
Real-time Insertion Operator for Shared Mobility on
Time-Dependent Road Networks

Zengyang Gong

Hong Kong University of Science and

Technology

zgongae@cse.ust.hk

Yuxiang Zeng

School of Computer Science and

Engineering, Beihang University

yxzeng@buaa.edu.cn

Lei Chen

Hong Kong University of Science and

Technology (Guangzhou)

Hong Kong University of Science and

Technology

leichen@cse.ust.hk

ABSTRACT
One of the most important challenges in shared mobility services

(e.g., ride-sharing and parcel delivery) is planning routes for work-

ers by considering real road conditions. To tackle this challenge,

the “insertion operator”, which computes the optimal route for the

worker to serve (i.e., insert) the newly appeared delivery request,

has been acted as the fundamental operation in existing solutions.

However, existing works implicitly assume a static road network,

hence are hard to fulfill the real-world scenario, where travel time

between two locations is not constant at different times of a day. By

contrast, we focus on the insertion operator over time-dependent

road networks that capture the periodic pattern of road conditions.

We also show that the time complexity of existing solutions would

degrade into cubic time and hence such solutions can no longer

satisfy the real-time requirement under this real-world setting. To

satisfy the need for real-time computation, we propose a data sum-

mary to model the time-dependent travel time functions between

pairs of vertices in the route. Based on the data summary, we design

an efficient solution that can enumerate the best insertion position

in linear time while satisfying complex spatiotemporal constraints.

Finally, extensive experiments are conducted on real datasets from

several applications of shared mobility. The results show that our

solution is up to 44.5× faster than the state-of-the-art solution.

PVLDB Reference Format:
Zengyang Gong, Yuxiang Zeng, and Lei Chen. Real-time Insertion

Operator for Shared Mobility on Time-Dependent Road Networks. PVLDB,

17(7): 1669 - 1682, 2024.

doi:10.14778/3654621.3654633

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/gzyhkust/Insertion-Operator.git.

1 INTRODUCTION
Shared mobility services [34], such as ride-sharing and food deliv-

ery, allow a worker to provide the shared ride for multiple requests

with similar traveling schedules. For example, in a ride-sharing

platform (e.g., DiDi Chuxing [2]) or a food delivery platform (e.g.,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.

doi:10.14778/3654621.3654633

(a) Real-world road networks.

d1

o1

d2

o2

o3

d3

(b) Insert request 𝑟3.

Figure 1: Insert a new request on real-world road networks.

(a) All possible position pairs.

o1 d1o2 d2
Position 1 Position 3

o3 d3

(b) Insertion pair (1, 3) .

Figure 2: Insertion operator.

Meituan [4]), a worker (e.g., a driver or courier) can carry more

than one passenger or food parcel that have similar origins and

destinations. Finding a proper and practical route in real-time for

a worker to serve a newly appeared request is one of the most

significant challenges in these platforms, especially during peak

hours when the number of requests is large-scale.

In the past years, planning routes in shared mobility has been

widely studied [8, 12, 13, 19, 22, 23, 26, 32–34, 36, 41, 42, 47–49].

Most of these solutions are built upon a frequently-used operator

called insertion. This operator aims to find the optimal route with

the minimum increased travel time to serve (or attempt to serve)

a newly appeared request for a worker on the real-world road

network. The route is identified immediately when the request

appears on the platform. In real industry, more than one worker is

on the way to serve the new request, and the one, who takes the

minimum increased travel time to deliver it before the deadline,

will be allocated to the request [28, 41]. When no worker is close

enough, the request may need to wait for some time until being

served or canceled. Prior studies [35, 39] have demonstrated that

the insertion operator with low time complexity (e.g., linear time)

can reduce the efficiency bottleneck by a large margin.

1669

https://doi.org/10.14778/3654621.3654633
https://github.com/gzyhkust/Insertion-Operator.git
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3654621.3654633
https://www.acm.org/publications/policies/artifact-review-and-badging-current


o1 o2 d2o3

(a) Static road networks case.

o1 o2 d2o3

(b) Real road networks case.

Figure 3: Calculate the new arrival time at 𝑑2.

Motivation. Despite extensive research on optimizing the inser-

tion operator, existing solutions still remain a challenging obstacle

to be deployed in real-world applications, i.e., a common and im-

plicit assumption on the static road network. In other words, these

solutions all fail to consider the dynamic nature of road conditions

that are affected by weather, traffic congestion, etc. Unfortunately,

when considering this real-world factor, we find that their solutions

will either produce infeasible routes or significantly increase the

time complexity. Here, we take an example to explain this finding

as follows.

Motivation Example. Fig. 1a shows an example that the shortest

travel time between any two locations is not constant on a real-

world road network. For instance, Google Map [3] shows the travel

time of a single route at different times in the morning, i.e., 12
minutes at 8:10 am and 14 minutes at 8:20 am. This delay is due

to the peak hours of the daily traffic. In fact, the travel time of

this route periodically varies between 12 and 22 minutes every

day. Thus, planning a practical route in shared mobility needs to

consider the dynamic nature of road networks.

Due to this reason, it is non-trivial to study the insertion operator

over time-dependent road networks that are commonly used to

model real-world city networks [9, 37, 38]. Fig. 1b shows an example

of inserting a new request on a real-world road network. Suppose

a taxi driver is traveling from the location 𝑜1 to the location 𝑑1
to serve two passengers, where 𝑜1-𝑜2 are the passengers’ origins

and 𝑑1-𝑑2 are the passengers’ destinations. At some time, the third

passenger 𝑟3 submits his ride-sharing request to the platform, and

the insertion operation is used to compute the minimum increased

travel time for this worker to additionally serve the newly appeared

request with the origin 𝑜3 and the destination 𝑑3.

The insertion operation considers 𝑂 (𝑛2) pairs of positions to
insert the new request’s origin and destination into the current

route, where 𝑛 is the number of locations in the current route. The

value of 𝑛 can be more than 30 in real-world applications accord-

ing to a recent statistic report [7]. One possible pair (1, 3), which
inserts 𝑜3 between 𝑜1 and 𝑜2 and 𝑑3 between 𝑑2 and 𝑑1, causes

two detours marked by dashed arrows, is as shown in Fig. 2b. For

this case, existing solutions calculate the increased travel time by

adding up the travel time of these detours. Although such an ad-
ditivity property can be established in a static road network, it no
longer holds in a real-world road network. For instance, after in-
serting 𝑜3 at position 1, directly adding up the delay time (i.e.,
𝑑𝑖𝑠 (𝑜1, 𝑜3) + 𝑑𝑖𝑠 (𝑜3, 𝑜2) at 8:10 am, 𝑑𝑖𝑠 () is the static shortest travel
time) of detours to get the new arrival time at 𝑑2, while sequentially

querying the delay time at each location based on the new route is

𝑞𝑢𝑒𝑟𝑦 (𝑜2, 𝑑2, 𝑞𝑢𝑒𝑟𝑦 (𝑜3, 𝑜2, (𝑞𝑢𝑒𝑟𝑦 (𝑜1, 𝑜3, 𝑎𝑟𝑟 [𝑜1])))) (the function

Table 1: Summary of major notations.
Notation Description

𝐺 (𝑉 , 𝐸, 𝐹 ) time-dependent road network

𝑓𝑖,𝑗 (𝑡 ) 𝑓𝑖,𝑗 ∈ 𝐹 weight function of edge 𝑒𝑖,𝑗 ;

𝑓 ′𝑥,𝑦 (𝑡 ) weight function of the route from 𝑣𝑥 to 𝑣𝑦

𝑛 number of locations a worker visits to serve assigned requests

𝑞𝑢𝑒𝑟𝑦 (𝑢, 𝑣, 𝑡 ) shortest arrival time query over𝐺 (𝑉 , 𝐸, 𝐹 )
𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑢, 𝑣, 𝑡 ) compound travel function over route 𝑢 to 𝑣

𝑣𝑤 , 𝑐𝑤 location and capacity of worker 𝑤

𝑜𝑟 , 𝑑𝑟 origin and destination of request 𝑟

𝑝𝑖𝑘 (𝑜𝑟 ), 𝑑𝑒𝑙 (𝑑𝑟 ) pickup time and delivery time of request 𝑟

𝑎𝑟𝑟 [𝑣𝑘 ] arrival time at 𝑣𝑘 along the route of worker

𝑛𝑢𝑚[𝑣𝑘 ] number of picked request at 𝑣𝑘 along the route of worker

𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑘 ] the latest arrival time at 𝑣𝑘 to keep feasibility of the route

𝑜𝑝𝑡𝑖 [𝑣𝑘 ] the optimal 𝑖 value when insert 𝑑𝑟 before 𝑣𝑘

𝑞𝑢𝑒𝑟𝑦 () is the shortest arrival time query over real road networks,

see Fig. 3 for details). Thus, the additivity property leads to an inac-

curate travel time, which could delay the passenger’s original trip

and significantly hurt user experiences. Similar counter-examples

can be easily found in real life [41, 42].

Our Solution Summary.Motivated by this limitation, we study

the insertion operator for route planning in shared mobility on

time-dependent road networks that are commonly used to model

the dynamic nature of road conditions (Sec. 2.1 for more details). To

meet the optimality and real-time requirements, we first observe

that the key point to hinder the efficiency is how to efficiently an-

swer a spatiotemporal query, i.e., delay time query (𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 ()).
To rapidly process the query, we design a data summary called com-

pound travel functions to capture the travel time between locations

in the route. By utilizing this data structure, we propose an efficient

solution to improve the time complexity from 𝑂 (𝑛3) to 𝑂 (𝑛).
Contribution. The main contributions are listed as follows:

• We are the first to study the insertion operation for route

planning in shared mobility on time-dependent road net-

works.

• We identify that existing solutions to the insertion opera-

tions over static road networks cannot always retain the

optimal result under the setting of road networks. In our

experiments, it could delay 27% requests’ trips.

• To address this limitation, we design an efficient solution

by utilizing a novel data summary. We also prove that our

solution only takes linear time to compute the exact result,

which is no higher than that of existing work.

• Extensive experiments on real datasets from various appli-

cations demonstrate that our solution can accelerate the

insertion operation by up to 44.5× in the running time.

Roadmap. The rest of this paper is organized as follows. We first

present the problem statement in Sec. 2. Then, our method is elabo-

rated in Sec. 3 and evaluated in Sec. 4. Finally, we review the related

work in Sec. 5 and conclude in Section Sec. 6.

2 PROBLEM STATEMENT AND BASELINE
METHOD

This section introduces the basic concepts (Sec. 2.1), formal problem

definition (Sec. 2.2), and exact baseline method (Sec. 2.3). The major

notations are summarized in Table 1.

