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ABSTRACT
There are two fundamental problems in regular simple path queries

(RSPQs). One is the reachability problem which asks whether there

exists a simple path between the source and the target vertex match-

ing the given regular expression, and the other is the enumeration

problem which aims to find all the matched simple paths. As an

important computing component of graph databases, RSPQs are

supported in many graph database query languages such as PGQL

and openCypher. However, answering RSPQs is known to be NP-

hard, making it challenging to design scalable solutions to support a

wide range of expressions. In this paper, we first introduce the class

of transitive restricted expression, which covers more than 99% of

real-world queries. Then, we propose an efficient algorithm frame-

work to support both reachability and enumeration problems under

transitive restricted expression constraints. To boost the perform-

ance, we develop novel techniques for reachability detection, the

search of candidate vertices, and the reduction of redundant path

computation. Extensive experiments demonstrate that our exact

method can achieve comparable efficiency to the state-of-the-art

approximate approach, and outperforms the state-of-the-art exact

methods by up to 2 orders of magnitude.
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1 INTRODUCTION
Graphs are often used to model entities and their connections in

complex systems, such as social networks, theWorldWideWeb, and

computer networks. In many real applications, each edge between

two vertices is associated with a label to represent a specific relation.

In recent years, regular path queries have been extensively studied

on edge-label graphs [1, 3, 11, 31]. There are two fundamental prob-

lems: (1) the reachability query asks whether there exists a path

between a given pair of source and target vertices satisfying the

regular expression [10, 19, 32, 41], and (2) the enumeration query
aims to find all paths between two given vertices that satisfy a given

regular expression [12, 26, 27]. In the literature, regular path quer-

ies are usually studied under some possible semantics, including

arbitrary path, shortest path, and simple path [27]. To avoid over-

whelming and redundant results, in this paper, we focus on regular

path queries under simple path semantics, named Regular Simple
Path Queries (RSPQs), which requires that there are no repeated

vertices along a resulting path.

Applications. RSPQs can be applied in many real scenarios. Some

examples are the following.

(1) Knowledge Retrieval in Knowledge Graphs. RSPQs are building
blocks in many graph query languages such as PGQL [40] and

openCypher
1
[15, 34]. In knowledge graphs or graph databases,

many information retrieval tasks can be solved by RSPQs. For ex-

ample, if we want to know whether a user 𝑈 lives in New York

City in a knowledge graph, we should check whether there exists a

simple path from user𝑈 to New York City. In addition, the label of

the path should be limited since we only consider the relationship

of living rather than other relationships. We can use the Reach-

ability Query (𝑈 , 𝑁𝑒𝑤𝑌𝑜𝑟𝑘 , (𝐿𝑖𝑣𝑒𝑑𝐼𝑛 ◦ (𝑃𝑎𝑟𝑡𝑂 𝑓 )∗) to answer the

above question where 𝐿𝑖𝑣𝑒𝑑𝐼𝑛 records the place of residence, and

𝑃𝑎𝑟𝑡𝑂 𝑓 denotes the containment relationship of territorial entities.

We use the regular expression (𝑃𝑎𝑟𝑡𝑂 𝑓 )∗ to expand the place of

residence to the city level, because the residence may be recorded

as a street rather than a city. If we can find a simple path satisfying

the expression such as𝑈
𝐿𝑖𝑣𝑒𝐼𝑛−−−−−→ Grand Street

𝑃𝑎𝑟𝑡𝑂𝑓
−−−−−−−→ New York,

then we know𝑈 lives in New York City.

(2) Cyber-attack Detection in Computer Network Traffic. In the cyber-

security community, advanced persistent threat (APT) detection

has been one of the most important tasks. Recent advances in APT

1
The paths supported in openCypher are restricted to simple paths (as described in

Section 2.3 of [34]), Similarly, PGQL also supports regular simple path queries.
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Table 1: Structure of property paths from Table 4 in [8]. 𝐴
means (𝑎1 + 𝑎2 · · · + 𝑎𝑘 ).

Name Relative LCR? TRE? Name Relative LCR? TRE?

𝑎∗ 50.48% ✓ ✓ 𝐴∗ 0.60% ✓ ✓
𝑎1 ◦ 𝑎2 · · · ◦ 𝑎𝑘 24.26% × ✓ 𝑎 ◦ 𝑏∗ ◦ 𝑐 0.22% × ✓

𝑎 ◦ 𝑏∗ 17.07% × ✓ 𝑎∗ ◦ 𝑏∗ 0.11% × ✓
𝐴 5.52% × ✓ 𝜖 | 𝐴 0.06% × ✓

𝑎 ◦ 𝑏∗ ◦ 𝑐∗ 1.49% × ✓ 𝑎 ◦ 𝑏 ◦ 𝑐∗ 0.05% × ✓

detection tend to utilize the provenance graph [2, 17, 29], where

vertices are network entities, and edges represent activities. An APT

attack usually consists of a sequence of network activities, which

can be easily detected by a pattern-matching method. However, in

the real world, the attackers may add noise to their activities to

escape detection [29]. As described in [29], in the provenance graph,

a compromised browser writing to a system file may correspond

to a path where a vertex representing a Firefox process forks new

processes, only one of which ultimately writes to the system file.

By modeling such paths as RSPQs, e.g., (𝐵𝑟𝑜𝑤𝑠𝑒𝑟, 𝐹𝑖𝑙𝑒, ((𝐹𝑜𝑟𝑘)∗ ◦
𝑊𝑟𝑖𝑡𝑒)), we are able to hunt suspicious APTs.

(3) Pathway Analysis in Biological Networks. Pathway queries are

essential in the analysis of biological networks, where vertices rep-

resent entities such as compounds and edges represent various

forms of interactions [13, 19, 24]. For instance, in [19], a network

analyzer can quickly determine if two compounds have a given

pathway, which refers to specific forms of interactions, using reach-

ability queries. Additionally, simple path enumeration is a common

type of pathway query in biological networks [13], which provides

detailed information about the paths between entities.

Limitations of Existing Studies. Although RSPQs have been

extensively studied [1, 5, 9, 11, 27, 28, 41], there are several major

limitations in existing solutions to RSPQs.

(1) Only support a small subset of regular expressions. Most existing

works [32, 39, 45] only focus on label-constraint reachability (LCR)

queries. Given a set of labels 𝐿 = {𝑎1, · · · , 𝑎𝑘 }, an LCR query re-

quires the label of each edge on the resulting path must belong to

𝐿. This type of label constraint could be expressed to the regular

expression (𝑎1 + · · · +𝑎𝑘 )∗. A recent analysis of SPARQL query logs

[8] suggests that ≈ 48% of the RSPQs cannot be expressed by LCR .

(2) Unable to balance the efficiency and accuracy. The reachability
query of RSPQs is NP-hard under arbitrary expressions [28]. There-

fore, exact methods that support all regular expressions, such as

BBFS [41], are computationally expensive, and even unacceptable

in some extreme cases. Wadhwa et al. [41] propose ARRIVAL, an

approximate and efficient method to solve this problem, but its

accuracy relies on the graph structure, limiting its applicability.

(3) No efficient method for enumeration problem of RSPQs. All the
above works only study the reachability problem. To the best of

our knowledge, recent research [27] has proposed a polynomial

delay algorithm (nearly𝑂 (𝑛3) delay, where 𝑛 means the number of

vertices in the graph) for the enumeration problem of RSPQs, which

only supports a subset of regular expressions called downward

closed expressions. However, it is still not efficient enough and does

not support more complex expressions.

Challenges. Because the reachability query of RSPQs is a well-

known NP-hard problem, it is impossible to design an exact method

to solve RSPQs efficiently under arbitrary expressions unless P =

NP. Additionally, even though index structures can greatly enhance

computational efficiency, it becomes impractical to construct a suit-

able index as the diversity of expression types increases. Moreover,

constructing an index incurs huge time and space costs, which are

unacceptable for large graphs with a large number of labels. There-

fore, on the one hand, approximate and index-free algorithms for

reachability queries is a feasible solution, which has been studied in

[41]. On the other hand, accurate answers hold better significance

in various real scenarios, motivating us to design exact methods

rather than approximate ones.

The above limitations and challenges motivate us to ask the

following questions. Is there a specific type of regular expression

that can cover the most frequently encountered expressions in real-

world scenarios, and can we develop efficient index-free algorithms

to address the above two problems for such special regular expres-

sions? In this paper, we aim to propose an efficient, exact, and

index-free approach to solve the above two issues of RSPQs.

Contributions. We observe that there are two basic categories

of regular expressions for which it is possible to devise efficient

and exact algorithms. Based on this observation, we define a reg-

ular expression framework, called transitive restricted expression
(TRE), which is able to cover more than 99% of regular expressions

encountered in real-world scenarios from two studies [7] and [8].

Specifically, TRE could cover all the expression types (more than

99%) in Table 1 while LCR only supports two types of them (around

51.08%). Similar results can be found in [7].

To efficiently handle the TRE, we propose efficient and effective

query techniques. In specific, we first divide a regular expression

into three parts 𝑃𝑟𝑒 ,𝑇𝑦𝑝𝑒 , and 𝑆𝑢𝑓 . Then, we propose an approach

for the two issues of RSPQs by dealing with the three parts in two

phases. In the first phase, we develop an algorithm to find all the

simple paths that match 𝑃𝑟𝑒 and 𝑆𝑢𝑓 respectively. In the second

phase, we process 𝑇𝑦𝑝𝑒 in addition to the output of the first phase.

By combining the results of the above two phases, we obtain the

final answers. Our principal contributions are the following.

• We propose a new type of regular expressions named TRE con-

sisting of three parts 𝑃𝑟𝑒 , 𝑇𝑦𝑝𝑒 , and 𝑆𝑢𝑓 which can cover more

than 99% of expressions in real-world queries.

• Based on TRE constraints, we develop an index-free and exact

framework, which can solve both reachability and enumeration

queries efficiently.

• To further improve the performance, we develop novel tech-

niques for reachability detection, the search of candidate vertices,

and the reduction of redundant path computation.

