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ABSTRACT
Subgraph counting is a fundamental problem in understanding and

analyzing graph structured data, yet computationally challenging.

This calls for an accurate and efficient algorithm for Subgraph Car-

dinality Estimation, which is to estimate the number of all isomor-

phic embeddings of a query graph in a data graph. We present

FaSTest, a novel algorithm that combines (1) a powerful filtering

technique to significantly reduce the sample space, (2) an adaptive

tree sampling algorithm for accurate and efficient estimation, and

(3) a worst-case optimal stratified graph sampling algorithm for

hard instances. Extensive experiments on real-world datasets show

that FaSTest outperforms state-of-the-art sampling-based methods

by up to two orders of magnitude and GNN-based methods by up

to three orders of magnitude in terms of accuracy.
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1 INTRODUCTION
Subgraph matching is the fundamental problem in understand-

ing and analyzing graph structured data [38]. Given a data graph

and a query graph, subgraph matching is the problem of finding

all isomorphic embeddings of the query graph in the data graph.

Identifying the occurrences of specific subgraph patterns is crucial

for various applications such as analyzing protein-protein interac-

tion networks [7, 33], revealing patterns and trends of user interac-

tions in social networks [16], and optimizing queries in relational

databases [25]. Subgraph counting, the problem of counting the

number of embeddings, is also of paramount importance in various

applications, such as designing graph kernels [21, 39] and under-

standing biological networks [37, 52].

Both subgraph matching and subgraph counting are computa-

tionally challenging. Specifically, subgraph matching is NP-hard

∗
Corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.

doi:10.14778/3654621.3654635

Figure 1: Query graphs and their number of embeddings in
WordNet dataset (≈ 80K vertices). N, V, and A represent Noun,
Verb, and Adjective, respectively.

[18]. Subgraph counting is #P-hard, since subgraph counting in pla-

nar graphs (subgraph counting restricted to both data graph and

query graph being planar) is #P-hard [22]. This challenge is further

amplified by the exponential number of possible embeddings. For

instance, Figure 1 shows some query graphs with 8 vertices and the

number of embeddings for each query graph in theWordNet graph
[46]. The number of embeddings varies from 744 to 4.7 × 1015 with
only small changes in the query graphs. Consequently, numerous

subgraph matching algorithms [6, 18–20, 24], which are primarily

implemented for counting the number of embeddings rather than

finding the actual embeddings, typically count at most 𝑘 (usually

10
3
to 10

5
) embeddings, instead of counting all embeddings. As a

result, there is a pressing need for an accurate and efficient algo-

rithm for Subgraph Cardinality Estimation, which is to estimate the

number of all isomorphic embeddings.

Existing Approaches and Limitations. Subgraph cardinality es-
timation has been extensively researched due to its diverse real-

world applications. In particular, the counting of small subgraphs

(also known as graphlets or motifs) has been widely studied. IMPR

[12] proposed a random walk-based method for counting graphlets,

while MOTIVO [9] developed an adaptive graphlet sampling algo-

rithm utilizing the color-coding technique. However, such works

primarily focus on small subgraphs.

Recently, utilizing Graph Neural Networks (GNN) for subgraph

cardinality estimation is gaining interest. LSS [50] and NeurSC [48]

have explored GNNs for subgraph cardinality estimation. However,

their accuracy for difficult instances with large queries remains

unsatisfactory.

Approximate counting of homomorphic embeddings and esti-

mating join cardinalities are also closely related problems to sub-

graph cardinality estimation. Existing works in these areas mainly

utilize summarization or sampling-based approaches. A compre-

hensive survey [35] demonstrated that WanderJoin [27], which

employs random walks for sampling, outperforms other summa-

rization and sampling methods for counting homomorphic embed-

dings. Alley [26] extends WanderJoin by proposing random walk

with intersection to improve accuracy. Despite the success of such

methods, they often encounter sampling failure, particularly for

instances with complex label distributions and large queries [50].
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Contributions. In this paper, we present a new algorithm FaSTest
(Filtering and Sampling Techniques for subgraph cardinality est-
imation), addressing the limitations of existing methods.

We propose a novel Filtering-Sampling approach for cardinality

estimation as follows. To approximate the cardinality of a set whose

elements are difficult to enumerate or count, sampling is a widely

used approach. For a query graph𝑞 and a data graph𝐺 , letM denote

the set of all isomorphic embeddings of𝑞 in𝐺 . A sampling algorithm

first defines a sample space Ω which is a superset ofM, and aims

to approximate the ratio 𝜌 = |M|/|Ω |. Assume that (1) obtaining

the cardinality of Ω is easier than that ofM, (2) Ω is amenable

to random sampling, and (3) verification of whether a random

sample 𝑥 ∈ Ω is inM can be done efficiently. By obtaining uniform

random samples from Ω and using the empirical ratio 𝜌̂ which is

the proportion of random samples lying inM as an estimator to 𝜌 ,

the estimate |Ω |𝜌̂ is an unbiased consistent estimator [11] for |M|.
Our approach reduces the size of sample space Ω greatly by us-

ing filtering, while retaining all embeddings (i.e., keeping |M| un-
changed). That is, we increase the ratio 𝜌 = |M|/|Ω | by decreas-

ing |Ω |, which makes sampling more accurate and more efficient.

(Previous approaches take samples from the whole sample space Ω,
and thus the ratio 𝜌 is very small in many cases, thereby causing

sampling failures.)

• We build an auxiliary data structure Candidate Space (CS) which
contains candidates for vertex mapping and edge mapping. By

employing novel safety conditions—Triangle Safety, Four-Cycle

Safety, and Edge Bipartite Safety—and the refinement order

called Promising First Candidate Filtering, we reduce the candi-

date edges by up to 80% compared to the filterings of the state-

of-the-art subgraph matching algorithms [24, 43], resulting in a

compact CS.

• We develop a candidate tree sampling algorithm, which performs

uniform sampling of spanning trees of the query graph in the

compact CS. Our tree sampling employs an adaptive strategy to

determine the sample size using the Clopper-Pearson confidence

interval, thereby achieving efficient and accurate estimation

with rigorous probabilistic guarantees.

• We devise a stratified graph sampling algorithm that obtains

samples from diverse regions of the sample space, achieving

outstanding accuracy on hard instances with a small sample

size. Our graph sampling algorithm attains a worst-case optimal

time complexity of 𝑂 (𝐴𝐺𝑀 (𝑞)) for the query graph 𝑞, which is

a tight upper bound for |M| proposed by Atserias, Grohe and

Marx [2, 3], guaranteeing the same time complexity even when

the sampling ratio is 100%.

We demonstrate that FaSTest shows significant improvements in

both accuracy and efficiency for subgraph cardinality estimation

through extensive experiments on well-known real-world datasets.

Specifically, FaSTest outperforms state-of-the-art sampling-based

methods by up to two orders of magnitude and GNN-based methods

by up to three orders of magnitude in terms of accuracy.

Organization. The rest of the paper is organized as follows. Sec-

tion 2 introduces the definitions and the problem statement. Sec-

tion 3 outlines an overview of FaSTest. Section 4 discusses the can-

didate filtering algorithm. Section 5 describes the candidate tree

Figure 2: Data graph 𝐺 , query graph 𝑞, and Candidate Space

sampling algorithm. Section 6 explains the stratified graph sam-

pling algorithm. Section 7 presents the experimental results, and

Section 8 concludes the paper. The Appendix, containing omitted

proofs, is available online [40].

2 PRELIMINARIES
2.1 Problem Statement
In this paper, we mainly consider undirected and connected graphs

with vertices labeled, while the techniques we propose can be ex-

tended to directed, disconnected, and edge-labeled graphs. We de-

fine a graph 𝑔 = (𝑉𝑔, 𝐸𝑔, 𝐿𝑔) as a triplet of a set of vertices 𝑉𝑔 , a set
of edges 𝐸𝑔 , and a labeling function 𝐿𝑔 : 𝑉𝑔 → Σ𝑉 where Σ𝑉 is a

set of possible labels. Given query graph 𝑞 = (𝑉𝑞, 𝐸𝑞, 𝐿𝑞) and data

graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐿𝐺 ), a vertex-mapping function𝑀 : 𝑉𝑞 → 𝑉𝐺
is called an (isomorphic) embedding when three conditions are met:

(1) 𝑀 is injective, i.e., 𝑀 (𝑢) ≠ 𝑀 (𝑢′) for 𝑢 ≠ 𝑢′ ∈ 𝑉𝑞 . (2) 𝑀 pre-

serves all adjacency relationships, i.e., (𝑀 (𝑢), 𝑀 (𝑢′)) ∈ 𝐸𝐺 for ev-

ery (𝑢,𝑢′) ∈ 𝐸𝑞 , (3)𝑀 preserves all vertex labels, i.e., 𝐿𝐺 (𝑀 (𝑢)) =
𝐿𝑞 (𝑢) for every 𝑢 ∈ 𝑉𝑞 . We say that 𝑞 is subgraph isomorphic
to 𝐺 when such an embedding exists. For example, in Figure 2,

{(𝑢1, 𝑣1), (𝑢2, 𝑣5), (𝑢3, 𝑣3), (𝑢4, 𝑣2), (𝑢5, 𝑣6)} is an isomorphic embed-

ding of 𝑞 in𝐺 , as it is injective and it preserves all vertex labels and

adjacency relationships. When a vertex-mapping function satisfies

only (2) and (3), we call it a homomorphic embedding.
Table 1 lists the notations that are frequently used in the paper.