1670



2.1 Basic Concepts
Definition 1 (Time-dependent Road Network). A directed graph

G(V, E, F) is used to model the real-world road network. Here, V
is the set of vertices and each vertex 𝑣 ∈ V represents one geo-

location. E ⊆ V×V is the set of edges. Each directed edge (𝑢, 𝑣) ∈ E
is associated with a non-negative weight function 𝑓𝑢,𝑣 (𝑡) ∈ F, where
𝑡 is the departure time, and 𝑓𝑢,𝑣 (𝑡) denotes the travel time to the

vertex 𝑣 when departing from the vertex 𝑢 at time 𝑡 . Besides, for

any two vertices 𝑢, 𝑣 ∈ 𝑉 , the function 𝑞𝑢𝑒𝑟𝑦 (𝑢, 𝑣, 𝑡) denotes the
shortest arrival time to 𝑣 when departing from 𝑢 at time 𝑡 .

Following the conventions in Ref. [9, 37, 38], we adopt piecewise

linear functions (PLF) to model the weight functions in road net-

works, any continuous function of the weight edges can be approx-

imated by a set of such functions [10, 31]. Specifically, the function

𝑓𝑢,𝑣 (𝑡) associated with each directed edge (𝑢, 𝑣) ∈ E is modelled as a

set of interpolation points 𝑃 = {(𝑡1,𝑤1), (𝑡2,𝑤2), . . . , (𝑡𝑘 ,𝑤𝑘 )}, and
each point (𝑡𝑖 ,𝑤𝑖 ) denotes that it takes𝑤𝑖 unit time to travel from

𝑢 to 𝑣 at time 𝑡𝑖 . Besides, a straight line connected two successive

points (𝑡𝑖 ,𝑤𝑖 ), (𝑡𝑖+1,𝑤𝑖+1) fits the linear function in the time domain

[𝑡𝑖 , 𝑡𝑖+1). For example, if a worker departs from𝑢 at time 𝑡 ∈ [𝑡1, 𝑡2),
his travel time can be calculated as 𝑓𝑢,𝑣 (𝑡) = 𝑤1 + (𝑡 − 𝑡1) 𝑤2−𝑤1

𝑡2−𝑡1 .

Then, the weight function of (𝑢, 𝑣) can be formalized by Eq. (1).

𝑓𝑢,𝑣 (𝑡) =


𝑤1 + (𝑡 − 𝑡1) 𝑤2−𝑤1

𝑡2−𝑡1 , 𝑡1 ≤ 𝑡 < 𝑡2

𝑤2 + (𝑡 − 𝑡2) 𝑤3−𝑤2

𝑡3−𝑡2 , 𝑡2 ≤ 𝑡 < 𝑡3

· · ·
𝑤𝑘−1 + (𝑡 − 𝑡𝑘−1) 𝑤𝑘−𝑤𝑘−1

𝑡𝑘−𝑡𝑘−1 , 𝑡𝑘−1 ≤ 𝑡 ≤ 𝑡𝑘

(1)

where the time domain of the function 𝑓𝑢,𝑣 (𝑡) is [𝑡1, 𝑡𝑘 ].
Property of Time-dependent Road Networks. In the real

world, if two people move from 𝑢 to 𝑣 at different times, the one

who departs earlier usually arrives at 𝑣 no later than the other one.

This phenomenon is summarized as one important property by

existing work [9, 37, 38], i.e., the first-in-first-out (FIFO) property.
This property implies 𝑡1 + 𝑓𝑢,𝑣 (𝑡1) ≤ 𝑡2 + 𝑓𝑢,𝑣 (𝑡2) for any weight

function 𝑓𝑢,𝑣 (𝑡) ∈ 𝐹 and departure time 𝑡1 ≤ 𝑡2.

Based on Definition 1 and the conventions of existing work

[18, 21, 27, 34, 35], we present the definitions of other basic concepts,

including a request and a worker, in Definition 2 and 3.

Definition 2 (Request). A request is denoted by 𝑟 = ⟨𝑜𝑟 , 𝑑𝑟 , 𝑡𝑟 , 𝑒𝑟 , 𝑐𝑟 ⟩.
This request appears on the platform at time 𝑡𝑟 . 𝑜𝑟 ∈ 𝑉 is the re-

quest’s origin, 𝑑𝑟 ∈ 𝑉 is the destination, and 𝑒𝑟 is the deadline time.

The size 𝑐𝑟 denotes the number of passengers or parcels that need

to be carried.

In a real-world platform, a request is said to be served if it is picked
up at the origin 𝑜𝑟 by a worker with enough capacity (compared

with 𝑐𝑟 ) after the appearance time 𝑡𝑟 and delivered to the destination

𝑑𝑟 before the deadline time 𝑒𝑟 . A worker is formulated as follows.

Definition 3 (Worker). A worker is denoted by𝑤 = ⟨𝑐𝑤 ,SR , 𝑡0⟩,
where 𝑅 is the set of requests that have been allocated to this worker

but undelivered, 𝑐𝑤 is the worker’s capacity, and SR is his current

route at the time 𝑡0. Here, the route is defined as a sequence of

vertices in 𝑉 , i.e., SR = ⟨𝑣0, 𝑣1, · · · , 𝑣𝑛⟩, where 𝑣0 is his current

location, and 𝑣1, · · · , 𝑣𝑛 is either an origin or a destination of an

!!"# !! !$"#
""! #"!

… … !#…

(a) 0 < 𝑖 < 𝑗 < 𝑛 + 1

!!"# !!
""! #"!

… …

(b) 0 < 𝑖 = 𝑗 < 𝑛 + 1

!!"# !!
""! #"!

… … !$

(c) 0 < 𝑖 < 𝑗 = 𝑛 + 1

!$
""! #"!

…

(d) 𝑖 = 𝑗 = 𝑛 + 1

Figure 4: Insertion cases of all possible pairs(𝑖, 𝑗).
undelivered request in 𝑅. Besides, we use 𝑎𝑟𝑟 [𝑣𝑘 ] to denote the

arrival time at the location 𝑣𝑘 by following this route, i.e.,

𝑎𝑟𝑟 [𝑣𝑘 ] =
{
𝑡0, 𝑘 = 0

𝑞𝑢𝑒𝑟𝑦 (𝑣𝑘−1, 𝑣𝑘 , 𝑎𝑟𝑟 [𝑣𝑘−1]), 𝑘 > 0

In Definition 3, the worker’s capacity is limited to 𝑐𝑤 . For in-

stance, 𝑐𝑤 is often 3-4 in ride-sharing [16, 26, 41], while could be

80-200 in food/parcel delivery [24, 30, 39, 50]. According to the

above definition, we can easily compute the pickup time and deliv-

ery time of a request, which are denoted by 𝑝𝑖𝑘 (𝑜𝑟 ) and 𝑑𝑒𝑙 (𝑑𝑟 ),
respectively. A route is said to be feasible if all the requests assigned
to this worker are delivered before the deadline.

2.2 Problem Definition
According to the above concepts and conventional definition [35,

39] of the insertion operation, we present the formal definition of

the insertion operator for shared mobility on time-dependent road
networks (“time-dependent insertion” as short).

Definition 4 (Time-dependent Insertion). Given a worker𝑤 and

a request 𝑟+ that newly appears at time 𝑡𝑟+ , this operation finds a

new route for this worker 𝑆∗ with the minimum increased travel

time 𝑜𝑏 𝑗∗ in real-time to serve all the requests 𝑅+ (𝑖 .𝑒 ., 𝑅+ = 𝑅 ∪ 𝑟+)
while satisfying the following constraints:

• Completion Constraint. All the requests must be served.

• Order Constraint. The relative orders of vertices in 𝑆𝑅
remain the same in 𝑆∗. In other words, the new request’s

origin and destination are sequentially inserted at some

positions of the worker’s current route.

• Deadline Constraint. The worker must deliver all the

requests to their destinations before their deadlines.

• Capacity Constraint. At any time, the total size of re-

quests that this worker has picked up but not delivered is

no larger than the worker’s capacity.

The insertion operator 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑖, 𝑗) indicates that the new re-

quest’s origin/destination is inserted at the 𝑖/ 𝑗-th position of the cur-

rent route SR (i.e., before the vertex 𝑣𝑖 /𝑣 𝑗 ), where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 + 1.
Fig. 4 shows all four cases of the new route after inserting the

new request. The operator preserves the original order of SR , as
practiced in real industry [41, 42], to avoid reducing passenger

satisfaction [28].

2.3 Baseline Method
An extension of an existing 𝑂 (𝑛3)-time method for static road

networks [39] serves as our baseline for developing an insertion

1671



operator on time-dependent road networks. We present the imple-

mentation details of this method in Algo. 1.

Main Idea. The intuition behind the baseline method is as follows.

Specifically, we enumerate all pairs of potential positions (𝑖, 𝑗) to
insert the new request’s origin 𝑜𝑟+ and new request’s destination

𝑑𝑟+ and obtain a possible route 𝑆𝑅+ (lines 2-4). Based on this possible

route, we compute the new arrival time at each vertex and check

the feasibility (lines 5). If there is no constraint violation and the

increased travel time of 𝑆𝑅+ is shorter than the optimal route before

checking 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑖, 𝑗), we set 𝑆𝑅+ as 𝑆∗ (lines 6-8).
ComplexityAnalysis. Suppose the time cost of the shortest arrival

time query on a time-dependent road network is 𝑂 (𝑞). Lines 2-
3 take 𝑂 (𝑛2) time. Lines 5-6 take 𝑂 (𝑛𝑞) time. Thus, the overall

time complexity is 𝑂 (𝑛3𝑞) time. For brevity, existing work usually

ignores the term 𝑂 (𝑞), so the baseline takes cubic time. We will

also follow this convention in the rest of the paper.

Algorithm 1: Baseline: Cubic Time Insertion [39]

Input: a worker𝑤 and a new request 𝑟+

Output: route 𝑆∗ with𝑚𝑖𝑛 increased travel time 𝑜𝑏 𝑗∗

1 𝑆∗ ← 𝑆𝑅, 𝑜𝑏 𝑗
∗ ← +∞, 𝑎𝑟𝑟 [𝑣0] ← 𝑡0 ;

2 for 𝑖 ← 1 to 𝑛 + 1 do
3 for 𝑗 ← 𝑖 to 𝑛 + 1 do
4 𝑆𝑅+ ← insert new request’s 𝑜𝑟+ /𝑑𝑟+ before the

vertex 𝑣𝑖 /𝑣 𝑗 in 𝑆𝑅 ;

5 if 𝑆𝑅+ satisfies all constraints in Definition 4 then
6 𝑜𝑏 𝑗 ← increased travel time of 𝑆𝑅+ ;

7 if 𝑜𝑏 𝑗 < 𝑜𝑏 𝑗∗ then
8 𝑆∗ ← 𝑆𝑅+ , 𝑜𝑏 𝑗

∗ ← 𝑜𝑏 𝑗 ;

9 return 𝑆∗, 𝑜𝑏 𝑗∗;

3 OUR METHODOLOGY
To address the limitations of the baseline method, we introduce

a data summary called the compound travel functions, which ac-

celerates the delay time query along the worker’s route. This data

structure enables efficient computation of the increased travel time

and feasibility checking in𝑂 (1) time. This directly reduces the time

complexity of a time-dependent insertion to 𝑂 (𝑛2) by consuming

𝑂 (𝑛2) space cost. After that, we show how to find the optimal 𝑖 in

𝑂 (1) time when 𝑗 is given along a feasible route of the worker by

solely utilizing the compound travel function from 𝑣 𝑗−1 to 𝑣 𝑗 . As a
result, both time and space complexity can be further improved to

𝑂 (𝑛) by enumerating 𝑗 along the worker’s feasible route.