• Our empirical study shows that our approach can return exact

solutions while achieving comparable efficiency to the state-of-

the-art approximate method. It is also demonstrated that our

approach outperforms the state-of-the-art exact approaches by

up to two orders of magnitude in terms of efficiency.

2 PRELIMINARIES
In this section, we first formally introduce the definition of directed

labeled graphs. Then we give the problem statement of regular

simple path reachability and enumeration query.
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Figure 1: 1(a) A edge-labeled graph 𝐺 , 1(b) the automation for expression 0
∗ ◦ 1∗, 1(c) the product graph 𝑃𝐺,𝐴 based on 𝐺 and 𝐴.

A directed labeled graph is denoted as𝐺 = (𝑉 , 𝐸,L, 𝜙), where𝑉
is a set of vertices, 𝐸 ⊆ 𝑉 ×𝑉 is a set of directed edges, L is a finite

non-empty set of labels, and 𝜙 : 𝐸 → L is a function that maps

every edge to a label. Note that multiple edges between two vertices

must have distinct labels. Given two vertices 𝑠, 𝑡 ∈ 𝑉 , a path 𝑝 from

𝑠 to 𝑡 in𝐺 is a sequence of edges : ⟨(𝑣0, 𝑙0, 𝑣1), · · · , (𝑣𝑛−1, 𝑙𝑛−1, 𝑣𝑛)⟩
where 𝑣0 = 𝑠 , 𝑣𝑛 = 𝑡 and 𝑙𝑖 ∈ L, 0 ≤ 𝑖 ≤ 𝑛 − 1. If there is no

repeating vertex in path 𝑝 , we say 𝑝 is a simple path. The label of a

path 𝑝 is denoted by 𝜙 (𝑝) = 𝑙0𝑙1 · · · 𝑙𝑛−1 ∈ L∗.

Definition 1 (Regular Expression). A regular expression R
over the alphabet L is defined as 𝑅 ::= 𝜖 | 𝑙 | 𝑅1 ◦ 𝑅2 | 𝑅1 + 𝑅2 | 𝑅∗,
where (i) 𝜖 denotes the empty string, (ii) 𝑙 ∈ L denotes a character in
the alphabet, (iii) ◦ denotes the concatenation operator, (iv) + denotes
the alternation operator, (v) 𝑅, 𝑅1 and 𝑅2 are regular expressions, and
(vi) ∗ represents the Kleene star. A regular language 𝐿(𝑅) is the set
of strings that can be described by regular expression R. We say that
a path 𝑝 matches a regular expression 𝑅 if the label of 𝑝 could be
described by 𝑅, i.e., 𝜙 (𝑝) ∈ 𝐿(𝑅).

Example 1. In Figure 1(a), considering the regular expression 𝑅 =

0
∗ ◦ 1∗, the path 𝑉0

0−→ 𝑉2
0−→ 𝑉3

0−→ 𝑉1
1−→ 𝑉7 (indicated by the bold

edges) corresponds to a match for the expression 𝑅 because the label
of path 𝑝 , which is 0001, can be described by 0

∗ ◦ 1∗.

Next, we introduce a type of restricted regular expression called

transitive restricted expression. TRE is a combination of length-fixed

expression (LE) and downward closed expression (DCE). Hence,

before introducing TRE, we first give the definition of LE and DCE.

Definition 2 (Length-fixed Expression). A length-fixed ex-
pression R is the expression that does not contain the Kleene star, i.e.,
𝑅 ::= 𝜖 | 𝑙 | 𝑅1 ◦ 𝑅2 | 𝑅1 + 𝑅2, where 𝑅1 and 𝑅2 are LEs.

Definition 3 (Downward Closed Expression [27]). An expres-
sion 𝑅 is called downward closed if, for any sequence 𝐿 = 𝑙1𝑙2 · · · 𝑙𝑛
that can be described by the expressions 𝑅, any subsequence 𝑙𝑖1 · · · 𝑙𝑖𝑘 ,
0 < 𝑖1 < · · · < 𝑖𝑘 < 𝑛 + 1 can also be described by 𝑅.

Remark 1. 𝑅 = (𝑙1+𝑙2+· · ·+𝑙𝑘 )∗, where 𝑙𝑖 ∈ L, 𝑘 ∈ N, represents
a fundamental type of downward closed expressions. Moreover, the
expression 𝑅 = 𝑅0 ◦ 𝑅1 ◦ · · · ◦ 𝑅𝑘 , 𝑘 ∈ N is also downward closed if
∀𝑖, 0 ≤ 𝑖 ≤ 𝑘, 𝑅𝑖 is downward closed.

Definition 4 (Transitive Restricted Expression). We define
the transitive restricted expression as 𝑃𝑟𝑒 ◦ 𝑇𝑦𝑝𝑒 ◦ 𝑆𝑢𝑓 , where 𝑃𝑟𝑒
and 𝑆𝑢𝑓 are LEs, and 𝑇𝑦𝑝𝑒 is a DCE.

Table 2: Frequently used notations.

Notations Definitions

𝐴.𝛼0 the start state of DFA𝐴

𝐴.𝐹 the final state set of DFA𝐴

𝑁 𝑃
𝑜𝑢𝑡 (𝑢, 𝛼 ) the out-neighbors of vertex (𝑢, 𝛼 )
𝑁 𝑃
𝑖𝑛
(𝑣, 𝛽 ) the in-neighbors of vertex (𝑣, 𝛽 )

𝑃𝐺,𝐴 the product graph 𝑃𝐺,𝐴

With the formalization of the above concepts, now we estab-

lish the definition of regular simple path reachability query and

enumeration query respectively.

Definition 5 (Regular Simple Path Reachability Query).

Given a graph𝐺 , a transitive restricted expression 𝑅, the source vertex
𝑠 and the target vertex 𝑡 , the regular simple path reachability query
(Reachability Query) returns true if there exists at least one simple
path between 𝑠 and 𝑡 that matches the expression 𝑅.

Definition 6 (Regular Simple Path Enumeration Query).

Given a graph𝐺 , a transitive restricted expression 𝑅, the source vertex
𝑠 and the target vertex 𝑡 , the regular simple path enumeration query
(Enumeration Query) returns all simple paths 𝑃 = {𝑝 | 𝑝 is a simple
path and 𝜙 (𝑝) ∈ 𝐿(𝑅)} between 𝑠 and 𝑡 .

Example 2. In Figure 1(a), assuming the source vertex is 𝑉0, the
target vertex is 𝑉6 and the transitive restricted expression 𝑅 is 0∗ ◦ 1∗.
The Reachability Query will return true while the Enumeration Query

will give two simple paths that matched the expression 𝑅 as 𝑉0
0−→

𝑉2
0−→ 𝑉3

1−→ 𝑉5
1−→ 𝑉6 and 𝑉0

0−→ 𝑉1
0−→ 𝑉2

0−→ 𝑉3
1−→ 𝑉5

1−→ 𝑉6.

3 EXISTING SOLUTION
Given Reachability Query and Enumeration Query in a directed

labeled graph 𝐺 , we use different algorithms for these two queries

generally. For both of them, we usually use deterministic finite

automaton and product graphs to solve these problems. Therefore,

we provide the definition of deterministic finite automaton and

product graph. We introduce a basic DFS algorithm using a product

graph. This algorithm is a part of our optimal solutions. Then,

we introduce Bidirectional BFS and DFS-based algorithms in the

product graph for these two kinds of queries respectively.

Definition 7 (Deterministic Finite Automaton). Given a
regular expression 𝑅, its corresponding deterministic finite automaton
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Figure 2: A bad-case example for RSPQs.

(DFA) is defined as 𝐴 = (𝑆,L, 𝛿, 𝛼0, 𝐹 ), where 𝑆 is a set of states,
L is the input alphabet, 𝛿 : 𝑆 × L → 𝑆 is the state transition
function, 𝛼0 ∈ 𝑆 is the start state of DFA, and 𝐹 ⊆ 𝑆 is the set of
final states of DFA. 𝛿∗ is the extended transition function defined as
𝛿∗ (𝛼,𝑤 ◦ 𝑙) = 𝛿 (𝛿∗ (𝛼,𝑤), 𝑙), where 𝛼 ∈ 𝑆, 𝑙 ∈ L,𝑤 ∈ L∗, 𝛿∗ (𝛼, 𝜖) =
𝛼 , and 𝜖 is the empty string. We call a string 𝑤 can be accepted by
𝐴 if 𝛿∗ (𝛼0,𝑤) = 𝛼 𝑓 , 𝛼 𝑓 ∈ 𝐹 . Note that if𝑤 can be described by 𝑅, it
must be accepted by the corresponding DFA 𝐴.

Definition 8 (Product Graph). Given a graph𝐺 = (𝑉 , 𝐸,L, 𝜙)
and a DFA 𝐴 = (𝑆,L, 𝛿, 𝛼0, 𝐹 ), the corresponding product graph
𝑃𝐺,𝐴 is defined as 𝑃𝐺,𝐴 = (𝑉𝑃 , 𝐸𝑃 ), where 𝑉𝑃 = 𝑉 × 𝑆 , 𝐸𝑃 ⊆
𝑉𝑃 × 𝑉𝑃 , ((𝑢, 𝛼), (𝑣, 𝛽)) ∈ 𝐸𝑃 iff (𝑢, 𝑣) ∈ 𝐸 and 𝛿 (𝛼, 𝜙 (𝑢, 𝑣)) =

𝛽 . 𝑁𝑃
𝑜𝑢𝑡 (𝑢, 𝛼) = {(𝑣, 𝛽) | ((𝑢, 𝛼), (𝑣, 𝛽)) ∈ 𝐸𝑃 } denotes the out-

neighbors of vertex (𝑢, 𝛼) and 𝑁𝑃
𝑖𝑛
(𝑣, 𝛽) = {(𝑢, 𝛼) | ((𝑢, 𝛼), (𝑣, 𝛽)) ∈

𝐸𝑃 } denotes the in-neighbors of vertex (𝑣, 𝛽).

