the aforementioned applica-

tions [18, 26, 36, 40, 45]. For instance, in the recommender system,

a top-𝐾 item list recommended to a user is obtained by ranking

the dot product of user embedding and item embedding; in drug

discovery, BGE can aid in drug-target interaction predictions by

link prediction (see Figure 2d). Hence, learning high-quality BGE is

essential in boosting downstream applications.

The existing solutions for bipartite graph embedding can be

roughly classified into two categories: metric-based and GNN-based
methods. The former [16, 45] learns embeddings based on prede-

fined similarity/proximity metrics between nodes over their con-

structed approximate paths. Specifically, BiNE [16] performs a large

number of biased random walks within nodes’ multi-hop neighbor-

hood to build the approximate path context, which is not scalable on

large graphs like MovieLens. GEBE
p
[45] assigns approximate path

importance via a probability mass function and optimizes the learn-

ing objective with eigen-decomposition, thus scaling to billion-scale

bipartite graphs. However, the embedding quality of both methods

is sensitive to predefined measures over the approximate structure.

To enhance embedding quality, many research efforts have been

dedicated to designing various GNNmodels to generate BGE [12, 21,

27, 35, 38, 39, 41, 46]. Upon graph convolutional network (GCN) [24],

several studies [21, 34, 46] focus on multi-hop local structure using

neighborhood-based message passing (MP), among which Light-

GCN [21] achieves state-of-the-art performance in efficiency and ef-

fectiveness via simplifying the message passing. To further improve

representations of two-type nodes, follow-up studies [12, 38, 39]

attempt to explore global and local learning simultaneously, i.e.,

capturing high-order homogeneous interactions and heterogeneous

interactions in a unified framework. Among them, global learning

is derived based on local learning. For example, SHT [39] first con-

ducts local learning using neighborhood aggregation and then em-

ploys global learning based on local learning to generate node em-

beddings. Generally, GNN-based methods are able to learn higher-

quality embeddings than metric-based solutions, but they fail to

handle billion-scale bipartite graphs (e.g., MAG) due to the expen-

sive message passing, complex global learning and combination of

multiple self-augmentation techniques, as shown in Figure 1. This

leads to poor applicability in real-life scenarios, where bipartite

graphs consist of millions of nodes and billions of edges.

In a nutshell, existing solutions make some progress in either

model scalability or embedding quality, but none of them achieves

satisfactory performance in both aspects. Motivated by this and
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Figure 1: Top-20 recommendation performance of compar-
ative methods on MoiveLens and MAG. B𝑈 : only binarize
the embeddings of𝑈 , B𝑉 : only binarize the embeddings of𝑉 ,
B𝑈 ,𝑉 : binarize both. We only report results within 3 days.

along the GNN-based methods, our goal is to develop an effective

and scalable BGE solution by addressing the following challenges:

Challenge I: How to efficiently capture local structure with limited
resources? For a bipartite graph, all edges only exist between two

disjoint node sets 𝑈 and 𝑉 , known as “one-hop structure”, and the

learning objective of existing GNN-based methods is mainly to pre-

serve the one-hop structure. Meanwhile, they rely on neighborhood-

based message passing to strengthen the representation of neigh-

boring nodes, thus achieving success in local structure learning [21,

34, 46]. However, such message passing heavily relies on the adja-

cency matrix, leading to expensive storage and computation costs

linear to the number of edges in the graph [21]. This makes these

methods not scalable to large graphs, as demonstrated in Figure 1b

and Section 5.3. These two observations inspire us to efficiently

maintain the important one-hop structure for BGE learning.

Challenge II: How to better model global-local learning? We ob-

serve that although existing global-local learning methods process

𝑈 and𝑉 separately, they still follow the same manner. For example,

SHT [39] constructs𝑈 -hyperedge and 𝑉 -hyperedge propagations

using the same routine. To explore roles of 𝑈 and 𝑉 , we create

three binarization variants (B𝑈 , B𝑉 and B𝑈 ,𝑉 ) based on origi-

nal float-precision embeddings, using the binarization function

sign(·) : R𝑑 → {−1, 1}𝑑 . By comparing performance under B𝑈

and B𝑉 in Figure 1, we observe that𝑈 and𝑉 contribute differently

to BGE performance for almost all BGE methods. This indicates

that the modeling choice of existing global-local learning methods

may be unsuitable. Second, these methods learn global information

combined with the local neighborhood aggregation, leading to in-

ferior scalability compared to those local learning methods (e.g.,

LightGCN), as confirmed in Section 5.3. Hence, effective global-local

learning is essential for large-scale graphs.

Challenge III: How to alleviate the over-smoothing problem? Ex-

isting solutions typically follow the path of the bipartite graph to

generate BGE. Nevertheless, this makes them suffer from the over-

smoothing problem [37]: node representations tend to be indistin-

guishable within neighborhood, thus compromising the embedding

quality. By comparing the performance under original embeddings

and B𝑈 ,𝑉 in Figure 1, we observe that existing methods show a

dramatic performance decrease under B𝑈 ,𝑉 (especially GNN-based

ones, with an average drop of 89% accuracy). This is because both

GNN-based and metric-based methods excessively rely on paths of

bipartite graphs, which leads to indistinguishable node embeddings.

To address the above three challenges, in this paper, we propose

a novel Graph Neural Network with a new anchor-based message

passing schema, called AnchorGNN, for bipartite graph embedding.

