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ABSTRACT
The tree edit distance (TED) has been found in a wide spectrum

of applications in artificial intelligence, bioinformatics, and other

areas, which serves as a metric to quantify the dissimilarity be-

tween two trees. As applications continue to scale in data size, with

a growing demand for fast response time, TED has become even

more increasingly data- and computing-intensive. Over the years,

researchers have made dedicated efforts to improve sequential TED

algorithms by reducing their high complexity. However, achieving

efficient parallel TED computation in both algorithm and imple-

mentation is challenging due to its dynamic programming nature

involving non-trivial issues of data dependency, runtime execu-

tion pattern changes, and optimal utilization of limited parallel

resources.

Having comprehensively investigated the bottlenecks in the

existing parallel TED algorithms, we develop a massive parallel

computation framework for TED and its implementation on GPU,

which is called X-TED. For a given TED computation, X-TED applies

a fast preprocessing algorithm to identify dependency relationships

among millions of dynamic programming tables. Subsequently, it

adopts a dynamic parallel strategy to handle various processing

stages, aiming to best utilize GPU cores and the limited device mem-

ory in an adaptive and automatic way. Our intensive experimental

results demonstrate that X-TED surpasses all existing solutions,

achieving up to 42x speedup over the state-of-the-art sequential

AP-TED, and outperforming the existing multicore parallel MC-

TED by an average speedup of 31x.
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1 INTRODUCTION
As a pivotal tool, the tree edit distance (TED) has found extensive ap-

plications in numerous domains dominated by tree-structured data.

Specifically, in artificial intelligence (AI), TED is increasingly being

adopted in AI-generated content verification and deep learning code

generator [27, 29, 37, 43, 45]. With the popularity of large language
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models (LLMs), TED also plays an indispensable role in the train-

ing and performance measurement of these models [22, 49, 51, 72].

Moreover, TED boasts wide-ranging applications in bioinformatics

[2, 10, 24, 56] and software engineering [23, 28, 34, 52, 70] as well.

Essentially, TED acts as a crucial metric to quantify the dissim-

ilarity between two trees by representing the minimum cost of a

sequence of editing operations, including inserting, deleting, and

renaming nodes, which are required for transforming one tree into

another. Therefore, it facilitates an effective comparison and anal-

ysis of hierarchical structures, such as parse trees, phylogenetic

trees, and XML/HTML document trees, from various domains.

Unfortunately, the inherent high complexity of TED algorithms

is well-known to cause increasingly long execution time as data

volumes scale, making it unacceptable for many real-world applica-

tions. A basic and the most widely-used TED algorithm with the

time complexity of 𝑂 (𝑛4) was published in 1989 [74], which origi-

nally introduced dynamic programming (DP) in TED and served as

a basis for later optimized algorithms. Over the years, researchers

havemade dedicated efforts to improve TED algorithms by reducing

the complexity. While recent optimized algorithms [9, 15, 46, 47]

have achieved a cubic level complexity 𝑂 (𝑛3) for the worst case,
the basic algorithm remains computationally competitive in certain

common cases [7, 18]. Moreover, it has been proven that 𝑂 (𝑛3) is
the theoretical lower bound for this class of algorithms [8, 15].

As Moore’s Law approaches its limits and hardware accelerators

like GPUs quickly emerge, massively parallel processing for TED is

not only necessary but imperative. This inevitable shift enables us

to effectively address the challenges posed by the ever-increasing

volumes of data and the growing need for fast response time in

TED computations. Therefore, it is critical to explore a parallel

framework that is both efficient and feasible for TED algorithms.

However, parallelizing TED computation is far from being trivial

either in algorithm design or in implementation. There have been

limited research efforts on the development of parallel TED algo-

rithms due to the intrinsic difficulties of this problem. A parallel

version of the basic TED algorithm is also presented in the same

paper [74], which is a comprehensive blueprint but poses three

primary limitations when implemented on real-world parallel ma-

chines. (1) This parallel solution necessitates a huge memory space

of 𝑂 (𝑛3) for data storage, which is a significant burden, even for

trees with a moderate size of 𝑛 nodes. (2) Frequent synchronization

operations among numerous processors are required, resulting in

unacceptable execution overheads. (3) A highly imbalanced dis-

tribution of workloads causes a significant load-imbalance issue,

seriously degrading execution performance. Despite several decades

of research on TED, this parallel solution has not been practically

implemented for real-world TED computations and applications.

The three systematic issues of the existing solution drive us to

propose an entirely new and efficient parallel framework that truly

enables feasible parallel accelerations for the TED computation.
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By closely analyzing the DP recurrence formula within the basic

TED algorithm, we have uncovered that while the DP pattern is

continually changing during computation, the data dependencies

are essentially determined by the structures of two input trees. In

TED computations, a substantial number of DP tables (2D matrices)

are utilized to calculate and store intermediate results. The intri-

cate data dependencies persistently exist among these DP tables.

Considering each table as a single task and based on insights we

obtained, we hereby develop an efficient algorithm that effectively

determines the complex dependency relationships among tasks,

without the need for intensive data analysis. Tables that are in-

dependent with each other can thus be computed concurrently

and the required memory space has been dramatically reduced to

𝑂 (𝑛2). Also, the massive synchronization operations across tables

have been eliminated. Another major challenge lies in the severe

imbalanced workloads among tables. For each table, the number of

entries required to compute may range from ones to millions. There-

fore, we have designed a dynamic parallel strategy that allocates

limited parallel resources to these unbalanced tasks in an adaptive

and automatic way, which is crucial to achieve high performance.

In this paper, we begin by examining the intricate execution

patterns of TED to gain insights and then identify several crit-

ical issues that hinder effective parallel processing of TED. We

develop a massive parallel framework for TED computations and

its implementation on GPU, which is called X-TED. For a given

TED computation, X-TED applies a fast preprocessing algorithm

to identify dependency relationships among millions of DP tables.

Subsequently, TED parallel operations go through different pro-

cessing stages. We develop a dynamic parallel strategy that handles

table computations, aiming to best utilize many GPU cores and the

limited device memory capacity in an adaptive and automatic way.

Our contributions are summarized as follows.

• We delve into the intricate execution patterns of TED, iden-

tifying critical issues within the existing TED parallel al-

gorithms. These findings motivate us to develop new and

effective solutions.

• We develop and implement a fast and effective preprocess-

ing algorithm to detect dependency relationships among

all tables before parallel TED processing, without the need

to construct and analyze the dependency graph.

• In any TED computation, we separate three distinctive

stages during its parallel processing. We design an effective

dynamic parallel strategy that best utilizes the available

computing and memory resources across different stages.

• Putting all the above research efforts together, we construct

a framework named X-TED for the parallel computation of

TED and its implementation on GPU. Through extensive

experiments and comprehensive comparisons, we show

that X-TED surpasses all existing TED solutions. Specially,

we demonstrate that X-TED achieves a remarkable speedup

of up to 42x in comparison to the state-of-art sequential

algorithm, and outperforms the existing multi-core parallel

implementation by an average of 31x.

The paper is organized as follows. We introduce the basic TED al-

gorithm in §2 and identify crucial issues in §3. We give an overview

of our solution X-TED in §4. The detailed description of the effi-

cient preprocessing algorithm and its mathematics proof is in §5.

The implementation details of the dynamic parallel strategy are

presented in §6. The overall experiment performance evaluation

is given in §7. Finally, we review related work of TED in §8, and

conclude our work with a summary in §9.

2 BACKGROUND
2.1 Tree Edit Distance
Tree edit distance represents the minimum cost of transforming one

tree into another by a sequence of edit operations. There are three

types of edit operations: inserting a new node, deleting an existing

node, and renaming a node with a new label. Figure 1 provides

a simple example, and the index 𝑖 of node 𝑣𝑖 corresponds to its

position in the preorder traversal of the tree. In Figure 1, if the cost

of each three edit operation is 1 then the TED between �̄� and 𝑌 is 3.

In real-world applications, the cost of edit operations usually varies

for different nodes based on their labels and positions, and it can

be user-defined as a cost matrix. The goal of TED computation is to

find the minimum cost among all possible edit operation sequences.

Figure 1: Edit operations and edit distance

2.2 The Basic TED Algorithm
Dynamic programming is first introduced in [74] to address the

TED problem for the basic and most widely-adopted TED algo-

rithm, whose worst-case time complexity is 𝑂 (𝑛4). The algorithm
consists of two primary steps. The first step involves identifying

all keyroot nodes and the subtrees rooted at these keyroots, based

on the tree structure. In the second step, for each pair of these

subtrees, the algorithm utilizes a 2D table (matrix) to calculate the

distance between subtrees by dynamic programming. Once all these

tables have been computed, the algorithm returns the final distance

between the two input trees.