Subgraph Matching and Counting. For query graph 𝑞 and data
graph 𝐺 , letM denote the set of all embeddings of 𝑞 in 𝐺 . The sub-
graph matching problem is to findM exactly, while the subgraph

Table 1: Frequently Used Notations

Notation Definition

𝑞,𝐺 Query graph and data graph

𝑉𝑔, 𝐸𝑔, 𝐿𝑔 Vertices, edges, and labels of a graph 𝑔

M Set of isomorphic embeddings of 𝑞 in 𝐺

𝑑𝑔 (𝑥) Degree of a node 𝑥 in a graph 𝑔

𝑁𝑔 (𝑥) Neighbors of 𝑥 in a graph 𝑔

𝑑𝑔 (𝑥, 𝑙) Number of vertices in 𝑁𝑔 (𝑥) with label 𝑙 in a graph 𝑔

𝛿𝑔 , Δ𝑔 Degeneracy [28] and maximum degree of a graph 𝑔

𝑇𝑞 A spanning tree of 𝑞

𝐶 (𝑢) Set of candidate vertices for 𝑢

𝐶 (𝑢′ | 𝑢, 𝑣) Set of candidate neighbors of (𝑢, 𝑣) to 𝑢′
𝐸𝐶𝑆 (𝑢,𝑢′) Set of candidate edges for (𝑢,𝑢′)
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counting problem is to find |M|. It is clear that all subgraph match-

ing algorithms can also be used for counting.

Problem Statement. Given a query graph 𝑞 and a data graph 𝐺 ,

the subgraph cardinality estimation problem is to approximate |M|,
the cardinality of the set of all isomorphic embeddings of 𝑞 in 𝐺 .

2.2 Related Works
Subgraph Matching and Counting. In the recent decade, nu-

merous solutions have been proposed for both exact and approxi-

mate subgraph matching and subgraph counting.

A wealth of results for subgraph matching [5, 6, 8, 15, 18, 19, 24,

43] has been established based on Ullmann’s backtracking frame-

work [45]. Recent works such as [6, 18, 24, 43] share the filtering-

backtracking approach. These works first build an auxiliary data

structure such as Compact Path Index (CPI) [6], Bigraph Index (BI)

[43] and Candidate Space (CS) [18, 24], utilizing diverse filtering

strategies such as extended DAG-graph DP using Neighbor Safety

[24]. These algorithms utilizes such data structures to reduce search

space for backtracking, which is further accelerated by strategic se-

lection of matching orders such as Candidate-size order [18]. Inter-

ested readers can refer to a detailed survey of the aforementioned

algorithms [42].

Approximate solutions are split into three sub-classes: summa-

rization-based, sampling-based, and machine learning-based ap-

proaches. Summarization methods, such as SumRDF [41] and Char-

acteristic Sets [34], construct a summary data structure of the data

graph. Estimates for query graph 𝑞 are then processed efficiently

by querying the summary structure, typically by decomposing 𝑞

into smaller substructures such as stars and aggregating the results

computed for each substructure. However, these methods may pro-

duce highly inaccurate results [35].

Sampling algorithms have also been widely employed for sub-

graph counting [4, 23, 49]. WanderJoin [27] performs randomwalks

over relations and uses Horvitz-Thompson estimation, with the cal-

culated weights of each walk. JSub [51] obtains independent uni-

form samples from join results by computing upper bounds for in-

termediate join sizes. Alley [26] proposes the random walk with

intersection and it also uses Tangled Pattern Index (TPI), which is

a summary structure obtained by mining difficult patterns.

Machine learning-based solutions, particularly those utilizing

Graph Neural Networks (GNN), have recently begun to emerge.

Works like LSS [50] and NeurSC [48] have explored the potential of

GNNs for subgraph cardinality estimation. While machine learning

enables highly efficient query processing, these solutions does not

provide an unbiased estimation.

AGM Bound and Worst-Case Optimality. The AGM bound [3]

is a tight upper bound for the number of embeddings of a query

graph 𝑞 in a data graph 𝐺 . An algorithm for subgraph matching or

cardinality estimation is referred to as worst-case optimal if it guar-
antees 𝑂 (𝐴𝐺𝑀 (𝑞)) time complexity [26, 31]. SSTE [2] developed

an edge sampling algorithm for estimating arbitrary-sized subgraph

counts in 𝑂̃ (𝐴𝐺𝑀 (𝑞)/𝑂𝑈𝑇 (𝑞)) time, where 𝑂𝑈𝑇 (𝑞) refers to the

number of embeddings. While it provides strong theoretical guar-

antees, its performance on real-world graphs is not impressive [13].

Algorithm 1: Overview of FaSTest

Input: A data graph 𝐺 , a query graph 𝑞
Output: Estimated number of embeddings of 𝑞 in 𝐺

1 CS← BuildCompactCandidateSpace(𝐺,𝑞);
2 (estimate, #successes)← CandidateTreeSampling(CS, 𝑞);
3 if #successes is large enough then return estimate;
4 else return CandidateGraphSampling(CS, 𝑞, #successes);

3 OVERVIEW OF ALGORITHM
Filtering-Sampling Approach. Since the problem of deciding

whether 𝑞 is subgraph isomorphic to𝐺 is NP-hard, exact enumera-

tion or counting of embeddings is often computationally infeasible.

To approximate the cardinality of a setM whose elements are dif-

ficult to enumerate or count, sampling is a widely used approach.

A sampling algorithm first defines a sample space Ω which is a su-

perset ofM, and aims to approximate the ratio 𝜌 = |M|/|Ω |.
Our approach reduces the size of sample space Ω greatly, while

retaining all embeddings. We develop a filtering algorithm to reduce

the sample space by removing unnecessary vertices and edges in

finding all embeddings.

Filtering. We build an auxiliary data structure Candidate Space
(CS) containing candidates for vertices and edges. To build a com-

pact CS, we perform iterative refinements for each vertex 𝑢 ∈ 𝑉𝑞 .
The refinement step involves checking a set of necessary safety

conditions that candidates must satisfy, which enables us to remove

invalid candidates.

• Generic Framework. We propose the generalized framework for

candidate filtering, where different conditions and refinement

strategies can be implemented. (Section 4.1)

• Safety Conditions. We propose novel safety conditions: Triangle
Safety, Four-Cycle Safety, and Edge Bipartite Safety. These condi-
tions effectively reduce the CS by better utilizing local substruc-

tures. (Section 4.2)

• Refinement Order. We suggest Promising First Candidate Filtering
as the refinement order, where in each iteration a candidate set

most likely to be reduced is chosen to be refined. (Section 4.3)

The combined filtering algorithm we develop is much stronger

than those in [18, 24, 43] in terms of filtering power, resulting in a

compact CS.

Sampling. We develop a sampling algorithm utilizing the compact

CS for accurate and efficient subgraph cardinality estimation.

• Candidate Tree Sampling. We choose a spanning tree𝑇𝑞 of 𝑞, and

define the sample space Ω as the set of homomorphisms (called

candidate trees) of 𝑇𝑞 in the compact CS. We count the number

of candidate trees and sample them uniformly at random. (Sec-

tion 5)

• Stratified Graph Sampling. We develop a graph sampling algo-

rithm to handle hard cases in which obtaining accurate results

via tree sampling is not possible in a reasonable time. We pro-

pose a novel sampling method inspired by stratification to sam-

ple from diverse regions of the sample space, achieving worst-

case optimality. (Section 6)

The outline of our algorithm FaSTest is shown in Algorithm 1.
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4 CANDIDATE FILTERING
Candidate Space (CS) is an auxiliary data structure built for efficient

subgraph matching, proposed by DAF [18] and extended by VEQ

[24]. Here we extend the definition of CS by explicitly maintaining

candidate edges, which is necessary for better filtering.

4.1 Candidate Space
Definition 4.1 (Candidate Space). For a vertex 𝑢 ∈ 𝑉𝑞 and its

neighbor 𝑢′ ∈ 𝑁𝑞 (𝑢), we define the following terms.

• Candidate set 𝐶 (𝑢): a subset of 𝑉𝐺 such that if there exists an

embedding𝑀 of 𝑞 in 𝐺 that maps 𝑢 to 𝑣 , 𝑣 must be included in

𝐶 (𝑢).
• Candidate edges 𝐸𝐶𝑆 (𝑢,𝑢′): a subset of 𝐸𝐺 such that if there

exists an embedding 𝑀 of 𝑞 in 𝐺 that maps 𝑢 to 𝑣 and 𝑢′ to 𝑣 ′,
(𝑣, 𝑣 ′) must be included in 𝐸𝐶𝑆 (𝑢,𝑢′).

The Candidate Space is a collection of candidate sets and candidate

edges for query graph 𝑞 and data graph 𝐺 .