3.1 Preliminary
3.1.1 Data Summary Model: Compound Travel Functions.
To accelerate the increased travel time computation and feasibility

checking, we calculate one 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑣𝑥 , 𝑣𝑦, 𝑡) in Definition 5 for

each pair of vertices (𝑣𝑥 , 𝑣𝑦) in the feasible route 𝑆𝑅 = ⟨𝑣0, 𝑣1, . . . 𝑣𝑛⟩
where 0 < 𝑥 < 𝑦 < 𝑛. This function represents the travel time when

starting from vertex 𝑣𝑥 at time 𝑡 and ending at vertex 𝑣𝑦 .

We refer to the compound travel functions maintained for a

worker’s current route as the data summary model. The definition

of compound travel functions along a route is given as follows.

Definition 5 (Compound Travel Function). Given two vertexes 𝑣𝑥
and 𝑣𝑦 associated with the sub-route ⟨𝑣𝑥 , 𝑣𝑥+1, · · · , 𝑣𝑦⟩ in 𝑆𝑅 , the com-
pound travel function 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑣𝑥 , 𝑣𝑦, 𝑡) indicates the travel time
of the route when starting from 𝑣𝑥 to 𝑣𝑦 at time 𝑡 ,𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑣𝑥 , 𝑣𝑦, 𝑡)
= 𝑓 ′

𝑦−1,𝑦 (𝑓
′
𝑦−2,𝑦−1 (· · · 𝑓

′
𝑥,𝑥+1 (𝑡))) − 𝑡 .

For a successive sub-route ⟨𝑣𝑘 , 𝑣𝑘+1⟩ ∈ 𝑆𝑅 (0 ≤ 𝑘 ≤ 𝑛 − 1),
𝑓 ′
𝑘,𝑘+1 (𝑡) is the weight function of it. If we assume that there is a

shortest path (𝑢0 = 𝑣𝑘 , 𝑢1, 𝑢2 = 𝑣𝑘+1) in the road connecting 𝑣𝑘
and 𝑣𝑘+1, with (𝑢0, 𝑢1) and (𝑢1, 𝑢2) being edges. We can obtain two

weight functions 𝑓0,1 (𝑡) and 𝑓1,2 (𝑡) associated with these edges.

Starting from 𝑢0 at time 𝑡0, we can compound 𝑡0 to the edge weight

function 𝑓0,1 (𝑡) to obtain the arrival time at 𝑢1, represented as a

function 𝑓0,1 (𝑡0). We can then compound 𝑓0,1 (𝑡0) into the edge

weight function 𝑓1,2 (𝑡), which gives the function 𝑓1,2 (𝑓0,1 (𝑡0)) rep-
resenting the arrival time at 𝑢2 when starting from 𝑣0 at 𝑡0. Finally,

we can use the 𝑓 ′
𝑘,𝑘+1 (𝑡0) = 𝑓1,2 (𝑓0,1 (𝑡0)) to denote the weight func-

tion along the sub-route. It can be calculated by the existing shortest

path algorithm [37] on time-dependent road networks.

Example 2. As the sub-route ⟨𝑜1, 𝑜2, 𝑑2⟩ shown in Fig. 1. If the weight
functions for ⟨𝑜1, 𝑜2⟩ and ⟨𝑜2, 𝑑2⟩ are𝑤𝑜1,𝑜2 (𝑡) = {(0, 10), (60, 20)}
and 𝑤𝑜2,𝑑2 (𝑡) = {(0, 5), (60, 30)}, respectively. At time 0, the travel
cost from 𝑜1 to 𝑑2 is calculated as 10 + (5 + 10 ∗ 30−5

60−0 ), where 10 is
the cost of ⟨𝑜1, 𝑜2⟩ at time 0, and (5 + 10 ∗ 30−5

60−0 ) denotes the cost of
⟨𝑜2, 𝑑2⟩ when starting the edge at time 10. Using this method, we can
calculate the compound travel function 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜1, 𝑑2, ∗).

3.1.2 Query the Delay Time by Compound Travel Function.
The compound travel function accelerates the travel time computa-

tion to 𝑂 (1) time, based on this data structure, we design a novel

spatiotemporal query delay time query along the worker’s route.

Definition 6 (Delay time query). Given two vertexes 𝑣𝑥 and 𝑣𝑦
in worker’s route, where 𝑣𝑦 locates after 𝑣𝑥 , the delay time query
𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣𝑥 , 𝑣𝑦, 𝑡) retrieves the delay time at 𝑣𝑦 when the arrival
time 𝑣𝑥 is delayed to time 𝑡 , where 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣𝑥 , 𝑣𝑦, 𝑡) = 𝑎𝑟𝑟 [𝑣𝑥 ] +
𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑣𝑥 , 𝑣𝑦, 𝑡) − 𝑎𝑟𝑟 [𝑣𝑦].

After inserting the new origin 𝑜𝑟+ /destination 𝑑𝑟+ before 𝑣𝑖 /𝑣 𝑗
in 𝑆𝑅 . The new arrival time at 𝑣𝑖 and 𝑣 𝑗 are dependent on the

pickup time and delivery time of 𝑟+. For vertices in the sub-route

⟨𝑣𝑖+1, 𝑣𝑖+2, . . . , 𝑣 𝑗−1⟩, which are located after 𝑣𝑖 and before 𝑣 𝑗 , the de-
lay time at these locations are dependent on the new arrival time at

𝑣𝑖 , which can be calculated by the delay queries 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣𝑖 , ·, ·).
The sub-route ⟨𝑣 𝑗+1, 𝑣 𝑗+2, · · · , 𝑣𝑛⟩ consists of the remaining vertices

in 𝑆𝑅 after 𝑣 𝑗 , and the delay time of these vertices are dependent on

the arrival time to 𝑣 𝑗 , which can be calculated by the delay queries

𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗 , ·, ·). We next show how to calculate the arrival time

of each vertex in 𝑆𝑅+ , based on its original position in 𝑆𝑅 .

• Computing for pickup time: New origin 𝑜𝑟+ is inserted

before 𝑣𝑖 and after 𝑣𝑖−1, so the pickup time can be calculated

from arrival time to 𝑣𝑖−1 in the original route.

𝑝𝑖𝑘 (𝑜𝑟+ ) = 𝑞𝑢𝑒𝑟𝑦 (𝑣𝑖−1, 𝑜𝑟+ , 𝑎𝑟𝑟 [𝑣𝑖−1]) (2)

• Delay time query in ⟨𝑣𝑖 , 𝑣𝑖+1, · · · , 𝑣 𝑗−1⟩: The insertion of

the new origin 𝑜𝑟+ before 𝑣𝑖 caused the delay at vertices

in this sub-route, which needs to be calculated. The new

arrival time at 𝑣𝑖 is dependent on the pickup time,𝑎𝑟𝑟 ′ [𝑣𝑖 ] =

1672



𝑞𝑢𝑒𝑟𝑦 (𝑜𝑟+ , 𝑣𝑖 , 𝑝𝑖𝑘 (𝑜𝑟+ )). For other vertices, the delay time

caused by new arrival time 𝑎𝑟𝑟 ′ [𝑣𝑖 ] can be calculated as

𝑎𝑟𝑟 [𝑣𝑘 ] + 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣𝑖 , 𝑣𝑘 , 𝑎𝑟𝑟 ′ [𝑣𝑖 ]), 𝑖 < 𝑘 < 𝑗 .

• Computing for delivery time: We consider two cases. If

𝑖 < 𝑗 , 𝑑𝑟+ is inserted after 𝑣 𝑗−1 and before 𝑣 𝑗 , the delivery

time can be calculated from the new arrival time to 𝑣 𝑗−1
(as shown in Figure 4a and 4c). On the other hand, if 𝑖 = 𝑗 ,

𝑑𝑟+ is inserted immediately after 𝑜𝑟+ , so the delivery time

can be calculated from the pickup time of the new request

(as shown in Figure 4b and 4d).

𝑑𝑒𝑙 (𝑑𝑟+ ) =
{
𝑞𝑢𝑒𝑟𝑦 (𝑣𝑗−1, 𝑑𝑟+ , 𝑎𝑟𝑟 ′ [𝑣𝑗−1 ] ), 𝑖 < 𝑗

𝑞𝑢𝑒𝑟𝑦 (𝑜𝑟+ , 𝑑𝑟+ , 𝑝𝑖𝑘 (𝑜𝑟+ ) ), 𝑖 = 𝑗
(3)

• Delay time query in ⟨𝑣 𝑗 , 𝑣 𝑗+1, · · · , 𝑣𝑛⟩. After inserting
𝑑𝑟+ , the new arrival time at 𝑣 𝑗 is dependent on the delivery

time, 𝑎𝑟𝑟 ′ [𝑣 𝑗 ] = 𝑞𝑢𝑒𝑟𝑦 (𝑑𝑟+ , 𝑣 𝑗 , 𝑑𝑒𝑙 (𝑑𝑟+ )). For other vertices,
the delay time caused by the new arrival time at 𝑣 𝑗 can

be calculated as 𝑎𝑟𝑟 [𝑣𝑘 ] +𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗 , 𝑣𝑘 , 𝑎𝑟𝑟 ′ [𝑣 𝑗 ]), 𝑗 <
𝑘 ≤ 𝑛

Based on the delay time query in Definition 6, the time complex-

ity of the calculations for each possible pair (𝑖, 𝑗) is 𝑂 (1).

3.2 Improve Time Complexity to 𝑂 (𝑛2) by using
𝑂 (𝑛2) Compound Travel Functions

Basic Idea. To accelerate the constraints checking and increased

travel time computation from 𝑂 (𝑛) to 𝑂 (1) in the baseline, a com-

pound travel function is built for each insertion position pair (𝑖, 𝑗).
Therefore, a total of 𝑂 (𝑛2) compound travel functions are main-

tained. These functions compute the delay time in each vertex after

insertion in 𝑂 (1) time, enabling efficient constraint checking and

calculation of the increased travel time.

3.2.1 CheckingConstraints by using𝑂 (𝑛2) CompoundTravel
Functions.
Given a possible (𝑖, 𝑗) pair for insertion, the feasibility of the new

route must be verified against two constraints: the deadline con-

straint and the capacity constraint.

Checking Deadline Constraint. As discussed in Sec. 3.1.2, we

first use Eq. (4) to calculate the arrival time of each vertex in 𝑆𝑅+

in 𝑂 (1) time. For vertexes 𝑣𝑖 and 𝑣 𝑗 , the new arrival times are

dependent on the pickup time and delivery time of the new request,

two 𝑞𝑢𝑒𝑟𝑦 () functions are invoked to calculate the new arrival

time to them respectively. For vertexes locate between 𝑣𝑖+1 and

𝑣 𝑗−1, 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣𝑖 , ∗, ∗) query the delay time at these vertices.