2.2.1 Keyroots and Subtrees. In the preorder traversal manner [44],

a node is identified as a keyroot if: (1) it is the root node, or (2) it

has at least one right sibling. For the tree �̄� in Figure 2, both 𝑥0 and

𝑥2 qualify as keyroots, whereas 𝑥1 and 𝑥3 are not keyroots.

The subtree rooted at a keyroot 𝑥𝑖 is denoted as tree 𝑥�̄� . It includes

the keyroot itself, and extends to the rightmost node it can reach

which is denoted as 𝑟𝑙 (𝑥𝑖 ). The subtree 𝑥�̄� can hereby be represented
as the set {𝑥𝑖 , 𝑥𝑖+1, · · · , 𝑟𝑙 (𝑥𝑖 )}. For example, in Figure 2, 𝑥0 is a

keyroot of tree �̄� . The rightmost node that 𝑥0 can reach is 𝑥3; that

is, 𝑟𝑙 (𝑥0) = 𝑥3, and therefore the subtree 𝑥0̄ contains all nodes from

𝑥0 to 𝑥3 (𝑥0̄ = {𝑥0, 𝑥1, 𝑥2, 𝑥3}). For another keyroot 𝑥2, the rightmost

node it can reach is itself (𝑟𝑙 (𝑥2) = 𝑥2), and thus the subtree 𝑥2̄
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contains only one node, 𝑥2. The keyroots and subtrees rooted at

keyroots of 𝑌 are also shown in Figure 2.

Keyroot Subtree

Figure 2: Keyroots and subtrees rooted at keyroots

It is worth noting that the subtree rooted at a keyroot can be a

component of the whole tree (e.g., 𝑦1̄), or simply a leaf node (e.g.,

𝑥2̄). Furthermore, if this keyroot node is the tree’s root, its subtree

is exactly the entire tree itself (e.g. 𝑥0̄ = �̄� , 𝑦0̄ = 𝑌 ).

2.2.2 Tables in DP. After identifying all keyroots and their corre-

sponding subtrees from the two input trees, the basic TED algo-

rithm then proceeds to the DP computation step. For each keyroot

pair (𝑥𝑘 , 𝑦𝑙 ), the algorithm utilizes a table to compute the distance

between two subtrees (𝑥�̄� and 𝑦�̄� ) rooted at these two keyroots.

In a bottom-up manner, the algorithm starts with the pair of

keyroots that have higher preorder indices, and it then progressively

advances towards the roots of two input trees. For example, as

illustrated in Figure 2, there are four pairs in total that will be

computed in order: (𝑥2̄, 𝑦1̄), (𝑥2̄, 𝑦0̄), (𝑥0̄, 𝑦1̄), and (𝑥0̄, 𝑦0̄). These four

DP tables are displayed in Figure 3.

Figure 3: DP Tables of each pair of subtrees in Figure 2

We denote the table that computes the distance between subtree

𝑥�̄� and 𝑦�̄� as Table(𝑥�̄� , 𝑦�̄� ). The row index of this table represents

each 𝑥 node within the subtree 𝑥�̄� , from 𝑥𝑘 to 𝑟𝑙 (𝑥𝑘 ), and an addi-

tional row is added at the end which represents an empty node (∅).
The column index stands for every 𝑦 node within subtree 𝑦�̄� , from

𝑦𝑙 to 𝑟𝑙 (𝑦𝑙 ), and the last column is an empty node as well.

Inside a table, the unit with index [𝑥𝑖 ][𝑦 𝑗 ] computes the edit

distance between a part of subtree 𝑥�̄� (from node 𝑥𝑖 to the end

node 𝑟𝑙 (𝑥𝑘 )) and another part of subtree 𝑦�̄� (from node 𝑦 𝑗 to the

end node 𝑟𝑙 (𝑦𝑙 )). For example, since 𝑟𝑙 (𝑥0) = 𝑥3 and 𝑟𝑙 (𝑦1) = 𝑦2,

the purple-colored unit [𝑥1][𝑦1] in the Table(𝑥0̄, 𝑦1̄) indicates the
distance between {𝑥1, 𝑥2, 𝑥3} and {𝑦1,𝑦2}. Other unit examples are

also shown in Figure 3.

2.2.3 DP Recurrence. In the basic TED algorithm, the DP recur-

rence formula serves as the rule for computing each unit in the

tables. For any given Table(𝑥�̄� , 𝑦�̄� ), we use𝑇𝑖, 𝑗 to represent the unit
with index [𝑥𝑖 ][𝑦 𝑗 ], which computes the edit distance between set

{𝑥𝑖 , 𝑥𝑖+1, · · · , 𝑟𝑙 (𝑥𝑘 )} and {𝑦 𝑗 , 𝑦 𝑗+1, · · · , 𝑟𝑙 (𝑦𝑙 )} as in Figure 4. For

the base case, the distance between two empty nodes ∅ is 0, and

therefore 𝑇∅,∅ is 0. The unit 𝑇𝑖,∅ computes the distance between

{𝑥𝑖 , 𝑥𝑖+1, · · · , 𝑟𝑙 (𝑥𝑘 )} and ∅, which is equal to the value of 𝑇𝑖+1,∅
plus 𝑐𝑜𝑠𝑡 (𝑥𝑖 ,−), the cost of adding node 𝑥𝑖 . Similarly, 𝑇∅, 𝑗 can be

calculated by using 𝑇∅, 𝑗+1 plus 𝑐𝑜𝑠𝑡 (−, 𝑦 𝑗 ).

Recurrence:

Base Case:

Figure 4: DP Table and DP Recurrence Formula

The value of 𝑇𝑖, 𝑗 relies on two different DP recurrence formulas.

Case 1: If the rightmost node that can be reached by𝑥𝑖 is the same as

the one reached by 𝑥𝑘 , meaning 𝑟𝑙 (𝑥𝑖 ) = 𝑟𝑙 (𝑥𝑘 ), and simultaneously

𝑟𝑙 (𝑦 𝑗 ) = 𝑟𝑙 (𝑦𝑙 ), it implies that the set {𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑟𝑙 (𝑥𝑘 )} forms

the subtree 𝑥�̄� and {𝑦 𝑗 , 𝑦 𝑗+1, . . . , 𝑟𝑙 (𝑦𝑙 )} forms the subtree 𝑦 �̄� . In

this scenario, 𝑇𝑖, 𝑗 can represent the minimal value among 𝑇𝑖+1, 𝑗 +
𝑐𝑜𝑠𝑡 (𝑥𝑖 ,−), 𝑇𝑖, 𝑗+1 + 𝑐𝑜𝑠𝑡 (−, 𝑦 𝑗 ), and 𝑇𝑖+1, 𝑗+1 + 𝑐𝑜𝑠𝑡 (𝑥𝑖 , 𝑦 𝑗 ), where
𝑐𝑜𝑠𝑡 (𝑥𝑖 , 𝑦 𝑗 ) is the cost of renaming 𝑥𝑖 to 𝑦 𝑗 . In this case, 𝑇𝑖, 𝑗 is

exactly the distance between 𝑥�̄� and 𝑦 �̄� , which will be stored and

reused in subsequent computations. Case 2: Otherwise, 𝑟𝑙 (𝑥𝑖 ) is
smaller than 𝑟𝑙 (𝑥𝑘 ) (in preorder manner), meaning subtree 𝑥�̄� =

{𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑟𝑙 (𝑥𝑖 )} ⊂ {𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑟𝑙 (𝑥𝑘 )}, or 𝑟𝑙 (𝑦 𝑗 ) is smaller

than 𝑟𝑙 (𝑦𝑙 ). Thus, in this second scenario, 𝑇𝑖, 𝑗 can be calculated as

the minimal value among 𝑇𝑖+1, 𝑗 + 𝑐𝑜𝑠𝑡 (𝑥𝑖 ,−), 𝑇𝑖, 𝑗+1 + 𝑐𝑜𝑠𝑡 (−, 𝑦 𝑗 ),
and 𝑇𝑟𝑙 (𝑥𝑖 )+1,𝑟𝑙 (𝑦 𝑗 )+1 + 𝐷 (𝑥�̄� , 𝑦 �̄� ). The last term contains 𝐷 (𝑥�̄� , 𝑦 �̄� )
which is the edit distance between 𝑥�̄� and 𝑦 �̄� , computed in previous

DP computations, plus the distance between the remaining part

{𝑟𝑙 (𝑥𝑖 ) + 1, . . . , 𝑟𝑙 (𝑥𝑘 )} and {𝑟𝑙 (𝑦 𝑗 ) + 1, . . . , 𝑟𝑙 (𝑦𝑙 )}.

3 THE BOTTLENECKS IN TED COMPUTATION
In this section, we look into the dynamics of TED executions, exam-

ining existing DP models closely. We focus on parallel algorithms,

identifying several critical issues and answering the question of

why parallel processing for TED computation is so challenging.

