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ABSTRACT
Time series data, including univariate and multivariate ones, are
characterized by unique composition and complex multi-scale tem-
poral variations. They often require special consideration of decom-
position andmulti-scalemodeling to analyze. Existing deep learning
methods on this best fit to univariate time series only, and have
not sufficiently considered sub-series modeling and decomposition
completeness. To address these challenges, we propose MSD-Mixer,
aMulti-Scale Decomposition MLP-Mixer, which learns to explic-
itly decompose and represent the input time series in its different
layers. To handle the multi-scale temporal patterns and multivariate
dependencies, we propose a novel temporal patching approach to
model the time series as multi-scale patches, and employ MLPs to
capture intra- and inter-patch variations and channel-wise correla-
tions. In addition, we propose a novel loss function to constrain both
the mean and the autocorrelation of the decomposition residual
for better decomposition completeness. Through extensive experi-
ments on various real-world datasets for five common time series
analysis tasks, we demonstrate that MSD-Mixer consistently and
significantly outperforms other state-of-the-art algorithms with
better efficiency.
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Figure 1: (a) Decomposition of time series. (b) Comparison
of single time points and multi-scale sub-series.

1 INTRODUCTION
A time series is a sequence of data points indexed in time order. It
typically consists of successive numerical observations obtained
in a fixed time interval. In multivariate time series, each observa-
tion contains more than one variable, which forms the "channel"
dimension. With the fast development of sensing and data storage
technologies, time series data is now becoming omnipresent in our
lives, from weather conditions and urban traffic flow to personal
health data monitored by smart wearable devices. The analysis of
time series data, such as forecasting [5, 10, 15, 40], missing data
imputation [4, 21, 30], anomaly detection [33–36], and classifica-
tion [7, 8, 25], is therefore facilitating more and more real-world
applications, and attracts increasing research interest from both
the academia and the industry.

In contrast to images and natural languages, time series data
is characterized by its special composition and complex temporal
patterns or correlations. Specifically, each data point in a time series
is actually a superposition of various underlying temporal patterns
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plus noise at that time (Figure 1(a)). To better model and analyze the
data, it is hence important to decompose the data into disentangled
components corresponding to different temporal patterns [18, 45].
Furthermore, time series data carries the semantic information
of the temporal patterns in local consecutive data points termed
sub-series, rather than individual data point [31, 42, 48, 51]. The
temporal patterns are usually in multiple timescales, thus making it
important to extract sub-series features and model their changes in
multiple time scales (Figure 1(b)). To make the problem even more
complex, multivariate time series may involve intricate correlations
between different channels [16, 55]. These characteristics all make
time series analysis a challenging problem.

Recent approaches for time series analysis take advantage of the
strong expressiveness of deep learning, especially the Transformer
architecture [41], and have achieved significant performance in var-
ious tasks [22, 49, 56, 57]. However, it is recently pointed out that
the Transformer is actually no better than multi-layer perceptrons
(MLPs) in time series modeling, since Transformers are designed to
embed information of single time points and model their pair-wise
correlations, while time series data carries information in its multi-
scale sub-series instead of single time points. At the same time,
most approaches consider no or merely simple decomposition of
temporal patterns [49, 57], which makes it hard for them to handle
various intricate temporal patterns in time series data [3, 44]. Con-
sidering the composition of time series, some methods adopt a deep
learning architecture that learns to decompose temporal patterns
from the input for forecasting [6, 32, 47]. However, without consid-
ering inter-channel dependency, [32] and [6] are best applicable to
univariate rather than multivariate time series. Furthermore, the
aforementioned works did not investigate into the residual of the
decomposition, which may lead to incomplete decomposition, i.e.,
meaningful temporal patterns may be left in the residual and not
utilized by the model.

In this work, we address these problems by proposing MSD-
Mixer, a novel Multi-Scale Decomposition MLP-Mixer to analyze
both univariate and multivariate time series. MSD-Mixer is based
exclusively on MLPs, which is simple but effective for time series
modeling. To account for the special composition of time series
data, MSD-Mixer explicitly decomposes the input time series into
different components by generating their latent representations
in different layers, and accomplishes the analysis task based on
such representations. In MSD-Mixer we propose a novelmulti-scale
temporal patching approach that divides the input time series into
non-overlapping patches along the temporal dimension in each
layer for sub-series modeling. Different layers have different patch
sizes such that they can focus on different time scales. To better
model multi-scale temporal patterns and inter-channel dependen-
cies, MSD-Mixer employs MLPs along different dimensions to learn
intra- and inter-patch variations as well as channel-wise correla-
tions. In addition, to enhance the learning of the decomposition
process, we propose a novel loss function to constrain both the
mean and the autocorrelation of the decomposition residual during
training. Used together with the loss function from the target anal-
ysis task, it helps MSD-Mixer to decompose the time series data
more thoroughly for better analysis results.

Empowered by the above-mentioned decomposition and multi-
scale modeling features, MSD-Mixer distinguishes itself as a task-
general backbone that can be adapted for various time series anal-
ysis tasks. Through extensive experiments on various real-world
datasets, we demonstrate that MSD-Mixer consistently outperforms
both task-general and task-specific state-of-the-art approaches by a
wide margin across five common time series analysis tasks, namely
long-term forecasting (up to 9.8% in MSE), short-term forecasting
(up to 5.6% in OWA), imputation (up to 46.1% in MSE), anomaly
detection (up to 33.1% in F1-score) and classification (up to 36.3%
in Mean Rank).

To summarize, we make the following contributions in this pa-
per:

• A novel task-general backbone MSD-Mixer that is well de-
signed to analyze time series data by learning to explicitly
decompose and represent the temporal patterns.

• A multi-scale temporal patching approach in MSD-Mixer
that facilitates modeling the time series data as multi-scale
patches with MLPs, to better account for the multi-scale
temporal patterns in the data.

• A residual loss for MSD-Mixer to constrain both the mean
and the autocorrelation of the decomposition residual for
better decomposition completeness.

• Extensive experiments on 26 datasets for five common time
series analysis tasks to validate the effectiveness of MSD-
Mixer.

The remainder of this paper is organized as follows: We first
review related works in Section 2, and elaborate on MSD-Mixer
and its modules in Section 3. We show the experimental results in
Section 4 and conclude in Section 5.

2 RELATEDWORKS
2.1 Classical Methods
As one of the fundamental data modalities, time series has been
well studied for long in various science and engineering domains
that rely on temporal measurements, and has been mostly discussed
for forecasting [14, 18]. Regarding the special composition and the
complex temporal patterns of time series data, early approaches
employ manually designed rules or function models to decompose
the time series data, such that the temporal patterns can be dis-
entangled and modeled separately [9, 11, 13, 17, 39, 43, 46]. The
decomposition usually consists of several components represent-
ing different temporal patterns, plus a residual which is supposed
to be noise with no useful information. These approaches usually
require considerable domain knowledge and manual effort to be
adapted to specific domains, and are less expressive and scalable
considering nowadays large multivariate time series datasets with
complex temporal patterns and channel-wise correlations.

2.2 Deep Models without Decomposition
In recent years, deep learning has been widely applied in time series
analysis for its strong expressiveness and scalability on large and
complex datasets. The deep learning based approaches either apply
MLP [53], convolutional neural network (CNN) [19, 27, 48], recur-
rent neural network (RNN) [2], Transformer [7, 31, 50], or their
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combination [4, 20, 42] to model the time series data for specific
tasks. Among them, RNNs have been pointed out for their deficiency
in modeling long sequences which are common in time series anal-
ysis tasks. Its difficulty with parallelized training also greatly affects
their efficiency. CNNs, instead, usually require special attention to
make the trade-off between the number of layers and the effective
receptive fields, or consider the design of dilation or pooling rate
when applied for time series analysis [24, 26]. Transformer-based
models are taking the lead in many time series analysis tasks due
to the powerful capability of attention mechanism to capture long-
sequence dependencies. Many works have been done to further
improve the efficiency [22, 56] and effectiveness [37, 49, 57] of the
Transformer for time series data. However, it is recently shown
that the Transformer, which relies on point embedding and their
pair-wise correlations, is not a promising choice for time series
data, since the semantic information is embedded in the sub-series
level variations instead of single time points [51]. In light of this,
PatchTST [31] and TimesNet [48] are proposed to combine patch
modeling with Transformer and CNN for time series data. Despite
the above-mentioned achievements, most deep learning based ap-
proaches do not consider the decomposition of temporal patterns,
or only simply consider the decomposition of very limited types
and number of components [49, 57], which makes it hard for them
to deal with multiple intricate temporal patterns in time series
data [3].