Similarly, the delay time queries 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗 , ∗, ∗) can be utilized

to calculate the delay times of vertexes located after 𝑣 𝑗 . The time

complexity of the shortest arrival time query and the delay time

query based on compound travel functions are both𝑂 (1). Therefore,
for each possible insertion position pair (𝑖, 𝑗), we can calculate the

arrival time of each vertex belonging to 𝑆𝑅+ in 𝑂 (1) time.

𝑎𝑟𝑟 ′ [𝑣𝑘 ] =



𝑎𝑟𝑟 [𝑣𝑘 ], 𝑘 < 𝑖

𝑞𝑢𝑒𝑟𝑦 (𝑜𝑟+ , 𝑣𝑖 , 𝑝𝑖𝑘 (𝑜𝑟+ )), 𝑘 = 𝑖

𝑎𝑟𝑟 [𝑣𝑘 ] + 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣𝑖 , 𝑣𝑘 , 𝑎𝑟𝑟 ′ [𝑣𝑖 ]), 𝑖 < 𝑘 < 𝑗

𝑞𝑢𝑒𝑟𝑦 (𝑑𝑟+ , 𝑣 𝑗 , 𝑑𝑒𝑙 (𝑑𝑟+ )), 𝑘 = 𝑗

𝑎𝑟𝑟 [𝑣𝑘 ] + 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗 , 𝑣𝑘 , 𝑎𝑟𝑟 ′ [𝑣 𝑗 ]), 𝑗 < 𝑘 ≤ 𝑛

(4)

vi-1 vjvi

or+ dr+

vj-1

Figure 5: Checking deadline constraint.

We further use 𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑘 ] to denote the latest arrival time at

vertex 𝑣𝑘 without violating any deadline constraints at 𝑣𝑘 and all

vertices after 𝑣𝑘 . Similar to calculating the arrival time at a vertex,

𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑘 ] can be computed from the compound travel function.

To ensure that the worker satisfies the deadline constraint for

all vertices from 𝑣𝑘 to 𝑣𝑛 , we need to calculate 𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑘 ] in reverse

order for each successive sub-route ⟨𝑣𝑘 , 𝑣𝑘+1⟩ ∈ 𝑆𝑅 , where 𝑘 ranges

from 𝑛 to 0. The latest arrival time for each vertex can be calculated

using the following equation, where 𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑛] is the deadline time

of the request whose destination is the last vertex 𝑣𝑛 :{
𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑘 ] +𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑣𝑘 , 𝑣𝑘+1, 𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑘 ]) = 𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑘+1],
𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑛] = 𝑒𝑟 , when 𝑣𝑛 = 𝑑𝑟

(5)

The following lemmas check the deadline constraint.

Lemma 1. The deadline constraint will not be violated if and

only if (1) 𝑝𝑖𝑘 (𝑜𝑟+ ) ≤ 𝑒𝑟+ ; (2) 𝑎𝑟𝑟
′ [𝑣𝑖 ] = 𝑞𝑢𝑒𝑟𝑦 (𝑜𝑟+ , 𝑣𝑖 , 𝑝𝑖𝑘 (𝑜𝑟+ )) ≤

𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑖 ]; (3)𝑑𝑒𝑙 (𝑑𝑟+ ) ≤ 𝑒𝑟+ ; (4)𝑎𝑟𝑟
′ [𝑣 𝑗 ] = 𝑞𝑢𝑒𝑟𝑦 (𝑑𝑟+ , 𝑣 𝑗 , 𝑑𝑒𝑙 (𝑑𝑟+ ))

≤ 𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣 𝑗 ];

Proof. We prove this lemma by considering the general inser-

tion case, as depicted in Fig. 5. Given a new request 𝑟+, we first
calculate the pickup and delivery time in conditions (1) and (3),

respectively. These two conditions ensure that the new potential

route will not violate the deadline constraint of 𝑟+. Condition (2)

calculates the new arrival time at 𝑣𝑖 after picking up 𝑟
+
, denoted as

𝑎𝑟𝑟 ′ [𝑣𝑖 ]. To ensure that the deadline constraints after 𝑣𝑖 are satisfied,
𝑎𝑟𝑟 ′ [𝑣𝑖 ] cannot exceed the latest arrival time to 𝑣𝑖 , which is denoted

as 𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣𝑖 ]. Similarly, for vertex 𝑣 𝑗 , condition (4) calculates the

new arrival time after serving the new request, denoted as 𝑎𝑟𝑟 ′ [𝑣 𝑗 ].
In order not to violate the deadline constraints for vertices located

after 𝑣 𝑗 , condition (4) guarantees that 𝑎𝑟𝑟 ′ [𝑣 𝑗 ] is earlier than the

latest arrival time to 𝑣 𝑗 , which is denoted as 𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣 𝑗 ]. □

Checking Capacity Constraint. To check the capacity constraint
in 𝑂 (1) time, we use 𝑛𝑢𝑚[𝑣𝑘 ] to represent the number of requests

picked up but not yet delivered at vertex 𝑣𝑘 , following previous

work [35]. We calculate this array according to the following rules,

where 𝑣𝑘 is either a pickup location 𝑜𝑟 or a delivery location 𝑑𝑟 for

a request 𝑟 ∈ 𝑅:

𝑛𝑢𝑚[𝑣𝑘 ] =
{
𝑛𝑢𝑚[𝑣𝑘−1] + 𝑐𝑟 , 𝑣𝑘 = 𝑜𝑟

𝑛𝑢𝑚[𝑣𝑘−1] − 𝑐𝑟 , 𝑣𝑘 = 𝑑𝑟
(6)

Lemma 2. [35] Along the new route, the capacity constraint

will not be violated if and only if (1) 𝑛𝑢𝑚[𝑣𝑖−1] ≤ 𝑐𝑤 − 𝑐𝑟+ ; (2)
𝑛𝑢𝑚[𝑣𝑘 ] ≤ 𝑐𝑤 − 𝑐𝑟+ , 𝑖 < 𝑘 ≤ 𝑗 .

Please refer to Ref. [35] for the proof of Lemma 2.

3.2.2 Computation of Increased Travel Time.

1673



If the position pair (𝑖, 𝑗) satisfies both deadline and capacity

constraints, we can call this pair feasible for insertion. Then the

increased travel time can be calculated as 𝑜𝑏 𝑗 in the following:

𝑜𝑏 𝑗 =

{
𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗 , 𝑣𝑛, 𝑎𝑟𝑟 ′ [𝑣 𝑗 ]), 𝑗 ≤ 𝑛

𝑑𝑒𝑙 (𝑑𝑟+ ) − 𝑎𝑟𝑟 [𝑣𝑛], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

When 𝑗 ≤ 𝑛, the new request is delivered before reaching 𝑣 𝑗 ,

resulting in a delay at 𝑣 𝑗 . By utilizing the compound travel functions

maintained for 𝑣 𝑗 , we can directly perform the delay time query to

the last vertex 𝑣𝑛 to calculate the increased travel time caused by

the delay at 𝑣 𝑗 in 𝑂 (1) time. On the other hand, if the new request

is the last one to be delivered, as shown in Figure 4c and 4d, the

increased travel time is simply the delivery time of the new request

minus the arrival time of the last location in the original route.

Algorithm 2: Quadratic Time Insertion

Input: a worker𝑤 with a feasible route 𝑆𝑅 and a request 𝑟+

Output: new route 𝑆∗ for𝑤 and the𝑚𝑖𝑛𝑖𝑚𝑢𝑚 increased

travel time 𝑜𝑏 𝑗∗

1 𝑆∗ ← 𝑆𝑅, 𝑜𝑏 𝑗
∗ ← +∞ ;

2 Initialize 𝑙𝑎𝑡𝑒𝑠𝑡 , 𝑛𝑢𝑚 by 𝐸𝑞. (5)-𝐸𝑞. (6) ;
3 Compound travel functions

𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑖, 𝑗, ·),∀𝑖, 𝑗, 0 < 𝑖 < 𝑗 < 𝑛 by Definition 5 ;

4 for 𝑖 ← 1 to 𝑛 + 1 do
5 if Lemma 1 (1) or (2) violated then continue;

6 if Lemma 2 (1) violated then continue;

7 for 𝑗 ← 𝑖 to 𝑛 + 1 do
8 if Lemma 1 (3) or (4) violated then continue;

9 if Lemma 2 (2) violated then break;

10 𝑜𝑏 𝑗 ← 𝐸𝑞. (7) ;
11 if 𝑜𝑏 𝑗 < 𝑜𝑏 𝑗∗ then
12 𝑜𝑏 𝑗∗ ← 𝑜𝑏 𝑗, 𝑖∗ ← 𝑖, 𝑗∗ ← 𝑗 ;

13 if 𝑜𝑏 𝑗∗ < +∞ then
14 𝑆∗ ← insert 𝑜𝑟 at 𝑖

∗
-th and 𝑑𝑟 at 𝑗

∗
-th in 𝑆𝑅 ;

15 Get new arrival time of 𝑆∗ by 𝐸𝑞. (4) ;
16 return 𝑆∗, 𝑜𝑏 𝑗∗;

3.2.3 Algorithm Details.
Main Idea.We enumerate all possible (𝑖, 𝑗) pairs for insertion in

the algorithm, and build one compound travel function for each

pair. With the total of𝑂 (𝑛2) functions, the constraints checking and
increased time computation can be achieved in𝑂 (1) time. The new

arrival times and increased travel time are updated by Eq. (4) and

Eq. (7) in𝑂 (1) time respectively. The deadline constraint is checked

for 𝑣𝑖 using Lemma 1 (1)-(2) after inserting 𝑜𝑟+ , and the capacity

constraint is checked using Lemma 2 (1). For 𝑣 𝑗 , the algorithm uses

Lemma 1 (3)-(4) and Lemma 2 (2) to check the deadline and capacity

constraints after inserting 𝑑𝑟+ before it. All these feasibility checks

have a time cost of 𝑂 (1).
Complexity Analysis. Algo. 2 shows the details. Line 2 initial-
izes auxiliary arrays 𝑙𝑎𝑡𝑒𝑠𝑡, 𝑛𝑢𝑚. Line 3 computes the compound

travel function between any two vertexes along 𝑆𝑅 to build the

data summary model. Lines 4-9 enumerate possible positions to

insert 𝑜𝑟+ and𝑑𝑟+ , checking the deadline and capacity constraints in

Table 2: 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 of 𝑆𝑅 in Algo. 2

𝑜1 𝑜2 𝑑2 𝑑1
𝑜1 × 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜1, 𝑜2, 𝑡 ) 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜1, 𝑑2, 𝑡 ) 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜1, 𝑑1, 𝑡 )
𝑜2 × × 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜2, 𝑑2, 𝑡 ) 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜2, 𝑑1, 𝑡 )
𝑑2 × × × 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑑2, 𝑑1, 𝑡 )
𝑑1 × × × ×

o1 d1o2 d2

o3 d3

Figure 6: Update arrival time with 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 .