To capture global information, we construct effective node-anchor

propagations in our anchor-basedmessage passing, in which anchor

nodes with global knowledge are directly learned and optimized

during the training process (Challenge II). Regarding that edges

on the bipartite graph only exist between two types of node sets, we

introduce a novel one-hop local structure modeling: learning one-

hop proximity between two node sets using maximum likelihood

estimation, which can avoid the usage of 𝑂 ( |𝐸 |) adjacency matrix

(Challenge I). Then, global and local learning are integrated to

learn high-quality node embeddings and effectively alleviate the

over-smoothing problem, as we see the better and more stable per-

formance on AnchorGNN and its variants in Figure 1 (Challenge
III). Furthermore, we optimize the loss function with a negative

sampling strategy, enabling AnchorGNN to process billion-scale

graphs with limited resources (e.g., single GPU), while existing

GNN-based methods run out of memory.

The main contributions are summarized below:

• We propose a novel global-local induced AnchorGNN for

BGE, which significantly advances the state of the art in

both embedding quality and model scalability.

• We propose a new anchor-based message passing schema

to explore global learning, which helps generate distin-

guishable node embeddings in the global context as well as

speeds up model convergence.

• We offer efficient local structure modelling using maximum

likelihood estimation underlying the cross-entropy loss. To

our best knowledge, we rationally analyze its advantages

for bipartite graph learning for the first time.

• Extensive experiments demonstrate that our AnchorGNN

outperforms baselines by a large margin in accuracy and is

significantly faster than the only metric-based baseline on

billion-scale bipartite graphs.

2 PROBLEM STATEMENT
2.1 Preliminaries
Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be a bipartite graph, where 𝑈 and 𝑉 denote

disjoint node sets for two types of nodes. The nodes in𝑈 and𝑉 are

called source nodes and destination nodes, respectively. 𝐸 ⊆ 𝑈 ×𝑉
denotes the edge set. |𝑈 | and |𝑉 | are the number of nodes in 𝑈

and 𝑉 , respectively, and |𝐸 | is the number of edges in 𝐸. The set

of neighbors of a node 𝑥 ∈ 𝑈 ∪ 𝑉 is denoted by N(𝑥). We have

N(𝑢) ⊆ 𝑉 andN(𝑣) ⊆ 𝑈 for 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 . We denote matrices

in bold uppercase (e.g. U) and denote vectors in bold lowercase

(e.g. x). The 𝜅-th element of vector x is denoted by x[𝜅]. Following
convention [16, 45], we consider undirected bipartite graphs here.

2.2 Problem Definition
Bipartite graph embedding aims to map each node 𝑢𝑖 ∈ 𝑈 and each

node 𝑣 𝑗 ∈ 𝑉 into the 𝑑-dimensional vectors u𝑖 and v𝑗 , respectively.
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Figure 2: Overview of AnchorGNN and its downstream tasks. (a) Anchor-based message passing. (b) Local learning in partial-
structure mode. (c) Visualization of hit set in top-20 recommendation on Yelp using t-SNE [32]. Different colors denote different
users. (d) Applications of product recommendation and drug discovery for two downstream tasks, respectively.

We denote matrices U ∈ R |𝑈 |×𝑑
and V ∈ R |𝑉 |×𝑑

as the embedding

vectors of all nodes in 𝑈 and 𝑉 , respectively.

Problem definition. Given an unweighted bipartite graph 𝐺 =

(𝑈 ,𝑉 , 𝐸), BGE is to learn a map function 𝑓 : 𝑈 ∪𝑉 → R𝑑 , where
each node in 𝐺 is mapped to a 𝑑-dimensional embedding vector,

e.g., u𝑖 ∈ R𝑑 = 𝑓 (𝑢𝑖 ).

3 THE PROPOSED ANCHORGNN
Here, we present an overview of our AnchorGNN model (i.e., 𝑓 (·)
function) in Figure 2. Concretely, we first present how to explore

global learning via a new anchor-based message passing strategy,

and then introduce local learning modelling with our loss function,

followed by the rational analysis of the proposed approach.

3.1 Global Learning by Anchor-Based MP
To address the poor scalability of existing global learning methods,

this study proposes a novel anchor-based message passing schema

to model global learning, where we use global shared anchor nodes

for node-anchor propagations. First, we introduce anchor nodes.

3.1.1 Anchor nodes. In AnchorGNN, the anchor node serves as

the intermediate hub among nodes of bipartite graphs, and we give

the definition of the anchor node below.

Definition 1 (Anchor node). The anchor node is the learned
virtual node with distilled global knowledge from the bipartite graph,
which is designed for global information sharing among source nodes.
During the message passing process, each anchor node is assumed to
be connected with all source nodes.

Definition 2 (Anchor node set). The anchor node set is de-
fined by 𝐻 = {ℎ1, ℎ2, · · · , ℎ |𝐻 | }, where we learn the low-dimensional
embedding h𝑗 ∈ R𝑚 for each anchor node ℎ 𝑗 ∈ 𝐻 during the training
process. The number of anchor nodes |𝐻 | and the dimensionality of
anchor node embedding𝑚 are both hyperparameters.

Generally, global information sharing is conducted for two types

of nodes using the same message passing schema [12, 38, 39]. How-

ever, global information sharing in our anchor-based MP for either

𝑈 or 𝑉 would make all node representations affected by anchor

nodes owing to our global-local learning framework. Here, our

anchor-based MP is conducted only on source nodes in 𝑈 and we

leave more detailed explanations in Section 3.3. Next, we formulate

our proposed anchor-based message passing, where its each layer

involves three steps: sending, receiving and updating (Figure 2a).