2.3 Deep Models with Decomposition
By combining deep learning with decomposition, N-BEATS [32],
N-HiTS [6], and ETSformer [47] show satisfactory results in time
series forecasting. However, N-BEATS and N-HiTS do not consider
the inter-channel correlation, which has been shown critical in
multivariate time series analysis tasks. In addition, they are based
on plain MLP on the temporal dimension while ETSformer [47] is
based on self-attention for temporal modeling, all of which do not
take into account the sub-series level features. Furthermore, they
simply ignore the residual of the decomposition, which may lead to
incomplete decomposition that meaningful temporal patterns can
be left in the residual and not utilized. Besides, all these schemes
have only been tested on the forecasting task, leaving other analysis
tasks such as imputation, anomaly detection, and classification
unexplored.

In comparison, we propose MSD-Mixer that advances them with
multi-scale temporal patching and multi-dimensional MLP mixing
for multi-scale sub-series and inter-channel modeling. Meanwhile,
we propose a residual loss for better completeness of the decompo-
sition process in MSD-Mixer. Furthermore, we experiment MSD-
Mixer and compare it with state-of-the-art methods on various
datasets across the forecasting, imputation, anomaly detection, and
classification tasks to show its superior modeling ability over other
methods.

3 MSD-MIXER
In this section, we first formally introduce the definition of gen-
eral time series analysis problems and time series decomposition
in 3.1. Then, we overview the architecture and workflow of our
proposed MSD-Mixer in Section 3.2, followed by elaboration on the

key designs in MSD-Mixer in Sections 3.3 to 3.5, then summarize
in Section 3.6.

3.1 Problem Settings
3.1.1 Time Series Analysis. In this paper, we summarize the general
learning-based time series analysis tasks, including but not limited
to forecasting, imputation, anomaly detection, and classification, as
the following problem: Given a dataset D containing sample pairs
(𝑿 , 𝒀 ), where 𝑿 ∈ R𝐶×𝐿 denotes the input multivariate time series
with 𝐶 channels and 𝐿 time steps, and 𝒀 denotes the label whose
form is subject to the target time series analysis task. The time
series analysis problem is to obtain an optimal function F (·) on
the dataset that maps the input 𝑿 to its corresponding label as
𝒀̂ = F (𝑿 ), such that the difference between the prediction 𝒀̂ and
the ground truth 𝒀 is minimized.

Different target time series analysis tasks have different forms
of 𝒀 and 𝒀̂ . For example, 𝒀 ∈ R𝐶×𝐻 in a forecasting task with
horizon size 𝐻 , and 𝒀 ∈ R𝑀 in a classification task with𝑀 target
classes. Different tasks also employ different metrics to measure the
difference between 𝒀 and 𝒀̂ for computing the task-specific loss,
e.g., cross-entropy loss used in classification and mean square error
loss used in forecasting.

3.1.2 Time Series Analysis with Decomposition. Existing deep learn-
ing approaches for time series generally learn to directly represent
the input 𝑿 and map it to the output, which makes it hard for them
to handle multiple intricate temporal patterns. Instead, we consider
the decomposition of 𝑿 as:

𝑿 =

𝑘∑︁
𝑖=1

𝑺𝑖 + 𝑹, (1)

where 𝑺𝑖 , 𝑹 ∈ R𝐶×𝐿 denote the 𝑖-th component (𝑖 = 1, ..., 𝑘) and
the residual, respectively. Suppose each component 𝑺𝑖 has a lower-
dimensional representation 𝑬𝑖 , then the target F can be divided
and conquered by a set of functions 𝑓𝑖 (·) of the component repre-
sentations:

𝒀̂ = F (𝑿 ) =
𝑘∑︁
𝑖=1

𝑓𝑖 (𝑬𝑖 ). (2)

3.2 MSD-Mixer Overview
Figure 2 shows the overall architecture of MSD-Mixer. MSD-Mixer
comprises a stack of 𝑘 layers, and learns to hierarchically decom-
pose the input 𝑿 into 𝑘 components {𝑺1, ..., 𝑺𝑘 } by generating their
lower-dimensional representations {𝑬1, ..., 𝑬𝑘 } in the correspond-
ing layers. The number of layers and components 𝑘 is a hyperpa-
rameter in MSD-Mixer which should be determined according to
the properties of the dataset. Here we define 𝒁0 = 𝑿 , and

𝒁𝑖 = 𝑿 −
𝑖∑︁
𝑗=1

𝑺 𝑗 , (𝑖 = 1, ..., 𝑘), (3)

such that 𝒁𝑖 specifies the remaining part after the first 𝑖 components
has been decomposed from the input 𝑿 , and we have

𝒁𝑖 = 𝒁𝑖−1 − 𝑺𝑖 . (4)

As is shown in Figure 2, the 𝑖-th layer of MSD-Mixer takes the
remaining part 𝒁𝑖−1 from the previous layer as input, and learns
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Figure 2: MSD-Mixer overview.
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Figure 3: Examples of multi-scale temporal patching. The
channel dimension is omitted for simplicity.

to represent 𝒁𝑖−1 with a lower dimensional representation 𝑬𝑖 . The
represented part is the 𝑖-th component 𝑺𝑖 . More specifically, within
each layer, 𝒁𝑖−1 is first patched in the Patching module, and then
fed into the Patch Encoder module to generate the representation of
𝑖-th components as 𝑬𝑖 = 𝑔𝑖 (𝒁𝑖−1). The Patch Decoder module then
reconstructs 𝑺𝑖 from 𝑬𝑖 , and the Unpatching module unpatches
it to the original dimensionality. After that, 𝑺𝑖 is subtracted from
𝒁𝑖−1 to obtain 𝒁𝑖 . 𝒁𝑖 is fed to the next layer as input for further
decomposition, and 𝑬𝑖 is projected by linear layers and summed to
obtain 𝒀 following Equation 2.

3.3 Multi-Scale Temporal Patching
Considering the importance of multi-scale sub-series modeling for
time series analysis, we introduce multi-scale temporal patching in
MSD-Mixer such that different layers can focus on different sub-
series features. Each layer of MSD-Mixer has a predefined patch
size 𝑝𝑖 , which is a hyperparameter to be determined or tuned for
specific datasets.

We depict the patching process in Figure 3. To transform an
input time series with 𝐶 channels and 𝐿 time steps into patches
with patch size 𝑝 , we first pad the time series with zeros at the
beginning of the time series to ensure the length is divisible by 𝑝 ,

and then segment the time series along the temporal dimension
into non-overlapping patches with stride 𝑝 . We then permute the
data to create a new dimension for the patches, resulting in a high
dimensional tensor of 𝐶 × 𝐿′ × 𝑝 , where 𝐿′ = ⌈𝐿/𝑝⌉

3.4 Patch Encoder and Decoder
The Patch Encoder and Decoder modules are based exclusively on
MLPs along different dimensions for feature extraction. We show
the design of each MLP block in Figure 4(a), which simply consists
of two fully connected layers, a GELU nonlinearity layer, and a
DropPath layer [23], together with a residual connection that adds
the input to the output. We use the following three types of MLP
blocks in Patch Encoder and Decoder modules:

• The channel-wise MLP block allows communication between
different channels, to capture inter-channel correlations.

• The inter-patch MLP block allows communication between
different patches, to capture global contexts.

• The intra-patch MLP block allows communication between
different time steps within a patch, to capture sub-series
level variations.