𝑂 (1) time for each position. If (𝑖, 𝑗) is feasible, the increased travel

time is calculated in line 10 in 𝑂 (1) time. Therefore, the total time

complexity of Algo. 2 is 𝑂 (𝑛2), and the space complexity is also

𝑂 (𝑛2), as the worker maintains 𝑂 (𝑛2) compound travel functions.

Example 3. Back to the settings in Fig. 1. For the current feasible
route 𝑆𝑅 = ⟨𝑜1, 𝑜2, 𝑑2, 𝑑1⟩, the compound travel functions along 𝑆𝑅 are
shown in Table 2. The algorithm computes (3+2+1) compound travel
functions. For each vertex in 𝑆𝑅 , the algorithm computes and main-
tains compound travel functions to all vertices after it. To serve 𝑟3, we
consider the first possible insertion pair (1, 1). As shown in Figure 6, by
inserting 𝑜3 and 𝑑3 before 𝑜2, the resulting increase in travel time can
be directly calculated as 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑜2, 𝑑1, 𝑎𝑟𝑟 ′ [𝑜2]) in 𝑂 (1) time.
This delay time query is facilitated by the compound travel function
𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜2, 𝑑1, 𝑎𝑟𝑟 ′ [𝑜2]), which is maintained by 𝑜2. Alterna-
tively, without this function, the sequential invocation of the shortest
arrival time query 𝑞𝑢𝑒𝑟𝑦 (𝑑2, 𝑑1, 𝑞𝑢𝑒𝑟𝑦 (𝑜2, 𝑑2, 𝑎𝑟𝑟 ′ [𝑜2]))) scans the
sub-route < 𝑜2, 𝑑2, 𝑑1 > to calculate the increased travel time.

Correctness. The algorithm can find the optimal position pair (𝑖, 𝑗)
with the minimum increased travel time to deliver the assigned

new request 𝑟+. The order constraint can be trivially verified by

the pseudo code of Algo. 2. The feasibility of (𝑖, 𝑗) for insertion is

ensured by the correctness of Lemma 1 and Lemma 2, while 𝐸𝑞. (4)
- 𝐸𝑞. (7) guarantee the minimum increased travel time.

Discussion. This algorithm requires 𝑂 (𝑛2) compound travel func-

tions, which results in significant memory overhead. Based on our

observation (detail in Sec. 3.3), we find that these functions contain

redundancies. Therefore, we try to further optimize the number of

compound travel functions to improve the time complexity of the

insertion.

3.3 Optimize Time Complexity to 𝑂 (𝑛) by using
Only 𝑂 (𝑛) Compound Travel Functions

Observation: Two compound travel functions for each ver-
tex 𝑣 𝑗 is sufficient. As Fig. 7 shows, we use 𝑜𝑝𝑡𝑖 [𝑑2] records the
optimal 𝑖 when 𝑗 = 2, i.e., find the optimal position to insert 𝑜𝑟+

when inserting 𝑑𝑟+ before 𝑑2. Based on the order constraint, there

are only two cases for 𝑖 value: (1) Fig. 7a, when 𝑜𝑝𝑡𝑖 [𝑑2] = 𝑜𝑝𝑡𝑖 [𝑜2],
the optimal 𝑖 value is same as when insertion the 𝑑𝑟+ before the pre-

vious vertex 𝑜2; (2) Fig. 7b, when 𝑜𝑝𝑡𝑖 [𝑑2] ≠ 𝑜𝑝𝑡𝑖 [𝑜2], the optimal

𝑖 is updated. Based on the FIFO property, the determining factor

is which case causes more time delay at 𝑑2, as more time delay at

𝑑2 results in more time delay at the last vertex 𝑣𝑛 . To determine

1674



the optimal 𝑖 value recorded in 𝑜𝑝𝑡𝑖 [𝑑2], the delay time at 𝑑2 can

be calculated using one compound travel function from 𝑜2 to 𝑑2 in

Fig. 7a, or using Eq. (4) in Fig. 7b. Then the increased travel time of

the route can be queried by another compound travel function from

𝑑2 to the last vertex 𝑑1. Therefore, for 𝑑2, two compound travel

functions are sufficient to find the optimal insertion position pair

(𝑜𝑝𝑡𝑖 [𝑑2], 2) before it.

o1 d1o2

o3

d2

(a) 𝑜𝑝𝑡𝑖 [𝑑2 ] = 1 = 𝑜𝑝𝑡𝑖 [𝑜2 ]

o1 d1o2

o3

d2

(b) 𝑜𝑝𝑡𝑖 [𝑑2 ] = 2 ≠ 𝑜𝑝𝑡𝑖 [𝑜2 ] = 1

Figure 7: When 𝑗 = 2, two cases for optimal 𝑖 value

Basic Idea. The optimal insertion position 𝑖 can be searched in

𝑂 (1) time by enumerating the possible values of 𝑗 . This is achieved

by performing a delay time query from 𝑣 𝑗−1 to 𝑣 𝑗 . The increased
travel time caused by delivering the new request before 𝑣 𝑗 then

can be calculated by performing a delay time query from 𝑣 𝑗 to the

last vertex 𝑣𝑛 . Thus the worker only needs to maintain at most two

compound travel functions for each vertex 𝑣 𝑗 in the route. As a

result of the optimization, both the time and space costs are reduced

from 𝑂 (𝑛2) to 𝑂 (𝑛).

3.3.1 Computing optimal 𝑖 in 𝑂 (1) Time When Sequentially
Increase 𝑗 .
We try to only enumerate the positions 𝑗 to insert the destination of

the new request while finding the optimal 𝑖 , instead of enumerating

all possible (𝑖, 𝑗) pairs. If destination 𝑑𝑟+ is inserted before 𝑣 𝑗 in

route 𝑆𝑅 , then the origin 𝑜𝑟+ must also be inserted before 𝑣 𝑗 .

Calculate 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] as 𝑖 by One Compound Travel Function
Between 𝑣 𝑗−1 and 𝑣 𝑗 .We use 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] to record the optimal value

of 𝑖 when enumerating the 𝑗 position along 𝑆𝑅 . Specifically, by

inserting 𝑜𝑟+ at 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ], we can achieve the shortest arrival time at

vertex 𝑣 𝑗 , resulting in a better route with a shorter increased travel

time due to the first-in-first-out (FIFO) property. Additionally, we

use 𝑎𝑟𝑟 ′𝑜𝑟+ [𝑣 𝑗 ] to denote the arrival time at vertex 𝑣 𝑗 if we insert 𝑜𝑟+

at the position calculated before in 𝑜𝑝𝑡𝑖 [𝑣 𝑗−1] ∈ {𝑖 : 0 < 𝑖 < 𝑗}, it
can be calculated by 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗−1, 𝑣 𝑗 , ∗). If the new potential 𝑗-

th position does not satisfy either the deadline constraint or capacity

constraint for inserting 𝑜𝑟+ , then we set 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] = NIL. Otherwise,
we can calculate the value based on the following lemma:

Lemma 3. Given a potential vertex 𝑣 𝑗 for inserting 𝑑𝑟+ before it,

we update 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] = 𝑗 if and only if (1) 𝑛𝑢𝑚[𝑣 𝑗−1] ≤ 𝑐𝑤 − 𝑐𝑟+ ;
(2) 𝑝𝑖𝑘 (𝑜𝑟+ ) ≤ 𝑒𝑟+ and 𝑞𝑢𝑒𝑟𝑦 (𝑜𝑟+ , 𝑣 𝑗 , 𝑝𝑖𝑘 (𝑜𝑟+ )) ≤ 𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣 𝑗 ]; (3)
𝑞𝑢𝑒𝑟𝑦 (𝑜𝑟+ , 𝑣 𝑗 , 𝑝𝑖𝑘 (𝑜𝑟+ )) < 𝑎𝑟𝑟 ′𝑜𝑟+ [𝑣 𝑗 ]. Here, 𝑎𝑟𝑟

′
𝑜𝑟+
[𝑣 𝑗 ] can be cal-

culated using the delay time query from 𝑣 𝑗−1 to 𝑣 𝑗 as 𝑎𝑟𝑟 ′𝑜𝑟+ [𝑣 𝑗−1]+
𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗−1, 𝑣 𝑗 , 𝑎𝑟𝑟 ′𝑜𝑟+ [𝑣 𝑗−1]).

Proof. Condition (1) checks the capacity constraint and en-

sures that there is enough capacity for the worker to pick up 𝑟+

at 𝑣 𝑗 . Condition (2) ensures that the deadline constraints are sat-

isfied if 𝑜𝑟+ is inserted before 𝑣 𝑗 . Condition (3) guarantees that

inserting 𝑜𝑟+ at the new potential 𝑗-th position results in a shorter

travel time compared to inserting it in positions {𝑖 : 0 < 𝑖 < 𝑗}.
This can be proven by contradiction. Let us assume that the opti-

mal position for inserting the new request’s origin 𝑜𝑟+ is recorded

in 𝑜𝑝𝑡𝑖 [𝑣 𝑗−1] and lies within the set {𝑖 : 0 < 𝑖 < 𝑗}. We insert

𝑜𝑟+ at 𝑜𝑝𝑡𝑖 [𝑣 𝑗−1], the arrival time at 𝑣 𝑗 can be calculated by de-

lay time query from 𝑣 𝑗−1 to 𝑣 𝑗 . Specifically, it can be expressed

as 𝑎𝑟𝑟 ′𝑜𝑟+ [𝑣 𝑗 ] = 𝑎𝑟𝑟 ′𝑜𝑟+ [𝑣 𝑗−1] + 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗−1, 𝑣 𝑗 , 𝑎𝑟𝑟
′
𝑜𝑟+
[𝑣 𝑗−1]).

However, if condition (3) is satisfied, inserting 𝑜𝑟+ at the new poten-

tial position 𝑗 results in an earlier arrival time at 𝑣 𝑗 . If 𝑜𝑝𝑡𝑖 [𝑣 𝑗−1]
is the best position to insert 𝑜𝑟+ , we would obtain a route with a

shorter travel time compared to inserting 𝑜𝑟+ before 𝑣 𝑗 . However,

according to the FIFO property, if we choose 𝑜𝑝𝑡𝑖 [𝑣 𝑗−1], the route
would arrive later at 𝑣 𝑗 and the final vertex 𝑣𝑛 with a larger delay,

which contradicts the assumption. Therefore, 𝑗 is a better position

to insert 𝑜𝑟+ , and we update 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] = 𝑗 . □

3.3.2 Checking Constraints in𝑂 (1) by using Only𝑂 (𝑛) Com-
pound Travel Functions.
We also need to check both capacity and deadline constraints. The

capacity constraint check is similar to Lemma 2. After computing

the optimal 𝑖 value in 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ], we first update the new arrival

time at 𝑣 𝑗 , then check the deadline constraint for inserting the new

destination at position 𝑗 .