3.1 Challenges in Parallel Processing of TED
Due to the intrinsic high complexity, the transition from serial to

massively parallel processing has become an inevitable trend in

TED computing. However, parallelizing TED computation is an
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exceedingly non-trivial task in both algorithm design and imple-

mentation for two primary reasons: (1) The algorithms and data

structures of TED involve complex and extensive data dependencies,

which significantly constraints parallelism and degrades parallel

performance. (2) During TED computation, highly imbalanced dis-

tributions of workloads among tables are dynamically generated,

preventing the development of a one-size-fits-all parallel algorithm.

These two issues are classical "headaches" in parallel processing

[20, 65, 75, 76]. Moreover, for a series of subsequent optimized TED

algorithms [15, 30, 46, 47], the DP framework remained, leading to

the continuation of intricate data dependencies and an imbalanced

distribution of workloads in these enhanced versions as well.

3.1.1 Data Dependencies. The DP recurrence Formula (1) and (2) in

Figure 4 indicate that the computing process for tables in the basic

algorithm exhibits inherent data dependencies, both among tables

and within each individual table. For a unit 𝑇𝑖, 𝑗 , its value might

depend on either three of its neighbors as Formula (1), or two of its

neighbors along with a computed result 𝐷 (𝑥�̄� , 𝑦 �̄� ) as Formula (2). It

is important to highlight that 𝐷 (𝑥�̄� , 𝑦 �̄� ) is usually calculated from

other proceeding tables, and hereby the computation of this table

relies on the computations of other tables, leading to what we term

as inter-table dependency. Additionally, the intra-table dependencies
refer to the dependencies between 𝑇𝑖, 𝑗 and its neighbors.

Figure 5 illustrates some data dependencies for the four tables

in Figure 3. For example, the blue unit [𝑥2][𝑦1] in Table(𝑥2̄, 𝑦0̄),
computes the distance between {𝑥2} and {𝑦1,𝑦2,𝑦3}. According to

the Formula (2), it relies on the result of 𝐷 (𝑥2̄, 𝑦1̄) plus the cost of
inserting a node 𝑦3, but the 𝐷 (𝑥2̄, 𝑦1̄) is computed by the green unit

[𝑥2][𝑦1] in Table(𝑥2̄, 𝑦1̄). Therefore in the Figure 5(a), the blue unit

depends on the green unit.

Table Depends on Num of inter-table
Dependencies

0

2

2

10

(a) Examples of inter-table data dependencies

(b) Summary of inter-table dependencies (c) Examples of intra-table dependencies

Figure 5: Data dependency examples for tables in Figure 3

When a unit within a table relies on certain units from other

tables, it can be said that this table depends on those tables. Figure

5(b) presents the summary of all inter-table dependencies among

these four tables. In this simple case of two four-node trees (�̄�

and 𝑌 ), the total number of inter-dependencies is 14. As the hi-

erarchy of input trees grows larger, the inter-table dependencies

become increasingly intricate and enormous. In addition, Figure

5(c) illustrates the intra-table data dependencies of two units, one

from Table(𝑥2̄, 𝑦1̄) and the other from Table(𝑥0̄, 𝑦1̄), separately.

3.1.2 Imbalanced workload. As mentioned in Section 2.2.2 and

Figure 4, for any given Table(𝑥�̄� , 𝑦�̄� ), if we denote the size of subtree
𝑥�̄� as |𝑥�̄� | and the size of subtree𝑦�̄� as |𝑦�̄� |, then the number of units

that Table(𝑥�̄� , 𝑦�̄� ) needs to calculate is ( |𝑥�̄� | + 1) × (|𝑦�̄� | + 1) in total.

For two input trees that have thousands of nodes each, the size of

the subtree rooted at each keyroot, 𝑥�̄� and 𝑦�̄� , can range from one

to thousands. Consequently, the dimensions of the tables might

differ by a magnitude of millions, leading to highly imbalanced

workloads during DP computations.

The example in Figure 5(a) shows that the sizes of the four tables

are totally different from each other. Table(𝑥0̄, 𝑦0̄) has the biggest
size with 25 units overall, but the smallest one, Table(𝑥2̄, 𝑦1̄) only
has 6 units required to compute. On the other hand, these tables

come in various shapes. Table(𝑥2̄, 𝑦0̄) is horizontally broad while

Table(𝑥0̄, 𝑦1̄) is vertically elongated, and Table(𝑥0̄, 𝑦0̄) is a square.

3.2 Issues in Existing Solutions
A parallel version of the basic TED algorithm is presented in [74],

which offers a clear and comprehensive blueprint for exploiting

the parallelism of the basic algorithm. Assuming each input tree

comprises 𝑛 nodes, then the number of tables in the TED algorithm

is 𝑂 (𝑛2) and each table has 𝑂 (𝑛2) units to compute. This parallel

algorithm requires a substantial number of 𝑂 (𝑛3) processors, and
thus each table has 𝑂 (𝑛) processors to calculate all its entries. The

parallel pattern is illustrated in Figure 6. Within a table, each anti-

diagonal is treated as a wave so there are (2n-1) waves in total, from

𝑤1 to𝑤2𝑛−1. These 𝑂 (𝑛) processors do parallel computing follow-

ing the wavefront pattern from bottom-right to top-left, and units

in the same wave across all tables can be processed concurrently.

That is, all red units in𝑤1 from every table are computed in parallel

first and subsequently all orange units from all tables are calculated

simultaneously. This wave-by-wave procedure continues until all

units in𝑤2𝑛−1 have been computed.

Compute all units in wave: 

...

...

Figure 6: Parallel version of the basic TED algorithm

This framework works because for any given unit𝑇𝑖, 𝑗 , the neigh-

bors it might rely on:𝑇𝑖+1, 𝑗 ,𝑇𝑖, 𝑗+1, and𝑇𝑖+1, 𝑗+1, are all located in the

preceding waves. Additionally, it has been proven in [74] that the

value of𝐷 (𝑥�̄� , 𝑦 �̄� ) is also computed in earlier waves (on other tables).
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This ensures that all data dependencies are appropriately handled.

However, implementing this algorithm in practice poses feasibil-

ity challenges due to poor utilization of computing and memory

resources, as well as the high hardware cost, as explained below.

Limitation (1): Huge memory space is required. Although

units in a table only depend on units on lower waves from itself

or other tables, it does require all units from the nearest wave to

be stored during computation, resulting in a substantial memory

space requirement𝑂 (𝑛3). As the dependencies across tables are not
explicitly resolved, directly partitioning the tables into batches and

computing each batch individually would disrupt the inter-table

data dependencies, and thus, all tables must be processed together.

Limitation (2): Frequent synchronization operations are
needed. For the computation of each wave, these processors need

to synchronize before proceeding to the next wave. That is, the

processors cannot compute units in𝑤𝑖+1 unless all units in𝑤𝑖 across

all tables have been fully calculated. The frequent synchronization

overhead among a vast number of processors is unacceptable.

Limitation (3): Significant load-imbalance persists for the
majority of the execution time. Although the memory complexity

for each table is 𝑂 (𝑛2), the actual table sizes range from minimal

ones to 𝑂 (𝑛2). This disparity causes a significant load imbalance

during computation. Yet, this parallel solution lacks a mechanism

to allocate parallel resources suitably to tables with different sizes.

Execution Time (ms)

Zhang-Shasha's
Parallel Solution

on GPU

Basic TED
on CPU

(a)  Performance Comparison (b)  Imbalanced table sizes (in log scale)

Max size = 40000
Min size = 9
Standard Deviation = 580.13

Table Index

Figure 7: Performance comparison between the parallel so-
lution in [74] on GPU and the basic TED algorithm on CPU
using 200-node trees.

We have implemented this parallel TED algorithm on GPU and

evaluated its performance on small trees with 200 nodes in Fig-

ure 7 (a). The execution time for this parallel version is nearly 32x

longer than that of the sequential basic TED algorithm. Limited

hardware resources and substantial synchronization cost severely

degrade the overall performance of this parallel solution. Figure 7

(b) displays the range of table sizes in the test case; here, the table

index merely serves as a label for referencing a table and has no

specific meaning. The standard deviation in table sizes exceeds 580,

highlighting a pronounced workload imbalance among them. An

improved parallel algorithm is introduced in [73]. However, its im-

plementation still requires a complex synchronization mechanism

with significant overhead. Furthermore, the issue of imbalanced

workload had also not been given sufficient attention.

3.3 Can we exploit unique dynamics of TED?
The three inherent limitations outlined in Section 3.2 are systemic,

being persistent in the current framework, regardless of how we

use other enhanced DP techniques to optimize the implementation.

However, opportunities often reside within challenges.