As shown in Figure 4(b) the Patch Encoder module consists of a
channel-wise MLP block, an inter-patch MLP block, an intra-patch
MLP block, and a linear layer in order to produce the component
representation 𝑬𝑖 from the patched 𝒁𝑖−1. The Patch Decoder mod-
ule (4(c)) consists of the same number and type of blocks as the
Patch Encoder module, but in a reversed order to reconstruct 𝑺𝑖
from 𝑬𝑖 .

3.5 Residual Loss
The residual of the decomposition is useful in checking whether
the information in the data has been adequately captured into the
components. An ideal decomposition should yield a residual with
the following two properties:

• It should have zero mean. If the residual has a mean other
than zero, then there can be biases left in the residual.

• It should contain no autocorrelation. The stronger the au-
tocorrelation is in the residual, the more likely there can be
temporal patterns such as trends and periodic information
left in the residual.

A residual that does not satisfy these properties indicates the incom-
pleteness of the decomposition, which means useful information
has not been fully accounted for by the components.

By jointly considering the two properties of the decomposition
residual, we propose a novel residual loss to train MSD-Mixer such
that it can learn to achieve better decomposition completeness. The
residual loss minimizes both the mean and the autocorrelation of
the residual. The autocorrelation of the residual can be measured
by its autocorrelation coefficients which are defined in [−1, 1]. A
larger absolute value of the coefficient indicates a stronger correla-
tion. It is usually expected that the autocorrelation coefficients of a
successful decomposition should lie within ±2/

√
𝐿 where 𝐿 is the

series length. In a MSD-Mixer with 𝑘 layers, 𝒁𝑘 output by the last
layer specifies the residual of the decomposition. We first compute
the autocorrelation coefficient matrix 𝑨 = {𝑎𝑖, 𝑗 } ∈ R𝐶×(𝐿−1) of
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Figure 4: (a) MLP block. (b) Patch Encoder. (c) Patch Decoder.

𝒁𝑘 as:

𝑎𝑖, 𝑗 =

∑𝐿
𝑡=𝑗+1 (𝑧𝑖,𝑡 − 𝑧𝑖 ) (𝑧𝑖,𝑡− 𝑗 − 𝑧𝑖 )∑𝐿

𝑡=1 (𝑧𝑖,𝑡 − 𝑧𝑖 )2
, (5)

where 𝑧𝑖, 𝑗 is the 𝑖-th channel and 𝑗-th time step of 𝒁𝑘 . We then
define the residual loss by:

L𝑟 =

∑
𝑖, 𝑗 𝑧

2
𝑖, 𝑗

𝐶 × 𝐿
+
∑
𝑖, 𝑗 (ReLU( |𝑎𝑖, 𝑗 | − 𝛼/

√
𝐿))2

𝐶 × (𝐿 − 1) . (6)

The first term of L𝑟 minimizes the mean of the residual. And the
right term imposes a constraint on the autocorrelation coefficients
of the residual, where 𝛼 is a hyperparameter controlling the maxi-
mum tolerance of the autocorrelation coefficients. We finally train
MSD-Mixer by simultaneously optimizing the weighted sum of the
task-specific loss and the residual loss:

L = L𝑡 + 𝜆L𝑟 . (7)

3.6 Summary
We summarize the overall training process of MSD-Mixer in Al-
gorithm 1. Given a training dataset D with time series data and
corresponding labels as D = {(𝑿 , 𝒀 )}, we train MSD-Mixer based
on the dataset until the loss converges. During the process, we first
sample (𝑿 , 𝒀 ) from D (line 3), and then initialize 𝒁0 to be 𝑿 (line
4). After that, for each layer 𝑖 ∈ [1, 𝑘], we patch 𝒁𝑖−1 using the
patch size 𝑝𝑖 (line 6). The patched input is then fed into MLP-Mixer
to generate 𝑬𝑖 (line 7). This learned representation 𝑬𝑖 is eventu-
ally decoded and unpatched to reconstruct the input in each layer
(lines 8 – 10). The labels are predicted with loss computed for back
propagation (lines 11 – 13). This whole process is repeated until
convergence to return the trained MSD-Mixer model (line 14).

4 ILLUSTRATIVE EXPERIMENTAL RESULTS
In this section, we first overview the experiment setup and key
results in Section 4.1. Then, in Section 4.2 to 4.5, we discuss in detail
the experiments and results of different time series analysis tasks,

Algorithm 1: Training of MSD-Mixer.
Input: Training set D = { (𝑿 ,𝒀 ) }, number of layers 𝑘 , patch size
for each layer 𝑝1, · · · , 𝑝𝑘 .

Output: Trained MSD-Mixer.
1 Initialize MSD-Mixer with 𝑘 layers of patch size 𝑝1, · · · , 𝑝𝑘 .
2 repeat
3 Sample (𝑿 ,𝒀 ) from D.
4 𝒁 0 = 𝑿 .
5 for 𝑖 = 1, 2, . . . , 𝑘 do
6 Patch 𝒁𝑖−1 with 𝑝𝑖 .
7 Compute 𝑬𝑖 = 𝑔𝑖 (𝒁𝑖−1 ) with 𝑖-th layer’s Patch Encoder.
8 Compute 𝑺𝑖 = ℎ𝑖 (𝑬𝑖 ) with 𝑖-th layer’s Patch Decoder.
9 Unpatch 𝑺𝑖 with 𝑝𝑖 .

10 𝒁𝑖 = 𝒁𝑖−1 − 𝑺𝑖 .
end

11 Compute 𝒀̂ =
∑𝑘

𝑖=1 𝑓𝑖 (𝑬𝑖 ) with Task Head modules.
12 Computer loss according to Equation 5–7.
13 Back propagation.

until convergence;
14 return Trained MSD-Mixer.

followed by ablation studies on our proposed modules in Section
4.7. Lastly, we study the efficiency of MSD-Mixer by comparing
the number of model parameters and training time consumption
of different approaches in Section 4.8, and empirically analyze the
decomposition of MSD-Mixer by example cases in Section 4.9.

4.1 Overview
In order to validate the modeling ability of MSD-Mixer, we conduct
extensive experiments on a wide range of well-adopted benchmark
datasets across five most common time series analysis tasks, in-
cluding long-term forecasting, short-term forecasting, imputation,
anomaly detection, and classification. The tasks and benchmark
datasets are of different characteristics that we leverage them to
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Table 1: Summary of Tasks, Datasets and Metrics

Tasks Datasets [48] Metrics

Long-Term
Forecasting

ETT (4 subsets),
ECL, Weather,
Traffic, Exchange

Mean Square Error (MSE),
Mean Absolute Error (MAE)

Short-Term
Forecasting M4 (6 subsets) SMAPE, MASE, OWA [29]

Imputation ETT (4 subsets),
ECL, Weather MSE, MAE

Anomaly
Detection

SMD, MSL,
SMAP, SWaT,
PSM

F1-Score

Classification UEA (10 subsets
[7]) Accuracy

investigate on different aspects of MSD-Mixer. Table 1 summa-
rizes the five tasks, datasets, and evaluation metrics we use in the
experiments.

4.1.1 Baselines. We compare our proposed MSD-Mixer with state-
of-the-art task-general approaches that can serve as general solu-
tions to various time series analysis tasks, as well as task-specific
approaches that are proposed for specific time series analysis tasks.

For task-general baselines, we select approaches that cover main-
stream deep learning architectures, including CNN, Transformer,
and MLP. Among them, TimesNet [48] and PatchTST [31] com-
bine sub-series modeling with CNN and Transformer, respectively.
Crossformer [55] is a Transformer-based approach with special
designs for channel-wise correlations. ETSformer [47] is among
the first to leverage Transformer for decomposition. NST [28] and
FEDformer [57] are also Transformer-based approaches that con-
sider the stationarity and frequency domain features of time series
data. DLinear [51] and LightTS [53] are MLP-based light-weight ap-
proaches. LightTS further considers channel-wise and local-global
features in the data.