Update New Arrival Time At 𝑣 𝑗 by One Compound Travel
Function between 𝑣 𝑗−1 to 𝑣 𝑗 .We first update the arrival time at 𝑣 𝑗
based on𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] for further feasibility checking. If𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] = 𝑗 , we

need to invoke the shortest arrival time query 𝑞𝑢𝑒𝑟𝑦 () to calculate

the new arrival time at 𝑣 𝑗 . Otherwise, if 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] = 𝑜𝑝𝑡𝑖 [𝑣 𝑗−1], it
indicates the the optimal position to insert 𝑜𝑟+ is one of the positions

in {𝑖 : 0 < 𝑖 < 𝑗}. To update the arrival time at 𝑣 𝑗 , we can rely on

the delay time query from 𝑣 𝑗−1 to 𝑣 𝑗 .
The new arrival time at 𝑣 𝑗 is updated based on the following rules

in 𝑂 (1) time. If 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] = 𝑗 , 𝑜𝑟+ is also inserted at 𝑗-th position.

Otherwise, 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] = 𝑜𝑝𝑡𝑖 [𝑣 𝑗−1], 𝑜𝑟+ is inserted at one position in

{𝑖 : 0 < 𝑖 < 𝑗}:

𝑎𝑟𝑟 ′𝑜𝑟+ [𝑣 𝑗 ] ={
𝑞𝑢𝑒𝑟𝑦 (𝑜𝑟+ , 𝑣 𝑗 , 𝑝𝑖𝑘 (𝑜𝑟+ )), 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] = 𝑗

𝑎𝑟𝑟𝑜𝑟+ [𝑣 𝑗 ] + 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗−1, 𝑣 𝑗 , 𝑎𝑟𝑟
′
𝑜𝑟+
[𝑣 𝑗−1]), otherwise

(8)

Checking Constraints for 𝑣 𝑗 . As for the new destination 𝑑𝑟+ ,

before considering its insertion into the route at the 𝑗-th position,

we must first verify its feasibility. This verification requires taking

into account the worker’s capacity constraint, the time constraint

of the new request, and the new arrival time at 𝑣 𝑗 .

We first calculate the delivery time based on the updated arrival

time at 𝑣 𝑗−1 after picking up the new request at position 𝑜𝑝𝑡𝑖 [𝑣 𝑗−1].
The delivery time is calculated as:

𝑑𝑒𝑙 (𝑑𝑟+ ) = 𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗−1, 𝑑𝑟+ , 𝑎𝑟𝑟 ′𝑜𝑟+ [𝑣 𝑗−1]) (9)

Then, we update the arrival time at 𝑣 𝑗 after delivering the new

request, by using the delivery time of the new request:

𝑎𝑟𝑟 ′ [𝑣 𝑗 ] = 𝑞𝑢𝑒𝑟𝑦 (𝑑𝑟+ , 𝑣 𝑗 , 𝑑𝑒𝑙 (𝑑𝑟+ )) (10)

1675



Table 3: 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 of 𝑆𝑅 in Algo. 3

1 2

𝑜1 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜1, 𝑜2, 𝑡 ) 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜1, 𝑑1, 𝑡 )
𝑜2 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜2, 𝑑2, 𝑡 ) 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑜2, 𝑑1, 𝑡 )
𝑑2 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (𝑑2, 𝑑1, 𝑡 ) ×
𝑑1 × ×

Then we can perform the constraints verification by utilizing

the following lemma:

Lemma4. The 𝑗-th position is a feasible position for inserting𝑑𝑟+ if
and only if (1) 𝑑𝑒𝑙 (𝑑𝑟+ ) = 𝑞𝑢𝑒𝑟𝑦 (𝑣 𝑗−1, 𝑑𝑟+ , 𝑎𝑟𝑟 ′𝑜𝑟+ [𝑣 𝑗−1]) ≤ 𝑒𝑟+ ; (2)

𝑎𝑟𝑟 ′ [𝑣 𝑗 ] = 𝑞𝑢𝑒𝑟𝑦 (𝑑𝑟+ , 𝑣 𝑗 , 𝑑𝑒𝑙 (𝑑𝑟+ )) ≤ 𝑙𝑎𝑡𝑒𝑠𝑡 [𝑣 𝑗 ]; (3) 𝑛𝑢𝑚[𝑣 𝑗−1] ≤
𝑐𝑤 − 𝑐𝑟+

Proof. Condition (1) guarantees that inserting the new request’s

destination at the 𝑗-th position will not violate its deadline con-

straint. Following the insertion of 𝑑𝑟+ at the 𝑗-th position, condition

(2) ensures that the new arrival time at 𝑣 𝑗 does not violate any

deadline constraints for assigned requests delivered after 𝑣 𝑗 . Condi-

tion (3) checks the capacity constraint, ensuring that the worker’s

capacity is not exceeded. □

If Lemma 4 confirms that 𝑗 is a feasible position to insert 𝑑𝑟+ ,

we follow Eq. (7) to calculate the increased travel time for the

insertion position pair (𝑜𝑝𝑡𝑖 [𝑣 𝑗 ], 𝑗). The delay at the last vertex 𝑣𝑛
is calculated by the delay time query which is supported by the

compound travel function from 𝑣 𝑗 to the last vertex 𝑣𝑛 . Therefore,

we can calculate the increased travel time in 𝑂 (1) time.

Algorithm 3: Linear Time Insertion

Input: a worker𝑤 with a feasible route 𝑆𝑅 and a request 𝑟+

Output: new route 𝑆∗ for𝑤 and the𝑚𝑖𝑛𝑖𝑚𝑢𝑚 increased

travel time 𝑜𝑏 𝑗∗

1 𝑆∗ ← 𝑆𝑅, 𝑜𝑏 𝑗
∗ ← +∞ ;

2 Initialize 𝑙𝑎𝑡𝑒𝑠𝑡 , 𝑛𝑢𝑚 by 𝐸𝑞. (5)-𝐸𝑞. (6) ;
3 Compound travel functions

𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 ( 𝑗, 𝑗 + 1, ·),𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 ( 𝑗, 𝑛, ·),∀𝑗, 0 < 𝑗 < 𝑛 by

Definition 5 ;

4 for 𝑗 ← 1 to 𝑛 + 1 do
5 if Lemma 3 (1) or (2) violated then continue;

6 if Lemma 3 (3) then 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] ← 𝑗 ;

7 Update 𝑎𝑟𝑟 ′𝑜𝑟+ [𝑣 𝑗 ] after inserting 𝑜𝑟+ based on Eq. (8) ;

8 if Lemma 4 (1)(2)(3) then
9 Calculate 𝑑𝑒𝑙 (𝑑𝑟+ ) after inserting 𝑜𝑟+ based on

Eq. (9) ;

10 Calculate 𝑎𝑟𝑟 ′ [𝑣 𝑗 ] of insertion (𝑜𝑝𝑡𝑖 [𝑣 𝑗 ], 𝑗) based on
Eq. (10) ;

11 𝑜𝑏 𝑗 ← 𝐸𝑞. (7) ;
12 if 𝑜𝑏 𝑗 < 𝑜𝑏 𝑗∗ then
13 𝑜𝑏 𝑗∗ ← 𝑜𝑏 𝑗, 𝑖∗ ← 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ], 𝑗∗ ← 𝑗 ;

14 if 𝑜𝑏 𝑗∗ < +∞ then
15 𝑆∗ ← insert 𝑜𝑟 at 𝑖

∗
-th and 𝑑𝑟 at 𝑗

∗
-th in 𝑆𝑅 ;

16 Get new arrival time of 𝑆∗ by 𝐸𝑞. (4) ;
17 return 𝑆∗, 𝑜𝑏 𝑗∗;

o1 d1o2

o3

o3

d2

(a) Find 𝑜𝑝𝑡𝑖 [𝑑2 ] = 𝑜𝑝𝑡𝑖 [𝑜2 ] or 𝑜𝑝𝑡𝑖 [𝑑2 ] = 𝑗 = 2

o1 d1o2

o3 d3

d2

(b) Get the 𝑜𝑏 𝑗 of insertion (𝑜𝑝𝑡𝑖 [𝑑2 ], 𝑗 = 2)

o1 d1o2

o3

o3

d2

(c) Find 𝑜𝑝𝑡𝑖 [𝑑1 ] = 𝑜𝑝𝑡𝑖 [𝑑2 ] or 𝑜𝑝𝑡𝑖 [𝑑1 ] = 𝑗 = 3

o1 d1o2

o3 d3

d2

(d) Get the 𝑜𝑏 𝑗 of insertion (𝑜𝑝𝑡𝑖 [𝑑1 ], 𝑗 = 3)

Figure 8: Enumerating 𝑗 from 2 to 3

3.3.3 Linear Time Algorithm.
Main Idea. We enumerate each potential 𝑗-th position in the

worker’s current route 𝑆𝑅 . In each iteration, we use Lemma 3 to

determine in𝑂 (1) time whether inserting the new origin 𝑜𝑟+ at 𝑗 is

a better choice than other positions before 𝑣 𝑗 . The optimal position

to insert 𝑜𝑟+ is then computed at 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ]. Next, we check the fea-

sibility of inserting the new destination 𝑑𝑟+ at position 𝑗 based on

Lemma 4 in 𝑂 (1) time. If it is feasible, we generate a new route by

inserting 𝑜𝑟+ at 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] and 𝑑𝑟+ at position 𝑗 . The new arrival time

at 𝑣 𝑗 after delivering the new request is calculated using Eq. (10) in

𝑂 (1) time. The increased travel time is calculated based on Eq. (7)

in 𝑂 (1) time. All these calculations and feasibility checks have a

time cost of 𝑂 (1).
Complexity Analysis. Line 3 of Algo. 3 computes the compound

travel functions of route 𝑆𝑅 . Line 4 takes 𝑂 (𝑛) time to enumerate

the potential position to insert 𝑑𝑟+ . We then check the constraints

for inserting 𝑜𝑟+ at the new potential 𝑗-th position in line 5. If con-

straints are violated, the optimal position to insert 𝑜𝑟+ lies among

the positions {𝑖 : 0 < 𝑖 < 𝑗}. Otherwise, the 𝑗 will be the best

position in line 6. After 𝑜𝑟+ is inserted at 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ], the new arrival

time at 𝑣 𝑗 is calculated in line 7. The feasibility of inserting 𝑑𝑟+ at

𝑗 is checked, and the new arrival time at 𝑣 𝑗 is calculated in lines

8-10, each line takes 𝑂 (1) time. After inserting 𝑜𝑟+ at 𝑜𝑝𝑡𝑖 [𝑣 𝑗 ] and
𝑑𝑟+ at 𝑗 , the increased travel time of the newly generated route is

calculated from lines 11-13. Therefore, the total time cost of Algo. 3

is 𝑂 (𝑛). For the space cost, a worker maintains 𝑂 (𝑛) compound

travel functions, because each vertex 𝑣 𝑗 in the route requires at

most 2 compound travel functions to be maintained.