It is essential to recognize that the DP computation in TED ex-

hibits certain unique patterns in execution. The recurrence formulas

in Figure 4 show that during the computation, the DP recurrence

pattern continually changes, being directly influenced by the struc-

ture of the two input trees. Particularly in Formula (2), the location

of 𝑇𝑟𝑙 (𝑥𝑖 )+1,𝑟𝑙 (𝑦 𝑗 )+1 is determined by the structures of subtrees 𝑥�̄�
and 𝑦�̄� . This paper addresses the following question:

Can we design a new and efficient parallel framework for TED
to address the three limitations by taking advantage of its unique
dynamics in DP?

We believe that it is only by leveraging the inherent dynam-

ics in TED execution patterns that we can find the most efficient

way to parallelize the TED computation. In contrast to the existing

solutions, this paper aims to develop an effective parallel process-

ing framework and its implementation on GPU with an insightful

consideration of the unique execution dynamics of TED.

4 X-TED: AN OVERVIEW
4.1 Insights from Analysis
The bottleneck of the existing parallel solution arises because it

cannot handle data dependencies efficiently. As discussed in Section

3.2, all units in a given wave𝑤𝑖 across all tables must be calculated

together. This means that for any table, if the units in𝑤𝑖 have been

computed, it cannot directly proceed to the wave𝑤𝑖+1. Instead, it
must wait for all units in 𝑤𝑖 from other tables to complete their

computations, as its units in𝑤𝑖+1 may depend on those units in𝑤𝑖

from other tables according to the recurrence formula. This is the

fundamental reason that causes Limitation (1) and Limitation (2).

As a result, it is crucial to delve into the complex data depen-

dencies among tables when designing a new parallel framework

for TED computation. If we consider the computation of each table

as a task, understanding the inter-table dependencies allows us to

identify tasks that are independent of one another, and thus, can

be processed concurrently. This helps to maximize the parallelism

in practical implementations and eliminate the significant synchro-

nization overheads across tables. Moreover, processors will require

only𝑂 (𝑛2) memory space to compute tables, which is a significant

memory saving, compared to the previous solution’s 𝑂 (𝑛3).
Additionally, the essence of DP recurrence in the basic TED

algorithm implies that the serious load-imbalanced problem in

Limitation (3) remains a persistent obstacle and impedes the par-

allel resource allocation. This must be addressed by efficient par-

allel programming to best utilize existing hardware resources in a

performance- and cost-effective way.

4.2 Table Dependency Graph
A dependency graph is a graphical representation of the depen-

dencies among tasks. Each node in the graph serves as a single

task. If task 𝑗 depends on task 𝑖 , a directed edge from node i to

node j ( 𝑗 ← 𝑖) signifies this dependency. After treating the com-

putation of each DP table as an individual task, we can construct
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such a table dependency graph based on the inter-table dependency

relationships between tables.

Table Depth of Table

Figure 8: Table dependency graph and depth of tables for the
four tables in Figure 5

For example, the dependency graph for the four tables from

the Figure 5 is presented in Figure 8. The depth of a node in the

dependency graph refers to the longest path from this node to

the nodes without any dependency. It is evident that tables with

the same depth value can be executed concurrently, as there is no

dependency edge between them. In this example, it means that the

Table(𝑥2̄, 𝑦0̄) and Table(𝑥0̄, 𝑦1̄) can be computed simultaneously.

4.3 Overview of Our Parallel Framework
In this paper, we present such a parallel framework named X-TED

that is highly efficient and feasible for massive parallel TED com-

puting. We first develop an innovative and efficient preprocessing

algorithm that effectively resolves the inter-table data dependencies,

based on the insights from the DP recurrence formula. And then

we design a dynamic parallel strategy that allocates appropriate

parallel resources to table with different sizes based on a mathe-

matical model. The fundamental execution flow of our framework

is illustrated in Figure 9.

Note:            is depth of the

table in the dependency graph,

as illustrated in Figure 8.

Preprocessing algorithm

Tree    

Dynamic parallel strategy

Small-table
Approach

TED result

Medium-table
Approach

Huge-table
Approach

Tree    

...

...

Large-table
Approach

Figure 9: Overview of X-TED framework

Initially, the algorithm takes in two trees, �̄� and 𝑌 . Assuming

�̄� has 𝐾 keyroots and 𝑌 has 𝐿 keyroots, the number of DP tables

required to compute is (𝐾 × 𝐿), and these tables has different sizes

and shapes. Then, the efficient preprocessing algorithm we pro-

pose is employed to determine the depth of each table in the table

dependency graph. This is achieved solely by analyzing the
tree structures, without the need to construct the table de-
pendency graph. Tables with identical depth can be processed

concurrently, starting from depth = 0 and progressing to the maxi-

mum depth (𝑑𝑚𝑎𝑥 ).

For the computation of tables at each depth, the dynamic parallel

strategy we design adopts different parallel approaches to allo-

cate hardware resources based on table sizes, which we categorize

as small, medium, large, and huge. A mathematical model serves

as a guide, determining the appropriate thresholds for each size

type. This ensures that our parallel resource allocation strategies

are applied accordingly and automatically during the parallel DP

computation for TED. Details of the design, implementation, and

performance results will be presented in the subsequent sections.

5 THE PREPROCESSING ALGORITHM
Data dependencies limit the concurrent processing of tasks and de-

termine the execution sequence in parallel computing. In the TED

algorithm, computing a single table can be viewed as a small task.

When the input trees become larger and more complex, the depen-

dencies among these tasks are increasingly convoluted. Therefore,

before parallelizing the computing of massive tables in TED, it is

vital to pinpoint these data dependencies and identify tasks that

can run concurrently.

However, constructing the entire dependency graph and deter-

mining the depth of each table is both time-consuming andmemory-

intensive. In this section, we introduce an efficient preprocessing

algorithm, which can calculate the depth of tables solely by analyz-

ing tree structures. It simplifies dependency detection and groups

independent tasks for later parallelization.

5.1 Keyroot Tree
Prior to introducing our preprocessing algorithm, we propose the

concept of the keyroot tree of a given tree. The keyroot tree of a

given tree �̄� is an artificial tree built from �̄� that keeps all keyroots

of �̄� . The rules for establishing the keyroot tree are as follows. If a

node 𝑥𝑖 is a non-keyroot node and a leaf, it will be removed directly.

And then if 𝑥𝑖 is a non-keyroot node but not a leaf, it is replaced by

edges which connect its parent and its children nodes. We denote

the keyroot tree of �̄� as 𝑘𝑟𝑋 .

Figure 10 separately presents the keyroot trees of �̄� and 𝑌 from

Figure 2. The height of a tree is defined as the length of the longest

path from that node to any leaf node it can reach. Thus, the height

of node 𝑥0 in 𝑘𝑟𝑋 is 1. And the height of 𝑥2 should be 0 because it

can only reach itself in 𝑘𝑟𝑋 .

It is worth noting that compared to the original tree, the keyroot

tree maintains the original hierarchy of all keyroots and only re-

moves all non-keyroot nodes. In the keyroot tree 𝑘𝑟𝑋 , if a keyroot

𝑥𝑖 can reach the node 𝑥 𝑗 (from up to down), it means that in the

original tree �̄� , the subtree rooted at 𝑥𝑖 includes the subtree rooted

at 𝑥 𝑗 (𝑥�̄� ⊇ 𝑥 �̄� ). Otherwise there is no path from 𝑥𝑖 to 𝑥 𝑗 in 𝑘𝑟𝑋 .
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Keyroot Height in Keyroot Tree

Keyroot Height in Keyroot Tree

Figure 10: Keyroot trees and depth of keyroots

5.2 Essence of Inter-table Dependencies
According to the recurrence in Figure 4, for a given Table(𝑥�̄� , 𝑦�̄� ),
it depends on Table(𝑥�̄� , 𝑦�̄�) because some units within it rely on

the results in Table(𝑥�̄� , 𝑦�̄�). From the perspective of tree structures,

only if the subtree 𝑥�̄� contains the subtree 𝑥�̄� or subtree𝑦�̄� contains
the subtree 𝑦�̄� , the processing of Table(𝑥�̄� , 𝑦�̄� ) will rely on the com-

puted results from Table(𝑥�̄� , 𝑦�̄�). This constitutes the fundamental

reason behind the inter-table data dependencies, which means that

the inherent hierarchical structures of two input trees determine

the dependencies among tables in TED. Thus the keyroot tree we
proposed in Section 5.1 serves to abstract the hierarchical structure

of keyroots for input trees and aids in computing the depth of each

table in the dependency graph. We propose our theorem as the

basis of the preprocessing algorithm and prove it as below.