In addition, we introduce and compare with extra state-of-the-
art task-specific approaches for tasks in the corresponding sections,
including long-term forecasting (Section 4.2), short-term forecast-
ing (Section 4.3), anomaly detection (Section 4.5), and classification
(Section 4.6).

4.1.2 Implementation. We follow the implementation of baselines
in [48]. All models including MSD-Mixer and the baselines are im-
plemented with PyTorch and trained with a single NVIDIA GeForce
RTX 4090 GPU with 24 GB memory. We search the best number of
layers from 4 to 6, and dimensions of the model from 64 to 512 for
MSD-Mixer with different datasets. We set the patch size in MSD-
Mixer by considering the series length and sampling interval of the
dataset. For instance, the ETTm1 dataset provides two years’ data
of electricity transformer temperature from two separate counties
in China. It contains time series with a length of 96 samples and
the sampling interval is 15 minutes, i.e., two samples are collected
15 minutes apart. To model the time series efficiently, we use five
layers in MSD-Mixer with patch sizes for each layer as {24, 12, 4, 2,

1}, which correspond to the sub-series of 6 hours (15min × 24), 3
hours, 1 hour, 30 minutes, and 15 minutes, respectively.

4.1.3 Overall Performance. Table 2 summarizes the overall perfor-
mance of task-general schemes. As shown in the table, our pro-
posed MSD-Mixer outperforms other state-of-the-art baselines sig-
nificantly in all the benchmarks across the five tasks. Benefiting
from the special design of the decomposition, multi-scale tempo-
ral patching, and the residual loss components, MSD-Mixer is far
ahead of its CNN-based (TimesNet), Transformer-based (PatchTST,
Crossformer, ETSformer, NST, FEDformer) andMLP-based (DLinear,
LightTS) task-general counterparts by a large margin, demonstrat-
ing its great and comprehensive modeling ability for time series
analysis.

4.2 Long-Term Forecasting
4.2.1 Task Settings. Long-term time series forecasting has always
been a primary goal of time series analysis. Characterized by its ex-
traordinary long horizon as output, the forecasting testifies the long-
rangemodeling ability of different schemes. In this task, we evaluate
the approaches on eight popular real-world datasets across energy,
transportation, weather, and finance domains. Each dataset con-
tains one long multivariate time series. Information of the datasets
is summarized in Table 3.

We include Scaleformer [37] as a task-specific baseline in this
experiment. Scaleformer is the latest Transformer-based approach
with impressive performance in long-term forecasting by iteratively
refining the forecasting result at multiple time scales.

In this task, we denote the model input as 𝑿 ∈ R𝐶×𝐿 , and the
model output as 𝒀 ∈ R𝐶×𝐻 , where 𝐶 , 𝐿, and 𝐻 are the number
of channels, the length of input time series, and the forecasting
horizon, respectively. We fix the length of input time series as 96,
and then train and test each scheme with four forecasting horizons,
i.e., 96, 192, 336, and 720, to evaluate the performance of different
schemes under different forecasting horizons. We obtain input and
output sample pairs with a sliding window over the long time series.
We use the mean squared error (MSE) between the ground truth 𝒀
and the prediction 𝒀̂ as the loss function to train the models, and
report both MSE and mean absolute error (MAE) for performance
evaluation.

4.2.2 Result Analysis. As shown in Table 4, MSD-Mixer achieves
the best performance on most datasets, including different fore-
casting horizon settings, with 45 first and 9 second places out of
64 benchmarks in total. Furthermore, on most benchmarks, MSD-
Mixer outperforms the second place by a significant margin. From
the results, we can see that although ETSformer adopts the de-
composition design, it is still based on the pair-wise self-attention
for temporal feature extraction, which has been shown to be inef-
fective for sub-series modeling. Therefore it struggles to perform
well. TimesNet and PatchTST consider sub-series modeling in their
design. Thus these two schemes are shown to be the strongest
baselines. Compared with them, MSD-Mixer still outperforms sig-
nificantly by combining decomposition with multi-scale sub-series
modeling in the design. We believe that the outstanding perfor-
mance of MSD-Mixer fully demonstrates the efficacy of our multi-
scale decomposition in time series modeling.
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Table 2: Overall performance comparison with task-general baselines. Each number of a scheme in the table represents in how
many benchmarks the scheme performs the best. The best results are in bold and the second bests are underlined.

Task # of Benchmarks MSD-Mixer PatchTST Crossformer TimesNet DLinear ETSformer NST FEDformer LightTS
(Ours) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2022)

Long-Term Forecasting 64 45 7 8 1 3 2 0 1 1
Short-Term Forecasting 15 15 0 0 0 0 0 0 0 0

Imputation 48 45 0 0 9 0 0 0 0 0
Anomaly Detection 5 4 0 0 1 0 0 0 0 0

Classification 10 5 0 0 0 0 0 0 0 0
Total 142 114 7 8 11 3 2 0 1 1

Table 3: Statistics of datasets for long-term forecasting.

Dataset Dim Total Timesteps Frequency
ETTm1, ETTm2 7 69680 15 mins
ETTh1, ETTh2 7 17420 1 hour

ECL 321 26304 10 mins
Traffic 862 17544 1 hour
Weather 21 52696 10 mins
Exchange 8 7588 1 day

4.3 Short-Term Forecasting
4.3.1 Task Settings. In this task, we adopt the dataset and perfor-
mance measures from the well-known M4 competition [29], which
focuses on the short-term forecasting of univariate time series. The
dataset contains 100,000 sequences of data in total, which are fur-
ther divided into 6 subsets by sampling intervals including yearly,
quarterly, monthly, weekly, daily, and hourly. More information of
the dataset is summarized in Table 5. Each subset contains real-life
time series data from different domains, such as economics, finance,
industry, demographics, etc. The analysis requires the forecasting
models to learn the general temporal patterns from samples across
diverse domains.

We include N-BEATS [32] and N-HiTS [6] as task-specific base-
lines. N-BEATS is an MLP-based model for time series decomposi-
tion. N-HiTS further enhances N-BEATS with multi-scale modeling
by introducing down-sampling and interpolation. They are pro-
posed for univariate time series forecasting only.

We evaluate with the symmetric mean absolute percentage error
(SMAPE) and the mean absolute scaled error (MASE), defined as

SMAPE =
200
𝐻

𝐻∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
|𝑦𝑖 | + |𝑦𝑖 |

,

MASE =
1
𝐻

𝐻∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
1

𝐻−𝑚
∑𝐻

𝑗=𝑚+1 |𝑦 𝑗 − 𝑦ℎ−𝑚 |
,

(8)

where𝑦𝑖 and𝑦𝑖 are the ground truth and forecasting of the 𝑖-th time
step in 𝐻 total future time steps,𝑚 is the periodicity of the data.
Intuitively, SMAPE measures the relative errors of the forecasting
result. MASE is the MAE of the forecast values divided by the MAE
of the in-sample one-step naive forecast. We also use the overall
weighted average (OWA) of SMAPE and MASE as an evaluation
metric, which is defined by the M4 competition [29].

4.3.2 Result Analysis. As shown in Table 6, MSD-Mixer again leads
the board with top-1 performance in every benchmark, which

demonstrates the excellent capability of MSD-Mixer on model-
ing short and univariate time series. Each time point in a univari-
ate time series is a single scalar, which makes it even harder for
Transformer based models to attain meaningful attention scores.
Therefore, Transformer based approaches, which rely on pair-wise
correlations have inferior performance in this task, especially ETS-
former. Among the baselines, N-HiTS and N-BEATS are based on
decomposition, and they show satisfactory performance in this task,
which validates the effectiveness of decomposition for time series
modeling. MSD-Mixer further advances N-BEATS and N-HiTS with
multi-scale temporal patching and mixing, as well as the residual
loss for better extraction of temporal patterns, which facilitates
MSD-Mixer with stronger modeling ability than them, and helps
MSD-Mixer achieve the best performance.

4.4 Imputation
4.4.1 Task Settings. Missing values are common in real-world con-
tinuous data systems that collect time series data from various
sources. A single missing data in a time series can break down the
whole downstream application since most analysis methods assume
complete data, which makes missing data imputation critical for
time series analysis. In this task, we experiment on the ETT, ECL,
and Weather datasets which are summarized in Table 3.