By explicitly maintaining candidate edges, we can remove an

edge (𝑣, 𝑣 ′) from candidate edges if it does not belong to any em-

beddings, even though vertices 𝑣 and 𝑣 ′ remain in the Candidate

Space. For 𝑣 ∈ 𝐶 (𝑢) and 𝑢′ ∈ 𝑁𝑞 (𝑢), we define the candidate neigh-
bors of (𝑢, 𝑣) to 𝑢′ as the vertex candidates of 𝑢′ when 𝑢 is mapped

to 𝑣 , i.e., 𝐶 (𝑢′ | 𝑢, 𝑣) = {𝑣 ′ | (𝑣, 𝑣 ′) ∈ 𝐸𝐶𝑆 (𝑢,𝑢′)}.
We build the initial CS as follows. For each vertex 𝑢, initial

candidate set 𝐶𝑖𝑛𝑖𝑡 (𝑢) is defined as the set of vertices 𝑣 ∈ 𝑉𝐺 with

the following two conditions: (1) 𝑣 has the same label as 𝑢; (2) for

each label 𝑙 ∈ Σ, 𝑑𝐺 (𝑣, 𝑙) ≥ 𝑑𝑞 (𝑢, 𝑙). We initialize candidate edges as

𝐸𝐶𝑆 (𝑢,𝑢′) = {(𝑣, 𝑣 ′) ∈ 𝐸𝐺 | 𝑣 ∈ 𝐶 (𝑢) and 𝑣 ′ ∈ 𝐶 (𝑢′)}. The initial
candidate space can be constructed in 𝑂 ( |𝐸𝑞 | |𝐸𝐺 |) time.

Example 4.2. Figure 2 depicts an example of the initial CS given

query graph 𝑞 and data graph 𝐺 . Among the vertex pairs with

matching labels, 𝑣6 is not in 𝐶 (𝑢1) since 𝑑𝐺 (𝑣6,𝐶) < 𝑑𝑞 (𝑢1,𝐶).
Other absences can also be seen analogously. In the CS, 𝐶 (𝑢4 |
𝑢1, 𝑣1), the candidate neighbors of (𝑢1, 𝑣1) to 𝑢4, is {𝑣2, 𝑣7} as they
are neighbors of 𝑣1 which are in 𝐶 (𝑢4).

By definition, all embeddings of 𝑞 in 𝐺 are preserved in CS,

as all possible vertices and edges constituting an embedding are

present. We call this property of CS as complete. In our sampling

algorithm later to be described, reducing the size of a candidate

space translates to a smaller sample space. Therefore, the key is

to refine the candidate space as much as possible while retaining

completeness. Note that CS can contain 𝑂 ( |𝑉𝑞 | |𝑉𝐺 |) vertices and
𝑂 ( |𝐸𝑞 | |𝐸𝐺 |) edges in the worst case.

Generic Filtering Framework. We start the refinement from the

initial CS. For a predefined set of safety conditions, the generic filter-

ing framework can be defined as Algorithm 2. The framework con-

sists of several design choices; a set of safety conditions to determine

validity of candidate vertices or edges, a method to decide the refine-
ment order, i.e., the order of query vertices whose candidate set is

refined, and the stopping criteria by which we finish the refinement.

4.2 Safety Conditions
It is necessary that 𝐶 (𝑢′ | 𝑢, 𝑣) is nonempty for 𝑣 to be a candi-

date for 𝑢 for each neighbor 𝑢′ of 𝑢. Together with this condition,

VEQ [24] suggested the use of safety condition that can further filter

Algorithm 2: Candidate Space Refinement

1 while refinement is not finished do
2 𝑢 ← a vertex from query graph;
3 foreach 𝑣 ∈ 𝐶 (𝑢) do
4 if VertexSafety(𝑢, 𝑣) violated then
5 Remove 𝑣 from 𝐶 (𝑢);
6 continue;

7 foreach 𝑢′ ∈ 𝑁𝑞 (𝑢) do
8 foreach 𝑣 ′ ∈ 𝐶 (𝑢′ | 𝑢, 𝑣) do
9 if EdgeSafety((𝑢,𝑢′), (𝑣, 𝑣 ′)) violated then
10 Remove 𝑣 ′ from 𝐶 (𝑢′ | 𝑢, 𝑣);

11 if 𝐶 (𝑢′ | 𝑢, 𝑣) is empty for any 𝑢′ ∈ 𝑁𝑞 (𝑢) then
12 Remove 𝑣 from 𝐶 (𝑢);

invalid candidates. For any necessary condition ℎ(𝑢, 𝑣) that must be

satisfiedwhenever𝑀 (𝑢) = 𝑣 for some embedding𝑀 , in any step, we

can remove candidate vertex 𝑣 from𝐶 (𝑢) when ℎ(𝑢, 𝑣) is false. VEQ
considers Neighbor Safety for ℎ, that can filter candidate vertices

if it lacks sufficient candidate neighbors for some label. GQL [20]

and VC [43] employ a stronger condition using bipartite matching.

As we explicitly maintain candidate edges, any necessary condi-

tion 𝑔((𝑢,𝑢′), (𝑣, 𝑣 ′)) for edges which must be satisfied whenever

𝑀 (𝑢) = 𝑣 and 𝑀 (𝑢′) = 𝑣 ′ for an embedding 𝑀 can be used to re-

move invalid candidate edges.

In this paper, we propose novel safety conditions for stronger

filtering. We propose the Triangle Safety and Four-Cycle Safety

which consider cyclic substructures. We extend the ESIC condition

suggested by VC [43] to Edge Bipartite Safety, increasing the filter-

ing power while maintaining the same time complexity.

Triangle Safety. Filtering methods in [6, 18, 24, 43] did not utilize

cyclic substructures, i.e., triangles and 4-cycles in the query graph.

While finding all cycles is itself an NP-hard problem, using small

cycles can greatly increase the filtering power without taking ex-

cessive time.

Definition 4.3. For an edge (𝑎, 𝑏) ∈ 𝐸𝑔 , we define 𝐿3𝑔 (𝑎, 𝑏) as the
set of vertices 𝑐 ∈ 𝑉𝑔 such that (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎) ∈ 𝐸𝑔 , i.e., they
form a triangle with the given edge (𝑎, 𝑏).
We define the condition Triangle Safety as follows.

Definition 4.4. A data edge (𝑣, 𝑣 ′) for a query edge (𝑢,𝑢′) is Tri-
angle Safe when
• |𝐿3𝑞 (𝑢,𝑢′) | ≤ |𝐿3𝐺 (𝑣, 𝑣

′) |, and
• for each 𝑢∗ ∈ 𝐿3𝑞 (𝑢,𝑢′), there exists 𝑣∗ ∈ 𝐿3𝐺 (𝑣, 𝑣

′) consisting of

valid vertices and edges, i.e., for each𝑢∗, there exists 𝑣∗ ∈ 𝐶 (𝑢∗ |
𝑢, 𝑣) ∩𝐶 (𝑢∗ | 𝑢′, 𝑣 ′).

Four-Cycle Safety. A similar work can be done with 4-cycles in

the query graph and the data graph.

Definition 4.5. For an edge (𝑎, 𝑏) ∈ 𝐸𝑔 , we define 𝐿4𝑔 (𝑎, 𝑏) as the
set of edges (𝑐, 𝑑) ∈ 𝐸𝑔 such that (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑), (𝑑, 𝑎) ∈ 𝐸𝑔 , i.e.,
they form a 4-cycle with the given edge (𝑎, 𝑏).
We define the condition Four-Cycle Safety as follows.

Definition 4.6. A data edge (𝑣, 𝑣 ′) for a query edge (𝑢,𝑢′) is Four-
Cycle Safe when
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• |𝐿4𝑞 (𝑢,𝑢′) | ≤ |𝐿4𝐺 (𝑣, 𝑣
′) |, and

• for each (𝑢∗, 𝑢̂) ∈ 𝐿4𝑞 (𝑢,𝑢′), there exists (𝑣∗, 𝑣) ∈ 𝐿4𝐺 (𝑣, 𝑣
′) con-

sisting of valid vertices and edges, i.e., for each (𝑢∗, 𝑢̂), there
exists 𝑣∗ ∈ 𝐶 (𝑢∗ | 𝑢′, 𝑣 ′) and 𝑣 ∈ 𝐶 (𝑢̂ | 𝑢, 𝑣) such that (𝑣∗, 𝑣) ∈
𝐸𝐶𝑆 (𝑢∗, 𝑢̂).
To compute Triangle Safety and Four-Cycle Safety, we index all

triangles and 4-cycles in advance. When the numbers of triangles

and 4-cycles in the data graph are substantial, indexing them can

result in a significant overhead. Hence, if the numbers of triangles

and 4-cycles exceed some thresholds 𝑘1 and 𝑘2, respectively, we

disable respective safety condition to avoid excessive overhead of

indexing. For the experiments, we use 𝑘1 = 𝑘2 = 10
9
.

Edge Bipartite Safety. To develop a stronger safety condition,

GQL [20] and VC [43] propose the use of a bipartite graph 𝐵(𝑢, 𝑣)
for candidate neighbors of 𝑣 ∈ 𝐶 (𝑢), 𝑢 ∈ 𝑉𝑞 . 𝐵(𝑢, 𝑣) consists of left
vertices 𝑉𝐿 = 𝑁𝑞 (𝑢), and right vertices 𝑉𝑅 = 𝑁𝐺 (𝑣). The edges of
𝐵(𝑢, 𝑣) connect 𝑢′ and 𝑣 ′ if and only if 𝑣 ′ ∈ 𝐶 (𝑢′ | 𝑢, 𝑣), i.e., when
a candidate edge exists between 𝑣 ∈ 𝐶 (𝑢) and 𝑣 ′ ∈ 𝐶 (𝑢′).

It is then readily observed that for 𝑣 to be a valid candidate for

𝑢, 𝐵(𝑢, 𝑣) should have a bipartite matching whose size is equal

to the set of left vertices. We can determine whether 𝐵(𝑢, 𝑣) has
such a bipartite matching in 𝑂 (𝑑𝑞 (𝑢)2𝑑𝐺 (𝑣)) time utilizing Ford-
Fulkerson [17] algorithm, as there are at most 𝑑𝑞 (𝑢)𝑑𝐺 (𝑣) edges
and the size of the maximum matching is at most 𝑑𝑞 (𝑢).