Lemma 1. Assume a node in 𝑘𝑟𝑋 whose height is𝑚 denoted as 𝑘𝑥𝑚 ,
there must exist a sequence of keyroots {𝑘𝑥0, 𝑘𝑥1, 𝑘𝑥2, ..., 𝑘𝑥𝑚−1} in
the maximum path between 𝑘𝑥𝑚 and a leaf node in 𝑘𝑟𝑋 , and for
node 𝑘𝑥𝑖 ∈ {𝑘𝑥0, 𝑘𝑥1, 𝑘𝑥2, ..., 𝑘𝑥𝑚} the height of 𝑘𝑥𝑖 in 𝑘𝑟𝑋 is i.

Theorem 1. Assume a node in 𝑘𝑟𝑋 whose height is𝑚 denoted as
𝑘𝑥𝑚 and a node in 𝑘𝑟𝑌 whose height is 𝑛 denoted as 𝑘𝑦𝑛 , the depth
of Table(𝑘𝑥𝑚¯ , 𝑘𝑦𝑛¯ ) in the table dependency graph is (𝑚+𝑛).

Table_Depth(𝑘𝑥𝑚¯ , 𝑘𝑦𝑛¯ ) =𝑚 + 𝑛 (3)

Proof. 𝑘𝑥𝑚 is a node whose height is 𝑚 in 𝑘𝑟𝑋 and 𝑘𝑦𝑛 is

a node whose height is 𝑛 in 𝑘𝑟𝑌 . According to Lemma 1, there

exists a sequence of keyroots {𝑘𝑥0, 𝑘𝑥1, 𝑘𝑥2, ..., 𝑘𝑥𝑚 } and for node

𝑘𝑥𝑖 ∈ {𝑘𝑥0, 𝑘𝑥1, 𝑘𝑥2, ..., 𝑘𝑥𝑚}, the height of 𝑘𝑥𝑖 in 𝑘𝑟𝑋 is i. Also,

there is another sequence of keyroots {𝑘𝑦0, 𝑘𝑦1, 𝑘𝑦2, ..., 𝑘𝑦𝑛 } and for

node 𝑘𝑦 𝑗 ∈ {𝑘𝑦0, 𝑘𝑦1, 𝑘𝑦2, ..., 𝑘𝑦𝑛}, the height of 𝑘𝑦 𝑗 in 𝑘𝑟𝑌 is j.

We then use the introduction method to prove, and the base case

is shown first. When𝑚 = 0 and 𝑛 = 0, the keyroots are 𝑘𝑥0 and 𝑘𝑦0.

Since the 𝑘𝑥0 and 𝑘𝑦0 are leaf nodes in keyroot trees, which means

that in the original tree �̄� and 𝑌 , the subtrees correspondingly

rooted at these two keyroots do not include any smaller keyroot

subtree. This implies that the computing of Table(𝑘𝑥0
¯ , 𝑘𝑦0

¯ ) does
not depend on results of other tables in TED algorithm. Thus the

depth of Table(𝑘𝑥0
¯ , 𝑘𝑦0

¯ ) in the dependency graph is 0. That is,

Table_Depth(𝑘𝑥0
¯ , 𝑘𝑦0

¯
) = 0 (4)

When 𝑚 = 0 and 𝑛 = 1, the two keyroot sequences are {𝑘𝑥0}

and {𝑘𝑦0, 𝑘𝑦1}. In 𝑘𝑟𝑌 , node 𝑘𝑦1 and 𝑘𝑦0 are in the same path and

there is only one edge between them because the height of 𝑘𝑦1 is

larger than that of 𝑘𝑦0 by 1. This indicates that, the subtree 𝑘𝑦1
¯

in

𝑌 incorporates the subtree 𝑘𝑦0
¯
, while the subtree 𝑘𝑥0

¯
in �̄� does not

encompass any smaller keyroot subtree. Further, the computing of

Table(𝑘𝑥0
¯ , 𝑘𝑦1

¯ ) relies on the result of Table(𝑘𝑥0
¯ , 𝑘𝑦0

¯ ), so its depth

in the dependency graph is 1. Similarly, when 𝑚 = 1 and 𝑛 = 0,

the keyroots sequence are {𝑘𝑥0, 𝑘𝑥1} and {𝑘𝑦0}. As the subtree 𝑘𝑥1
¯

contains the subtree 𝑘𝑥0
¯

in �̄� , the Table(𝑘𝑥1
¯ , 𝑘𝑦0

¯ ) depends on the

data in Table(𝑘𝑥0
¯ , 𝑘𝑦0

¯ ) as well.
Table_Depth(𝑘𝑥0

¯ , 𝑘𝑦1
¯
) = 1 (5)

Table_Depth(𝑘𝑥1
¯ , 𝑘𝑦0

¯
) = 1 (6)

Thus the statement is true for the base case. Then, in the intro-

duction procedure, we assume the formula below is true.

Table_Depth(𝑘𝑥𝑚−1
¯ , 𝑘𝑦𝑛−1

¯
) = (𝑚 − 1) + (𝑛 − 1) (7)

In 𝑘𝑟𝑋 , node 𝑘𝑥𝑚 is higher than 𝑘𝑥𝑚−1 by 1 which reveals that

in the input tree �̄� , the subtree 𝑘𝑥𝑚−1
¯

is contained by 𝑘𝑥𝑚¯ . As a

result, there should be an edge from the Table(𝑘𝑥𝑚¯ , 𝑘𝑦𝑛−1
¯ ) to the

Table(𝑘𝑥𝑚−1
¯ , 𝑘𝑦𝑛−1

¯ ) because the former depends on the results

of latter. The depth of Table(𝑘𝑥𝑚¯ , 𝑘𝑦𝑛−1
¯ ) in the graph should be

the depth of Table(𝑘𝑥𝑚−1
¯ , 𝑘𝑦𝑛−1

¯ ) plus 1. Similarly, the depth of

Table(𝑘𝑥𝑚−1
¯ , 𝑘𝑦𝑛¯ ) also equals that of Table(𝑘𝑥𝑚−1

¯ , 𝑘𝑦𝑛−1
¯ ) plus 1.

Table_Depth(𝑘𝑥𝑚¯ , 𝑘𝑦𝑛−1
¯

) = (𝑚 − 1) + (𝑛 − 1) + 1 =𝑚 + 𝑛 − 1 (8)

Table_Depth(𝑘𝑥𝑚−1
¯ , 𝑘𝑦𝑛¯ ) = (𝑚 − 1) + (𝑛 − 1) + 1 =𝑚 + 𝑛 − 1 (9)

To figure out the depth of Table(𝑘𝑥𝑚¯ , 𝑘𝑦𝑛¯ ), it is easy to notice

that the subtree 𝑘𝑥𝑚¯ includes the subtree 𝑘𝑥𝑚−1
¯

and the subtree

𝑘𝑦𝑛¯ contains the subtree 𝑘𝑦𝑛−1
¯

. Consequently, the Table(𝑘𝑥𝑚¯ , 𝑘𝑦𝑛¯ )
depends on both Table(𝑘𝑥𝑚¯ , 𝑘𝑦𝑛−1

¯ ) and Table(𝑘𝑥𝑚−1
¯ , 𝑘𝑦𝑛¯ ). The

depth of Table(𝑘𝑥𝑚¯ , 𝑘𝑦𝑛¯ ) should be higher than their depths by 1.

Hence, the final depth is:

Table_Depth(𝑘𝑥𝑚¯ , 𝑘𝑦𝑛¯ ) =𝑚 + 𝑛 − 1 + 1 =𝑚 + 𝑛 (10)

Formula (10) is the same as Formula (3). Both the base case and

inductive cases have been successfully proven. Thus, Theorem 1

holds true for all natural numbers for𝑚 and 𝑛.

□

According to Theorem 1, it means that the depth of Table(𝑥�̄� , 𝑦 �̄� )
in the dependency graph, is equivalent to the sum of the height of

node 𝑥𝑖 in 𝑘𝑟𝑋 and the height of the node 𝑦 𝑗 in 𝑘𝑟𝑌 . In Figure 10,

the height of 𝑥2 in 𝑘𝑟𝑋 is 0 and the height of 𝑦1 is 0. Therefore, the

depth of Table(𝑥2̄, 𝑦1̄) is 0. Similarly, both depths of Table(𝑥2̄, 𝑦0̄)
and Table(𝑥0̄, 𝑦1̄) are: 0 + 1 = 1, and the depth of Table(𝑥0̄, 𝑦0̄) is 2.
The results are exactly the same as the depth of these tables in the

dependency graph in Figure 8.