In the experiments, we first obtain the data samples 𝑿 ∈ R𝐶×𝐿

with a sliding window, whose size 𝐿 is set as 96. We then create
missing values 𝑿𝑚𝑎𝑠𝑘 in the data by randomly masking the 𝑿 with
zeros. We use 𝑿𝑚𝑎𝑠𝑘 as model input and the unmasked data 𝑿 as
ground truth for training and testing. To evaluate the performance
under different ratios of missing data, for each dataset we train
and evaluate each model with four missing data ratios, i.e., 12.5%,
25%, 37.5%, and 50%. We use the MSE between the ground truths
and the predictions at the masked positions as the loss function to
train the models, and report both MSE and MAE for performance
evaluation. In particular, due to the missing data in the input, it is
not feasible to compute the autocorrelation of the residual for MSD-
Mixer. Therefore, we only compute the first term of the residual in
the residual loss (Equation 6).

4.4.2 Result Analysis. Results in Table 7 show that MSD-Mixer
also achieves the best performance on most datasets, as well as on
different missing data ratios, with 45 first place out of 48 bench-
marks in total. This task requires the model to learn correct tem-
poral patterns from the data with missing values masked as zeros,
which is challenging for most models. We observe that MSD-Mixer
and TimesNet, which shows good performance in this task, have
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Table 4: Long-term forecasting results. The best results are in bold and the second bests are underlined. (*Task-specific baseline.)

Models MSD-Mixer Scaleformer* PatchTST Crossformer TimesNet DLinear ETSformer NST FEDformer LightTS
(Ours) (2023) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1 96 0.304 0.351 0.392 0.415 0.334 0.372 0.316 0.373 0.338 0.375 0.345 0.372 0.375 0.398 0.386 0.398 0.379 0.419 0.374 0.400
192 0.344 0.375 0.437 0.451 0.378 0.394 0.377 0.411 0.374 0.387 0.380 0.389 0.408 0.410 0.459 0.444 0.426 0.441 0.400 0.407
336 0.370 0.395 0.499 0.478 0.406 0.414 0.431 0.442 0.410 0.411 0.413 0.413 0.435 0.428 0.495 0.464 0.445 0.459 0.438 0.438
720 0.427 0.428 0.584 0.536 0.462 0.445 0.600 0.547 0.478 0.450 0.474 0.453 0.499 0.462 0.585 0.516 0.543 0.490 0.527 0.502

ET
Tm

2 96 0.169 0.259 0.182 0.276 0.175 0.259 0.236 0.281 0.187 0.267 0.193 0.292 0.189 0.280 0.192 0.274 0.203 0.287 0.209 0.308
192 0.232 0.300 0.252 0.319 0.240 0.302 0.294 0.349 0.249 0.309 0.284 0.362 0.253 0.319 0.280 0.339 0.269 0.328 0.311 0.382
336 0.292 0.337 0.335 0.372 0.302 0.342 0.353 0.382 0.321 0.351 0.369 0.427 0.314 0.357 0.334 0.361 0.325 0.366 0.442 0.466
720 0.392 0.398 0.460 0.446 0.399 0.397 0.588 0.547 0.408 0.403 0.554 0.522 0.414 0.413 0.417 0.413 0.421 0.415 0.675 0.587

ET
Th

1 96 0.377 0.391 0.404 0.441 0.444 0.438 0.386 0.429 0.384 0.402 0.386 0.400 0.494 0.479 0.513 0.491 0.376 0.419 0.424 0.432
192 0.427 0.422 0.438 0.461 0.488 0.463 0.419 0.444 0.436 0.429 0.437 0.432 0.538 0.504 0.534 0.504 0.420 0.448 0.475 0.462
336 0.469 0.443 0.464 0.477 0.525 0.484 0.440 0.461 0.491 0.469 0.481 0.459 0.574 0.521 0.588 0.535 0.459 0.465 0.518 0.488
720 0.485 0.475 0.507 0.516 0.532 0.510 0.519 0.524 0.521 0.500 0.519 0.516 0.562 0.535 0.643 0.616 0.506 0.507 0.547 0.533

ET
Th

2 96 0.284 0.345 0.335 0.385 0.312 0.358 0.401 0.464 0.340 0.374 0.333 0.387 0.340 0.391 0.476 0.458 0.358 0.397 0.397 0.437
192 0.362 0.392 0.455 0.451 0.401 0.410 0.483 0.479 0.402 0.414 0.477 0.476 0.430 0.439 0.512 0.493 0.429 0.439 0.520 0.504
336 0.399 0.428 0.477 0.479 0.437 0.442 0.498 0.510 0.452 0.452 0.594 0.541 0.485 0.479 0.552 0.551 0.496 0.487 0.626 0.559
720 0.426 0.457 0.467 0.490 0.442 0.454 0.556 0.527 0.462 0.468 0.831 0.657 0.500 0.497 0.562 0.560 0.463 0.474 0.863 0.672

EC
L

96 0.152 0.254 0.182 0.297 0.211 0.312 0.187 0.283 0.168 0.272 0.197 0.282 0.187 0.304 0.169 0.273 0.193 0.308 0.207 0.307
192 0.165 0.263 0.188 0.300 0.214 0.313 0.258 0.330 0.184 0.289 0.196 0.285 0.199 0.315 0.182 0.286 0.201 0.315 0.213 0.316
336 0.173 0.273 0.210 0.324 0.230 0.328 0.323 0.369 0.198 0.300 0.209 0.301 0.212 0.329 0.200 0.304 0.214 0.329 0.230 0.333
720 0.201 0.299 0.232 0.339 0.272 0.359 0.404 0.423 0.220 0.320 0.245 0.333 0.233 0.345 0.222 0.321 0.246 0.355 0.265 0.360

Tr
affi

c 96 0.500 0.324 0.564 0.351 0.579 0.388 0.512 0.290 0.593 0.321 0.650 0.396 0.607 0.392 0.612 0.338 0.587 0.366 0.615 0.391
192 0.506 0.324 0.570 0.349 0.571 0.382 0.523 0.297 0.617 0.336 0.598 0.370 0.621 0.399 0.613 0.340 0.604 0.373 0.601 0.382
336 0.528 0.341 0.576 0.349 0.582 0.385 0.530 0.300 0.629 0.336 0.605 0.373 0.622 0.396 0.618 0.328 0.621 0.383 0.613 0.386
720 0.561 0.369 0.602 0.360 0.596 0.389 0.573 0.313 0.640 0.350 0.645 0.394 0.632 0.396 0.653 0.355 0.626 0.382 0.658 0.407

W
ea
th
er 96 0.148 0.212 0.220 0.289 0.180 0.222 0.153 0.217 0.172 0.220 0.196 0.255 0.197 0.281 0.173 0.223 0.217 0.296 0.182 0.242

192 0.200 0.262 0.341 0.385 0.229 0.261 0.197 0.269 0.219 0.261 0.237 0.296 0.237 0.312 0.245 0.285 0.276 0.336 0.227 0.287
336 0.256 0.310 0.463 0.455 0.281 0.298 0.252 0.311 0.280 0.306 0.283 0.335 0.298 0.353 0.321 0.338 0.339 0.380 0.282 0.334
720 0.327 0.362 0.682 0.565 0.358 0.349 0.318 0.363 0.365 0.359 0.345 0.381 0.352 0.288 0.414 0.410 0.403 0.428 0.352 0.386

Ex
ch
an
ge 96 0.085 0.203 0.109 0.240 0.085 0.202 0.186 0.346 0.107 0.234 0.088 0.218 0.085 0.204 0.111 0.237 0.148 0.278 0.116 0.262

192 0.176 0.297 0.241 0.353 0.180 0.301 0.467 0.522 0.226 0.344 0.176 0.315 0.182 0.303 0.219 0.335 0.271 0.380 0.215 0.359
336 0.336 0.418 0.471 0.508 0.336 0.420 0.783 0.721 0.367 0.448 0.313 0.427 0.348 0.428 0.421 0.476 0.460 0.500 0.377 0.466
720 0.953 0.738 1.259 0.865 0.881 0.710 1.367 0.943 0.964 0.746 0.839 0.695 1.025 0.774 1.092 0.769 1.195 0.841 0.831 0.699

Table 5: Statistics of datasets for short-term forecasting.