3.1.2 Sending. Given a source node 𝑢 ∈ 𝑈 , a message is con-

structed at the 𝑙-th layer based on its current representation u(𝑙−1) .
The node sends messages to all anchor nodes using a parameterized

function, which is defined as

s(𝑙 )𝑢 = SEND(u(𝑙−1) ). (1)

Here SEND(·) is the multilayer perceptron (MLP), which is em-

ployed for building virtual edges between the node 𝑢 and all anchor

nodes in 𝐻 , as shown in Figure 2a-①. These edges can be regarded

as a latent space projection from graph nodes to anchor nodes.

s(𝑙 )𝑢 ∈ R𝑚 is then utilized in the receiving step.

3.1.3 Receiving. With constructed edges, we can aggregate the

global information from anchor nodes to the node in𝑈 in this step.

Suppose we employ aggregators of the neighborhood-based MP,

such as sum-, mean- and max-pooling methods [21, 42], the output

of aggregators (e.g., sum({h(𝑙 )
𝑗

|ℎ 𝑗 ∈ 𝐻 })) is a constant vector for
each node, which fails to provide the distinguishable knowledge

for node representations. Inspired by the interaction estimation

in [22, 43], we employ the relevance score to estimate the interaction

between the node 𝑢 and each anchor node ℎ 𝑗 , and formulate it by

r(𝑙 )𝑢 =

|𝐻 ||︁|︁|︁|︁|︁|︁
𝑗=1

ATTENTION(s(𝑙 )𝑢 , h(𝑙 )
𝑗

), (2)
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where we employ the dot-product attention in [33]. We concatenate

(i.e., “| |”) these scores to build interaction messages r(𝑙 )𝑢 ∈ R |𝐻 |
, so

that learned global knowledge is leveraged into global interactions.

Then, each node 𝑢 will receive messages from all anchor nodes, and

we normalize and aggregate these messages by

a(𝑙 )𝑢 = RECEIVE(LN(r(𝑙 )𝑢 )), (3)

where receiving messages for each node 𝑢 are represented as a(𝑙 )𝑢 ∈
R𝑑 . RECEIVE(·) function is the neural networks, e.g., MLP. LN(·)
is the layer normalization [10] to guarantee a fair message receiv-

ing. By Eqs. (2)-(3), each node 𝑢 receives information equally from

interactions between itself and all anchor nodes. The receiving step

is shown in Figure 2a-②.

3.1.4 Updating. Last, we combine the node’s current representa-

tion with aggregated messages to update it by

u(𝑙 ) = UPDATE(u(𝑙−1) , a(𝑙 )𝑢 ) = u(𝑙−1) + sin(a(𝑙 )𝑢 ), (4)

where we employ sin(·) as the activation function and update a

node’s representation by element-wise summation. At the 𝐿-th

layer, we have an embedding vector u = u(𝐿) for node 𝑢 as a result.

Upon three steps, our MP route follows 𝑢 → ℎ → 𝑢 route instead

of the path of 𝑢 → 𝑣 → · · · → 𝑢, avoiding multiple neighborhood

dependencies. Each anchor node is learned and optimized based on

the input graph during the training process, thus preserving global

context. Correspondingly, global information is leveraged to help

generate distinguishable node representation for each 𝑢 based on

the node-anchor propagations, as shown in Figure 2a.

3.2 Local Learning by Loss Function
Upon our anchor-based MP, each source 𝑢 ∈ 𝑈 obtains global in-

formation and produces the embedding u, but the one-hop𝑈 −𝑉
structure constraint is not guaranteed. However, the commonly-

used Bayesian personalized ranking loss [29] in existing GNN-based

methods [21, 27, 34, 35, 38, 39, 47] shows inferior capabilities for

structure learning as shown in experiments of [34]. Hence, we point

out a new modelling direction: based on only two types of nodes

of the bipartite graph, we propose to enforce constraints on node

types to capture one-hop local structure information.

Concretely, we formulate one-hop structure learning as a maxi-

mum likelihood optimization problem, i.e.,max

∏︁
𝑢∈𝑈 𝑃𝑟 (N (𝑢) |𝑢),

where 𝑃𝑟 (N (𝑢) |𝑢) =
∏︁

𝑣∈N(𝑢 ) 𝑃𝑟 (𝑣 |𝑢), and 𝑃𝑟 (𝑣 |𝑢) denotes the
probability of nodes 𝑢 and 𝑣 forming an edge when given 𝑢. Hence,

we can learn one-hop structure directly on the edge set without ad-

jacency matrix construction. We estimate the probability 𝑃𝑟 (𝑣 𝑗 |𝑢𝑖 )
for edge (𝑢𝑖 , 𝑣 𝑗 ) via the softmax function:

𝑃𝑟 (𝑣 𝑗 |𝑢𝑖 ) =
exp(u𝑇

𝑖
v𝑗 )∑︁

𝑣𝑘 ∈𝑁𝑆 (𝑢𝑖 )∪{𝑣𝑗 } exp(u𝑇𝑖 v𝑘 )
, (5)

where 𝑁𝑆 (𝑢𝑖 ) ∪ {𝑣 𝑗 } is the set of candidate neighboring nodes for

𝑢𝑖 , 𝑁𝑆 (𝑢𝑖 ) ⊆ 𝑉 is the set of negative samples for 𝑢𝑖 under training

mode 𝑆 , which will be introduced in Section 4.1. Then we construct

the cross-entropy loss L𝐶𝐸 [11] to maximize log probabilities for

one-hop structure learning: L𝐶𝐸 = −∑︁
(𝑢𝑖 ,𝑣𝑗 ) ∈𝐸 log(𝑃𝑟 (𝑣 𝑗 |𝑢𝑖 )). By

substituting 𝑃𝑟 (𝑣 𝑗 |𝑢𝑖 ) with Eq. (5), we reformulate L𝐶𝐸 as

L𝐶𝐸 =
∑︂

(𝑢𝑖 ,𝑣𝑗 ) ∈𝐸
−u𝑇𝑖 v𝑗 + log(

∑︂
𝑣𝑘 ∈𝑁𝑆 (𝑢𝑖 )∪{𝑣𝑗 }

exp(u𝑇𝑖 v𝑘 )) .
(6)