Example 4. Back to the settings in Fig. 1. For the current feasible
route 𝑆𝑅 = ⟨𝑜1, 𝑜2, 𝑑2, 𝑑1⟩, the compound travel functions along 𝑆𝑅 are
shown in Table 3. The algorithm computes (2+2+1) compound travel

1676



functions. For each vertex in 𝑆𝑅 , at most two compound travel func-
tions are maintained: one for the previous vertex and the other for the
last vertex in the route. For the sake of presentation, we assume that
insertion (1, 3) is the optimal location pair to serve 𝑟3. When 𝑗 = 1, we
determine that 𝑟3 can only be picked up and delivered before 𝑜2 thus
𝑜𝑝𝑡𝑖 [𝑜2] = 𝑗 = 1. The detailed procedure of enumerating 𝑗 from 2 to
3 is shown in Fig. 8. When 𝑗 = 2, as shown in Fig. 8a-Fig. 8b, we first
determine if inserting 𝑜3 before 𝑑2 (𝑜𝑝𝑡𝑖 [𝑑2] = 2, marked in yellow)
is a better choice than inserting 𝑜3 before 𝑜2 (𝑜𝑝𝑡𝑖 [𝑑2] = 𝑜𝑝𝑡𝑖 [𝑜2]),
which is shown in Fig. 8a. To compare the new arrival times at vertex
𝑑2, we consider two cases. If we insert 𝑜3 at position 1, the new arrival
time is computed using the delay time query from 𝑜2 to its next ver-
tex 𝑑2: 𝑎𝑟𝑟 ′𝑜3 [𝑑2] + 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑜2, 𝑑2, 𝑎𝑟𝑟

′
𝑜3
[𝑜2]). Here, 𝑎𝑟𝑟 ′𝑜3 [𝑜2] is

the arrival time at 𝑜2 if 𝑜3 is inserted before it. Alternatively, if we
insert 𝑜3 at position 2, the new arrival time at 𝑑2 can be computed as
𝑞𝑢𝑒𝑟𝑦 (𝑜3, 𝑑2, 𝑝𝑖𝑘 (𝑜3)). Following the assumption, by comparing the
two arrival times, we obtain 𝑞𝑢𝑒𝑟𝑦 (𝑜3, 𝑑2, 𝑝𝑖𝑘 (𝑜3)) > 𝑎𝑟𝑟 ′𝑜3 [𝑑2] +
𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑜2, 𝑑2, 𝑎𝑟𝑟 ′𝑜3 [𝑜2]). Therefore, we conclude that inserting
𝑜3 at position 1 is optimal for all positions before 𝑑2, thus we have
𝑜𝑝𝑡𝑖 [𝑑2] = 𝑜𝑝𝑡𝑖 [𝑜2] = 1. Next, as shown in Fig. 8b, we calculate the
increased travel time caused by insertion pair (𝑜𝑝𝑡𝑖 [𝑑2] = 1, 𝑗 = 2) for
𝑗 = 2. The computation is performed using the delay time query from
𝑑2 to the last vertex 𝑑1: 𝑎𝑟𝑟 [𝑑1] +𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑑2, 𝑑1, 𝑎𝑟𝑟 ′ [𝑑2]), where
𝑎𝑟𝑟 ′ [𝑑2] is the arrival time at 𝑑2 after delivering the new request
before it. When 𝑗 = 3, as shown in Fig. 8c-Fig. 8d, we first evaluate
𝑜𝑝𝑡𝑖 [𝑑1] for inserting 𝑜3 following a similar procedure as before. In the
evaluation, we use the delay time query𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑟𝑦 (𝑑2, 𝑑1, 𝑎𝑟𝑟 ′𝑜3 [𝑑2]),
where 𝑎𝑟𝑟 ′𝑜3 [𝑑2] is the arrival time at 𝑑2 if 𝑜3 is inserted at 𝑜𝑝𝑡𝑖 [𝑑2].
We then obtain the increased travel time caused by insertion pair
(𝑜𝑝𝑡𝑖 [𝑑1] = 1, 𝑗 = 3), and compare it with the value of pair (𝑜𝑝𝑡𝑖 [𝑑2] =
1, 𝑗 = 2) in Fig. 8b. The result shows that this is the best insertion pair
to serve the new request 𝑟3.

Correctness. The algorithm can find the optimal position pair

(𝑜𝑝𝑡𝑖 [𝑣 𝑗 ], 𝑗) with the minimum increased travel time to deliver the

assigned new request 𝑟+. The order constraint can be verified by

Lemma 3. The feasibility of (𝑜𝑝𝑡𝑖 [𝑣 𝑗 ], 𝑗) for insertion is ensured by

the correctness of Lemma 3 and Lemma 4, while 𝐸𝑞. (4) - 𝐸𝑞. (7)
guarantee the minimum increased travel time.

4 EXPERIMENT STUDY
In this section, we first present the experimental setup for our study,

then we demonstrate our experimental results.

4.1 Experimental Setup
Datasets. The proposed methods are evaluated on three datasets

from different applications, with road networks downloaded from

OpenStreetMap [5]. The number of edges varies from 80,000 to over

900,000, with a time domain of 86,400 seconds (a whole day). Time-

dependent weight functions have 518,282, 138,083, and 1,411,569

interpolation points, respectively. The TDSP query provided by

TD-G-tree [37] is used as the shortest arrival time query 𝑞𝑢𝑒𝑟𝑦 ().
Statistical characteristics of the datasets are presented in Table 4.

The first application considered is Ridesharing, using two pub-

lic datasets from Chengdu and Haikou City, China denoted as

Chengdu and Haikou, respectively. The dataset consists of more

than 200k requests during daytime hours (i.e., 8:00 am to 18:00 pm),

with origins and destinations mapped to the nearest vertex of the

Table 4: Statistics of datasets.

Dataset #(Vertices) #(Edges) #(Interpolation)

Ridesharing

Chengdu 423,434 913,718 1,411,569

Haikou 41,542 89,206 138,083

Logistics Cainiao 9,936 23,872 518,282

Table 5: Parameter settings.

Parameters Settings

Capacity 𝑐𝑤
Ridesharing: 3, 5, 10, 15, 20

Logistics: 80, 100, 120, 140, 160

Requests release time duration

Ridesharing:

2h, 4h, 6h, 8h, 10h
Logistics: 4h, 6h, 8h, 10h, 12h

Time period: 𝑒𝑟 − 𝑡𝑟 (minute)

Ridesharing: 10, 15, 20, 25, 30
Logistics: original ddl information

Scalability: # of workers

Ridesharing : 100, 200, 300, 400, 500
Logistics: 2k, 4k, 6k, 8k, 10k

Table 6: Proposed Algorithms.
Algorithms Time Complexity Space Complexity

Cubic Time Algorithm 𝑂 (𝑛3) 𝑂 (𝑛)
Quadratic Time Algorithm 𝑂 (𝑛2) 𝑂 (𝑛2)
Linear Time Algorithm 𝑂 (𝑛) 𝑂 (𝑛)

road network. The time period from each request release time to

the deadline denoted as 𝑒𝑟 − 𝑡𝑟 , ranges from 10 to 30 minutes while

the worker’s capacity varies from 3 to 20, consistent with existing

works [34, 39] in ridesharing service. Requests released at different

timestamps of the day are used to test the methods with varying

numbers of requests, ranging from 2 to 10 hours (i.e., 8:00 am-10:00

am (2h), 8:00 am-12:00 pm (4h), · · · 8:00 am to 18:00 pm (10h)).

The second application is Logistics, using a dataset collected in

Shanghai by the Cainiao logistics platform [1]. The dataset contains

parcel origins, destinations, and deadlines, and is preprocessed by

downloading the road network map of Shanghai City. The origi-

nal deadlines provided in the dataset are utilized, with parameter

settings summarized in Table 5.

Compared Algorithms. We compare the following algorithms in

this section. Table 6 summaries the algorithms we have proposed.

• Cubic Time Algorithm (Algo. 1 of this paper) [39]. The base-
line method implements the insertion operator over time-

dependent road networks.

• kinetic [18]. A kinetic tree maintains all possible routes to

serve the request.

• GreedyDP [35]. A dynamic programming based algorithm

to plan routes of requests.

• Quadratic Time Algorithm (Algo. 2 of this paper). It generates
new potential routes by enumerating all possible (𝑖, 𝑗) pairs.

• Linear Time Algorithm (Algo. 3 of this paper). It enumerates

𝑗 and find the optimal 𝑖 in 𝑂 (1) time.

Metrics. To evaluate time-dependent insertion performance, we

vary the following values (1) worker’s capacity 𝑐𝑤 ; (2) time period

𝑒𝑟 − 𝑡𝑟 for each request; (3) requests release time duration; (4) the

number of workers. We choose the metrics requiring evaluation: (1)

the number of invoking shortest arrival time queries 𝑞𝑢𝑒𝑟𝑦 (); (2)
insertion time; (3) response time; (4) memory cost. The bottleneck

of time-dependent insertion is the shortest arrival time query over

1677



(a) Number of query on Cainiao (b) Response time on Cainiao (c) Insertion time on Cainiao (d) Memory cost on Cainiao

(e) Number of query on Chengdu (f) Response time on Chengdu (g) Insertion time on Chengdu (h) Memory cost on Chengdu

(i) Number of query on Haikou (j) Response time on Haikou (k) Insertion time on Haikou (l) Memory cost on Haikou

Figure 9: Results of varying capacity of the worker

the time-dependent road network, and we aim to improve efficiency

by avoiding invoking a large number of 𝑞𝑢𝑒𝑟𝑦 (). In terms of the

insertion time, for Cubic Time Algorithm and Quadratic Time Algo-
rithm, it indicates the average time required to check the feasibility

and calculate the increased travel time for each possible (𝑖, 𝑗) pair.
For Linear Time Algorithm, it represents the average time for each

𝑗 value to check the feasibility, find the optimal 𝑖 , and then calcu-

late the increased travel time. Response time and memory cost are

both commonly used metrics in many shared mobility applications

[18, 25, 35]. Response time is the average time required to assign

each request. Memory cost for Cubic Time Algorithm is for storing

the worker’s route, while for Quadratic Time Algorithm and Linear
Time Algorithm, it is dominated by maintained compound travel

functions and auxiliary arrays.

The kinetic [18] and GreedyDP [35] are specifically designed for

static road networks and cannot satisfy all the constraints outlined

in Definition 4 under real-world road conditions. To adapt them for

use in time-dependent road networks, we modify them by using

𝑞𝑢𝑒𝑟𝑦 () to check the feasibility and calculate the arrival time of

each vertex in a new possible route, and the number of invoking

𝑞𝑢𝑒𝑟𝑦 () is reported. Ref. [18, 35] use the response time as the metric

of thesemethods, we report the response time to show the efficiency.

Memory cost is omitted, as these methods use only a few auxiliary

arrays (e.g., lower than 13MB in our test).

Implementation. The experiments are conducted on a server with

40 Intel(R) Xeon(R) E5 2.30GHz processors with hyper-threading

enabled and 128GB memory. The algorithms are implemented in

GNU C++. Each experiment is repeated 10 times and the average

results are reported.