Dataset Dim Length Train Test

Yearly 1 6 23000 23000
Quarterly 1 8 24000 24000
Monthly 1 18 48000 48000
Weekly 1 13 359 359
Daily 1 14 4227 4227
Hourly 1 48 414 414

both considered sub-series modeling in multiple timescales. From
this, we think sub-series modeling may help provide local con-
text information for the estimation of missing values. Meanwhile,
MSD-Mixer performs much better than TimesNet. This is because
MSD-Mixer also considers multi-scale decomposition of the time
series. It disentangles the temporal patterns within the data, such
that they can be better modeled for the estimation of the missing
value. Furthermore, the performance of other baseline methods
drops quickly as the missing ratio increases, whereas the perfor-
mance of our MSD-Mixer remains more stable, and consistently

better than others. This also highlights the excellent capability of
MSD-Mixer to model temporal patterns in complex time series data.

4.5 Anomaly Detection
4.5.1 Task Settings. Anomaly detection for time series data is of
immense value in many real-time monitoring applications. It is also
challenging due to the lack of labeled data. In this task, we lever-
age the popular paradigm of reconstruction-based unsupervised
framework for anomaly detection. On this premise, a model learns
to represent and reconstruct the normal data, thus abnormal data
points can be detected with large reconstruction errors. Therefore,
it is critical to learn high quality representations with the model. We
experiment on five widely-adopted anomaly detection datasets for
time series analysis, whose information is summarized in Table 8.

We include the Anomaly Transformer [50] as a task-specific
baseline for comparison. Anomaly Transformer is one of the latest
Transformer-based methods tailor-made for reconstruction-based
unsupervised anomaly detection. It proposes a special Anomaly-
Attention mechanism and a minimax strategy to learn and amplify
the normal-abnormal associations.

For the experiment, we preprocess the datasets by splitting the
time series into non-overlapping segments. In the training phase,
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Table 6: Short-term forecasting results. The best results are in bold and the second bests are underlined. (*Task-specific
baselines.)

Models MSD-Mixer N-HiTS* N-BEATS* PatchTST Crossformer TimesNet DLinear ETSformer NST FEDformer LightTS
(Ours) (2023) (2020) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2022)

Yr
. SMAPE 13.191 13.418 13.436 13.777 13.392 13.387 16.965 18.009 13.717 13.728 14.247

MASE 2.967 3.045 3.043 3.056 3.001 2.996 4.283 4.487 3.078 3.048 3.109
OWA 0.777 0.793 0.794 0.806 0.787 0.786 1.058 1.115 0.807 0.803 0.827

Q
tr. SMAPE 9.971 10.202 10.124 11.058 16.317 10.100 12.145 13.376 10.958 10.792 11.364

MASE 1.151 1.194 1.169 1.321 2.197 1.182 1.520 1.906 1.325 1.283 1.328
OWA 0.872 0.899 0.886 0.984 1.542 0.890 1.106 1.302 0.981 0.958 1.000

M
on

. SMAPE 12.588 12.791 12.677 14.433 12.924 12.670 13.514 14.588 13.917 14.260 14.014
MASE 0.921 0.969 0.937 1.154 0.966 0.933 1.037 1.368 1.097 1.102 1.053
OWA 0.869 0.899 0.880 1.043 0.902 0.878 0.956 1.149 0.998 1.012 0.981

O
th
. SMAPE 4.615 5.061 4.925 5.216 5.493 4.891 6.709 7.267 6.302 4.954 15.880

MASE 3.124 3.216 3.391 3.688 3.690 3.302 4.953 5.240 4.064 3.264 11.434
OWA 0.978 1.040 1.053 1.130 1.160 1.035 1.487 1.591 1.304 1.036 3.474

Av
g. SMAPE 11.700 11.927 11.851 13.011 13.474 11.829 13.639 14.718 12.780 12.840 13.525

MASE 1.557 1.613 1.599 1.758 1.866 1.585 2.095 2.408 1.756 1.701 2.111
OWA 0.838 0.861 0.855 0.939 0.985 0.851 1.051 1.172 0.930 0.918 1.051

Table 7: Imputation results. The best results are in bold and the second bests are underlined.

Models MSD-Mixer PatchTST Crossformer TimesNet DLinear ETSformer NST FEDformer LightTS
(Ours) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1 12.5% 0.019 0.096 0.047 0.138 0.037 0.137 0.019 0.092 0.058 0.162 0.067 0.188 0.026 0.107 0.035 0.135 0.075 0.180
25% 0.019 0.092 0.040 0.127 0.038 0.141 0.023 0.101 0.080 0.193 0.096 0.229 0.032 0.119 0.052 0.166 0.093 0.206
37.5% 0.024 0.103 0.043 0.132 0.041 0.142 0.029 0.111 0.103 0.219 0.133 0.271 0.039 0.131 0.069 0.191 0.113 0.231
50% 0.027 0.103 0.048 0.139 0.047 0.152 0.036 0.124 0.132 0.248 0.186 0.323 0.047 0.145 0.089 0.218 0.134 0.255

ET
Tm

2 12.5% 0.018 0.079 0.026 0.093 0.044 0.148 0.018 0.080 0.062 0.166 0.108 0.239 0.021 0.088 0.056 0.159 0.034 0.127
25% 0.020 0.084 0.026 0.094 0.047 0.151 0.020 0.085 0.085 0.196 0.164 0.294 0.024 0.096 0.080 0.195 0.042 0.143
37.5% 0.022 0.091 0.033 0.110 0.044 0.145 0.023 0.091 0.106 0.222 0.237 0.356 0.027 0.103 0.110 0.231 0.051 0.159
50% 0.026 0.100 0.033 0.106 0.047 0.150 0.026 0.098 0.131 0.247 0.323 0.421 0.030 0.108 0.156 0.276 0.059 0.174

ET
Th

1 12.5% 0.031 0.116 0.081 0.189 0.099 0.218 0.057 0.159 0.151 0.267 0.126 0.263 0.060 0.165 0.070 0.190 0.240 0.345
25% 0.041 0.135 0.093 0.202 0.125 0.243 0.069 0.178 0.180 0.292 0.169 0.304 0.080 0.189 0.106 0.236 0.265 0.364
37.5% 0.056 0.157 0.104 0.214 0.146 0.263 0.084 0.196 0.215 0.318 0.220 0.347 0.102 0.212 0.124 0.258 0.296 0.382
50% 0.071 0.179 0.124 0.232 0.158 0.281 0.102 0.215 0.257 0.347 0.293 0.402 0.133 0.240 0.165 0.299 0.334 0.404

ET
Th

2 12.5% 0.037 0.125 0.059 0.152 0.103 0.220 0.040 0.130 0.100 0.216 0.187 0.319 0.042 0.133 0.095 0.212 0.101 0.231
25% 0.040 0.131 0.059 0.154 0.110 0.229 0.046 0.141 0.127 0.247 0.279 0.390 0.049 0.147 0.137 0.258 0.115 0.246
37.5% 0.048 0.145 0.064 0.161 0.129 0.246 0.052 0.151 0.158 0.276 0.400 0.465 0.056 0.158 0.187 0.304 0.126 0.257
50% 0.058 0.163 0.070 0.170 0.148 0.265 0.060 0.162 0.183 0.299 0.602 0.572 0.065 0.170 0.232 0.341 0.136 0.268