To prevent overfitting, we use the regularization technique and

obtain the final optimization objective:

min L𝐶𝐸 + 𝜆∥Θ∥2, (7)

where 𝜆 is the hyperparameter. To demonstrate the rationality

behind our design, we construct an in-depth analysis below.

3.3 Analysis on Loss Function
Although the cross-entropy loss is widely used in the classification

task [15, 25, 28], we are the first to analyze its advantages over

bipartite graph structure learning in detail. The advantages lie in

three aspects:

(1) One-hop local structure learning. For the bipartite graph,
two node sets 𝑈 and 𝑉 have no internal edge and the edge set is

𝐸 ⊆ 𝑈 × 𝑉 . Given this property, a practical approach to model

one-hop structure for node 𝑢 ∈ 𝑈 is to maximize

∏︁
𝑣∈N(𝑢 ) 𝑃𝑟 (𝑣 |𝑢)

for all 𝑣 in neighboring set N(𝑢) ⊆ 𝑉 . Thus, L𝐶𝐸 can constrain

the 𝑈 -𝑉 proximity via 𝑃𝑟 (𝑣 |𝑢), leading to the embeddings of 𝑣 and

𝑣 ′ to be closer or clustered together when they are connected to

the same 𝑢, as demonstrated in Figure 2c. Additionally, the softmax

of L𝐶𝐸 in Eq. (5) ensures that the sum of output probability is 1

given any 𝑢𝑖 , thus each node is treated equally regardless of their

degrees. Furthermore, since we directly estimate the probability

distribution 𝑃 (𝑉 |𝑢) for one-hop local structure learning, where

𝑃 (𝑉 |𝑢) = [𝑃𝑟 (𝑣1 |𝑢); 𝑃𝑟 (𝑣2 |𝑢); ...]𝑇 ∈ R |𝑉 |
, we cut the 𝑂 ( |𝐸 |) stor-

age cost of the adjacency matrix. The above three properties ensure

the effective learning of the one-hop graph structure on the bipartite

graph with limited resources.

(2) Adaptation for downstream tasks. An undirected bipartite

graph can be seen as the combination of two directed subgraphs,

thus we can capture the one-hop structure by modelling 𝑃 (𝑉 |𝑢)
and 𝑃 (𝑈 |𝑣). The reason why we model 𝑃 (𝑉 |𝑢) rather than 𝑃 (𝑈 |𝑣)
is that 𝑈 and 𝑉 play different roles for some downstream tasks

like recommendation [19] (see Figure 1), where we evaluate the

performance by ranking u𝑇
𝑖
v𝑗 for all 𝑣 𝑗 ∈ 𝑉 when given 𝑢𝑖 . In such

case, modelling 𝑃 (𝑉 |𝑢) is more suitable than modelling 𝑃 (𝑈 |𝑣).
Meanwhile, this modelling choice also shows the effectiveness for

the link prediction in Section 5.2.

(3) Dependency of V on U. We take batch size = 1 for demon-

stration. During the gradient computation, given a single 𝑢𝑖 , the

partial derivative for the 𝜅-th element of v𝑗 for candidate 𝑣 𝑗 is
𝜕L𝐶𝐸

𝜕v𝑗 [𝜅 ] =
𝜕L𝐶𝐸

𝜕𝑎 𝑗

𝜕𝑎 𝑗

𝜕𝑧 𝑗

𝜕𝑧 𝑗
𝜕v𝑗 [𝜅 ] = (𝑎 𝑗 −𝑦𝑡 ) · u𝑖 [𝜅], where 𝑎 𝑗 is the prob-

ability calculated by softmax in Eq. (5), 𝑧 𝑗 = u𝑇
𝑖
v𝑗 , and 𝑦𝑡 is the

0/1 label for node pair (𝑢𝑖 , 𝑣 𝑗 ), i.e., 𝑦𝑡 = 1 if (𝑢𝑖 , 𝑣 𝑗 ) ∈ 𝐸, otherwise
𝑦𝑡 = 0. Since 0 < 𝑎 𝑗 < 1 for the probability 𝑎 𝑗 ,

𝜕L𝐶𝐸

𝜕v𝑗 [𝜅 ] has an

opposite sign to u𝑖 [𝜅] for 𝑦𝑡 = 1 , and has the same sign to u𝑖 [𝜅]
for 𝑦𝑡 = 0. In other words, the gradient/updating direction of v𝑗
depends on u𝑖 with the guarantee of L𝐶𝐸 (see Figure 2b). The de-

pendency of V on U allows us to focus on anchor-based MP only

among𝑈 while ensuring global learning for𝑉 . The effectiveness of

our modelling approach is validated by experiments in Section 5.5.
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3.4 Anchor-based vs. Neighborhood-based MP
We compare anchor-based MP against neighborhood-based MP in

LightGCN [21], a simple but SOTA BGE solution, from three views.