We further extend the use of the bipartite graph to the fine-

grained filtering of candidate edges. Given the bipartite graph

𝐵(𝑢, 𝑣), the existence of a maximum bipartite matching of size𝑑𝑞 (𝑢)
does not guarantee that for every edge there exists a maximum

matching containing the edge.

Definition 4.7. An edge is called maximally matchable if it is

included in some maximum matching.

When an edge (𝑢′, 𝑣 ′) ∈ 𝐸𝐵 (𝑢,𝑣) is not maximally matchable,

𝑣 ′ should be removed from 𝐶 (𝑢′ | 𝑢, 𝑣). For bipartite graphs, it is
known that finding all maximally matchable edges can be done

in linear time when a maximum matching is given [44]. There-

fore, after we find the maximum bipartite matching on 𝐵(𝑢, 𝑣),
we verify whether each edge is maximally matchable. This takes

𝑂 (𝑑𝑞 (𝑢)𝑑𝐺 (𝑣)) time which is negligible compared to finding maxi-

mum bipartite matching.

4.3 Promising-First Candidate Filtering
Refinement Priority. In each refinement step, we select a query

vertex to be refined (Algorithm 2, Line 2). Let 𝐶𝑡 (𝑢) be the candi-
date set of 𝑢 after the 𝑡-th refinement step finished, with 𝐶0 (𝑢) de-
noting the candidate set in the initial CS. Let 𝑢1, 𝑢2, . . . , 𝑢𝑡 be the

sequence of vertices that have already been refined, with the cur-

rent refinement step being 𝑡 + 1.
As 𝑢𝑡+1, we choose the query vertex 𝑢 such that 𝑢 has the lowest

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑡 (𝑢) (i.e., most promising), defined as

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑡 (𝑢) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑢 = 𝑢𝑡

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑡−1 (𝑢) × |𝐶𝑡 (𝑢𝑡 ) |
|𝐶𝑡−1 (𝑢𝑡 ) | if 𝑢 ∈ 𝑁𝑞 (𝑢𝑡 )

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑡−1 (𝑢) otherwise.

We assign all vertices an initial penalty of 𝑝𝑒𝑛𝑎𝑙𝑡𝑦0 (𝑢) = 𝜙 for

some constant 𝜙 in [0, 1]. After refining 𝑢𝑡 , 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑡 (𝑢𝑡 ) is in-

creased to 1. For 𝑢 ∈ 𝑁𝑞 (𝑢𝑡 ), we reduce 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑡 (𝑢) by multiply-

ing |𝐶𝑡 (𝑢𝑡 ) |/|𝐶𝑡−1 (𝑢𝑡 ) | (the ratio by which 𝐶 (𝑢𝑡 ) is reduced), as
the size of 𝐶 (𝑢) is also likely to decrease when the size of 𝐶 (𝑢𝑡 )
decreases. If 𝑢 is neither 𝑢𝑡 itself nor a neighbor of 𝑢𝑡 , its penalty

remains unchanged. Note that the penalty always lies within the

range [0, 1].
Stopping Criteria. We empirically observe that the efficacy of

refinements stagnates after some iterations. Therefore, we define

two stopping criteria for the refinement, and stop whenever either

one of the two conditions triggers.

(1) When the minimum penalty among query vertices become

higher than some predefined constant 𝜏 . This explicitly guides

the algorithm to stop when the efficacy of further refinements

are expected to be small and not worth the overhead.

(2) When the sum of degrees of vertices chosen to be refined, in-

cluding repeated selections, becomes higher than 𝑅 |𝐸𝑞 | for some

predefined constant 𝑅. This criterion is necessary to bound the

worst case complexity, and practically guides the algorithm to

stop when the refinement takes too much time.

Theorem 4.8. With stated stopping criteria, various safety condi-

tions lead to the following time complexity bounds for the filtering.

• Edge Bipartite Safety : 𝑂 ( |𝐸𝑞 | |𝐸𝐺 |Δ𝑞) time

• Triangle Safety : 𝑂 ( |𝐸𝑞 | |𝐸𝐺 |Δ𝑞𝛿𝐺 ) time

• 4-Cycle Safety : 𝑂 ( |𝐸𝑞 | |𝐸𝐺 |Δ2

𝑞Δ𝐺𝛿𝐺 ) time

Empirically, we choose 𝜏 = 0.9 and 𝑅 = 5 for the experiments.

We observe that most of the runs were stopped by the first crite-

rion (penalty).

5 CANDIDATE TREE SAMPLING
We present a sampling algorithm to select trees within the Can-

didate Space. Although there have been related works employing

tree sampling for similar problems such as join cardinality estima-

tion [51], these algorithms may face challenges in accuracy and

efficiency since the number of trees is much larger than the actual

number of embeddings. In contrast, our algorithm greatly benefits

from the highly effective Candidate Space, which enables us to fil-

ter out numerous trees that cannot be extended to embeddings.

Our algorithm strategically chooses the spanning tree of the

query graph to minimize the sample space. We prove that our

method is optimal under an additional assumption, and it performs

remarkably well in practice even when such an assumption is not

met. Furthermore, we adaptively determine the sample size during

the sampling process to provide a probabilistic bound. In most cases,

our algorithm achieves the bound with a reasonably small sample

size, ensuring both accuracy and efficiency in practice.

5.1 Candidate Trees
Definition 5.1 (Candidate Tree). Let 𝑇 be a subgraph of 𝑞 which

is a tree rooted at 𝑢𝑟 ∈ 𝑉𝑇 . We define a Candidate Tree for 𝑇 as a

vertex mapping 𝑠 : 𝑉𝑇 → 𝑉𝐺 such that

• for the root node 𝑢𝑟 of 𝑇 , 𝑠 (𝑢𝑟 ) ∈ 𝐶 (𝑢𝑟 ), and
• for a node 𝑥 and its parent node 𝑝 ∈ 𝑉𝑇 , 𝑠 (𝑥) ∈ 𝐶 (𝑥 | 𝑝, 𝑠 (𝑝)).

1701



Algorithm 3: CandidateTreeSampling(CS, 𝑞)
Input: The compact CS, a query graph 𝑞
Output: Estimated number of embeddings and the number

of successful trials in tree sampling
1 𝑇𝑞 ← GetQueryTree(CS, 𝑞);
2 𝐷 ← CountCandidateTrees(CS, 𝑇𝑞);
3 #successes← 0;
4 #trials← 0;
5 while sampling termination condition is not reached do
6 s← GetSampleTree(CS, 𝑇𝑞, 𝐷);
7 #trials← #trials + 1;
8 if CheckEmbedding(CS, s, 𝑞) then
9 #successes← #successes + 1;

10 𝑢𝑟 ← root of 𝑇𝑞 ;

11 estimate← #successes
#trials

∑︂
𝑣∈𝐶 (𝑢𝑟 )

𝐷 (𝑢𝑟 , 𝑣) ;

12 return (estimate, #successes);

We note that a candidate tree can be seen as a homomorphism of𝑇

in the compact CS.

Example 5.2. In Figure 3, for given 𝑞 and compact CS, we first

build a spanning tree 𝑇𝑞 of 𝑞 by removing (𝑢2, 𝑢4) and (𝑢3, 𝑢4)
edges. The mapping {(𝑢1, 𝑣1), (𝑢2, 𝑣3), (𝑢3, 𝑣5), (𝑢4, 𝑣7), (𝑢5, 𝑣3}) is a
candidate tree for𝑇𝑞 . Note that the candidate tree is not necessarily

an injective mapping.

Let 𝑇𝑞 be any spanning tree of 𝑞. When needed, we consider 𝑇𝑞
as a directed graph with edge directions assigned from root to leaf.

We say that a candidate tree 𝑡 is a counterpart of an embedding if the

vertex mapping of 𝑡 is the same as the vertex mapping𝑀 of the em-

bedding. Since the CS is complete, the set of candidate trees for 𝑇𝑞
contains the counterparts of all the embeddings of 𝑞. Therefore, we

choose a spanning tree𝑇𝑞 and use the set of candidate trees for𝑇𝑞 in

the compact CS as the sample space Ω. We develop an algorithm to

perform exact counting of candidate trees using dynamic program-

ming, and sample a candidate tree from Ω uniformly at random.

We note that the sample space can be further reduced if the defi-

nition of candidate trees is extended to only allow injective map-

pings. However, this extension is infeasible, as exact counting of

isomorphic embeddings is NP-hard for tree queries [30].

5.2 Sampling Candidate Trees
Choosing the Spanning Tree. It is best to choose the spanning

tree 𝑇𝑞 that the number of candidate trees is minimized to reduce

the size of the sample space. However, exact minimization by gen-

erating all possible spanning trees and counting the number of can-

didate trees is not viable as the number of spanning trees for 𝑞 can

be superexponentially large.

Thus, instead of exact minimization, we introduce a density
heuristic to find a spanning tree with a small number of candidate

trees. Since the number of candidate trees generally increases as

the number of candidate edges increases, using query edges hav-

ing dense candidate edges is undesirable. To avoid such cases, we

(a) Query graph 𝑞 (b) Compact CS, Spanning tree𝑇𝑞

(c) Counting Candidate Trees (d) Success

Figure 3: New Running Example - Candidate Tree Sampling

assign the weight of the edge (𝑢,𝑢′) ∈ 𝐸𝑞 as

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑢,𝑢′) = |𝐸𝐶𝑆 (𝑢,𝑢
′) |

|𝐶 (𝑢) | |𝐶 (𝑢′) | (1)

and find a spanning tree that minimizes the sum of the logarithm

of densities by Prim’s Algorithm [36], which is equivalent to mini-

mizing the product of densities of the selected edges.