Example 3. Figure 1(b) shows the DFA 𝐴 of regex 0
∗ ◦ 1∗, and

Figure 1(c) shows the product graph 𝑃𝐺,𝐴 .

3.1 DFS based algorithm
Note that every path in𝐺 has its unique corresponding path in 𝑃𝐺,𝐴 .

Meanwhile, for any path 𝑝′ in 𝑃𝐺,𝐴 ,𝐺 has its unique corresponding

path. Hence, the intuitive idea to find a path matching 𝑅 is finding

the corresponding path in 𝑃𝐺,𝐴 .

We present a fundamental DFS algorithm to handle both Reach-

ability Query and Enumeration Query. For a given graph 𝐺 , regex

𝑅, and start vertex 𝑠 , we construct the corresponding DFA 𝐴 and

product graph 𝑃𝐺,𝐴 . The DFS algorithm starts from the vertex

𝑣𝑠 = (𝑠, 𝐴.𝛼0) ∈ 𝑉𝑝 . 𝑣𝑠 presents a vertex in 𝑠 ∈ 𝑉 and the state

𝛼0 ∈ 𝑆 . Then we search from 𝑣𝑠 . If there exists an eligible simple

path from source vertex 𝑠 with start state to target vertex 𝑡 with

final states in 𝑃𝐺,𝐴 , we conclude that Reachability Query is true.

If we identify all potential paths and none of them is eligible, the

answer is false.

Algorithm 1 provides the details of the basic DFS algorithm. We

use 𝑝 to save the current path information during the exploration

(Line 1). We search all potential simple paths from the source vertex

𝑠 with start state 𝐴.𝛼0 (Line 4). If the current vertex 𝑢 is target

vertex 𝑡 and the corresponding state 𝛼 is in the set of final states

(Line 7), Line 8 returns true for Reachability Query and Line 9

outputs the current path for Enumeration Query and then continues

the exploration. Otherwise, Lines 10-12 loop over 𝑁𝑃
𝑜𝑢𝑡 (𝑢, 𝛼) to

extend path 𝑝 . Line 11 checks whether we can extend 𝑝 by adding

Algorithm 1: DFS
Input: The product graph 𝑃𝐺,𝐴 = (𝑉𝑃 , 𝐸𝑃 ) , source vertex 𝑠 , target vertex 𝑡 ,

the regex 𝑅 and DFA𝐴;

Output: return the answer of Reachability Query or Enumeration Query;

1 𝑝 ← ∅;
2 foreach 𝑣 ∈ 𝑉 do
3 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣 ] ← false;

4 DFS(𝑠,𝐴.𝛼0, 𝑡, 𝐴.𝐹) ;

5 Procedure DFS(𝑢, 𝛼, 𝑡, 𝐹)
6 𝑝 ← 𝑝 ∪ {𝑢}; 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑢 ] ← true;

7 if 𝛼 ∈ 𝐹 and 𝑢 = 𝑡 then
8 If query is Reachability Query, print true and exit;

9 If query is Enumeration Query, print 𝑝 ;

10 foreach (𝑣, 𝛽 ) ∈ 𝑁 𝑃
𝑜𝑢𝑡 (𝑢, 𝛼 ) do

11 if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣 ] is false then
12 DFS(𝑣, 𝛽, 𝑡, 𝐹);

13 𝑝 ← 𝑝 − {𝑢}; 𝑣𝑖𝑠𝑡𝑒𝑑 [𝑢 ] ← false;

𝑣 to generate 𝑝 satisfying the simple path constraint. While DFS

supports all expressions, it may encounter the same traps multiple

times, leading to expensive time overhead.

Example 4. In Figure 2, considering the query is (𝑉0,𝑉15, (0)∗ ◦
(1)∗). We will find only one path (𝑉0,𝑉1,𝑉10,𝑉11,𝑉12,𝑉13,𝑉14,𝑉15)
as the result. However, if the DFS explores the path following vertex ID
order, the path (𝑉0,𝑉1,𝑉2) is found, and we cannot extend the path to
the target because any path must cross 𝑉1 twice or cannot satisfy the
regular expression (i.e., 𝑉9 cannot arrive at 𝑉15). Similarly, all paths
from 𝑉1 to 𝑉𝑖 with 2 ≤ 𝑖 ≤ 9 cannot reach 𝑉15. However, the DFS
algorithm explores these traps many times.

3.2 Reachability Query
Bidirectional BFS (BBFS) [41] is an online algorithm for Reachability

Query in this paper. BBFS detects all the potential simple paths

whose labels are prefixes of expressions simultaneously from both

source vertex 𝑠 and target vertex 𝑡 using the breadth-first search
(BFS) strategy. When a forward path and a backward path meet at

the same intermediate vertex, BBFS combines them as the whole

path and checks whether the path is a simple path and matches

the regex. When an eligible path is found, it means that 𝑠 and 𝑡 are

reachable. Otherwise, they are not reachable. Because BBFS simply

detects all half simple paths from both the source vertex and the

target vertex, in the worst case, BBFS may explore unnecessary

paths that are not in the path connecting the source and target

vertices. Computing these paths uses much time and cannot get

the reachability for the query. In order to address the drawback, we

propose an efficient approach for solving Reachability Query with

a theoretical guarantee.

3.3 Enumeration Query
Except for DFS based algorithm, a recent work by Martens and

Trautner [27] shows that Enumeration Query can be solved with

polynomial delay under DCE and proposes an algorithm with an

𝑂 (𝑛3) delay by extending Yen’s algorithm [44]. The key idea is that

for DCE, the regular shortest path is also a regular simple path.

Therefore, by finding the top-k shortest paths and making k infinity,

all the simple paths that match DCE can be obtained.
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Algorithm 2: Framework

Input: Graph𝐺 , source and target vertices 𝑠 , 𝑡 , and the TRE 𝑅;

Output: returns reachability or enumeration result

1 𝑃𝑟𝑒 ◦𝑇𝑦𝑝𝑒 ◦ 𝑆𝑢𝑓 ← 𝑅;

2 𝐴𝑃𝑟𝑒 ← ConstructDFA(𝑃𝑟𝑒) ;

3 𝐴𝑆𝑢𝑓 ← ConstructDFA(𝑆𝑢𝑓 ) ;

4 Algorithm 1 Line 1-3;

5 𝑃𝑓 ←ForwardDFS (𝑠,𝐴𝑃𝑟𝑒 .𝛼0, 𝐴𝑃𝑟𝑒 .𝐹 ) ;

6 𝑃𝑏 ←BackwardDFS (𝑡,𝐴𝑆𝑢𝑓 .𝐹 ,𝐴𝑆𝑢𝑓 .𝛼0 ) ;

7 foreach 𝑝1 = (𝑣1 = 𝑠, 𝑣2, . . . , 𝑣𝑥 ) ∈ 𝑃𝑓 do
8 foreach 𝑝2 = (𝑢1,𝑢2, . . . ,𝑢𝑦 = 𝑡 ) ∈ 𝑃𝑏 do
9 𝑉 ′ ←𝑉 − ({𝑝1 − 𝑣𝑥 } ∪ {𝑝2 − 𝑢1 }) ;

10 𝐸′ ← {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉 ′, (𝑢, 𝑣) ∈ 𝐸} ;
11 Query on𝐺 ′ = (𝑉 ′, 𝐸′ ) from 𝑣𝑥 to 𝑢1 with𝑇𝑦𝑝𝑒 ;

12 Procedure ForwardDFS (𝑢, 𝛼, 𝐹 )
13 Algorithm 1 Line 6;

14 𝑃 ← ∅;
15 if 𝛼 ∈ 𝐹 then
16 𝑃 ← 𝑃 ∪ {𝑝 };
17 foreach (𝑣, 𝛽 ) ∈ 𝑁 𝑃

𝑜𝑢𝑡 (𝑢, 𝛼 ) do
18 Algorithm 1 Line 11 ;

19 𝑃 ← 𝑃 ∪ ForwardDFS(𝑣, 𝛽, 𝐹);
20 Algorithm 1 Line 13;

21 return 𝑃 ;

This method is much faster than DFS. However, before finding

the next shortest path, it needs to prohibit certain edges to avoid

generating repeated results. This process involves checking all

output paths, which may be time-consuming, especially when a

large number of shortest paths have been discovered.

Our objective is to propose a more efficient algorithm than [27]

to address Enumeration Query under DCE. Subsequently, we plan

to extend this efficient algorithm to support all TRE.

4 ALGORITHM OVERVIEW
For TRE, solving Reachability Query and Enumeration Query under

length-fixed expressions is straightforward as we only need to

explore a fixed number of steps to complete the search. In this

paper, we use DFS-based algorithm to compute 𝑃𝑟𝑒 and 𝑆𝑢𝑓 of

query expressions. The most time-consuming part is dealing with

𝑇𝑦𝑝𝑒 , because there are Kleene stars in this part, the length of

the path can be very large up to |𝑉 |. Therefore, finding a faster

way to answer Reachability Query and Enumeration Query under

downward closed expressions is crucial to designing an efficient

algorithm under TRE constraints. Next, we propose the framework

to compute Reachability Query and Enumeration Query.

Algorithm 2 gives a framework of our algorithm for Reachabil-

ity Query and Enumeration Query. Given a graph 𝐺 and a query

𝑞(𝑠, 𝑡, 𝑅), we first divide the regex 𝑅 into three parts 𝑃𝑟𝑒 ,𝑇𝑦𝑝𝑒 , and

𝑆𝑢𝑓 where 𝑃𝑟𝑒 and 𝑆𝑢𝑓 are length-fixed expressions and 𝑇𝑦𝑝𝑒 is a

downward closed expression. Next, we explore the paths from the

source vertex 𝑠 forwardly based on 𝑃𝑟𝑒 and record all information

of suitable paths (Line 6). Similarly, we explore the paths from target

vertex 𝑡 backwardly based on 𝑆𝑢𝑓 and record the path information

(Line 7). Here we give the details of the forward search (Lines 13-22),

while the backward search can be handled similarly.