Note that we set𝑚 < 𝑑 , |𝐻 | < 𝑑 , and 𝐿 = 1. (1) Time complexity
of MP. According to Eqs. (1)-(4), the time complexity of anchor-

based MP in a mini-batch manner is 𝑂 (𝐵 · (𝑚𝑑 +𝑚 |𝐻 | + |𝐻 |𝑑)),
bounded by𝑂 (𝐵 ·𝑑2), where 𝐵 denotes batch size. Its time complex-

ity depends only on hyperparameters rather than |𝐸 |, and provides

more feasibility and efficiency over LightGCN’s neighborhood-

based MP (𝑂 ( |𝐸 |𝐿𝑑) per batch) when |𝐸 | is large. (2) Storage cost
of MP. Anchor-based MP route does not follow the path of the

bipartite graph, thus its overall storage is 𝑂 (𝑚𝑑 +𝑚 |𝐻 | + |𝐻 |𝑑),
bounded by 𝑂 (𝑑2), while neighborhood-based MP requires 𝑂 ( |𝐸 |)
additional storage for adjacency matrix. (3) Distinguishability.
Neighborhood-based MP solutions’ reliance on paths makes them

vulnerable to the over-smoothing problem. In contrast, the combina-

tion of node-anchor propagations and our proposed local learning

helps learn distinguishable embedding regardless of the path.

4 OPTIMIZATION & COMPLEXITY ANALYSIS
4.1 Optimization for Large Bipartite Graphs
We design two training modes 𝑆 including full-structure mode (by
default) and partial-structure mode (for billion-scale graphs). In full-

structure mode, we adopt 𝑁𝑆 (·) = 𝑉 in Eq. (6), which can learn

one-hop structure thoroughly. However, it would take 𝑂 (𝐵 |𝑉 |𝑑)
to compute L𝐶𝐸 , which is costly on large-scale graphs. Hence,

we introduce a partial-structure mode with the negative sampling

strategy to optimize the training process. Concretely, we randomly

sample |𝑁 | nodes from 𝑉 for each 𝑢 in training edges from uni-

form distribution [22, 29] to form the negative sample set 𝑁𝑆 (𝑢),
where |𝑁 | is a hyperparameter. In this mode, our local structure

learning in Eq. (6) is optimized by partial structure, i.e., one pos-

itive sample and |𝑁 | negative samples in Figure 2b. This mode

enables AnchorGNN to process billion-scale bipartite graphs with

decent performance and competitive training speed, which will be

discussed in Section 5.4.

4.2 Complexity Analysis of AnchorGNN
4.2.1 Time complexity. AnchorGNN’s time complexity is mainly

related to that of L𝐶𝐸 and anchor-based MP. On general graphs,

L𝐶𝐸 takes 𝑂 (𝐵 |𝑉 |𝑑). The overall time complexity is 𝑂 (𝐵 |𝑉 |𝑑 +
𝐵 · (𝑚𝑑 +𝑚 |𝐻 | + |𝐻 |𝑑)), which can be reduced to 𝑂 (𝐵 |𝑉 |𝑑) when
𝑑 < |𝑉 |, as the second part (MP) is bounded by𝑂 (𝐵 ·𝑑2) (Section 3.4).
On billion-scale graphs, we use negative sampling, thus L𝐶𝐸 takes

𝑂 (𝐵 |𝑁 |𝑑). The overall time complexity is𝑂 (𝐵 · ( |𝑁 |𝑑 +𝑚𝑑 +𝑚 |𝐻 | +
|𝐻 |𝑑)), which is bounded by 𝑂 (𝐵 · 𝑑2) when |𝑁 | < 𝑑 .

4.2.2 Space complexity. The overall space complexity consists of

the storage of parameters for𝑈 and𝑉 , and additional parameters in

MP. It takes𝑂 (( |𝑈 | + |𝑉 |) · 𝑑 + (𝑚𝑑 +𝑚 |𝐻 | + |𝐻 |𝑑)) storage, which
can be reduced to 𝑂 (( |𝑈 | + |𝑉 |) · 𝑑) when 𝑑 < |𝑈 | + |𝑉 |.

5 EXPERIMENTAL STUDY
We evaluate our AnchorGNN against 8 competitors on 10 real-world

bipartite graphs on two fundamental tasks (i.e., top-𝐾 recommen-

dation and link prediction). All experiments are conducted on a

Table 1: Statistics of Datasets.

Alias Name |𝑈 | |𝑉 | |𝐸 |
WK Wikipedia 15,000 3,214 64,095

PT Pinterest 55,187 9,916 1,480,995

YP Yelp 31,668 38,048 1,561,406

AB Amazon-Book 52,643 91,599 2,984,108

ML MovieLens 69,878 9,708 9,995,471

LF Last.fm 358,680 63,958 17,262,164

MD MIND 876,956 97,509 18,149,915

NF Netflix 463,770 17,768 100,396,376

OK Orkut 2,783,196 8,730,857 327,037,487

MG MAG 10,539,041 1,302,979 1,087,329,592

Linux server with an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz

CPU, 251G RAM and a GeForce RTX 3090 GPU (24GB).

5.1 Experimental Settings
5.1.1 Datasets. Table 1 summarizes the statistics of ten public

datasets used in our experiments. Here, we collect Yelp and Amazon-

Book from [16], and the remaining datasets from [45]. Eight of them

are general graphs, and Orkut and MAG are two large-scale graphs.