This strategy of minimizing the product of density is optimal

with the following assumption: for all (𝑣, 𝑣 ′) ∈ 𝐶 (𝑢) ×𝐶 (𝑢′), the
event that edge (𝑣, 𝑣 ′) is a candidate for (𝑢,𝑢′) has the probability
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑢,𝑢′), and it is independent from the events that other

vertex pairs are candidate edges.

Theorem 5.3. Under the above assumption, the expected number

of candidate trees is minimized by the density heuristic.

Counting Candidate Trees. We develop a dynamic program-

ming algorithm to obtain the exact count of candidate trees for a

given 𝑇𝑞 . Let 𝑇𝑢 be a subtree of 𝑇𝑞 rooted at 𝑢 ∈ 𝑉𝑞 and 𝐷 (𝑢, 𝑣) be
the number of candidate trees for 𝑇𝑢 with 𝑢 mapped to 𝑣 . The total

number of candidate trees for𝑇𝑢 can be counted as

∑︁
𝑣∈𝐶 (𝑢 ) 𝐷 (𝑢, 𝑣).

For a leaf node 𝑢 ∈ 𝑉𝑞 and 𝑣 ∈ 𝐶 (𝑢), it is clear that 𝐷 (𝑢, 𝑣) = 1.

For a non-leaf node 𝑢 ∈ 𝑉𝑞 and 𝑣 ∈ 𝐶 (𝑢), a candidate tree for 𝑇𝑢
consists of candidate trees for 𝑇𝑢𝑐 for each child 𝑢𝑐 of 𝑢, and the

candidate for each 𝑢𝑐 is chosen from 𝐶 (𝑢𝑐 | 𝑢, 𝑣). Hence, we have
𝐷 (𝑢, 𝑣) =

∏︂
𝑢𝑐 ∈children of 𝑢

∑︂
𝑣𝑐 ∈𝐶 (𝑢𝑐 |𝑢,𝑣)

𝐷 (𝑢𝑐 , 𝑣𝑐 ) (2)

which can be computed in 𝑂 ( |𝐸𝑞 | |𝐸𝐺 |) time, employing a bottom-

up dynamic programming approach similar to JSub [51] andDAF [18].
Uniform Sampling of Candidate Trees. Based on the candidate
tree counts computed as above, we develop a sampling algorithm

that returns each candidate tree uniformly at random. Let 𝑠 denote

a sample candidate tree for 𝑇𝑞 . Recall that the candidate tree is de-

fined as a vertex mapping. For the root vertex 𝑢𝑟 , we sample 𝑣 from

𝐶 (𝑢𝑟 ) with weights proportional to 𝐷 (𝑢𝑟 , 𝑣). For 𝑢 ≠ 𝑢𝑟 , let 𝑢
𝑝

be the parent of 𝑢 in 𝑇𝑞 . Given 𝑣
𝑝 = 𝑠 (𝑢𝑝 ), we iteratively sample

𝑠 (𝑢) for 𝑢 with BFS traversal of 𝑇𝑞 . We choose 𝑠 (𝑢) from candidate

neighbors 𝐶 (𝑢 | 𝑢𝑝 , 𝑣𝑝 ) with weights proportional to 𝐷 (𝑢, 𝑣).
The detailed implementation is presented in Algorithm 4.
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Algorithm 4: GetSampleTree(CS, 𝑇𝑞 , 𝐷)
Input: The compact CS, a spanning tree 𝑇𝑞 of 𝑞, the

computed weights 𝐷
Output: A sampled candidate tree, uniformly at random

1 𝑢𝑟 ← root node of 𝑇𝑞 ;
2 Sample[𝑢𝑟 ]← draw 𝑣 from 𝐶 (𝑢𝑟 ) at random with

probability proportional to 𝐷 (𝑢𝑟 , 𝑣);
3 foreach 𝑢 in BFS traversal of 𝑇𝑞 do
4 let 𝑢𝑝 be the parent of 𝑢, and 𝑣𝑝 be Sample[𝑢𝑝 ];
5 Sample[𝑢]← draw 𝑣 from 𝐶 (𝑢 | 𝑢𝑝 , 𝑣𝑝 ) at random with

probability proportional to 𝐷 (𝑢, 𝑣);
6 return Sample

Example 5.4. Figure 3 demonstrates the process of counting and

sampling candidate trees. For the query graph 𝑞, the compact CS is

built as in Figure 3b. The edges (𝑢2, 𝑢4) and (𝑢3, 𝑢4) are not included
to attain 𝑇𝑞 as they have larger densities of 2/3. Figure 3c shows
the value of resulting 𝐷 (𝑢, 𝑣) after counting candidate trees.

For the sampling, we start with choosing a root with weight 2 : 4

for 𝑣1 and 𝑣2, respectively. For example in Figure 3d, when 𝑣2 is

chosen, 𝑣4 and 𝑣6 are the only candidate neighbors of (𝑢1, 𝑣2) for 𝑢2
and𝑢3 respectively, thus they are sampled with probability 1. For𝑢4,

we take a random sample from𝐶 (𝑢4 | 𝑢1, 𝑣2). Analogously, 𝑠 (𝑢5) is
chosen among𝐶 (𝑢5 | 𝑢3, 𝑣6). As the resulting mapping in Figure 3d

is injective, we check whether non-tree edges (𝑢2, 𝑢4) and (𝑢3, 𝑢4)
are valid. Since (𝑣4, 𝑣8) and (𝑣6, 𝑣8) are both in the candidate edges,

Figure 3d is a success.

Theorem 5.5 (Uniform Sampling). Algorithm 4 samples candidate
tree for 𝑇𝑞 uniformly at random.

Sample Size. If we perform #𝑡 trials and obtain #𝑠 successes, the

sample success ratio 𝜌̂ = #𝑠/#𝑡 is an estimate of the true propor-

tion 𝜌 . Let 𝛼 denote the acceptable failure probability and 𝑐 denote

the tolerable relative error. To achieve the probability guarantee

P
[︁
𝑐−1𝜌 ≤ 𝜌̂ ≤ 𝑐𝜌

]︁
≥ 1 − 𝛼 , we utilize the Clopper-Pearson inter-

val [10, 14], which is the interval (𝐿𝛼 (#𝑡, #𝑠),𝑈𝛼 (#𝑡, #𝑠)) such that

P [(𝐿𝛼 (#𝑡, #𝑠) ≤ 𝜌 ≤ 𝑈𝛼 (#𝑡, #𝑠))] ≥ 1 − 𝛼, (3)

where 𝐿𝛼 (#𝑡, #𝑠) and𝑈𝛼 (#𝑡, #𝑠) are the values that can be computed

from 𝛼 , #𝑡 , and #𝑠 (e.g., using the Boost library [1]). We adaptively

determine the sample size by taking samples until 𝑐−1𝜌̂ ≤ 𝐿𝛼 (#𝑡, #𝑠)
and𝑈𝛼 (#𝑡, #𝑠) ≤ 𝑐𝜌̂ are met, leading us to:

P
[︁
𝑐−1𝜌 ≤ 𝜌̂ ≤ 𝑐𝜌

]︁
= P

[︁
𝑐−1𝜌̂ ≤ 𝜌 ≤ 𝑐𝜌̂

]︁
(4)

≥ P [𝐿𝛼 (#𝑡, #𝑠) ≤ 𝜌 ≤ 𝑈𝛼 (#𝑡, #𝑠)] ≥ 1 − 𝛼.
In our experiments where we had 1,000 – 1,000,000 trials, we

found out that, irrespective of the number of trials, 88 successes

were sufficient to satisfy the condition stated with the Clopper-

Pearson interval (Equation 4) for 𝛼 = 0.05 and 𝑐 = 1.25.

For hard cases in which achieving the condition may require

an unreasonable amount of computation, we terminate the tree

sampling immediately and use the graph sampling described in

Section 6. For the experiments, we stop if there are no more than

10 successes for 50,000 trials. Since 88 successes are required to

meet the stated condition and we only continue the tree sampling

if there are at least 11 successes in the first 50,000 trials, we expect

that the number of trials won’t exceed 400,000 in the tree sampling.

Theorem 5.6. Algorithm 3 is an unbiased, consistent estimator

for subgraph cardinality.

6 STRATIFIED GRAPH SAMPLING
While the presented tree sampling algorithm gives accurate and ef-

ficient estimate for most cases, there are some hard instances where

sampling space remains large compared to the number of embed-

dings even after filtering. This is due to the fact that the number of

candidate trees can be asymptotically larger than 𝐴𝐺𝑀 (𝑞), which
is a tight upper bound for the number of embeddings [2].

To address such an issue, we develop a stratified graph sampling
algorithm with the following components. (1) We consider non-tree

edges together during the sampling phase, ensuring that the sample

space size is bounded by 𝑂 (𝐴𝐺𝑀 (𝑞)). (2) We propose stratified

sampling to select samples from diverse regions within the sample

space. By combining these two components, our algorithm achieves

high accuracy and efficiency, particularly on difficult instances.