Then, we combine the forward paths (i.e., 𝑃𝑓 ) and backward

paths (i.e., 𝑃𝑏 ) in pairs and get the last vertex of the forward path

(i.e., 𝑣𝑥 ) and the first vertex of the backward path (i.e., 𝑢1) while

putting other vertices of forward and backward paths into set 𝑆 .

Finally, we delete all vertices in set 𝑆 to satisfy the simple constraint

and run the efficient algorithm under 𝑇𝑦𝑝𝑒 between 𝑣𝑥 and 𝑢1 to

answer Reachability Query and Enumeration Query (Lines 8-12).

Example 5. In figure 1(a), assume that query is (𝑉0,𝑉6, 0∗ ◦1∗ ◦1),
then we divide the regex into 𝑃𝑟𝑒 = ∅,𝑇𝑦𝑝𝑒 = 0

∗ ◦ 1∗ and 𝑆𝑢𝑓 = 1 at
first. Then we do the forward and backward DFS explorations starting
from 𝑉0 and 𝑉6 respectively. Due to the fact that 𝑃𝑟𝑒 is empty, so
we only do backward DFS exploration from 𝑉6 and find one path

𝑉5
1−→ 𝑉6. Next, we delete vertex 𝑉6 in 𝐺 and check if there exists

one simple path from 𝑉0 to 𝑉5 that matches 𝑇𝑦𝑝𝑒 or find all the
simple paths. Finally, we return reachable or find the simple paths

𝑉0
0−→ 𝑉2

0−→ 𝑉3
1−→ 𝑉5

1−→ 𝑉6 and 𝑉0
0−→ 𝑉1

0−→ 𝑉2
0−→ 𝑉3

1−→ 𝑉5
1−→ 𝑉6.

5 REGULAR SIMPLE PATH REACHABILITY
In this section, we introduce the algorithm named RTRE (Reach-

ability for TRE) under 𝑇𝑦𝑝𝑒 . We first show an important theorem,

and then present the details.

Theorem 5.1. For DCE, if we find an arbitrary path between 𝑠
and 𝑡 that matches the expression, there must exist at least one simple
path between these two vertices that also matches this constraint.

Proof. If the arbitrary path does not contain any cycle, it is also

a simple path that matches the regex. We consider the situation that

the arbitrary path has at least one cycle. W.l.o.g., suppose that the

path 𝑝 = 𝑠
𝑙0−→ 𝑣0 · · ·

𝑙𝑖−→ 𝑣𝑖 · · ·
𝑙 𝑗−→ 𝑣 𝑗 = 𝑣𝑖

𝑙 𝑗+1−−−→ 𝑣 𝑗+1 · · ·
𝑙𝑡−→ 𝑡 has

one cycle, which matches the given regex 𝑅. When we delete the

cycle in 𝑝 , the new path will be a simple path and its corresponding

label will be 𝑙0 · · · 𝑙𝑖 , 𝑙 𝑗+1 · · · 𝑙𝑡 , which still matches the given expres-

sion based on the definition of DCE. The new path becomes the

simple path between 𝑠 and 𝑡 that matches the regex 𝑅. If the path

has more than one cycle, we can do this process repeatedly until

the new path has no cycle. The final path that contains no cycle is

the simple path that still matches the expression. □

According to theorem 5.1, for DCE, we can check for the ex-

istence of regular simple paths by finding a regular shortest path,

which allows us to explore each edge only once.

Based on this observation, we design an algorithm based on

bidirectional BFS with a block technique which also provides a

theoretical guarantee for answering Reachability Query efficiently.

We perform two directional BFS walks starting from the source and

target vertices in the product graph 𝑃𝐺,𝐴 simultaneously. For each

vertex in 𝑃𝐺,𝐴 , we create two vectors to keep track of whether they

are visited in forward and backward explorations, respectively. If

we find a vertex is visited in both forward and backward searches,

we return reachable, otherwise, we return not reachable. The key
difference between RTRE and BBFS [41] is that RTRE explores

edges in 𝑃𝐺,𝐴 only once, whereas this exploration is performed

multiple times in BBFS, making RTRE generally faster than BBFS.

Additionally, BBFS saves all potential path information, while RTRE

only records whether a vertex is explored, resulting in lower space

requirements compared to BBFS.

Algorithm 3 presents the details of RTRE. Lines 1-7 complete

the initialization of RTRE. Lines 9-15 record information about
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Algorithm 3: RTRE
Input: The product graph 𝑃𝐺,𝐴 , source and target vertices 𝑠 , 𝑡 , and regex

𝑇𝑦𝑝𝑒 ;

Output: returns true if 𝑡 is reachable from 𝑠 matching regex𝑇𝑦𝑝𝑒

1 𝑄𝐹 ,𝑄𝐵 , 𝐹 , 𝐵← ∅ ;
2 𝐴← ConstructDFA(𝑇𝑦𝑝𝑒);

3 𝑄𝐹 .𝑝𝑢𝑠ℎ ( (𝑠,𝐴.𝛼0 ) ) ;
4 𝐹 ← 𝐹 ∪ { (𝑠,𝐴.𝛼0 ) } ;
5 foreach 𝛽 ∈ 𝐴.𝐹 do
6 𝑄𝐵 .𝑝𝑢𝑠ℎ ( (𝑡, 𝛽 ) ) ;
7 𝐵 ← 𝐵 ∪ { (𝑡, 𝛽 ) } ;
8 while𝑄𝐹 ≠ ∅ and𝑄𝐵 ≠ ∅ do
9 (𝑢, 𝛼 ) ← 𝑄𝐹 .𝑝𝑜𝑝 ( ) ;

10 foreach (𝑣, 𝛽 ) ∈ 𝑁 𝑃
𝑜𝑢𝑡 (𝑢, 𝛼 ) do

11 if (𝑣, 𝛽 ) ∈ 𝐵 then
12 return true;

13 if (𝑣, 𝛽 ) ∉ 𝐹 then
14 𝐹 ← 𝐹 ∪ { (𝑣, 𝛽 ) } ;
15 𝑄𝐹 .𝑝𝑢𝑠ℎ ( (𝑣, 𝛽 ) ) ;

16 (𝑢, 𝛼 ) ←𝑄𝐵 .𝑝𝑜𝑝 ( ) ;
17 foreach (𝑣, 𝛽 ) ∈ 𝑁 𝑃

𝑖𝑛
(𝑢, 𝛼 ) do

18 if (𝑣, 𝛽 ) ∈ 𝐹 then
19 return true;

20 if (𝑣, 𝛽 ) ∉ 𝐵 then
21 𝐵 ← 𝐵 ∪ { (𝑣, 𝛽 ) } ;
22 𝑄𝐵 .𝑝𝑢𝑠ℎ ( (𝑣, 𝛽 ) ) ;

23 return false

forward walks, and return reachable when the forward walks meet

backward walks (Lines 11-12). Lines 17-22 record information about

backward walks and the remaining steps are similar to the process

of forward walks. If we finish exploring forward walks or backward

walks (Line 8), we return unreachable.

Example 6. Assume that the query is (𝑉0,𝑉5, 0∗ ◦ 1∗) in Figure
1(a). We need to find a simple path from (𝑉0, 0) to (𝑉5, 0) or (𝑉5, 1) in
𝑃𝐺,𝐴 . Table 3 shows details of forward and backward explorations and
records vertices that have been explored in each step. Step 0 means
initialization. When we perform the forward search in step 3, we find
the vertex (𝑉3, 0) has been explored in both forward and backward
searches. Hence, we can stop the search and return reachable.

Theorem 5.2. The time complexity of RTRE is 𝑂 (𝑛 · 𝑘 +𝑚 · 𝑘2),
and the space complexity is 𝑂 (𝑛 · 𝑘 +𝑚), where 𝑛 is the number of
vertices in 𝐺 ,𝑚 is the number of edges in 𝐺 and 𝑘 is the number of
states in the corresponding DFA 𝐴 of given regex.

Proof. If there are 𝑘 states in DFA𝐴, then there are at most 𝑛 ·𝑘
vertices and𝑚 · 𝑘2 edges in the corresponding product graph 𝑃𝐺,𝐴 .

Since every edge in 𝑃𝐺,𝐴 is explored only once, the time complexity

is𝑂 (𝑛 · 𝑘 +𝑚 · 𝑘2). Each vertex with every state may be saved. The

space complexity is 𝑂 (𝑛 · 𝑘 +𝑚). □

6 REGULAR SIMPLE PATH ENUMERATION
Compared with the 𝑃𝑟𝑒 and 𝑆𝑢𝑓 in a query, the challenge of regular

simple path enumeration is still the 𝑇𝑦𝑝𝑒 . Hence we propose some

pruning techniques to help us accelerate enumeration. Firstly, we

propose a candidate detection method for pruning unnecessary

vertices. Secondly, we try to prune the search branch that does

not contain any eligible path by previous searching. Thirdly, we

Table 3: The exploration of RTRE

Step Forward search Backward search

0 (𝑉0, 0) (𝑉5, 0), (𝑉5, 1)
1 (𝑉0, 0), (𝑉1, 0), (𝑉2, 0) (𝑉5, 0), (𝑉5, 1)
2 (𝑉0, 0), (𝑉1, 0), (𝑉2, 0), (𝑉7, 1) (𝑉5, 0), (𝑉5, 1), (𝑉3, 0)
3 (𝑉0, 0), (𝑉1, 0), (𝑉2, 0), (𝑉7, 1), (𝑉3, 0)

improve the pruning rules by the property of DCE and propose a

faster and polynomial delay enumeration algorithm.

6.1 Candidate Detection
When the source and target vertices 𝑠 and 𝑡 are given, it is possible to

identify many vertices in the graph that do not need to be explored

because they cannot reach 𝑡 under the expression’s constraint alone

(i.e., ignoring the simple constraint temporarily). In this subsection,

we present a technique called Candidate Detection, which detects

all the candidate vertices in the product graph 𝑃𝐺,𝐴 .

We determine the candidate vertices by using the backward BFS

strategy from the target vertex 𝑡 with the final states of DFA 𝐴.