5.3 The Preprocessing Algorithm
In the table dependency graph, tables that have identical depths

are independent with each other, which provides an opportunity to

perform parallel processing. Therefore, we propose an algorithm

which can efficiently determine the depth of tables in the depen-

dency graph without building the entire graph by using knowledge

from Section 5.2. The detailed algorithm is shown in Algorithm 1.
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Algorithm 1 Dependency preprocessing: computes depths of all tables

Input: Two input trees �̄� and �̄�

Input: Two keyroots array 𝑘𝑟�̄� and 𝑘𝑟�̄� ⊲ All keyroots of �̄� and �̄�

Output: Heights of all keyroots in two keyroot trees (𝑘ℎ�̄� and 𝑘ℎ�̄� )

Output: Depths of all tables (𝑡𝑑)
1: procedure Table-Depth
2: 𝑘ℎ�̄� ← Keyroot-Height(𝑘𝑟�̄� )
3: 𝑘ℎ�̄� ← Keyroot-Height(𝑘𝑟�̄� )
4: for 𝑘 ← 𝑘𝑟�̄� .𝑠𝑖𝑧𝑒 ( ) downto 1 do
5: for 𝑙 ← 𝑘𝑟�̄� .𝑠𝑖𝑧𝑒 ( ) downto 1 do
6: ⊲ depth of table is the sum of heights of two keyroots

7: 𝑡𝑑 [𝑘 ] [𝑙 ] ← 𝑘ℎ�̄� [𝑘 ] + 𝑘ℎ�̄� [𝑙 ]
8: end for
9: end for
10: end procedure
11:

12: procedure Keyroot-Height
13: for 𝑖 ← 𝑘𝑟 .𝑠𝑖𝑧𝑒 ( ) downto 1 do
14: if 𝑘𝑟 (𝑖 ) is a leaf node ∨ 𝑘𝑟 (𝑖 ) has only one non-keyroot child then
15: ⊲ 𝑘𝑟 (𝑖 ) is a leaf node in the keyroot tree

16: 𝑘ℎ[𝑖 ] ← 0

17: else
18: for 𝑗 ← 𝑘𝑟 .𝑠𝑖𝑧𝑒 ( ) downto 𝑖 do
19: if 𝑘𝑟 ( 𝑗 )¯ ⊆ 𝑘𝑟 (𝑖 )¯ then
20: ⊲ subtree 𝑘𝑟 (𝑖 )¯

includes subtree 𝑘𝑟 ( 𝑗 )¯

21: 𝑘ℎ[𝑖 ] ←𝑚𝑎𝑥 (𝑘ℎ[𝑖 ], 𝑘ℎ[ 𝑗 ] + 1)
22: end if
23: end for
24: end if
25: end for
26: end procedure

As previously mentioned, the depth of the table is equal to the

sum of the heights of two keyroots in the corresponding keyroot

tree. The Algorithm 1 consists of two main steps. In the first step,

the heights of all keyroots in the keyroot tree are calculated. After

computing the heights of all keyroots for tree �̄� and 𝑌 , the depth

of table that computes the distance between any two subtrees can

be directly computed by the addition of two heights.

The running time complexity of our preprocessing algorithm is

𝑂 (𝑛2), considering that the number of nodes for each two input

trees is 𝑛. In the step of computing heights, it iterates over all

keyroots and checks whether the keyroots with larger indices are

included in the subtree rooted at a particular keyroot. Since the

preorder manner is applied, only keyroots with larger indices are

possible to be contained. The complexity of this procedure is𝑂 (𝑛2).
In the step of calculating table depths, the algorithm traverses all

keyroots in the two input trees and performs an addition. Thus, the

running time complexity of this step is also 𝑂 (𝑛2).
Compared to the cubic-level complexity of TED algorithms, this

preprocessing algorithm is efficient and can directly compute the

depths of all tables without constructing a complete dependency

graph. It provides a clear guide for the parallelization of the basic

TED algorithm and a series of later optimized solutions.

6 DYNAMIC PARALLEL STRATEGIES
6.1 Execution Patterns in Processing
By employing the preprocessing algorithm, we can rapidly calculate

the depths of all tables in the table dependency graph. Subsequently,

tables in the same depth can be processed in parallel. This method

ensures a systematic and parallelized processing of tables in the TED

algorithm, removing the need to analyze the complex relationships

between different tables.

Parallel computing starts with all tables that have a depth of 0.

We utilize a task list to store these tables, and the processors fetch

tasks from this list for computation. After all tables at the current

depth have been computed, it proceeds to the next depth level and

calculates all tables at that depth concurrently. The computation

finishes once the last table at the largest depth (𝑑𝑚𝑎𝑥 ) is calculated.

Yet, the results obtained by only using this simple framework are

far from being satisfactory. We implemented this parallel solution

on GPU in a straightforward manner, where each thread is assigned

to compute one table and threads that handle tables with identical

depths run concurrently. In a small test case involving two 200-node

trees, the basic sequential algorithm took 15.61 milliseconds while

this naive parallel version on GPU required 13.78 milliseconds.

The primary performance bottleneck in this naive implementa-

tion arises from the severe load imbalance during parallel compu-

tation. Processors calculating small tables are underutilized, while

those dealing with large tables are overloaded. This imbalance re-

sults in substantial idle time and wastage of valuable computing

resources. Figure 11 presents the size distribution of all tables within

each depth for this test case. Additionally, the last plot illustrates

both the standard deviation of all table sizes and the difference

between the largest and smallest size at each depth in the test case.

Figure 11: Variations of table sizes by depth in the test case

Three distinct parallel stages can be apparently identified based

on the variation in table sizes across all depths. The first stage is the

embarrassing processing, where tables at small depths have fairly

balanced size and each table can be calculated by a single processing

unit. In the second stage, as depth increases, table sizes become

significantly large, and the standard deviation also increases, in-

tensifying the issue of workload imbalance, which is termed imbal-

anced processing. Finally, at the maximum depth, as there is only

one but the biggest table (which depends on all other tables), all

parallel resources thus should be dedicated to compute it, which is

the focused processing stage. Therefore, a dynamic parallel strat-

egy should be built to resolve these complicated workload changes

during parallel TED computation.

6.2 Dynamic Parallel Strategy
6.2.1 Different Approaches. As discussed above, tables with differ-

ent sizes should be processed using different parallel approaches.
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This guarantees that all processing units are utilized efficiently, and

the load imbalanced issue can be effectively addressed.

: task of computing one table 

...... ... Task List

Small Table Medium Table Large Table Huge Table

Thread Warp Block Multi-Blocks

1 thread / table

...

    threads / table

...

   threads / table

...

   threads / table

   : warp size
   : block size
   : number of blocks used in Huge-table approach

Figure 12: Dynamic parallel strategy on GPU

Figure 12 illustrates the dynamic strategy we designed on GPU

that are utilized for computing DP tables in the TED problem. All

tables with a specified depth 𝑖 are in a task list and will be catego-

rized into four size types: small, medium, large, and huge, based

on their sizes. Different approaches (kernel functions on GPU) are

subsequently applied to each category.

The first approach is single-thread computing for small tables,

where all units in the table are computed by a single thread. The

second approach employs the single-warp computing for medium-

sized tables. In this method, each thread in the warp computes

entries in a single row, and all units in the same wave are processed

simultaneously, following the wavefront parallel pattern. After

each wave’s computation is completed, all threads within the warp

synchronize. When dealing with tables containing numerous rows,

the warp starts from the bottom and iterates upwards to the top.

The third method is termed single-block computing, which fol-

lows a similar execution pattern to previous methods, but the differ-

ence is that this method requires block-level synchronization at the

end of each wave. The last one is multi-blocks computing, where

threads from multiple 𝑘 blocks collaborate to process a single table

and inter-block synchronizations are performed.

6.2.2 Approach Switch. The size of table serves as a metric that de-

termines the optimal approach for table computing among the four

parallel methods mentioned above. The approach switch pattern is

illustrated in Figure 13. Tables that have small entries can be directly

processed by using single-thread approach, where each table is cal-

culated by one single thread. As the table size grows to a medium

scale, it is more efficient to use the single-warp method. Therefore,

there exists a threshold 𝜃1 in table size that can be utilized to choose

from these two methods.

Table Size

single-thread single-warp single-block multi-blocksApproach

Figure 13: Parallel approach changes with table size

Similarly, for tables with large units, the single-block approach

should be used to exploit more concurrent processing units. The

threshold 𝜃2 represents this change point. When the table grows to

huge-level size, the multi-blocks computing should be employed

although it introduces the overhead of synchronizations between

multiple blocks. The threshold here is marked as 𝜃3. The values for

these three thresholds can be determined using the mathematical

model described in Section 6.3.

6.3 Mathematics Model for Approach Switch
As previously mentioned, X-TED relies on three crucial thresh-

olds to determine the approaches applied in DP table computing.

Hence, accurately finding the values of these thresholds is of utmost

importance as it directly impacts our parallel framework’s perfor-

mance. We introduce a mathematical model that provides guidance

in identifying the ideal values for these thresholds, ensuring that

X-TED achieves optimal performance.