6.1 Extendable Candidates
We define a vertex mapping 𝑀 as a partial embedding when it is

an embedding of an induced subgraph 𝑞′ of 𝑞 to 𝐺 . Given a partial

embedding𝑀 , a vertex 𝑢 ∈ 𝑉𝑞 \𝑉𝑞′ is an extendable vertex if there

exists𝑢′ ∈ 𝑁𝑞 (𝑢) such that𝑢′ ∈ 𝑉𝑞′ . We define the set of extendable
candidates of 𝑢 regarding a partial embedding𝑀 as follows:

𝐶𝑀 (𝑢) =
⋂︂

{ (𝑢′,𝑣′ ) ∈𝑀 |𝑢′∈𝑁𝑞 (𝑢 ) }
𝐶 (𝑢 | 𝑢′, 𝑣 ′) − image of𝑀.

where image of𝑀 is the vertices of the data graph that are mapped

by 𝑀 , i.e., {𝑣 ∈ 𝑉𝐺 | ∃𝑢 ∈ 𝑉𝑞′ such that 𝑀 (𝑢) = 𝑣}. When 𝑀 = ∅,
𝐶𝑀 (𝑢) is set to be 𝐶 (𝑢). 𝐶𝑀 (𝑢) is computed by the multi-way set

intersection over candidate neighbor sets of each neighbor 𝑢′ of 𝑢.
To maintain injectivity, candidate vertices that are already mapped

by𝑀 are removed from𝐶𝑀 (𝑢). For 𝑣 ∈ 𝐶𝑀 (𝑢),𝑀∪{(𝑢, 𝑣)} forms a

partial embedding since𝑀 ∪{(𝑢, 𝑣)} is an embedding of an induced

subgraph of 𝑞 with vertex set 𝑉𝑞′ ∪ {𝑢} to 𝐺 .
For example, in Figure 3b, at the timewhen𝑀 = {(𝑢1, 𝑣2), (𝑢2, 𝑣4)},

𝑢4 is an extendable vertex with extendable candidates 𝐶𝑀 (𝑢4) =
{𝑣8, 𝑣9} as they are the vertices in𝐶 (𝑢4) which are candidate neigh-

bors for both (𝑢1, 𝑣2) and (𝑢2, 𝑣4).

6.2 Stratified Graph Sampling
We say that a partial embedding extends𝑀 if it contains𝑀 as a sub-

set. Let𝑤𝑀 denote the number of embeddings of 𝑞 to 𝐺 extending

the partial embedding𝑀 . It is clear that𝑤𝑀 = 1 when |𝑀 | = |𝑉𝑞 |,
and 𝑤𝑀 = 0 when 𝐶𝑀 (𝑢) = ∅. For other cases, we employ the

method of stratified sampling to obtain an unbiased consistent esti-

mator for𝑤𝑀 .

Stratified Sampling. Stratification is a strategy of dividing the

population into multiple subpopulations that are mutually exclu-

sive and jointly exhaustive, namely strata, prior to sampling in or-

der to ensure diversity of resultant samples [29]. In our instance,

to estimate 𝑤𝑀 , the population is the set of partial embeddings

extending 𝑀 . For an extendable vertex 𝑢 and candidates 𝐶𝑀 (𝑢)
for 𝑀 , the population can be then stratified into subpopulations
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Algorithm 5: Stratified Graph Sampling

Input: The compact CS, a query graph 𝑞, the number of
successful tree samples #successes

Output: Estimated number of embeddings
1 Function CandidateGraphSampling(CS, 𝑞, #successes):
2 𝑢𝑏∅ ← GetSampleSize(𝑞, #successes);
3 (estimate, #trials)← EstimateW(CS, q, ∅, 𝑢𝑏∅ );
4 return estimate;

Input: The compact CS, a query graph 𝑞, a current partial
embedding𝑀 , an upper bound for sample size 𝑢𝑏𝑀

Output: Estimated number of embeddings extending𝑀 ,
number of samples used

5 Function EstimateW(CS, 𝑞,𝑀 , 𝑢𝑏𝑀):
6 if |𝑀 | = |𝑉𝑞 | then return (1, 1) ;
7 𝑢 ← ChooseExtendableVertex(𝑞,𝑀);
8 𝐶𝑀 (𝑢) ← GetExtendableCandidates(CS, 𝑞, 𝑢);
9 if 𝐶𝑀 (𝑢) is empty then return (0, 1) ;

10 sz← min(𝐶𝑀 (𝑢)/𝑘,𝑢𝑏𝑀 );
11 𝑆 ← GetRandomSubset(𝐶𝑀 (𝑢), sz);
12 (𝑤̂𝑀 , #trials)← (0, 0);
13 for 𝑖 = 1 . . . |𝑆 | do
14 𝑀′ ← 𝑀 ∪ {(𝑢, 𝑆𝑖 )};
15 (𝑤̂𝑀 ′ , 𝑛) ← EstimateW(CS, 𝑞,𝑀′, 𝑢𝑏𝑀−#trials|𝑆 |−𝑖+1 );

16 (𝑤̂𝑀 , #trials)← (𝑤̂𝑀 + 𝑤̂𝑀 ′ , #trials + 𝑛);

17 𝑤̂𝑀 ← |𝐶𝑀 (𝑢 ) |
|𝑆 | × 𝑤̂𝑀 ;

18 return (𝑤̂𝑀 , #trials);

(called groups) of partial embeddings extending 𝑀 ∪ {(𝑢, 𝑣)} for
each 𝑣 ∈ 𝐶𝑀 (𝑢). Let 𝑤̂𝑀 be an estimate for𝑤𝑀 . By definition,

𝑤𝑀 =
∑︂

𝑣∈𝐶𝑀 (𝑢 )
𝑤𝑀∪{ (𝑢,𝑣) } . (5)

Therefore, by taking a random subset 𝑆 of candidates from 𝐶𝑀 (𝑢),
and estimating the values of 𝑤𝑀∪{ (𝑢,𝑣) } for 𝑣 ∈ 𝑆 , we obtain an

unbiased estimator for𝑤𝑀 . Formally, consider a random subset 𝑆

of 𝐶𝑀 (𝑢), where the probability of each 𝑣 ∈ 𝐶𝑀 (𝑢) being included

in 𝑆 is uniform as |𝑆 |/|𝐶𝑀 (𝑢) |. We define 𝑤̂𝑀 as

𝑤̂𝑀 =
|𝐶𝑀 (𝑢) |
|𝑆 |

∑︂
𝑣∈𝑆

𝑤̂𝑀∪{ (𝑢,𝑣) } . (6)

If |𝑀 | = |𝑉𝑞 |, 𝑤̂𝑀 is set to 1, and if𝐶𝑀 (𝑢) = ∅, 𝑤̂𝑀 is set to 0. Each

𝑤̂𝑀∪(𝑢,𝑣) are computed recursively.

The pseudocode of the algorithm is presented in Algorithm 5.

Sampling Order. In each step, we choose an extendable vertex

𝑢 ∈ 𝑉𝑞 , and compute extendable candidates 𝐶𝑀 (𝑢) given partial

embedding𝑀 . To choose the extendable vertex with the number of

extendable candidates as small as possible, we choose the vertex 𝑢

which is not in𝑀 and has the highest number of neighbors in𝑀 in

each step. At first, we choose the vertex with smallest |𝐶 (𝑢) |. We

note that for given 𝑞 and the compact CS, the order of extendable

vertices is deterministic.

Adaptive Allocation. Examining a fixed proportion of extendable

candidates in each recursive step by taking |𝑆 | = |𝐶𝑀 (𝑢) |/𝑘 for

some constant 𝑘 may result in an exponentially large number of

Figure 4: Example of Stratified Sampling

samples. To circumvent this issue, we limit the maximum number of

samples used for estimating𝑤𝑀 as 𝑢𝑏𝑀 for each𝑀 . We choose the

subset 𝑆 to be a random subset with a size of min( |𝐶𝑀 (𝑢) |/𝑘,𝑢𝑏𝑀 )
(Algorithm 5, Line 10). The value of 𝑢𝑏∅ is determined based on

the difficulty of the query, with further details to be discussed later.

We then set the upper bound 𝑢𝑏𝑀∪{ (𝑢,𝑣) } for each 𝑣 ∈ 𝑆 in such a

way that the sum of upper bounds does not exceed 𝑢𝑏𝑀 .

For the first 𝑣 ∈ 𝑆 , we assign 𝑢𝑏𝑀∪{ (𝑢,𝑣) } = 𝑢𝑏𝑀
|𝑆 | . The recursive

call on𝑀 ∪ {(𝑢, 𝑣)} returns an estimate for𝑤𝑀∪{ (𝑢,𝑣) } and the ac-

tual number of samples taken throughout the recursion. The recur-

sion on 𝑀 may terminate before the number of samples reaches

𝑢𝑏𝑀 (e.g., if |𝑀 | = |𝑉𝑞 | or 𝐶𝑀 (𝑢) = ∅, only one sample is encoun-

tered regardless of how large 𝑢𝑏𝑀 is). In such cases, we adaptively

increase the sample size for subsequent calls equally using this in-

formation to enhance the overall accuracy. The upper bound for the

𝑖-th 𝑣 ∈ 𝑆 is determined as the remaining upper bound (i.e., 𝑢𝑏𝑀
minus the number of samples seen from the first to the (𝑖 − 1)-th)
divided by the number of remaining calls (|𝑆 | − 𝑖 + 1), as in Line 15.

As this can only increase the upper bound from𝑢𝑏𝑀/|𝑆 |, we ensure
that each𝑀∪{(𝑢, 𝑣)} receives at least𝑢𝑏𝑀/|𝑆 | for the upper bound,
thereby obtaining diverse samples even with limited sample sizes.

Example 6.1. An example with 𝑢𝑏𝑀 = 300 is depicted in Figure 4.