Algorithm 4 provides the details. During the exploration from 𝑡

with the final states (Lines 6-11), we record every vertex in 𝑃𝐺,𝐴

that has been visited (Line 10). All these visited vertices are the

candidate vertices. We will delete other vertices along with their

corresponding edges, to obtain a new product graph 𝑃 ′ (Line 12).

6.2 Pruning by Conflict Sets
After obtaining the new product graph 𝑃 ′, we aim to identify exact

simple paths that satisfy the given regex. While DFS is a straight-

forward approach for enumerating all simple paths, it can become

inefficient due to exploring futile branches in the search tree. To ad-

dress this, we seek to identify and characterize these futile branches,

known as conflict sets. By employing a DFS strategy, we traverse

the search tree, periodically encountering vertices such as𝑀 . If𝑀

cannot reach the target vertices, it implies the existence of conflict

vertices (ones explored repeatedly in paths from the source vertex

to𝑀 and the subtree rooted at𝑀). To streamline future searches, we

leverage conflict information obtained during subtree exploration

to prune redundant searches.

Computing Conflict Sets. Next, we describe how to compute

the conflict set 𝐶𝑀 of node 𝑀 in a bottom-up fashion. Initially, we

define the leaves of the search tree, which can be categorized into

the following three types, w.l.o.g., assuming that we have explored

the simple path 𝑝𝑐 and arrived at node𝑀 in 𝑃𝐺,𝐴 .

(1) A leaf is a conflict node in the subtree rooted at𝑀 if and only if

we should stop exploring this node due to the simple constraint.

(2) A leaf can be a target node, indicating we find a result.

(3) Otherwise, we refer to this leaf as a normal node.

Now, we compute the conflict set of node𝑀 by using its children

and their corresponding conflict sets. Assume that node 𝑀 has 𝑘

children 𝑀1, · · · , 𝑀𝑘 , and we have already computed the conflict

set 𝐶𝑀1
, · · · ,𝐶𝑀𝑘

of these children, respectively. Based on the fol-

lowing cases, we can compute the conflict set 𝐶𝑀 of node 𝑀 . If

there exists a child node 𝑀𝑖 such that 𝑀𝑖 is the target node, we

set 𝐶𝑀 = ∅. Otherwise, if child nodes are all normal nodes, we set
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Algorithm 4: CandidateDetection
Input: The product graph 𝑃𝐺,𝐴 , target vertex 𝑡 , DFA𝐴;

Output: The pruned product graph;

1 𝑄 ← ∅;
2 𝐵← ∅;
3 foreach 𝛼 ∈ 𝐴.𝐹 do
4 𝑄.push( (𝑡, 𝛼 ) ) ;
5 𝐵 ← 𝐵 ∪ { (𝑡, 𝛼 ) };
6 while𝑄 ≠ ∅ do
7 (𝑢, 𝛼 ) ← 𝑄.𝑝𝑜𝑝 ( ) ;
8 foreach (𝑣, 𝛽 ) ∈ 𝑁 𝑃

𝑖𝑛
(𝑢, 𝛼 ) do

9 if (𝑣, 𝛽 ) ∉ 𝐵 then
10 𝐵 ← 𝐵 ∪ (𝑣, 𝛽 ) ;
11 𝑄.𝑝𝑢𝑠ℎ ( (𝑣, 𝛽 ) ) ;

12 return 𝑃 ′ = (𝑉 ′ = { (𝑢, 𝛼 ) |𝐵 [𝑢 ] [𝛼 ] =true}, 𝐸′ = { (𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉 ′ })

𝐶𝑀 = ∩𝑘
𝑖=1
𝐶𝑀𝑖

. Otherwise, we use set 𝐶 to record all the conflict
nodes. If there are at least two distinct nodes in 𝐶 , we set 𝐶𝑀 = ∅.
Otherwise, we set 𝐶𝑀 = (∩𝑀𝑖 ∈𝐶𝐶𝑀𝑖

) ∩𝐶 .
Note that the conflict sets may be computed multiple times for

the same node, and the updates are done in an additional manner

rather than a coverage manner, which means that new values are

inserted into the conflict sets without deleting old values. Addition-

ally, in this part, we only consider the simple constraint based on

node information, so in the conflict sets, we only include the node

information while ignoring the state information. For example, if a

node (𝑢, 𝛼) has two conflict nodes (𝑣, 𝛽1) and (𝑣, 𝛽2), even though

these two nodes have different states, the conflict set of (𝑢, 𝛼) is 𝑣
but not ∅ because the node 𝑣 is the essential reason why exploration
is stopped, rather than the state 𝛽1, 𝛽2.

Algorithm 5 shows how to utilize conflict sets for pruning the

search tree. Line 10 illustrates our pruning technique. Specifically, if

we find one node in the current path that is present in its conflict set,

we can terminate the exploration, as the new path after exploration

must conflict with the simple constraint. Note that Conflict DFS

can handle any expressions, but in some bad cases, it may still cost

exponential steps to return results.

6.3 Pruning by Block
If the current partial path does not include the vertices in the con-

flict set, we cannot determine whether the current search branch

contains an eligible simple path. To address the limitation of conflict

sets, we propose a more efficient method called ETRE (Enumeration

for TRE) than Conflict DFS under 𝑇𝑦𝑝𝑒 .

After candidate detection, this method involves using a blocked

set 𝐵 to determine whether each vertex in the new product graph

𝑃 ′ needs to be explored. Specifically, in the DFS exploration, we will

put some vertices into the blocked set after they have been visited.

Note that the vertex in the blocked set cannot be explored until it

is not in the blocked set. We will explore the vertex (𝑢, 𝛼) only if it

is not in 𝐵 and the current path 𝑝 does not contain 𝑢. Otherwise,

we terminate the exploration and backtrack. If the blocked set

encompasses a vertex, we refer to it as a blocked vertex (or simply,

we block this vertex).

Considering the query (𝑉0,𝑉7, 0∗ ◦ 1∗) in Figure 1(a). We show

how the blocked set evolves and how repetitions of useless ex-

plorations can be pruned. At this stage, readers do not need to

Algorithm 5: Conflict DFS
Input: Product graph 𝑃𝐺,𝐴 , source and target vertices 𝑠 , 𝑡 , and regex𝑇𝑦𝑝𝑒 ;

Output: all simple paths between 𝑠 and 𝑡 matching𝑇𝑦𝑝𝑒

1 𝐴← ConstructDFA(𝑇𝑦𝑝𝑒);

2 𝑃 ′ ← CandidateDetection(𝑃𝐺,𝐴 ,𝑡,𝐴);

3 Initialize Conflict set𝐶 to empty;

4 Return Conflict DFS(𝑠,𝐴.𝛼0, 𝑡, 𝐴, {𝑠 });
5 Procedure Conflict DFS(𝑢, 𝛼, 𝑡,𝐴, 𝑝)
6 Result← ∅ ;
7 if 𝑢 = 𝑡 and 𝛼 ∈ 𝐴.𝐹 then
8 return {p};

9 foreach (𝑣, 𝛽 ) ∈ 𝑁 𝑃 ′
𝑜𝑢𝑡 (𝑢, 𝛼 ) do

10 if 𝑝 ∩𝐶 [𝑣 ] [𝛽 ] ≠ ∅ then
11 break;

12 if 𝑣 ∉ 𝑝 then
13 Result← Result ∪ Conflict DFS(𝑣, 𝛽, 𝑡,𝐴, 𝑝 ∪ {𝑣});

14 Update the conflict set for (𝑢, 𝛼 ) ;
15 return Result;

worry about how to update the blocked set when backtracking to

find the next regular simple path, as this process will be addressed

after this example. In Figure 1(a), assume that we explore the path

𝑉0
0−→ 𝑉1

0−→ 𝑉2
0−→ 𝑉3

1−→ 𝑉4 first. The corresponding exploration in

the product graph is as follows:

• (𝑉0, 0) → (𝑉1, 0): Put (𝑉1, 0) into 𝐵 and add 𝑉0,𝑉1 to 𝑝 .

• (𝑉1, 0) → (𝑉2, 0): Put (𝑉2, 0) into 𝐵 and add 𝑉2 to 𝑝 .

• (𝑉2, 0) → (𝑉3, 0): Put (𝑉3, 0) into 𝐵 and add 𝑉3 to 𝑝 .

• (𝑉3, 0) → (𝑉4, 1): Put (𝑉4, 1) into 𝐵 and add 𝑉4 to 𝑝 .

• Then, we do not explore vertex (𝑉1, 1) because𝑉1 is in the current
path 𝑝 . We backtrack to (𝑉3, 0) to find other paths. So we reach

(𝑉5, 1) and add (𝑉5, 1) to 𝐵. Then, we attempt to explore the

vertex (𝑉4, 1) again. However, due to (𝑉4, 1) being in 𝐵, we abort
this search and backtrack.

• Next, we will backtrack to vertex (𝑉1, 0) and find one result.

While this appears promising, we must acknowledge a major

issue that has been overlooked. During backtracking to find the

next path, previously blocked vertices may become available again,

which can impact the accuracy of the blocked set. We extend the

previous example to illustrate this problem. After finding the result

𝑉0
0−→ 𝑉1

1−→ 𝑉7, we will explore vertex (𝑉2, 0) as we have finished
all the exploration rooted at (𝑉1, 0). However, we cannot explore
vertex (𝑉2, 0) since (𝑉2, 0) is still in 𝐵. Nevertheless, there exists a
path 𝑉0

0−→ 𝑉2
0−→ 𝑉1

1−→ 𝑉7 that satisfies our requirements.

The problem is that the blocked set is not updated in a timely

manner. Therefore, we need to evaluate under which conditions

the vertex could be unblocked (i.e., delete it from the blocked set)

at the same time when we block it. There are two cases in which

we should update the blocked set. Firstly, when we find a path that

satisfies our request, we should unblock all the vertices in this path.