EC
L

12.5% 0.048 0.150 0.103 0.215 0.068 0.181 0.085 0.202 0.092 0.214 0.196 0.321 0.093 0.210 0.107 0.237 0.102 0.229
25% 0.059 0.170 0.105 0.219 0.079 0.198 0.089 0.206 0.118 0.247 0.207 0.332 0.097 0.214 0.120 0.251 0.121 0.252
37.5% 0.070 0.184 0.109 0.225 0.087 0.203 0.094 0.213 0.144 0.276 0.219 0.344 0.102 0.220 0.136 0.266 0.141 0.273
50% 0.080 0.197 0.113 0.231 0.113 0.212 0.100 0.221 0.175 0.305 0.235 0.357 0.108 0.228 0.158 0.284 0.160 0.293

W
ea
th
er 12.5% 0.025 0.043 0.043 0.069 0.036 0.092 0.025 0.045 0.039 0.084 0.057 0.141 0.027 0.051 0.041 0.107 0.047 0.101

25% 0.028 0.050 0.041 0.065 0.035 0.088 0.029 0.052 0.048 0.103 0.065 0.155 0.029 0.056 0.064 0.163 0.052 0.111
37.5% 0.030 0.049 0.043 0.069 0.035 0.088 0.031 0.057 0.057 0.117 0.081 0.180 0.033 0.062 0.107 0.229 0.058 0.121
50% 0.033 0.056 0.045 0.070 0.038 0.092 0.034 0.062 0.066 0.134 0.102 0.207 0.037 0.068 0.183 0.312 0.065 0.133

Table 8: Statistics of datasets for anomaly detection.

Dataset Dim Length Train Test

SMD 38 100 708405 708420
MSL 55 100 58317 73729
SMAP 25 100 135183 427617
SWaT 51 100 495000 449919
PSM 25 100 132481 87841

we train the model to represent and reconstruct the input by mini-
mizing reconstruction loss, which is the MSE between the model

input and output. In the testing phase, we compute the difference
between the test reconstruction loss of a data point and the aver-
age training reconstruction loss. If the difference is higher than a
threshold, the data point is treated as an anomaly. The threshold
values for different datasets are set as those in [48]. We report the
point-wise precision, recall, and F1-score of the detection results,
and use F1-score to compare the performance of different methods.

4.5.2 Result Analysis. As shown in Table 9, MSD-Mixer achieves
the best F1-scores in 4 out of the 5 datasets. Compared with the
baselines that simply learn to represent and reconstruct the time
series, MSD-Mixer further learns to explicitly decompose the time
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Table 9: Anomaly detection results. The best results are in bold and the second bests are underlined. (*Task-specific baseline.)

Models MSD-Mixer Anomaly* PatchTST Crossformer TimesNet DLinear ETSformer NST FEDformer LightTS
(Ours) (2022) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2022)

SMD
Precision 88.7 88.9 87.5 83.1 88.7 83.6 87.4 88.3 88.0 87.1
Recall 86.1 82.2 82.2 76.6 83.1 71.5 79.2 81.2 82.4 78.4
F1-score 87.4 85.5 84.7 79.7 85.8 77.1 83.1 84.6 85.1 82.5

MSL
Precision 91.3 79.6 87.4 84.7 83.9 84.3 85.1 68.6 77.1 82.4
Recall 88.4 87.4 69.5 83.7 86.4 85.4 84.9 89.1 80.1 75.8
F1-score 89.8 83.3 77.4 84.2 85.2 84.9 85.0 77.5 78.6 79.0

SMAP
Precision 93.4 91.9 90.5 92.0 92.5 92.3 92.3 89.4 90.5 92.6
Recall 96.9 58.1 56.4 55.4 58.3 55.4 55.8 59.0 58.1 55.3
F1-score 95.2 71.2 69.5 69.1 71.5 69.3 69.5 71.1 70.8 69.2

SWaT
Precision 93.1 72.5 91.3 88.5 86.8 80.9 90.0 68.0 90.2 92.0
Recall 98.3 97.3 83.2 93.5 97.3 95.3 80.4 96.8 96.4 94.7
F1-score 95.7 83.1 87.1 90.9 91.7 87.5 84.9 79.9 93.2 93.3

PSM
Precision 97.4 68.4 98.9 97.2 98.2 98.3 99.3 97.8 97.3 98.4
Recall 96.7 94.7 92.4 89.7 96.8 89.3 85.3 96.8 97.2 96.0
F1-score 97.0 79.4 95.6 93.3 97.5 93.6 91.8 97.3 97.2 97.2

Table 10: Statistics of datasets for classification.

Dataset Dim Length Classes Train Test
AWR 9 144 25 275 300
AF 2 640 3 15 15
CT 3 182 20 1,422 1,436
CR 6 1,197 12 108 72
FD 144 62 2 5,890 3,524
FM 28 50 2 316 100
MI 64 3,000 2 278 100

SCP1 6 896 2 268 293
SCP2 7 1,152 2 200 180
UWGL 3 315 8 120 320

series into components and represent each component for the re-
construction. Therefore, MSD-Mixer has a stronger representation
learning ability to precisely capture the normal temporal patterns
and identify the abnormal data.

4.6 Classification
4.6.1 Task Settings. The time series classification problem arises
in various real-life applications such as human activity recognition
and medical time series based diagnosis. In this task we consider the
series-level classification problem and build predictive models that
output one categorical label for each time series, which emphasizes
more on discriminative modeling ability than other time series
analysis tasks. We experiment on ten datasets from the well-known
UEA time series classification archive [1] which is the most widely
used multivariate time series classification benchmark. The ten
datasets have diverse characteristics in terms of domain, series
length, number of samples, and the number of classes, which helps
to comprehensively examine the capabilities of different methods.
The datasets have been well processed and split into train and test
sets. Information of the datasets is summarized in Table 10.

We include six competitive classification methods reported in
recent works [7, 8] as task-specific baselines for comparison in this
task. They cover both statistical (DTWD [38], MiniRocket [12])
and deep learning-based (TARNet [8], FormerTime [7], TST [52],
TapNet [54]) approaches.We use the classification accuracy, number
of 1st counts and mean rank as our evaluation metrics.

4.6.2 Result Analysis. Table 11 shows the result of our classifica-
tion tests. MSD-Mixer performs the best with 5 first places and
2 second places out of 10 benchmarks, which demonstrates its
great discriminative power in the modeling. Moreover, the diver-
sity of datasets in terms of size, dimension, length, and number
of classes also reflects the adaptability of MSD-Mixer. Different
from other tasks discussed above, the task-general baselines typ-
ically perform inferior to task-specific ones in classification. The
two best baselines are task-specific approaches TARNet and TST,
which are Transformer-based deep learning algorithms. It should
be noted that TARNet and TST adopt extra self-supervised training
in addition to the supervised training with class labels, which we
think may be the reason for their good performance. In contrast,
MSD-Mixer outperforms themwith only supervised training, which
demonstrates the modeling ability of MSD-Mixer. We also notice
that the two statistical baselines DTWD and MiniRocket perform
well in some datasets. These results indicate that it is challenging
to design a task-general backbone for classification tasks. We be-
lieve our thorough consideration on the special composition and
multi-scale nature of time series is the reason why MSD-Mixer can
consistently have better performance in classification.

4.7 Ablation Study
We strongly believe that the advantages of MSD-Mixer are rooted
in our proposed multi-scale temporal patching and residual loss. To
validate the efficacy of the proposed modules, we implement the
following variants of MSD-Mixer:

• MSD-Mixer-I : the inverted MSD-Mixer. We arrange the
layers with their patch sizes in ascending order instead of
descending.

• MSD-Mixer-N : the MSD-Mixer without patching. We re-
place the patching module with max pooling and linear
interpolation layers, following the strategy in [6].

• MSD-Mixer-U : the MSD-Mixer without multi-scale patch-
ing. We set the patch size as the square root of the input
length and use this same patch size for all layers.
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Table 11: Classification results. The best results are in bold and the second bests are underlined. (*Task-specific baselines.)