For𝐶𝑀 (𝑢2) = {𝑣2, 𝑣3, 𝑣4}, suppose 𝑆 = {𝑣2, 𝑣3} is the randomly cho-

sen subset. For the group with 𝑣2, the upper bound 𝑢𝑏𝑀∪{ (𝑢2,𝑣2 ) } is
set to 150 as 𝑢𝑏𝑀 is expected to split into two groups. Suppose that

for the first group, the returned estimate is 12 with 120 samples

used. The upper bound for the second group is then determined

as 180, since only 120 samples were used. Assume that the group

returned 20 with 150 samples used. Aggregating the results, the

initial call on 𝑣1 returns 16 (average of estimates returned by two

subcalls) and reports that 270 samples are actually used.

Theorem 6.2. Algorithm 5 is an unbiased consistent estimator

for subgraph cardinality, and the worst-case time complexity is

bounded by 𝑂 (𝐴𝐺𝑀 (𝑞)).
Sample Size. It is favorable to use more samples on difficult in-

stances for accuracy, and use a small sample size on easier instances

for efficient estimation. However, measuring the difficulty is itself

challenging as it depends on the ratio between the number of em-

beddings and the size of the sample space.

The query size is commonly used in prior works on graph ho-

momorphism counting, as a larger query requires more samples

in general [26, 35]. Empirically, while the difficulty of an instance

increases with the query size, the size of the data graph does not

seem to be strongly relevant. Since we perform the graph sampling
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only when the tree sampling has not found enough successes after

some number of samples, the number of successes from the tree

sampling can act as a proxy measure of the difficulty of an instance.

Hence we take larger 𝑢𝑏∅ when the number of successes from the

tree sampling is small. However, this association is not linear em-

pirically, and therefore we take the square root on the number of

successes, setting 𝑢𝑏∅ as

𝑢𝑏∅ =
|𝑉𝑞 | × 𝐾√

# successes + 1
(7)

for some constant 𝐾 . Using 𝐾 = 100, 000, we achieve a reasonable

accuracy over datasets of wildly different statistics.

7 PERFORMANCE EVALUATION
7.1 Experimental Setup
We conduct experiments to evaluate the performance of our algo-

rithm, FaSTest, by answering the following questions.

• Accuracy. Compared to state-of-the-art competitors, how ac-

curate is FaSTest on various real-world datasets and difficult

query instances with diverse characteristics? (Section 7.2)

• Efficiency. Compared to state-of-the-art competitors, how effi-

cient is FaSTest in terms of execution time and memory usage?

(Section 7.3)

• Evaluation of Techniques. How do our safety conditions and

tree/graph sampling algorithms contribute to accurate and effi-

cient estimation? (Section 7.4)

Wemainly compare our algorithmwithAlley [26], since it has signif-
icantly outperformed the synopses-based algorithms and sampling-

based algorithms such as Characteristic Sets [34], SumRDF [41],

Correlated Sampling [47], JSub [51], and WanderJoin [27]. Since

Alley was originally developed for estimating the number of homo-

morphic embeddings, we modified it for isomorphic embeddings.

We list the variants of Alley we compared to as follows.

• Alley: We modified Alley so that for each random walk sampled,

whether the walk is injective is additionally checked.

• Alley+: We modified Alley to not choose an already visited data

vertex twice during each random walk, ensuring that only injec-

tive walks are sampled.

• Alley+TPI: We modified the Tangled Pattern Index (TPI) struc-

ture proposed in [26] for isomorphism and built it on top of Al-
ley+. Following [26], we set the maximum pattern size to 4 for

vertex labeled datasets, and 5 if both vertex labels and edge la-

bels are present.

To compare our algorithm with GNN-based methods, we consider

two recent state-of-the-art works, LSS [50] and NeurSC [48] as two

additional baselines.

Environment. FaSTest is implemented in C++. The source code

of Alley and LSS were publicly available, and NeurSC was obtained

from the authors. Hyperparameters were set to their suggested

default values. Experiments were conducted on a machine with

two Intel Xeon Silver 4114 2.20GHz CPUs, an NVIDIA RTX 3090 Ti

GPU, and 256GB memory.

Datasets. We conduct experiments on real-world large-scale graph

datasets used in previous works [18, 24, 26, 42, 48]. For fair com-

parison, query graphs were obtained from a comparative study on

Table 2: Statistics of Data Graphs. Σ𝑉 and Σ𝐸 denote the sets
of vertex labels and edge labels, respectively.

Dataset |𝑉 | |𝐸 | |Σ𝑉 | |Σ𝐸 | #Query |𝑉𝑞 |
Yeast (Ye) 3.1K 12.5K 71 - 1,707 4 to 32

WordNet (Wo) 76.9K 120.4K 5 - 1,164 4 to 20

DBLP (Db) 317.1K 1.0M 15 - 911 4 to 20

Youtube (Yo) 1.1M 3.0M 25 - 922 4 to 32

Patents (Pa) 3.8M 16.5M 20 - 1,485 4 to 32

YAGO (Ya) 12.8M 15.8M 185K 91 960 4 to 20

subgraph matching algorithms [42] if possible. Large query graphs

for the DBLP dataset (|𝑉𝑞 | = 12, 20) and query graphs for the YAGO
dataset were generated via random walk. Since YAGO has edge la-

bels, we extended our algorithm to handle edge-labeled graphs. We

used an exact subgraph matching algorithm DAF [18] for obtain-

ing the ground truth results. Since the computational cost for ex-

act counting is extremely high, we only used the query graphs for

which the exact count could be computed within 2 hours. The data

graphs are listed in Table 2.

Performance Measure. Accuracy is measured by q-error [32],

defined as max

(︂
max(1,𝑤 )
max(1,𝑤̂ ) ,

max(1,𝑤̂ )
max(1,𝑤 )

)︂
, where 𝑤̂ is the estimate and

𝑤 is the ground truth number of embeddings, as done in previous

works [26, 35, 48, 50]. Efficiency is measured by average elapsed

time per query. For LSS and NeurSC, we evaluated with five-fold

cross-validation.

For the tree sampling, we set the acceptable failure probability

to 𝛼 = 0.05 and the tolerable relative error to 𝑐 = 1.25. Using these

parameters, the sample size for the tree sampling is adaptively

determined by the Clopper-Pearson interval (Equation 4).

7.2 Accuracy
Figure 5 presents the accuracy of FaSTest compared to state-of-the-

art competitors on real-world graph datasets, varying the size of the

query graph (Figure 5a) and the number of embeddings (Figure 5b).

In Figure 5, difficult instances for subgraph cardinality estimation

are large queries or queries with many embeddings. To differenti-

ate overestimation and underestimation, if 𝑤̂ ≥ 𝑤 , log
10

max(1,𝑤̂ )
max(1,𝑤 )

is shown above 𝑦 = log
10
1 = 0; if 𝑤̂ < 𝑤 , log

10

max(1,𝑤 )
max(1,𝑤̂ ) is shown

below 𝑦 = 0, as in [26, 35, 48, 50]. To ensure a fair comparison, we

present the results with 𝐾 = 100, 000 (Equation 7) for our graph

sampling, and choose the sample size of Alley so that its overall ex-

ecution time is not less than ours. Except for Yeast, we were unable
to train NeurSC due to time and memory limits, and therefore we

omit the results. Across data graphs with diverse statistical proper-

ties and query sizes ranging from small (4) to large (32), FaSTest
significantly outperforms both sampling methods and GNN meth-

ods in terms of accuracy. Note that a log q-error of 1 represents

tenfold over/underestimation.

Figure 5a shows that the q-error of GNNs increases as the size of

the query graph grows. For example, on Patents-32 (queries with
size 32 on the Patents dataset), FaSTest shows an average q-error

of 1.04 while LSS shows 4328.3 (log q-error of 0.02 and 3.64, respec-

tively), representing an improvement of more than three orders
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(a) log10 q-error with the x-axis representing the number of query vertices.

(b) log10 q-error with the x-axis representing log10 (#embeddings) of the query graph.

Figure 5: q-error evaluation on real world datasets (closer to 0 on the y-axis indicates better performance). The boxplot presents
values of log q-error of a set of queries. The lower and upper whisker denotes the 5% and 95% quantile, respectively. The box
itself represents the interquartile range, covering values between the 25% and 75% quantiles. The median of each set of queries
is represented by the black line within the box.

of magnitude. Compared to NeurSC, FaSTest shows an average q-

error of 1.07 on Yeast-32, where NeurSC shows 811.5 (log q-error

of 0.03 and 2.91, respectively).

Additionally, GNNs tend to overestimate when the true cardi-

nality is small, while they underestimate when the true cardinal-

ity is large, as observed in Figure 5b. While GNN-based methods

can make fast inference for each query, the accuracy on difficult

instances is substantially lower than that of sampling-based algo-

rithms. Therefore, for further evaluation, we focus on comparison

with the state-of-the-art sampling algorithm, Alley.
Sampling algorithms are often prone to sampling failure, where

no successful sample is found and the algorithm consequently re-

ports zero as the estimate. Alley also exhibits sampling failure on

difficult instances, such as large queries on Patents, Youtube, and
WordNet datasets. However, FaSTest significantly reduces the sam-

ple space by strong filtering, thereby achieving high accuracy on

such instances. Especially, on WordNet-20, FaSTest shows an aver-

age q-error of 1.81 (log q-error of 0.26), where Alley+TPI exhibits
an average q-error of 418.5 (log q-error of 2.62), which represents

an improvement of more than two orders of magnitude.