Secondly, there are cases where we need to unblock certain vertices

while unblocking others. For example, if we unblock vertex (𝑉1, 0),
we should also unblock vertex (𝑉3, 0), as if (𝑉1, 0) could be explored
again, (𝑉3, 0) will be also available.

Therefore, we add an unblock list for every vertex, which main-

tains a list of vertices that should be unblocked when the vertex

itself is unblocked. This allows for cascading unblock operations.
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Algorithm 6: Unblock
Input: Block set 𝐵, unblock list𝑈 , vertex 𝑢, state 𝛼

1 Procedure Unblock(𝐵,𝑈 ,𝑢, 𝛼)
2 𝐵 ← 𝐵 − { (𝑢, 𝛼 ) } ;
3 foreach (𝑣, 𝛽 ) ∈ 𝑈 [𝑢 ] [𝛼 ] do
4 Unblock(𝐵,𝑈 , 𝑣, 𝛽);

5 𝑈 [𝑢 ] [𝛼 ] ← ∅

Algorithm 7: ETRE
Input: product graph 𝑃𝐺,𝐴 , source and target vertices 𝑠 , 𝑡 , and Regex𝑇𝑦𝑝𝑒 ;

Output: all simple paths between 𝑠 and 𝑡 matching𝑇𝑦𝑝𝑒

1 𝐴← ConstructDFA(𝑇𝑦𝑝𝑒);

2 𝑃 ′ ← CandidateDetection(𝑃𝐺,𝐴 ,𝑡,𝐴);

3 𝑝 ← {s};

4 𝐵 ← ∅;
5 foreach (𝑢, 𝛼 ) ∈ 𝑃 ′ do
6 𝑈 [𝑢 ] [𝛼 ] ← ∅;
7 return ETRE (𝑠,𝐴.𝛼0, 𝑡, 𝑝, 𝑃

′);
8 Procedure ETRE(𝑢, 𝛼, 𝑡, 𝑝, 𝑃 ′)
9 𝐵 ← 𝐵 ∪ { (𝑢, 𝛼 ) } ;

10 Result← ∅ ;
11 foreach (𝑣, 𝛽 ) ∈ 𝑁 𝑃 ′

𝑜𝑢𝑡 (𝑢, 𝛼 ) do
12 if 𝑣 = 𝑡 and 𝛽 ∈ 𝐴.𝐹 then
13 Result← Result ∪ {𝑝 };
14 if 𝑣 ∉ 𝑝 and (𝑣, 𝛽 ) ∉ 𝐵 then
15 Result← Result ∪ ETRE(𝑣, 𝛽, 𝑡, 𝑝 ∪ {𝑣}, 𝑃 ′)

16 if Result ≠ ∅ then
17 𝑈𝑛𝑏𝑙𝑜𝑐𝑘 (𝐵,𝑈 ,𝑢, 𝛼 ) ;
18 else
19 foreach (𝑣, 𝛽 ) ∈ 𝑁 𝑃 ′

𝑜𝑢𝑡 (𝑢, 𝛼 ) do
20 𝑈 [𝑣 ] [𝛽 ] ← { (𝑢, 𝛼 ) };

21 return Result;

In our example, when we find the result 𝑉0
0−→ 𝑉1

1−→ 𝑉7, the vertex

(𝑉1, 0) will be unblocked. We delete (𝑉1, 0) from the blocked set.

Since (𝑉3, 0) is in the unblock list of (𝑉1, 0), it will be deleted as

well, leading to the deletion of (𝑉2, 0), and this process continues

until the unblock list is empty. This ensures that all the vertices that

need to be unblocked are properly updated, allowing for correct

handling of cascade unblock operations.

Overall, ETRE could be considered as an improved method of

conflict sets. Conflict sets record local information, which can lead

to repeated exploration of unproductive paths when previous paths

change. On the other hand, ETRE maintains global information to

efficiently prune the search space, ensuring that no futile searches

are explored between two results outputs. The pseudocode for the

ETRE algorithm is presented in Algorithm 7.

Specifically, we block every vertex during the exploration (Line

9).Whenwemeet the blocked vertex or the current path contains its

vertex information, we will terminate the further exploration (Line

14).Whenwe finish the exploration of one vertex and find one result,

we will unblock this vertex (Lines 16-17). Note that the unblock

process is recursive until no vertex can be unblocked. Otherwise,

we will keep blocking this vertex and record the information about

how can we unblock it (Lines 19-20).

Theorem 6.1. ETRE returns all the simple paths between the start
vertex 𝑠 and the target vertex 𝑡 that match the given DCE 𝑅.

Proof. First of all, it is important to realize that ETRE is a trun-

cated depth-first search: all paths are explored except for paths that

contain blocked vertices. There are two cases where a vertex can

be blocked. In the first case, the vertices in the currently explored

path are blocked. When we arrive at them again in the exploration,

we need to terminate the exploration since it leads to a non-simple

path. In the second case, during backtracking, even if some vertices

are not in the current path, they are still blocked. Now assuming

that we have explored the path 𝑠 → · · · → 𝑣𝑖 → · · · → 𝑣𝑘 , if we

have already explored the subtree rooted at 𝑣𝑘 and determined 𝑣𝑘
should not be unblocked, it implies that 𝑣𝑘 is not in a result path.

This indicates that 𝑣𝑘 must conflict with a vertex in a later part of

the path, represented by 𝑣𝑖 . Therefore, 𝑣𝑘 will be unblocked only

if 𝑣𝑖 is unblocked. However, 𝑣𝑖 can only be unblocked if we have

finished exploring the subtree rooted at 𝑣𝑖 , which means it does

not affect the subsequent exploration. Considering the recursive

nature of the process, block and unblock techniques can not affect

the correctness of the exploration. □

Theorem 6.2. The total time complexity of ETRE is 𝑂 ((𝑐 + 1) (𝑛 ·
𝑘 +𝑚 · 𝑘2)), and the space complexity is also𝑂 (𝑛 · 𝑘 +𝑚 · 𝑘2), where
𝑐 is the number of results.

Proof. The proof of this theorem is based on the design that

the only way to unblock one vertex is by a call Unblock, which only

happens when a path is output. Whenever a path 𝑠 → 𝑣1 · · · →
𝑣𝑖 → 𝑡 is output, Unblock will be executed for 𝑣𝑖 (i.e., the prefix

path is 𝑠 → 𝑣1 · · · → 𝑣𝑖 ), then for 𝑣𝑖−1, until it is called for 𝑣1.

However, every call for Unblock will unblock different vertices.

Indeed, if now the prefix path is 𝑠 → 𝑣1 · · · → 𝑣 𝑗 , a call to Unblock

only unblocks the vertices that at this moment cannot be used in

a path to the target vertex 𝑡 , but once 𝑣 𝑗 is unblocked, they will

become available again. Therefore, every edge can be explored at

most twice between two paths output. Hence, either a path will be

output after 𝑂 (𝑚 · 𝑘2), or all the vertices will be blocked and we

terminate the algorithm. The term𝑂 (𝑛 ·𝑘) is for the initialization of

the blocked switches of all vertices at the start of the algorithm. We

use 𝑂 (𝑛 · 𝑘) space to block vertices and 𝑂 (𝑚 · 𝑘2) space to record

the unblock list𝑈 . □

7 REACHABILITY VERTEX PAIR QUERY
The problem of returning the pairs of vertices connected by simple

paths satisfying a given regular expression is NP-hard. [28] pro-

poses an efficient method that can address this problem in poly-

nomial time under restricted regular expressions (which are equal

to downward closed expressions, the details can be seen in [28])

even considering the simple paths. Unfortunately, using the method

in [28] to evaluate queries under the expression form 𝑃𝑟𝑒 ◦ 𝑇𝑦𝑝𝑒
takes exponential time. Note that𝑇𝑦𝑝𝑒 ◦ 𝑆𝑢𝑓 is very similar to 𝑃𝑟𝑒

◦ 𝑇𝑦𝑝𝑒 . Hence, we only discuss 𝑃𝑟𝑒 ◦ 𝑇𝑦𝑝𝑒 .
Algorithm 8 gives the details of our method. To be specific, the

expression is firstly broken into two parts (i.e., 𝑃𝑟𝑒 and𝑇𝑦𝑝𝑒). Then

we use the DFS method to find all the vertices that the start vertex

𝑠 can reach under 𝑃𝑟𝑒 constraint through simple paths and record

the corresponding simple paths (Line 4). Then for every path, we

delete all the vertices in the path except the final vertex (Line 6)

and run the efficient algorithm under 𝑇𝑦𝑝𝑒 from 𝑣𝑠 to answer the
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Algorithm 8: Reachability Vertices Pair Query

Input: Graph𝐺 = (𝑉 , 𝐸, L, 𝜙 ) and the expression 𝑅;

Output: returns the pairs of nodes connected by simple paths satisfying 𝑅

1 𝑃𝑟𝑒 ◦𝑇𝑦𝑝𝑒 ← 𝑅;𝑄 , 𝑅𝑒𝑠𝑢𝑙𝑡 ← ∅ ;
2 𝐴𝑃𝑟𝑒 ← ConstructDFA(𝑃𝑟𝑒);𝐴𝑇𝑦𝑝𝑒 ← ConstructDFA(𝑇𝑦𝑝𝑒) ;

3 foreach 𝑠 ∈ 𝑉 do
4 𝑃𝑓 ←ForwardDFS (𝑠,𝐴𝑃𝑟𝑒 .𝛼0, 𝐴𝑃𝑟𝑒 .𝐹 ) ;

5 foreach 𝑝1 = (𝑣1 = 𝑠, 𝑣2, . . . , 𝑣𝑥 ) ∈ 𝑃𝑓 do
6 𝑉 ′ ←𝑉 − ({𝑝1 − 𝑣𝑥 }) ; 𝐸′ ← {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉 ′, (𝑢, 𝑣) ∈ 𝐸} ;
7 𝑄.𝑝𝑢𝑠ℎ ( (𝑣𝑥 , 𝐴𝑇𝑦𝑝𝑒 .𝛼0 ) ) ; 𝐹 ← ∅ ;
8 while𝑄 ≠ ∅ do
9 (𝑢, 𝛼 ) ← 𝑄.𝑝𝑜𝑝 ( ) ;