Assume the computing time for each unit in a table is identical

and denoted as 𝑡𝑢 , the warp size is𝑤 , the block size is 𝑏, the number

of blocks used in the multi-blocks method is 𝑘 . For a table with 𝑛

rows and 𝑛 columns, its has (2n-1) waves in total, and the computa-

tion time using the four methods can be calculated as follows. The

inter-block synchronization for 𝑘 blocks is marked as 𝑠𝑦𝑛𝑐𝑚 (𝑘).
𝑇𝑡ℎ𝑟𝑒𝑎𝑑 = 𝑛2 · 𝑡𝑢 (11)

𝑇𝑤𝑎𝑟𝑝 =

{︄
(2𝑛 − 1) · (𝑡𝑢 + 𝑠𝑦𝑛𝑐𝑤𝑎𝑟𝑝 ) 𝑛 ≤ 𝑤⌈︁
𝑛
𝑤

⌉︁
· (𝑤 + 𝑛 − 1) · (𝑡𝑢 + 𝑠𝑦𝑛𝑐𝑤𝑎𝑟𝑝 ) 𝑛 > 𝑤

(12)

𝑇𝑏𝑙𝑜𝑐𝑘 =

{︄
(2𝑛 − 1) · (𝑡𝑢 + 𝑠𝑦𝑛𝑐𝑏𝑙𝑜𝑐𝑘 ) 𝑛 ≤ 𝑏⌈︁
𝑛
𝑏

⌉︁
· (𝑏 + 𝑛 − 1) · (𝑡𝑢 + 𝑠𝑦𝑛𝑐𝑏𝑙𝑜𝑐𝑘 ) 𝑛 > 𝑏

(13)

𝑇𝑚𝑏𝑙𝑜𝑐𝑘𝑠 =

{︄
(2𝑛 − 1) (𝑡𝑢 + 𝑠𝑦𝑛𝑐𝑚 (𝑘)) 𝑛 ≤ 𝑘 · 𝑏⌈︁
𝑛
𝑘 ·𝑏

⌉︁
(𝑘 · 𝑏 + 𝑛 − 1) (𝑡𝑢 + 𝑠𝑦𝑛𝑐𝑚 (𝑘)) 𝑛 > 𝑘 · 𝑏

(14)

As the table size changes, these four formulas generate four dis-

tinct curves, representing the time taken for each parallel approach.

The threshold 𝜃1, 𝜃2, and 𝜃3 represent the intersection points be-

tween Formula (11) and Formula (12), Formula (12) and Formula

(13), Formula (13) and Formula (14), respectively.

From formulas above, four machine-dependent variables (𝑡𝑢𝑛𝑖𝑡 ,

𝑠𝑦𝑛𝑐𝑤𝑎𝑟𝑝 , 𝑠𝑦𝑛𝑐𝑏𝑙𝑜𝑐𝑘 , and 𝑠𝑦𝑛𝑐𝑚 (𝑘)) determine the curves and their

intersection points. For a given GPU, once the values of these four

variables are obtained, calculating the three intersection points and

determining the thresholds becomes straightforward. These thresh-

olds serve as criteria to dynamically select different approaches

within X-TED and can be directly applied in all types of substantial

TED computations running on this machine, which facilitates the

efficient utilization of the GPU resources.

7 PERFORMANCE EVALUATION
7.1 Evaluation Platform Settings
7.1.1 Baseline. We have implemented the basic TED algorithm

[74] and the state-of-the-art and optimized TED algorithm, AP-TED

[47], as sequential baselines of CPU-based algorithms. To fairly

compare the parallel performance, we have also deployed another

online CPU solution called Multi-Core TED (MC-TED) [3], as it is

the state-of-the-art parallel TED implementation. Additionally, we
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implemented a highly optimized parallel CPU-version of X-TED to

compare the performance of X-TED on the GPU.

7.1.2 Experimental Environment. All implementations are evalu-

ated on a workstation with Intel Core i9-12900 CPU, 64 GB memory,

and NVIDIA RTX 3090 (24GB). Both MC-TED and the parallel-CPU

version of X-TED use 8 cores in evaluation. We also deploy X-

TED on two cloud-available GPUs: NVIDIA A100-SXM4 (40 GB)

and H100-PCIe (80 GB). All code is compiled using𝑂3 optimizations.

The cmake version is 3.25.3 and CUDA is 12.2.

7.1.3 Datasets. We evaluated all implementations on real-world

datasets from four distinct domains, including various types of

trees. The characteristics of the trees in these datasets are detailed

in Table 1. "Avg. Nodes" indicates the average number of nodes per

tree for each dataset, while "Max. Nodes" refers to the node count

of the largest tree in each dataset.

Swissport [11] contains XML files for protein sequences and de-

scriptions, which is one of the most widely used protein databases

around the world, consisting of large-sized and flat trees. Python

[50] dataset has recently become popular for training deep learning

models in AI programming [26, 32, 63, 69], which contains large-

sized and high JSON parse trees of python programs. DBLP dataset

[14] comprises millions of small-sized XML bibliographic records

from the dblp computer science bibliography database. The last

dataset is the Bolzano street dataset [4], which includes street ad-

dresses of Bolzano city in medium-sized hierarchical tree structures.

Table 1: Characteristics of trees in each dataset

Dataset Max. Depth Avg. Depth Avg. Nodes Max. Nodes
Swissport 9 7.01 988.36 7241

Python 156 13.11 927.41 8516

DBLP 7 3.16 26.05 1186

Bolzano 4 3.82 178.71 2105

7.1.4 Evaluation Method. In each dataset, we select trees at appro-

priate intervals, using rational size increments, where the size of

trees ranges from small (100 nodes) to large (1000 nodes). For a data

point corresponding to tree size 𝑖 , we randomly choose 5 pairs of

trees with node counts near 𝑖 , ensuring the average node count for

trees in each pair is 𝑖 . The computation time for calculating TED

between these tree pairs is measured and averaged in 20 runs.

7.2 Overall Performance
The overall performance of all five implementations is presented

in Figure 14. The performance of our X-TED framework on GPU

far surpasses all other solutions. As the tree size increases, the

computation times for both the basic TED algorithm and AP-TED,

increase drastically, due to the intrinsic high-complexity of the

TED algorithms. For the MC-TED implementation, although it em-

ploys parallel techniques to accelerate computing, the performance

is far from satisfactory. In some cases of DBLP dataset, its pro-

cessing time is even worse than that of AP-TED. This is mainly

because in MC-TED, the computing order of tables strictly follows

the table dependency graph, resulting in high synchronization over-

head. And the severe load imbalanced problem among tables is not

paid attention and remains unaddressed. Compared to the AP-TED

algorithm, our CPU-version of X-TED can achieve an impressive

speedup of up to 6.5x. Further, in contrast of the performance of this

CPU-version X-TED , the X-TED implementation on GPU achieves

even more remarkable speedup of up to 10.9x in computation time.

The X-TED framework on GPU outperforms the state-of-the-art

sequential algorithm (AP-TED) by an average speedup of 42x.

200 400 600 800 1000
Tree Size

0

100

200

300

Co
m

pu
ta

tio
n 

Ti
m

e 
(m

s)

Swissport Dataset
Basic TED
AP-TED
MC-TED
X-TED on CPU
X-TED on GPU (RTX 3090)

200 400 600 800 1000
Tree Size

0

250

500

750

1000

1250

Co
m

pu
ta

tio
n 

Ti
m

e 
(m

s)

Python Dataset
Basic TED
AP-TED
MC-TED
X-TED on CPU
X-TED on GPU (RTX 3090)

200 400 600 800 1000
Tree Size

0

50

100

150

200

Co
m

pu
ta

tio
n 

Ti
m

e 
(m

s)

DBLP Dataset
Basic TED
AP-TED
MC-TED
X-TED on CPU
X-TED on GPU (RTX 3090)

200 400 600 800 1000
Tree Size

0

100

200

300

Co
m

pu
ta

tio
n 

Ti
m

e 
(m

s)

Bolzano Dataset
Basic TED
AP-TED
MC-TED
X-TED on CPU
X-TED on GPU (RTX 3090)

Figure 14: Computation time for TED between trees with
different sizes on 4 datasets

7.3 High Speedup and Efficient Preprocessing
Figure 15 presents a more detailed comparison of all five implemen-

tations on tree pairs with 1000 nodes. For the X-TED running on

CPU, its speedup compared to the basic TED algorithm ranges from

5.48x to 6.3x. Moreover, when compared to AP-TED, it achieves an

average speedup of 4.8x. In contrast to another multi-core imple-

mentation, MC-TED, it achieves an average speedup of 3.8x. This

demonstrates the advantage and effectiveness of using the prepro-

cessing algorithm to resolve the inter-table dependency issue and

results in enhanced parallelism.