The accuracy of Alley tends to degrade as the true cardinality in-
creases. Yet, as seen in Figure 5b, FaSTest demonstrates impressive

accuracy even in cases where the true cardinality is exceptionally

large. For the Yeast dataset, on queries with more than 10
15

embed-

dings (represented by [15, 18)), FaSTest exhibits an average q-error

of 1.10, which corresponds to a relative error of about 10%.

1706



Figure 6: Accuracy-Time Tradeoff with different sample sizes. (Lower = Better accuracy, Left = Faster query processing)
The x-axis represents the average elapsed time per query (ms).

7.3 Efficiency
Query Processing Time. Table 3 presents both indexing time and

query processing time of FaSTest. Specifically, the query processing
time is broken down into filtering time, tree counting time, tree

sampling time, and graph sampling time. The values for Filtering,

Tree Counting, Tree Sampling, and Graph Sampling (A) represent

the average time spent per query (i.e., total graph sampling time

divided by the number of queries). Graph Sampling (H) shows

the average graph sampling time per hard query (i.e., total graph

sampling time divided by the number of hard queries), where a

hard query means a query that proceeds to the graph sampling

because no more than 10 successes were observed in 50,000 trials of

the tree sampling. For example, in Yeast, 25 out of 1,707 queries are
hard queries. While the graph sampling usually takes much longer

compared to the tree sampling, its overall impact on the query

processing time remains limited because the majority of queries

are resolved through the tree sampling. In general, filtering takes

the most time, especially for large datasets.

Accuracy-Time Tradeoff. Sampling algorithms have a natural

tradeoff between accuracy and query processing time, as the es-

timation can be more accurate by taking a larger sample size. In

Figure 6, we demonstrate the performance of our algorithm in this

tradeoff by conducting an experiment varying sample sizes.

For the graph sampling, we vary the sample size by changing

value of 𝐾 in Equation 7 from 5 × 103 to 3 × 105. We determine the

sample sizes for Alley as 𝐾 × |𝑉𝑞 |, using the same range of 𝐾 . Each

mark in Figure 6 represents the elapsed time and the log q-error

averaged over all queries at different sample sizes. As the sample

Table 3: Breakdown of the running time of FaSTest (ms). Hard
queries denote the queries that required graph sampling.

Dataset Yeast WordNet DBLP Youtube Patents YAGO

Indexing 658 509 49093 3419 16066 13512

Query Processing 28.06 555.53 403.94 382.08 1122.13 2870.08

Filtering 4.70 443.96 400.67 293.83 980.89 2844.65

Tree Counting 0.21 23.75 2.04 1.45 2.72 7.20

Tree Sampling 4.47 42.48 1.23 21.27 11.97 6.09

Graph Sampling (A) 18.68 45.54 0 65.53 89.55 12.14

Graph Sampling (H) 1275.47 84.01 0 663.94 929.94 3884.80

# Hard Queries 25/1707 631/1164 0/911 91/922 143/1485 3/960

size increases, the sampling algorithms tend to require more time

(moving from left to right on the x-axis), while the average log q-

error decreases, indicating improved accuracy (moving from top

to bottom on the y-axis). For large datasets, the results of Alley
variants taking an excessive amount of time were omitted (more

than 15,000 ms for DBLP, Youtube, Patents, and 100,000 ms for

YAGO per query on average).

Figure 6 highlights the accuracy-to-time tradeoff of FaSTest
when compared to Alley. As seen in Table 3, most queries on Yeast,
DBLP, and YAGO are handled by the tree sampling, whose sample

size is determined by Equation 4, independent of 𝐾 . This explains

the result appearing almost as a single dot for Yeast, DBLP, and
YAGO. In these datasets, the tree sampling demonstrates outstand-

ing accuracy and efficiency. For WordNet, Youtube, and Patents,
we observe that increasing the sample size improves the accuracy

for hard queries, resulting in a reduction of the average log q-error.

Although FaSTest incurs some overhead due to filtering for large

datasets, it remains significantly more efficient in terms of the re-

quired execution time to achieve a specific accuracy level. In Word-
Net, Alley+TPI, the top competitor, takes about 6,000 milliseconds

per query to attain an average log q-error of 0.3 (q-error of about 2).

On the other hand, FaSTest reaches an average log q-error of 0.1

(q-error of about 1.26) with just about 600 milliseconds per query.

The efficiency of FaSTest is achieved by the synergy of our three
key components. Firstly, our strong filtering substantially reduces

the sample space before sampling, which reduces the number of

required samples. Filtering also reduces the cost of obtaining a sam-

ple. Secondly, the tree sampling generates accurate results without

requiring costly intersection, addressing most cases with high effi-

ciency. Lastly, the graph sampling tackles the remaining hard cases.

Indexing Time. Table 4 shows the indexing time for triangles

and 4-cycles for our datasets compared to the TPI (Tangled Pattern

Index) from Alley [26]. In our experiments, all six datasets utilize

Triangle Safety, and three datasets (Yeast,WordNet, and DBLP) use
Table 4: Indexing time of Triangles, 4-Cycles and TPI (sec)

Ye Wo Db Yo Pa Ya

Triangles 0.006 0.04 1.3 3.4 16.1 13.5

Four-Cycles 0.65 0.47 47.8 - - -

TPI 278.0 41.5 5467.1 6069.8 24837.6 4732.7
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Figure 7: Index size and peak memory consumption.

Figure 8: Query processing time and size of the Candidate
Space after filtering, varying safety conditions.

Four-Cycle Safety. Compared to TPI which takes exponential time,

our indexing can be done much more efficiently in polynomial time.

We note that since this indexing is required only once per data

graph, it can be done in advance to process many queries.

Memory Usage. Figure 7 shows the size of the index and peak

memory consumption (measured as the highest memory usage ob-

served across all queries, including both the index and the Candidate

Space) of FaSTest compared to Alley. While the Candidate Space

is built for each query, the index is built only once per data graph.

FaSTest builds a smaller index compared to Alley’s TPI structure,
and its peak memory usage remains comparable to that of Alley.

7.4 Evaluation of Techniques
Safety Conditions. Figure 8 shows the breakdown of the query

processing time and the number of candidate edges after filtering

for Yeast andWordNet, varying only the safety conditions used. The
red, green, and blue portion of the left bar indicates the time spent

on filtering, tree sampling, and graph sampling, respectively. The

light blue bars show the number of candidate edges after filtering.

Together with Edge Bipartite Safety (EB), Triangle Safety (3C)

and Four-Cycle Safety (4C), we implemented the safety conditions

from two state-of-the-art subgraph matching algorithms: Neighbor

Safety (NS) proposed by VEQ [24] and Exact Star Isomorphism

Constraint (ESIC) by VC [43] as the baselines.

On Yeast, a stronger safety condition significantly reduces the

number of candidate edges, at the expense of slight increase in the

filtering time. This reduction in candidate edges accelerates both

tree sampling and graph sampling, thereby improving overall query

processing time. ForWordNet, using EB increases the filtering time

compared to ESIC. However, combining EB and substructure condi-

tions (3C, 4C) reduces the filtering time as well, since the candidate

edges removed by strong safety conditions are not considered in

subsequent filtering steps, reducing the overall cost of filtering.

Specifically, our filtering method combining all three safety con-

ditions reduces the number of candidate edges in WordNet by 80%

compared to NS and by 75% compared to ESIC. On both datasets,

each individual safety condition we propose has a clear effect in

reducing query processing time and candidate edges.

Comparison of Tree and Graph Sampling. As shown in Ta-

ble 3, the average tree sampling time per query is significantly

Figure 9: Comparative analysis of log q-error on WordNet
with (red) and without (green) the graph sampling. The x-
axis indicates queries sorted by q-error obtained from the
tree sampling. Values closer to 0 is better, with dots above
(resp. below) black line representing overestimation (resp.
underestimation).

lower than the average graph sampling time per hard query. How-

ever, graph sampling is necessary for hard queries as tree sampling

alone may not yield accurate estimates within a reasonable num-

ber of samples. In the extreme case, there is a query which has

1.5 × 106 embeddings inWordNet and for which 1.2 × 1026 candi-
date trees exist, necessitating about 7 × 1021 samples to get 88 suc-

cesses, which is required for reaching the desired accuracy. In the

experiment, FaSTest proceeded to the graph sampling after 50,000

trials of the tree sampling as it failed to find any successes.

Figure 9 shows the log q-errors with and without the graph sam-

pling for 631 hard queries onWordNet that required the graph sam-

pling. The x-axis indicates queries from those where the tree sam-

pling overestimated to those where it underestimated. Each query is

represented by a red dot and a green dot, denoting the log q-errors

with and without the graph sampling, respectively. The results indi-

cate that the tree sampling can lead to severe overestimation when

one or two extremely unlikely successes occur, or severe underes-

timation when there are no successes. For these hard queries, the

graph sampling provides reasonably accurate estimates. Even for

the aforementioned extreme case, the graph sampling achieves a

q-error of about 1.6.

8 CONCLUSION
In this paper, we have proposed FaSTest for subgraph cardinality

estimation. Our novel filtering-sampling approach synergistically

combines (1) a strong filtering method for drastically reducing the

sample space, (2) an efficient and accurate estimation by candidate

tree sampling, and (3) a worst-case optimal stratified graph sam-

pling with outstanding accuracy on hard instances. Extensive ex-

periments on real-world datasets show that FaSTest significantly
outperforms state-of-the-art algorithms in terms of accuracy and

time, while maintaining comparable memory usage.
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