10 foreach (𝑣, 𝛽 ) ∈ 𝑁 𝑃
𝑜𝑢𝑡 (𝑢, 𝛼 ) do

11 if 𝛽 ∈ 𝐴𝑇𝑦𝑝𝑒 .𝐹 and (𝑠, 𝑣) ∉ 𝑅𝑒𝑠𝑢𝑙𝑡 then
12 𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝑅𝑒𝑠𝑢𝑙𝑡 ∪ (𝑠, 𝑣) ;
13 if (𝑣, 𝛽 ) ∉ 𝐹 then
14 𝐹 ← 𝐹 ∪ { (𝑣, 𝛽 ) } ;
15 𝑄𝐹 .𝑝𝑢𝑠ℎ ( (𝑣, 𝛽 ) ) ;

16 return 𝑅𝑒𝑠𝑢𝑙𝑡

query (Lines 8-15). Specifically, we can find all the vertices that

one vertex can reach by finding single source shortest paths. We

design an algorithm based on BFS with a block technique to find

the vertices. We perform a BFS walk from the source vertice in the

product graph 𝑃𝐺,𝐴 and create a vector to keep track of whether the

vertices in 𝑃𝐺,𝐴 are visited in the exploration, which contributes

to the exploration from every vertex can be only constructed once

(Lines 13-15). During the exploration, we record all the visited

vertex with the final states as results (Lines 11-12). We do the above

process for all the vertices in𝐺 and then we find all pairs of vertices

connected by simple paths satisfying the expression (Line 3).

Theorem 7.1. The time complexity of Algorithm 8 is𝑂 (𝑛·(𝑚𝑑 )𝑘𝑝+
𝑐 (𝑛 ·𝑘𝑡 +𝑚 ·𝑘2𝑡 )), and the space complexity is𝑂 ((𝑚𝑑 )𝑘𝑝 +𝑛 ·𝑘𝑡 +𝑚),
where𝑚𝑑 is the maximal degree of 𝐺 , 𝑐 is the number of all forward
paths, and 𝑘𝑝 and 𝑘𝑡 is the number of states in the corresponding DFA
of 𝑃𝑟𝑒 and 𝑇𝑦𝑝𝑒 , respectively.

Proof. It takes𝑂 (𝑛 · (𝑚𝑑 )𝑘𝑝 ) time to find all the forward paths,

and we need 𝑂 (𝑛 · 𝑘𝑡 +𝑚 · 𝑘2𝑡 ) to find the results for each forward

path. It takes at most 𝑂 ((𝑚𝑑 )𝑘𝑝 ) space to save the forward paths,

andwe need𝑂 (𝑛 ·𝑘𝑡 ) space to record the information about whether

vertices are visited. The final time cost is 𝑂 (𝑛 · (𝑚𝑑 )𝑘𝑝 + 𝑐 (𝑛 · 𝑘𝑡 +
𝑚 · 𝑘2𝑡 )), and the final space cost is 𝑂 ((𝑚𝑑 )𝑘𝑝 + 𝑛 · 𝑘𝑡 +𝑚). □

8 EXPERIMENTS
Datasets: Table 4 lists the basic information of 17 real-graphs

used in our experiments, most of which are used in the related

work [32, 37]. Eight of the graphs have natural edge labels, while

for the remaining graphs without edge labels, we synthetically

generate labels that are exponentially distributed with 𝜆 =
| L |
𝛼 ,

where 𝛼 = 1.7. For all undirected graphs (i.e., HS, BG, FC and FS),

an undirected edge was replaced by two directed edges.

Comparisons.We investigate the following methods in Reachabil-

ity Query and obtain source codes from the respective authors.

• BBFS [41]: the baseline algorithm.

• ARRIVAL [41]: the state-of-the-art approximate method.

Table 4: Statistics of datasets used in the experiments. (𝐾 =

10
3, 𝑀 = 10

6, 𝐵 = 10
9)

Name Dataset |𝑉 | |𝐸 | |L| |𝐸 |
|𝑉 | | L | Type Syn

AD Advogato 6.5K 51.1K 4 1.96 Trust

EC econ-psmigr1 3.1K 543K 8 21.89 Economic ✓
TR Wiki-trust 139K 740K 8 0.66 Interaction ✓
HS StringsHS 19K 1.24M 8 8.15 Biological

BG BioGrid 64K 1.5M 7 3.34 Biological

FC StringsFC 19K 2.04M 8 13.42 Biological

ND NotreDame 326K 1.47M 8 0.56 Web ✓
SF Web-stanford 282K 2.3M 8 1.01 Web ✓
BK Baidu-baike 416K 3M 8 0.90 Web ✓
GG Web-google 876K 5M 8 0.71 Web ✓
DA Rec-dating 169K 17M 10 10.05 Recommendation

YT Youtube 14.9K 13.6M 5 182.55 Social

EP Soc-Epinsion1 75K 508K 8 0.84 Social ✓
SO StackOverflow 2.6M 63M 3 8.07 Social

ZS zhishihudong 2.4M 18.9M 8 0.98 Miscellaneous ✓
FS friendster 65M 2.6B 30 1.33 Miscellaneous ✓
WD Wikidata 296M 958M 5419 0.001 Miscellaneous

• RTRE: Algorithm 2 + Algorithm 3.

The methods studied in Enumeration Query are the following:

• Yen’s algorithm [27]: the version of Yen’s algorithm [44] for

Enumeration Query under DCE.

• DFS: the baseline algorithm.

• Conflict DFS: Algorithm 5.

• ETRE: Algorithm 2 + Algorithm 7.

We investigate two methods in Reachability Vertices Pair Query:

• Wood’s algorithm [28]: the start-of-the-art method.

• RVPM : Algorithm 8.

All algorithms are implemented in C++ and compiled with g++ with

O3 optimization. The experiments are performed on a machine with

an Intel Xeon 2.1GHz CPU and 256G memory.

Queries.We choose the top-5 frequent queries from Table 1
2
. Tabel

5 lists the expressions we use in experiments. The number k in 𝑄4

and 𝑄5 is chosen from 2 to 6. 𝑄6 must consist of 𝑇𝑦𝑝𝑒 , and 𝑃𝑟𝑒

and 𝑆𝑢𝑓 are randomly added to 𝑄6. The length of labels in 𝑇𝑦𝑝𝑒 is

chosen from a range of 2 to 6, and the number in 𝑃𝑟𝑒 and 𝑆𝑢𝑓 is

from a range of 1 to 4. We make two different forms for 𝑇𝑦𝑝𝑒 , i.e.,

𝑅 = (𝑙1 + 𝑙2 + · · · + 𝑙𝑘 )∗ and 𝑅 = (𝑙0)∗ ◦ (𝑙1)∗ ◦ · · · ◦ (𝑙𝑘 )∗. The form
of 𝑃𝑟𝑒 and 𝑆𝑢𝑓 is 𝑅 = (𝑙0) ◦ (𝑙1) ◦ · · · ◦ (𝑙𝑘 ).

The source vertex, target vertex, and label are chosen randomly

from the graph. We generate 1000 queries for Reachability Query

comprising 500 true queries and 500 false queries. Additionally, we

have created 100 queries for Enumeration Query, ensuring the exist-

ence of at least one result. Due to limited space, we cannot include

all experimental results in this paper. The additional experimental

results and discussions are given in the long version of our paper
3
.

8.1 Performance on Reachability Query
8.1.1 Comparison with BBFS [41]. We set a time limit as 50 seconds

for BBFS and compare the performance of BBFS with RTRE. Tabel 6,

7, 9 demonstrate that RTRE is up to three orders of magnitude faster

than BBFS on almost of graph datasets under recursive queries (i.e.,

2
We do not choose𝐴 since the final result path only has one edge for this query.

3
https://github.com/Newth-QiLiang/Regular-Simple-Path-Queries.
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Table 5: Queries used in experiments

Name Type Name Type

𝑄1 𝑎∗ 𝑄4 (𝑎1 + 𝑎2 · · · + 𝑎𝑘 )∗
𝑄2 𝑎 ◦ 𝑏∗ 𝑄5 𝑎1 ◦ 𝑎2 · · · ◦ 𝑎𝑘
𝑄3 𝑎 ◦ 𝑏∗ ◦ 𝑐∗ 𝑄6 Random TREs

𝑄1, 𝑄2, 𝑄6)
4
. However, because RTRE makes no effect on non-

recursive queries, RTRE shows the same efficiency as BBFS.

Table 6: Query time in microseconds for 𝑄1. (TQ: true query,
FQ: false query, Rec: recall, OOM: out of memory, OOT: ini-
tialization time > 12h.)

Name

BBFS RTRE ARRIVAL

TQ FQ TQ FQ TQ FQ Rec

AD 217 53 53 21 112 22 0.88

BG 870K 311K 891 214 513 297 0.87

BK 670K 47K 532 33 634 213 0.76

DA 2.4K 149 648 53 2.6K 971 0.93

EC 131 52 33 15 139 62 0.99

SO 11K 265 1K 46 2.5K 552 0.98

TR 375 46 120 29 343 32 0.97

YT 292K 7.7M 508 11K 934 632 0.63

WD 5.2M 33K 443K 36 OOT OOT OOT

FS OOM OOM 7.2K 46 OOT OOT OOT

Table 7: Query time in microseconds for 𝑄2.