When compared with the basic TED algorithm, the CPU imple-

mentation of X-TED exhibits a higher speedup on DBLP dataset

compared to Python dataset. This is because trees in Python dataset

have greater depth than those in DBLP dataset. The hierarchy of

trees directly influences the depth of tables in the TED computation.

Shallower trees result in less deep tables, allowing most DP tables

to reside in the initial depth levels, facilitating efficient parallel

computation for multi-core CPUs.

For the X-TED framework on GPU, its speedup impressively

achieves up to 60x speedup compared to the basic TED algorithm

and up to 44x speedup compared to the AP-TED. Also, it surpasses

the performance of MC-TED by an average speedup of 31x. In

addition, it outperforms the CPU-version X-TED by a speedup of up

to 11x and an average of 8.8x, because of the benefits of employing

flexible dynamic parallel strategies in GPU implementation which

addressed the load imbalanced problem effectively.

The time consumed by the our preprocessing algorithm is also

included in the measurement. The preprocessing time for both

CPU-version X-TED and GPU-version X-TED is identical as it is
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Figure 15: Performance comparison (in log scale) for 1000-
node trees within 4 datasets

executed by CPU. For the X-TED framework on GPU, the prepro-

cessing time ranges from 0.13 to 0.21 microseconds, constituting

approximately averaged 2% of the total computation time. This

indicates the efficiency of the preprocessing algorithm as it has

relatively low complexity compared to the TED algorithms.

7.4 Effectiveness and Necessity
To demonstrate the effectiveness of our design, we compared the

performance of three versions: (1) the basic TED algorithm, (2)

the TED algorithm with preprocessing and an naive parallel im-

plementation, and (3) the TED algorithm with both preprocessing

and dynamic parallel implementation. We executed all test trees

ranging from 100 nodes to 1000 nodes in each dataset and recorded

their total running time. The results are presented in Figure 16.

It is manifest that using the preprocessing algorithm to exploit

the parallelism of table computation has improved the total running

time. However, it fell short of achieving a satisfactory speedup, with

a maximum speedup of only 1.76x. This is directly attributed to

the serious load imbalanced problem we mentioned before. After

employing the dynamic parallel strategy, the speedup has been

impressively enhanced, reaching up to 30x compared to the version

with only preprocessing and naive parallel method.
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Figure 16: Effectiveness of the preprocessing algorithm and
dynamic parallel strategy

In the dynamic parallel strategy design for GPU, four parallel

approaches have been applied and their effectiveness has been as-

sessed in Figure 17. It is evident that the performance is undesirable

when only using the single-thread approach, as some threads end

upworking on a large table while some remain idle after completing
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Figure 17: Effectiveness of four parallel approaches in the
dynamic parallel strategy

few units. When the single-warp approach is introduced, it achieves

a speedup of 9.3x compared to the first version. Based on this, a

further speedup of 3.85x has been obtained by adding the single-

block method because it can compute large tables more efficiently

than the single-warp. Finally, the multi-block method improves the

running time by 15%, which achieves the best performance.

The decrease in speedup comes from the following reason. The

single-block and multi-block approaches are well-suited for large

and huge tables, but these tables are in the minority and therefore

the speedup is not so notable. Although there are a small number

of such large tables, the single-thread and single-warp methods

cannot be used as each thread will be overloaded. Therefore, it

is necessary to incorporate all four approaches into the dynamic

parallel strategy to achieve optimal workload allocation on GPUs.

7.5 Memory Usage
In Section 3.2 and 4.1, it is revealed that one significant limitation of

the existing parallel solution in [74] is that it requires a substantial

amount of memory space. In contrast, X-TED has resolved inter-

table data dependencies, thus reducing the memory requirement to

𝑂 (𝑛2). We implement the existing parallel TED algorithm on GPU,

and compare memory usage with that of X-TED in Figure 18.
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Figure 18: Memory usage comparison on GPU between the
parallel solution in [74] and X-TED across two datasets

The memory usage for computing the TED between pairs of

trees with 100, 200, 300, and 400 nodes respectively, is recorded

using Swissport dataset and Python dataset. As the input tree size

increases, X-TED achieves up to 11.6x memory space saving com-

pared to the existing parallel algorithm. Furthermore, when the

input trees have more than 500 nodes, the memory space required
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by the existing parallel solution exceeds the capacity of RTX 3090,

making it infeasible to compute edit distances between larger trees.

7.6 Scalability Evaluation
To further evaluate the scalability of X-TED, we deploy it on cloud

machines from Lambda company [31], and test its performance on

two other types of NVIDIA GPUs: A100-SXM4 (40 GB) and H100-

PCIe (80 GB). In the experiment, we choose pairs of extra-large

trees, with node counts ranging from 1000 to 6000, from Python

dataset. Additionally, we generate random recursive trees [12] with

a range of 1000 to 9000 nodes as synthetic trees, and evaluate X-TED

on this Synthetic dataset as well, as shown in Figure 19.
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Figure 19: Computation time between pairs of extra-large
trees for X-TED on different GPUs

Compared to RTX 3090, the speedup of A100 ranges from 1.42x

to 1.94x. Moreover, H100 outperforms RTX 3090 by a speedup of

up to 4.32x and surpasses the performance of A100 by up to 2.23x.

The black curve in Figure 19 is the theoretical scalable performance

curve for H100. For instance, H100 consumes 5.93 milliseconds to

compute the TED between two 1000-node trees on the Synthetic

dataset. Theoretically, when the size of both input trees is dou-

bled to 2000 nodes, the computation time is expected to quadruple.

Therefore, we plot such a curve as a reference. The small discrep-

ancy between the actual curve of H100 and its theoretical scalable

curve highlights the notable scalability of X-TED.

7.7 Performance under Memory Constraints
When dealing with extra-large trees that have thousands of nodes,

the memory space needed for a single table becomes substantial.

The memory capacity of GPU directly determines the number of

such large tables that can be processed concurrently and thus limits

the processing performance of X-TED. Therefore, we test the per-

formance of X-TED on H100 under different memory constraints.
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Figure 20: Computation time of X-TED on H100 under differ-
ent memory constraints

The three lines in Figure 20 represent the computation time of

X-TED for pairs of synthetic trees with 6000, 5000, and 4000 nodes,

respectively. When the memory constraint on H100 is increased

from 20 GB to 40 GB, the TED computation for trees with 6000

nodes achieves a speedup of 1.54x. Further, increasing the memory

from 40 GB to 80 GB results in an additional speedup of 1.43x. The

speedup gained from expanding memory space diminishes because

once the memory on GPU is sufficient to store all tables at a given

depth, further increasing the memory will not result in more tables

being processed in parallel, and therefore will not contribute to

further acceleration.

8 RELATEDWORK
The first TED algorithm with complexity of 𝑂 (𝑛6) is proposed by

Tai [59]. After [74], several optimized algorithms [15, 30, 46–48, 53]

have improved the worst-case complexity to 𝑂 (𝑛3), which is the

theoretical lower bound [19]. Some recent work [13, 42, 54] aimed

to break the cubic complexity on specific constrains.

There has been scant research [73, 74] on developing parallel

TED algorithms. In 2015, Shukla et al. [55] made an attempt. How-

ever, only tables that record the distances between lowest subtrees

were computed in parallel. All other substantial tables were pro-

cessed sequentially on CPU. The imbalanced workload problem

on GPU was ignored as well. Another existing parallel work is an

online project, MC-TED [3], that we tested in the evaluation.

Many prior studies e.g. [1, 5, 21, 38, 40, 61] have explored par-

allel techniques for general DP problems. Primarily, most related

research e.g. [17, 25, 36, 57, 62, 66] focused on optimizing techniques

under the wavefront parallel framework. Some studies [16, 35, 41,

60] aimed at enhancing the data locality, and some concentrated on

refining synchronization mechanisms [6, 33, 39, 58, 64, 67, 68, 71].

9 CONCLUSION
We have developed X-TED, a high-performance massive parallel

computation framework for TED computation and its implemen-

tation on GPU. We have identified two critical issues of TED: the

complex and extensive data dependencies, and highly imbalanced

workloads during parallel processing. These two issues have not

been fundamentally addressed since the basic TED algorithm was

published in 1989. Our preprocessing algorithm can quickly deter-

mine data dependency relationships among tables before parallel

processing. In addition, we have applied effective parallel meth-

ods to compute tables with different sizes, optimizing resource

allocation and effectively resolving the imbalanced workload is-

sue. The performance result of X-TED remarkably outperforms

all existing TED solutions. The superiority of X-TED performance

shows its high effectiveness of massive parallel processing for TED.

We believe the X-TED framework, along with the accompanying

open-source software, fundamentally address the structural issues

of parallel processing for TED.
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