5.1.2 Implementation and Setting. We implement our model using

the PyTorch framework. For a fair comparison, we set the em-

bedding dimensionality 𝑑 = 64 for all competitors. The model

parameters are initialized with the Xavier method [17] and the

normalization trick [10] is used during the learning process. We

train AnchorGNNwith Adam optimizer [23], with a learning rate of

0.0002. We set the network layer 𝐿 = 1, the batch size 𝐵 = 1000, the

number of anchor nodes |𝐻 | = 16, and the embedding dimensional-

ity of anchor nodes𝑚 = 8 for all datasets. Note that AnchorGNN

is not sensitive under these configurations. We employ negative

sampling for the two largest datasets (Orkut and MAG), with the

number of samples |𝑁 | = 10 for each training edge, which is an af-

fordable cost to train such large graphs. For all datasets, we perform

a grid search for the L2 regularization coefficient 𝜆 ∈ [0, 0.005].

5.1.3 Baseline Approaches. We compare our AnchorGNN against

8 baseline methods covering 3 groups: ① GNN-based methods:

LightGCN [21], SHT [39], HCCF [38] and BiGI [12]; ② metric-based

methods: GEBE
p
[45] and BiNE [16]; ③ homogeneous network

embedding (HONE) methods: LINE [30] and node2vec [18]. We use

the open-source implementation of baselines under their default

settings [1–8]. Note that we set the batch size as 10, 000 on Netflix

for GNN-based methods, ensuring feasible methods could generate

results within three days. If one method fails to terminate within

three days or runs OOM on one dataset, we do not report it.

5.2 Embedding Quality
We evaluate the embedding quality by two fundamental down-

stream tasks: top-𝐾 recommendation and link prediction.

5.2.1 Top-𝐾 Recommendation. Top-𝐾 recommendation is a per-

sonalized ranking task, which is widely used for existing BGE stud-

ies [16, 21, 45]. We use five bipartite graphs, split them with 8 : 2 for

training and testing under the 10-core setting [20]. The remaining
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Table 2: Top-20 recommendation performance. The best result is highlighted in bold, and the second best is underlined.

Method Yelp MovieLens Last.fm Netflix MAG
RECALL NDCG RECALL NDCG RECALL NDCG RECALL NDCG RECALL NDCG

AnchorGNN 0.070 0.058 0.347 0.437 0.279 0.268 0.217 0.361 0.179 0.286
SHT 0.045 0.037 0.253 0.315 0.152 0.138 - - - -

HCCF 0.035 0.029 0.195 0.250 0.066 0.073 - - - -

LightGCN 0.060 0.049 0.308 0.391 0.232 0.220 0.159 0.291 - -

BiGI 0.001 0.001 0.121 0.129 - - - - - -

GEBE
p

0.041 0.035 0.199 0.263 0.119 0.115 0.121 0.214 0.174 0.278

BiNE 0.012 0.009 - - - - - - - -

node2vec 0.020 0.016 - - - - - - - -

LINE 0.009 0.007 0.097 0.138 0.037 0.036 0.046 0.083 - -

Table 3: Link prediction performance. The best result is highlighted in bold, and the second best is underlined.

Method Wikipedia Pinterest Amazon-Book MIND Orkut
AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

AnchorGNN 0.928 0.938 0.965 0.959 0.954 0.955 0.977 0.974 0.877 0.912
SHT 0.862 0.899 0.952 0.937 0.946 0.948 0.961 0.960 - -

HCCF 0.889 0.916 0.917 0.895 0.901 0.900 0.941 0.939 - -

LightGCN 0.862 0.892 0.963 0.953 0.956 0.959 0.955 0.965 - -

BiGI 0.920 0.930 0.781 0.741 0.834 0.800 - - - -

GEBE
p

0.824 0.871 0.943 0.939 0.908 0.919 0.916 0.925 0.863 0.893

BiNE 0.807 0.862 0.688 0.660 0.755 0.776 - - - -

node2vec 0.657 0.607 0.940 0.927 0.925 0.919 - - - -

LINE 0.743 0.790 0.798 0.777 0.662 0.720 0.876 0.882 0.799 0.870

task setting follows the baselines [21, 39, 45], and we adopt two pop-

ular evaluation metrics: RECALL@K and Normalized Discounted

Culmulative Gain (NDCG@K) (the higher the better). We set𝐾 = 20

and observe from Table 2 that our AnchorGNN significantly outper-

forms eight baselines across all evaluation metrics on all datasets.

In almost all cases, GNN-based methods yield superior performance

than metric-based methods and HONE methods, demonstrating

that advanced deep learning techniques can help generate higher-

quality bipartite graph embedding. Our AnchorGNN beats the best

competitor LightGCN (local learning method) on general graphs

by a large margin, up to 36% in RECALL and 24% in NDCG. Fur-

thermore, AnchorGNN achieves better performance than existing

global-local methods (i.e., SHT, HCCF and BiGI). These validate

the effectiveness of our proposed global-local learning framework.

For the billion-scale dataset MAG, all existing GNN-based methods

run GPU OOM. In contrast, AnchorGNN achieves 0.179 in RECALL

and 0.286 in NDCG, which is averaged 2.8% higher than the only

competitor (metric-based) GEBE
p
that can finish in three days.