Name

BBFS RTRE ARRIVAL

TQ FQ TQ FQ TQ FQ Rec

AD 188 49 29 4 127 40 0.7

BG 97K 127K 254 41 408 206 0.83

BK 360K 30K 378 20 629 751 0.64

DA 6.1K 591 655 32 2.6K 1.7K 0.82

EC 171 165 28 27 222 155 0.99

SO 201K 4.4K 1.3K 75 5.2K 676 0.96

TR 920 51 174 5 488 96 0.95

YT 7.7K 6.2M 234 7.6K 786 474 0.41

WD 4.6M 36K 325K 75 OOT OOT OOT

FS OOM OOM 7.1K 22 OOT OOT OOT

8.1.2 Comparison with ARRIVAL [41]. ARRIVAL approximates the

diameter of graphs to initialize the parameter walkLength, which
may be time-consuming. In our comparison of ARRIVAL and RTRE

under recursive queries, we observe that RTRE demonstrates com-

parable efficiency to ARRIVAL since ARRIVAL limits the path length

and number to reduce the exploration, and RTRE optimizes the ex-

ploration under DCE constraint. ARRIVAL, on the other hand, may

return approximate results with low recall (e.g., BG with 34% on𝑄6

and YT with 39% on𝑄6). The discrepancy in the recall can be attrib-

uted to the fact that recall is based on strongly connected graphs,

whereas real-world graphs are typically not strongly connected.

4
Due to limited space, we only show the results on 10 datasets and omit the results

under 𝑄3 and 𝑄4 , they can be seen in https://github.com/Newth-QiLiang/Regular-

Simple-Path-Queries.

Table 8: Query time in microseconds for 𝑄5.

Name

BBFS RTRE ARRIVAL

TQ FQ TQ FQ TQ FQ Rec

AD 59 62 59 62 43 44 0.7

BG 84 917 84 918 430 147 0.002

BK 242 13.9K 243 13.9K 228 107 0.95

DA 2.6K 121K 2.6K 121K 1.3K 1K 0.45

EC 2.6K 154K 2.6K 154K 273 341 0.9

SO 704 149K 706 149K 965 1.5K 0.96

TR 394 2.5K 395 2.5K 460 97 0.71

YT 346 291K 348 291K 292 223 0.24

WD 2.4K 47 2.4K 50 OOT OOT OOT

FS 156K 144K 156K 144K OOT OOT OOT

Table 9: Query time in microseconds for 𝑄6.

Name

BBFS RTRE ARRIVAL

TQ FQ TQ FQ TQ FQ Rec

AD 11.6K 1.5M 104 127 212 64 0.64

BG 4.3M 7.5M 5.2K 15.6K 1.2K 618 0.34

BK 13.1M 1.1M 9.4K 14.9K 16.2K 2.1K 0.31

DA 133K 1.3K 2.6K 473 12.1K 3.6K 0.66

EC 803 344 166 134 318 85 0.99

SO 364K 3.1M 5.2K 265K 4.8K 1.1K 0.91

TR 46K 170K 1.0K 608 1.4K 43 0.71

YT 66.2K 24.9M 813 17.3K 1.9K 1.5K 0.39

WD 51.9K 167.5 1.3K 165 OOT OOT OOT

FS OOM OOM 213K 3.9M OOT OOT OOT
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Figure 3: Impact of the number of labels in the query regex.

8.1.3 Performance against Query-Label Size. We conduct an ana-

lysis of query time for RTRE and BBFS with respect to the number

of labels in the 𝑇𝑦𝑝𝑒 on YT, as shown in the left of Figure 3. We

observe that the query time increases linearly as the number of

labels increases since the number of paths that match the regex also

increases with the increase in the number of labels, requiring more

exploration of paths. Nevertheless, RTRE is still at least 2 orders of

magnitude faster than BBFS on YT.

8.2 Performance on Enumeration Query
For each algorithm, we evaluate their performance based on search
time, defined as the duration from the start of a query until the first

1000 results are obtained. We set 10 minutes as the time limit.

8.2.1 Comparison with Yen’s algorithm [27]. Recall that Yen’s al-
gorithm only supports DCE, so we compare the performance of
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Figure 4: Search time comparison on Enumeration Query.
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Figure 5: The result number comparison.

ETRE and Yen’s algorithm specifically on 𝑄1 and 𝑄4. Figure 4(a)

and 4(d) illustrates the average search time on 𝑄1 and 𝑄4, respect-

ively. ETRE is nearly 2-3 orders of magnitude faster on almost of

datasets compared to Yen’s algorithm. We also use another metric

named result number, which means the number of simple paths

that can be found within 1 minute, to test the performance of Yen’s

algorithm and ETRE. We randomly generate DCE and compare the

performance of ETRE and Yen’s algorithm. Figure 5 shows that

ETRE can find over 100 times more paths than Yen’s algorithm.

The superior performance of ETRE can be attributed to a key

factor. Yen’s algorithm algorithm requires deleting some edges in

the graph to avoid repeated results, which incurs a rapidly growing

cost as the number of results increases. In contrast, ETRE only

needs to unblock some vertices in the graph, resulting in nearly

constant cost, which contributes to superior performance.

8.2.2 Comparison with DFS and Conflict DFS. Figure 4 shows the
average search time of DFS, Conflict DFS and ETRE

5
. In comparison,

ETRE is nearly 1000 times faster than DFS and Conflict DFS on

most graphs, as they tend to repeatedly explore unnecessary paths

while ETRE avoids these useless explorations as much as possible.

8.2.3 Performance against Query-Label Size. We illustrate the im-

pact of the number of labels in the𝑇𝑦𝑝𝑒 on the search time of ETRE

in the right of Figure 3. The search time increases linearly with

5
Due to limited space, we omit the results under𝑄5 and𝑄6 , they can be seen in the

long vision of our paper.
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Figure 6: Time comparison on WD having different sizes.

the number of labels, indicating that ETRE is less sensitive to the

number of labels in the query regex.

8.3 Scalability Evaluation
Figure 6 illustrates that query time for Reachability Query and

search time for EnumerationQuery generally increasewith network

size for most algorithms except between 90% and 100% size. The

search space grows up varying graph size increasing. However, we

just have to find limited eligible paths (1 path for the reachability

problem and 1000 paths for the enumeration problem). More edges

may result in more eligible paths in the search space. DFS and

Conflict DFS have little increase since they cannot finish most of

the queries within the time limit. Overview, the query time of our

methods increases linearly and our methods (i.e., RTRE and ETRE)

outperform the baselines (i.e., BBFS and DFS).

8.4 Memory Evaluation
We show the extramemory requirements for𝑄6.We do not compute

the graph memory cost since all methods must save the graph.

For Reachability Query, Figure 7 demonstrates that BBFS costs

the most extra memory since it needs to contain all the potential

simple paths that require lots of memory. In general, RTRE requires

similar memory to ARRIVAL since RTRE and ARRIVAL use two

different methods to reduce the memory cost. For Enumeration

Query, Figure 8 illustrates that DFS needs the least extra space as
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Figure 7: Memory comparison on Reachability Query.
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Figure 8: Memory comparison on Enumeration Query.
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Figure 9: Query time comparison.

it only records the current exploring path which is related to the

depth of simple paths. Conflict DFS needs more memory since they

need BFS exploration and record extra information (such as the

information about candidate vertices). ETRE costs the most extra

memory because it does not only record the candidate vertices but

also records the information about when the block vertices can be

unblocked. Please note the unit of memory cost is Byte, so even

if ETRE costs most space, its cost is less than 100 MB, which is a

reasonable space cost.

8.5 Reachability Vertices Pair Query Evaluation
We set the time limit as 1 hour and compare the performance

of our method with Wood’s algorithm on two datasets (i.e., AD

and EC). Figure 9 demonstrates that our method has comparable

efficiency to Wood’s algorithm on𝑄1, 𝑄4, and𝑄5, and both of them

can be completed within 1 hour. However, our method is up to

three orders of magnitude faster than Wood’s algorithm on 𝑄2 and

𝑄3. It is because although these two types are very simple, Wood’s

algorithm takes exponential time to evaluate the queries while our

method can finish these queries in polynomial time. Unfortunately,

both of these two algorithms are out of time in𝑄6 since it will take

exponential time to evaluate the random queries under TREs.

9 RELATEDWORK
Regular Path Query (RPQ): Most of the existing works focus on

Reachability Vertices Pair Query. Koschmieder and Leser [21] use

the rare label to improve efficiency. Wang et al. [43] answer regular

path queries by evaluating partial answers evaluation. Jachiet et

al. [18] propose a variation of the relational algebra to solve this

problem. Other methods [14, 22, 25, 42] for RPQ evaluation con-

struct indexes to optimize RPQ evaluation. Na et al. [30] propose a

lightweight transitive closure to evaluate RPQs. Arroyuelo et al. [4]

evaluate RPQs with high space efficiency. Pacaci et al. [31] focus

on evaluating RPQs on streaming graphs. We do not compare these

works since they do not consider simple path semantics.

Simple Path Enumeration: Birmele et al. [6] investigate the

s-t path enumeration problem in undirected graphs, which cannot

extend to directed graphs. Tarjan [38] and Johnson [20] propose

algorithms for enumerating simple cycles in directed graphs. A

recent work [23] proposes an efficient algorithm for enumerat-

ing all simple temporal cycles in temporal graphs. These methods

cannot extend straightly to solve RSPQs since label information

should be considered. Recent researches focus on hop-constrained

s-t simple path enumeration. Several theoretical works [16, 36]

achieve polynomial delay. Peng et al. [33] propose BC-DFS and

JOIN, achieving high efficiency. Sun et al. [37] also propose an

index-based method for real-time enumeration of hop-constrained

s-t simple paths. HP-index [35] maintains paths between hot ver-

tices and enables real-time detection of hop-constrained cycles in

large dynamic graphs. These algorithms are not suitable for solv-

ing the RSPQs as they are based on the length constraint whereas

almost of RSPQs do not limit the length of paths. The purpose

of the above methods is similar to ours. We all want to achieve

polynomial delay and avoid unnecessary paths as much as possible.

However, our method is based on an efficient pruning technique,

which contributes to exploring the useless paths only once, and it

considers label constraints as well as avoids length limitations.

10 CONCLUSION
In this paper, in order to address two problems of RSPQs efficiently,

we summarize a type of regular expression that covers over 99% of

real-world queries. Then, we propose an efficient algorithm frame-

work to solve both Reachability Query and Enumeration Query.

Our experimental analyses on extensive datasets demonstrate that

our methods have comparable efficiency to the approximate method

and outperforms significantly the state-of-the-art exact methods.
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