Models MSD-Mixer TARNet* DTWD* TapNet* MiniRocket* TST* FormerTime* PatchTST Crossformer TimesNet DLinear ETSformer NST FEDformer LightTS
(Ours) (2022) (2015) (2020) (2021) (2021) (2023) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2022)

AWR 0.983 0.977 0.987 0.987 0.993 0.947 0.985 0.040 0.937 0.977 0.963 0.973 0.497 0.587 0.970
AF 0.600 1.000 0.220 0.333 0.133 0.533 0.600 0.467 0.400 0.333 0.200 0.400 0.467 0.400 0.333
CT 0.987 0.994 0.989 0.997 0.990 0.971 0.991 0.877 0.970 0.974 0.973 0.978 0.804 0.960 0.977
CR 1.000 1.000 1.000 0.958 0.986 0.847 0.981 0.083 0.846 0.847 0.861 0.861 0.736 0.472 0.847
FD 0.698 0.641 0.529 0.556 0.612 0.625 0.687 0.500 0.687 0.686 0.672 0.673 0.500 0.684 0.658
FM 0.660 0.620 0.530 0.530 0.550 0.590 0.618 0.510 0.510 0.590 0.570 0.590 0.510 0.540 0.540
MI 0.670 0.630 0.500 0.590 0.610 0.610 0.632 0.570 0.570 0.570 0.620 0.590 0.640 0.580 0.590

SCP1 0.949 0.816 0.775 0.652 0.915 0.961 0.887 0.741 0.921 0.918 0.880 0.860 0.898 0.594 0.918
SCP2 0.639 0.622 0.539 0.550 0.506 0.604 0.592 0.500 0.583 0.572 0.527 0.561 0.500 0.511 0.522
UWGL 0.884 0.878 0.903 0.894 0.785 0.913 0.888 0.213 0.853 0.853 0.812 0.825 0.703 0.453 0.831

Avg. Acc. 0.807 0.818 0.697 0.705 0.708 0.760 0.786 0.450 0.728 0.732 0.708 0.731 0.625 0.578 0.719
1st Count 5 3 1 1 1 2 0 0 0 0 0 0 0 0 0
Mean Rank 2.5 4.4 8.3 7.5 8.0 6.0 3.8 13.0 8.5 7.1 9.0 7.4 11.0 11.3 8.5

Table 12: Average results of MSD-Mixer variants on five tasks.

Model MSD-Mixer MSD-Mixer-I MSD-Mixer-N MSD-Mixer-U MSD-Mixer-L

Long-Term Forecasting MSE 0.345 0.345 0.358 0.422 0.348
MAE 0.358 0.357 0.371 0.470 0.360

Short-Term Forecasting
SMAPE 11.700 11.699 11.814 11.869 11.780
MASE 1.557 1.557 1.598 1.587 1.567
OWA 0.838 0.837 0.853 0.853 0.844

Imputation MSE 0.038 0.039 0.041 0.058 0.040
MAE 0.117 0.130 0.122 0.149 0.119

Anomaly Detection F1 0.930 0.925 0.918 0.847 0.897
Classification ACC 0.807 0.803 0.732 0.729 0.768

• MSD-Mixer-L: the MSD-Mixer trained without the residual
loss. We train the model with the loss function from the
target task only.

We carry out the experiments for the four MSD-Mixer vari-
ants on all benchmarks in the five tasks, and report their average
performance over the benchmarks in each task in Table 12. MSD-
Mixer-I has very similar performance to the original MSD-Mixer
for all five tasks. This result indicates that the arrangement of layers
with different patch sizes does not affect the performance of MSD-
Mixer. We think the reason behind is that the multi-scale temporal
patching enforces the layer to focus on the modeling of specific
timescales, such that their order has a relatively small impact on
the performance. Without the patching modules, MSD-Mixer-N
cannot capture the sub-series features, thus we can observe a perfor-
mance drop compared with MSD-Mixer, especially in classification
accuracy. Likewise, by using the same patch size in all layers, MSD-
Mixer-U does not model the multi-scale patterns in different layers,
which affects the performance considerably in all tasks. Lastly, by
comparing MSD-Mixer-L with MSD-Mixer we find that the resid-
ual loss do contribute to the learning of the model in all tasks by
enhancing the completeness of the decomposition.

4.8 Model Efficiency
To study the efficiency of our proposed MSD-Mixer, we compare
the number of model parameters and training time consumption
of different approaches in the long-term forecasting task with the
ETTm2 dataset in Figure 6. From the result we can observe that
MSD-Mixer achieves the best MSE among all the baselines. Compar-
ing with PatchTST and TimesNet which are the second- and third-
best models, MSD-Mixer contains less than 1/10 and 4/5 model

parameters (951K vs. 10.1M and 1191K), and runs more than 1.67
and 8 times faster (10.9s/epoch vs. 18.3s/epoch and 93.2s/epoch),
which demonstrates the great efficiency of MSD-Mixer. On the
other hand, MLP models (MSD-Mixer, DLinear, and LightTS) gener-
ally contain fewer model parameters and consume less training time
than their Transformer and CNN counterparts in this experiment.
Although MSD-Mixer is larger and slower than the other two MLP
models, it achieves 12% and 19% improvements on MSE with the
extra model parameters and time, which also shows MSD-Mixer’s
advancements over the previous MLP-based methods.

4.9 Case Study
To further validate the effectiveness of our carefully designed resid-
ual loss in MSD-Mixer, in Figure 5, we show two examples of how
the input time series is decomposed by MSD-Mixer trained with
(MSD-Mixer) and without (MSD-Mixer-L) our proposed residual
loss. The examples are from the long-term forecasting task with
the ETTh1 dataset, which is well acknowledged as a challenging
dataset with complex characteristics including but not limited to
multiple periodic variations and channel-wise heterogeneity. The
sampling rate of the data is 1 hour, and input length is set to 96. We
train the MSD-Mixer which has 5 layers with patch sizes as {24, 12,
6, 2, 1}, corresponding to sub-series of 1 day, half day, 6 hours, 2
hours, and 1 hour.

First, from both input plots we observe multiple irregular tem-
poral patterns, which cannot be simply explained by seasonal or
trend-cyclic patterns as discussed in previous works [49]. Their cor-
responding autocorrelation function (ACF) plots also indicate high
correlations in multiple temporal lags in the input data. Therefore,
simply considering seasonal-trend decomposition is not enough
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Figure 5: Examples of decomposition.
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Figure 6: Model efficiency comparison.

to account for intricate temporal patterns in real-life time series
data. Then, we note that the components output by MSD-Mixer
are obviously more diverse, especially in terms of their timescale,
compared with that of MSD-Mixer-L. It indicates that they contain
different temporal patterns in the input data. We attribute it to the
effectiveness of our proposed multi-scale temporal patching.

Furthermore, it is obvious from both examples that without our
proposed residual loss, MSD-Mixer-L leaves most of the informa-
tion from the input in the decomposition residual, while the other
components contain little information. In comparison, the mean of
residuals from MSD-Mixer are much smaller, and the residual ACF

plots also indicate less periodic patterns. The results clearly validate
the effectiveness of our proposed residual loss in constraining the
decomposition residual. The multi-scale components also show the
potential to provide interpretability on the composition of the input
data and how the output is produced by MSD-Mixer.

5 CONCLUSION
In this work, we solve the time series analysis problem by consid-
ering its unique composition and complex multi-scale temporal
variations, and propose MSD-Mixer, a Multi-Scale Decomposition
MLP-Mixer which learns to explicitly decompose the input time
series into different components, and represents the components in
different layers. We propose a novel multi-scale temporal patching
approach in MSD-Mixer to model the time series as multi-scale
patches, and employ MLPs along different dimensions to mix intra-
and inter-patch variations and channel-wise correlations. In addi-
tion, we propose a residual loss to constrain both the mean and
the autocorrelation of the decomposition residual for decomposi-
tion completeness. Through extensive experiments on 26 real-world
datasets, we demonstrate that MSD-Mixer consistently outperforms
the state-of-the-art task-general and task-specific approaches by a
wide margin on five common tasks, namely long-term forecasting
(up to 9.8% in MSE), short-term forecasting (up to 5.6% in OWA),
imputation (up to 46.1% in MSE), anomaly detection (up to 33.1% in
F1-score) and classification (up to 36.3% in Mean Rank).
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