5.2.2 Link Prediction. Link prediction aims to predict whether an

edge exists between two given nodes𝑢𝑖 ∈ 𝑈 and 𝑣 𝑗 ∈ 𝑉 . We use five

bipartite graphs and set the training and testing ratio as 6 : 4. We use

the Hadamard product to build the feature vector for each node pair

and conduct experiments following [16, 18, 45]. We evaluate link

prediction in terms of two metrics: the area under the ROC curve

(AUC-ROC) and the Precision-Recall curve (AUC-PR) (the higher

the better). It is observed from Table 3 that AnchorGNN consistently

outperforms baselines in almost all cases, except Amazon-Book

dataset. Concretely, on MIND, our AnchorGNN achieves 1.6% AUC-

ROC and 0.9% AUC-PR improvements compared to the best com-

petitor. For the large-scale bipartite graph Orkut, our AnchorGNN

yields 0.877 in AUC-ROC and 0.912 in AUC-PR, outperforming

the best competitor by a significant margin of up to 1.6% in AUC-

ROC and 2.1% in AUC-PR. To sum up, AnchorGNN can generate

higher-quality embeddings, which facilitates the performance of

downstream tasks. Both tasks endorse the effectiveness of our pro-

posed techniques in global learning and local learning, especially

for large-scale bipartite graph learning.

5.3 Resource Consumption of GNN-based BGE
We assess the resource consumption of GNN-based BGE methods

on 8 general bipartite graphs in terms of overall training time and

GPU memory usage. For a fair comparison, we exclusively consider

baselines that utilize GPU training. Observe from Figure 3 that (1)

In terms of training time in Figure 3a, our AnchorGNN is faster

than all GNN-based methods, achieving 1.4− 60 times speed-up. (2)

AnchorGNN may require more GPU memory on smaller datasets

(e.g., Wikipedia (WK)) compared to GNN-based methods when the

graph size is not significantly larger than the number of nodes. This

is because our GPUmemory is related to the number of nodes, while

the GPU memory of GNN-based methods is related to the graph

size |𝐸 |. However, the memory usage of AnchorGNN is significantly

lower than other methods as the graph size increases (see Figure 3b).

Specifically, AnchorGNN only requires 2697MB of GPU memory

on Netflex (NF), which is 83% cheaper than LightGCN’s 15969MB.
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(3) Although SHT and HCCF combine global learning with edge

sampling strategy to improve efficiency on small datasets, they fail

to handle larger graphs (e.g., Netflex (NF)) due to complex global-

local learning and combinations of multiple self-augmentation tech-

niques. In summary, AnchorGNN exhibits superior scalability and

efficiency compared to other GNN-based methods.

5.4 Scalability
We evaluate the scalability of AnchorGNN against the only com-

petitor (metric-based) GEBE
p
on two billion-scale bipartite graphs.

Observe from Figure 4 and Tables 2-3 that AnchorGNN outperforms

GEBE
p
in terms of time cost, memory usage, and effectiveness in

almost all cases. Next, we present analyses from three perspectives.

(1) Time cost. According to the overall training time in Figure 4,

AnchorGNN takes 434s and 261s on Orkut and MAG, respectively,

achieving 5× and 28× speed-up compared to GEBE
p
, respectively.

Our advantage in efficiency is largely attributed to the fast conver-

gence. We create a variant: AnchorGNN without anchor-based MP

(“w/o MP”) and show their training curves on Orkut and MAG in

Figure 5. Observe that AnchorGNN converges faster and achieves

better performance from scratch compared to its variant, indicating

that the global information provided by anchor-based MP leads to

a strong generalization capability. For example, AnchorGNN can

yield SOTA performance within a small number of training batches,

e.g., obtaining 0.176 in RECALL at batch 200 on MAG. This suggests

that it is less dependent on full-edge training on large graphs. In

contrast, GEBE
p
has to factorize the edge weight matrix for the

entire graph, which is time-consuming on large graphs.

(2) Memory usage. The memory usages of both methods mainly

depend on data loading and model training. For data loading, their

memory usages are approximately the same, where both use CPU

memory. For model training, AnchorGNN takes GPU resources, but

GEBE
p
only costs CPU resources since the input matrix of GEBE

p

takes 𝑂 ( |𝐸 |) storage and cannot be loaded into GPU. In Figure 4,

AnchorGNN’s GPU usage on the two largest graphs is similar since

its GPU usage is related to the number of nodes. In contrast, GEBE
p

applies matrix operations to the edge matrix, resulting in higher

memory usage on larger graphs like MAG. In a word, AnchorGNN

exhibits more advantages than GEBE
p
on larger graphs.

(3) Effectiveness. In Tables 2-3, AnchorGNN yields slightly better

performance than GEBE
p
on two largest graphs. The underlying

reason lies in that hard negatives might not be sampled during

sampling process, which can introduce less informative training

samples. However, our AnchorGNN still achieves competitive per-

formance in the partial-structure mode. To further demonstrate the

effectiveness of AnchorGNN, we choose 10 users on MAG and visu-

alize the representations of items that hit ground truths in the test

set in Figure 6 (same setting as Figure 2c). For AnchorGNN, items

with close representations gather for a user group (Figure 6a). In

contrast, GEBE
p
represents items in a long distance (as highlighted

in its axes with a large span: 10
5 × 10

4
in Figure 6b), making them

less likely to be recommended to the same user.

Overall, global-local induced AnchorGNN provides a feasible,

scalable and effective solution for BGE on large graphs.

5.5 Investigation of AnchorGNN
Ablation Study. To evaluate the effectiveness of our proposed

global learning and local learning components, we construct a vari-

ant without MP (“w/o MP”, i.e., the only local learning component)

and compare the accuracy and overall training time on 10 datasets

on two tasks. Observe from Table 4 that (1) Our variant with merely

local learning outperforms LightGCN (SOTA among local learning

methods) in most cases, which confirms the effectiveness of one-

hop structure learning of bipartite graphs for downstream tasks and

is consistent with our analysis in Section 3.3. (2) Our anchor-based

MP can significantly boost the performance of BGE, with up to 9.3%
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Table 4: Ablation study of AnchorGNN in terms of accuracy and overall training time. The best result is highlighted in bold.

Top-20 Recommendation. (R: RECALL, N: NDCG, time: overall training time (s).)

Method Yelp MovieLens Last.fm Netflix MAG
R N time R N time R N time R N time R N time

AnchorGNN 0.070 0.058 146 0.347 0.437 579 0.279 0.268 1219 0.217 0.361 4038 0.179 0.286 261
w/o MP 0.065 0.053 248 0.332 0.414 376 0.258 0.245 1807 0.210 0.351 2859 0.179 0.288 37452

Link Prediction. (ROC: AUC-ROC, PR: AUC-PR, time: overall training time (s).)

Method Wikipedia Pinterest Amazon-Book MIND Orkut
ROC PR time ROC PR time ROC PR time ROC PR time ROC PR time

AnchorGNN 0.928 0.938 2.9 0.965 0.959 54.6 0.954 0.955 350 0.977 0.974 1158 0.877 0.912 434
w/o MP 0.904 0.922 5.1 0.956 0.947 69.8 0.945 0.941 779 0.973 0.970 2209 0.800 0.876 2886

improvement in recommendation and up to 9.6% improvement in

link prediction, demonstrating that global information contributes

to higher-quality node embeddings. (3) As introduced in Section 5.4,

our anchor-based MP can speed up model convergence under the

guide of global information. Consequently, AnchorGNN reduces

the overall training time compared to its variant in most cases,

achieving up to 143 times speed-up on MAG. On the other hand,

AnchorGNN requires slightly more time to achieve a better perfor-

mance than its variant on relatively dense graphs (MovieLens and

Netflix). This suggests the advantage of our AnchorGNN is more

pronounced on sparse bipartite graphs.

Hyper-parameter sensitivity. We evaluate the sensitivity of the

number of anchor nodes |𝐻 | and the embedding dimension𝑑 , where

|𝐻 | ∈ {1, 2, 4, 8, 16, 32, 64, 128} and 𝑑 ∈ {16, 32, 64}. Figure 7 shows
the results on MovieLens and Orkut.

Sensitivity of |𝐻 |. AnchorGNN can achieve stable and decent per-

formance for |𝐻 | ∈ {8, 16} in most cases, but large |𝐻 | can make

the model overfit. Besides, adding a single anchor node also yields

good performance, indicating the significance of global learning.

In our experiments, we empirically set |𝐻 | = 16.

Sensitivity of 𝑑 . A larger𝑑 leads to better performance inmost cases

since the embedding dimension determines the expressiveness of

AnchorGNN. Throughout our experiments, we set 𝑑 = 64.

6 RELATED WORK
Metric-based Bipartite Graph Embedding. The metric-based

methods generate node embeddings by defining similarity and

proximity metrics over approximate paths. For instance, BiNE [16]

conducts biased random walks to generate vertex sequences as

the approximate path context and learns embeddings from both

edges and paths. This approach incurs significant overhead due to

numerous random walks. GEBE
p
[45] learns to preserve multi-hop

similarity and proximity based on the assigned path importance via

a probability mass function and then optimizes the objective func-

tion by the eigen-decomposition, thus it can process billion-scale

bipartite graphs. Nevertheless, the reliance on approximate paths

makes their embedding quality sensitive to predefined measures.

GNN-based Bipartite Graph Embedding. For bipartite graph
modelling, another promising approach is to use deep learning tech-

niques such as graph convolutional neural networks [21, 34, 48],

transformers [14, 31, 39], and self-augmented learning [35, 38, 39,

41], to improve BGE quality, where most of the research in this

line focuses on the recommendation task. Specifically, NGCF [34]

integrates the user-item interaction into the propagation process,

thus capturing the collaborative signal and high-order connectivity.

LightGCN [21] removes the feature transformation and nonlinear

activation during message passing and achieves SOTA performance.

Based on LightGCN, SGL [35], SimGCL [47] and SHT [39] explore

different self-supervised learning techniques to improve the model

robustness or generalization capability. For example, SHT [39] pro-

poses a self-supervised hypergraph transformer model to explore

global collaborative effects among users and items, where global in-

formation is constructed depending on local learning by two-layer

LightGCN. In addition, HCCF [38] develops a hypergraph-enhanced

cross-view contrastive learning framework that iteratively performs

local neighborhood aggregation and global message propagation,

which can capture the intrinsic relations among users and items.

BiGI [12] produces BGE by maximizing the mutual information

between nodes’ local and global representations, where initial node

embeddings are first learned by the GCN. However, existing GNN-

based methods fail to process billion-scale graphs due to expensive

neighborhood-based MP and more complex modelling choices, as

demonstrated in recent studies [45] and our experiments.

7 CONCLUSION
In this paper, we propose a novel AnchorGNN induced by global-

local learning for large-scale bipartite graph embedding. Concretely,

we propose a new anchor-based message passing schema to capture

global information not depending on local aggregation, which can

provide distinguishable messages for each node and speed up model

convergence. Underlying the bipartite graph property, we leverage

maximum likelihood estimation to model one-hop local structure

learning, where our local learning not only avoids the memory cost

of𝑂 ( |𝐸 |) adjacency matrix but also shows comparable performance

against LightGCN [21]. Both global and local learning are integrated

to effectively alleviate the over-smoothing problem and generate

high-quality node embeddings. Extensive experiments on general

and billion-scale graphs validate the superior performance in both

embedding quality and model scalability.
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