4.2 Experimental Results
Impact of Capacity of Workers. Fig. 9 shows the impact of

worker’s capacity on three datasets. Compared to baseline methods,

Linear Time Algorithm invokes the shortest arrival time queries

much less (75.24% - 97.72% reduction), demonstrating the effective-

ness of the compound travel function. Linear Time Algorithm also

has the fastest insertion time (up to 44.5× faster on Cainiao than
Cubic Time Algorithm) and reduces memory cost by 90.8% - 98.7%

compared to Quadratic Time Algorithm. As capacity increases, time

and memory costs increase, but Linear Time Algorithm consistently

has the lowest time cost andmuch lowermemory cost (nomore than

45 KB on Chengdu) than Quadratic Time Algorithm. Note that the

insertion time and response time of Cubic Time Algorithm, and the

memory cost of Quadratic Time Algorithm increase significantly

due to time and space complexity.

Impact of Time 𝑒𝑟 − 𝑡𝑟 . Fig. 10 shows the results of varying the
deadline of requests onHaikou andChengdu. The values of 𝑒𝑟 −𝑡𝑟
are the scale values of the x-axis. Linear Time Algorithm outper-

forms others in terms of efficiency, which is up to 16.96× faster

in response time. As 𝑒𝑟 − 𝑡𝑟 increases, requests have larger dead-
lines, more requests can be inserted into the original route, and the

time cost ofCubic Time Algorithm and space cost ofQuadratic Time
Algorithm increase significantly. Compared to the method with

𝑂 (𝑛) space cost, Linear Time Algorithm consumes slightly higher

memory (no more than 1 MB, which is acceptable).

Impact of Requests Release Time Duration. Fig. 11 shows

the impact of release time duration on Cainiao and Chengdu.
Linear Time Algorithm remains the fastestmethodwith significantly

fewer 𝑞𝑢𝑒𝑟𝑦 () invocations (6.21-570.60× fewer) and faster response

1678



Figure 10: Results of varying 𝑒𝑟 − 𝑡𝑟

(a) Number of query on Cainiao (b) Number of query on Chengdu

(c) Response time on Cainiao (d) Response time on Chengdu

(e) Insertion time on Cainiao (f) Insertion time on Chengdu

(g) Memory cost on Cainiao (h) Memory cost on Chengdu
Figure 11: Results of varying requests release time duration

time (6.09-15.78× faster) than baselines on both datasets. As re-

lease time duration increases, the number of requests increases,

and time cost increases for all algorithms. The memory cost of

Linear Time Algorithm increases slightly.

Impact of Changes in Road Conditions. In reality, road condi-

tions can change due to various reasons. We test the performances

of the proposed methods under this setting. We randomly changed

10% of the road conditions in the road networks during algorithm

testing, following the procedures in [37]. Whenever the road con-

ditions change, we update the index supporting the 𝑞𝑢𝑒𝑟𝑦 () as
introduced in [37], then the worker’s route and the data summary

are updated. The results on Cainiao and Haikou are reported in

Fig. 12, Linear Time Algorithm remains the fastest.

(a) Number of query on Cainiao (b) Number of query on Haikou

(c) Response time on Cainiao (d) Response time on Haikou
Figure 12: Results when 10% of road conditions change.

(a) Response time (b) Memory cost
Figure 13: Results of scalability test on Cainiao

Scalability Test. We also conduct a scalability test on Cainiao
with 10𝑘 workers and requests of the entire day. Fig. 13 shows the

response time and memory cost. Due to the page limitation, please

refer to our full paper [6] for detailed results.

Computation Cost of 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 (). Table 7 presents the average
computation time of the compound travel function for each new

route, it is included in the response time of each request. Results are

reported for both default and maximum capacity settings, where

more capacity leads to longer routes and more complex functions.

The results demonstrate the efficiency and effectiveness of the

designed compound travel function.

Table 7: Cost of 𝐶𝑜𝑚𝑇𝑟𝑎𝑣𝑒𝑙 () for Linear Time Algo.
Haikou Chengdu Cainiao

Worker’s capacity 𝑐𝑤 5 20 5 20 100 160

Computation time (𝑚𝑠) 6.50 11.79 59.43 179.46 9.72 14.42

Occupy ration to Response time 28% 34% 9% 12% 22% 26%

Case Study: Benefits of Time-Dependent Networks. Time-

dependent road networks exhibit predictable characteristics, en-

abling foresight and prediction of future road network changes

during route planning [20, 46]. Our experiments show that existing

methods for insertion operations are not always optimal in realistic

1679



dynamic settings. Static road networks cause 27% of requests to

miss their deadlines, reducing the number of served requests com-

pared to time-dependent road networks. For detailed experiment

settings and results, please refer to our full paper [6].

Summary of Experiments. After conducting extensive experi-

ments, we summarize the results as follows:

• It is impractical to extend the existing insertion operator

straightforwardly to the time-dependent road networks.

None of the baselines are more efficient than the 𝑂 (𝑛2)-
time algorithm. The baselinemethod takesmore than 11,300

milliseconds to respond to one request on Chengdu and

more than 890 milliseconds to respond to one request on

Cainiao. Therefore, it is inefficient to handle large-scale

requests from real-world shared mobility services.

• Our optimized algorithms, Quadratic Time Algorithm and

Linear Time Algorithm, are 2.16-25.67× faster for 𝑅𝑖𝑑𝑒 −
𝑠ℎ𝑎𝑟𝑖𝑛𝑔 and 6.39-44.5× faster for 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠 compared to

baselines, due to their improvement in time complexity.

• Linear Time Algorithm reduces memory cost by up to 97.1%

comparedwithQuadratic Time Algorithm. Thememory con-

sumed by Linear Time Algorithm is only slightly larger than

Cubic Time Algorithm for both 𝑅𝑖𝑑𝑒𝑠ℎ𝑎𝑟𝑖𝑛𝑔 and 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠

services, e.g., no more than 77 KB on Chengdu.

5 RELATED WORK
Route processing over time-dependent road networks. The
time-dependent road network has attracted many research efforts

in spatial databases. To model dynamic traffic in reality, piecewise

linear functions are widely adopted to fit the edge weight functions

[9, 37, 38]. Novel indexes are introduced in [15, 37] to answer route

planning queries. Ref. [15] proposes a dual-level path index and

utilizes a filter-and-refine strategy to enhance efficiency. Ref. [37]

splits the road network into hierarchical partitions and constructs

a balanced tree index, then computes the travel cost functions of

border vertexes in partitions to answer queries.

Route planning over time-dependent road networks is another

critical problem. Ref. [9] proposes an online route planning problem

and develops a request-inserted algorithm to reduce the competi-

tive ratio. However, it assumes that all passengers have the same

destination. In [14], the last mile delivery problem is extended to

time-dependent road networks, where a courier takes multiple

parcels starting from the same warehouse, and each parcel can

be delivered to alternative locations depending on the time. An

insertion based method is proposed to heuristically insert the de-

livery location into the courier’s path to maximize the number of

delivered parcels. The existing works make the assumption that

all passengers have the same destination or parcels have the same

origin. In contrast, our time-dependent insertion problem is more

challenging as it requires a feasible route, including both the origin

and destination of each request. As shown in example 1, a new

feasible route including both the origin 𝑜3 and destination 𝑑3 is

planned to serve the new request 𝑟3. Furthermore, [9] and [14] omit

to check the feasibility of the worker. Therefore, existing algorithms

cannot be applied to our problem.

Route planning for shared mobility. The shared mobility ser-

vice has also been studied in many domains varying from Database

to AI. Different studies focus on different objectives, [22, 25] focus

on maximizing the number of requests served, while [11, 17, 18, 29,

39] focus on minimizing the total travel time. Additionally, from the

platform’s perspective, the total revenue is also an objective that

needs to be taken into consideration, as shown in [48, 49]. Based on

the HST index [44], the route planning algorithms for the last-mile

delivery are proposed [43, 45].

The insertion operator is an efficient method for planning new

routes by inserting a new request into a worker’s current route, as

proposed in [32]. Recent studies have demonstrated its effectiveness

and efficiency in large-scale static road networks [35, 39, 40]. Ref.

[39, 40] extensively studied the insertion operator and developed

a dynamic programming-based partition framework that reduces

time complexity from 𝑂 (𝑛3) to 𝑂 (𝑛2), and further reduces it to

𝑂 (𝑛) using a fenwick tree index. In [35], a unified route planning

problem for shared mobility is defined, and a novel two-phased

solution based on dynamic programming insertion is proposed to

solve it approximately. However, these solutions do the calculations

following additivity property of the static road networks, none of

them consider the time-varying travel cost characteristics of road

networks in real-world applications.

6 CONCLUSION
In this paper, we first study a real-time insertion operator for shared

mobility on time-dependent road networks. A novel data sum-

mary model is designed to support the delay time query along the

worker’s route. The model is built by computing the compound

travel functions between vertices of the route. By leveraging the

query, we can reduce the time complexity of the existing insertion

operator extended to the dynamic scenario from 𝑂 (𝑛3) to 𝑂 (𝑛2).
Furthermore, we achieve an insertion operator with linear time

and space cost by exploiting the FIFO property of a time-dependent

road network. Specifically, we prove that given a position to insert

the destination, we can find the optimal position to insert the origin

of the new request in𝑂 (1) time. Extensive experiments on datasets

from different real-world applications demonstrate the efficiency

and scalability of our time-dependent insertion operator. In par-

ticular, our proposed insertion operator can be up to 44.5 times

faster than the baseline method under different settings on three

real-world datasets.

ACKNOWLEDGMENT
Zengyang Gong and Lei Chen’s work is partially supported by Na-

tional Key Research and Development Program of China Grant No.

2023YFF0725100, National Science Foundation of China (NSFC) un-

der Grant No. U22B2060, the Hong Kong RGCGRF Project 16213620,

RIF Project R6020-19, AOE Project AoE/E-603/18, Theme-based

project TRS T41-603/20R, CRF Project C2004-21G, Hong Kong ITC

ITF grantsMHX/078/21 and PRP/004/22FX,Microsoft Research Asia

Collaborative Research Grant and HKUST-Webank joint research

lab grants. Yuxiang Zeng’s work is partially supported by National

Science Foundation of China (NSFC) under Grant No. U21A20516,

6233000216, and 62076017, Beijing Natural Science Foundation No.

Z230001, CCF-Huawei Populus Grove Fund, and Didi Collaborative

Research Program NO2231122-00047. Yuxiang Zeng and Lei Chen

are the corresponding authors.

1680



REFERENCES
[1] 2023. Cainiao. https://global.cainiao.com/

[2] 2023. DiDi Chuxing. https://www.didiglobal.com/

[3] 2023. Google Map. https://www.google.com/maps/

[4] 2023. Meituan. https://www.meituan.com

[5] 2023. Openstreetmap. http://www.openstreetmap.com/

[6] 2023. Real-time Insertion Operator for Shared Mobility on Time-Dependent

Road Networks. https://github.com/gzyhkust/Insertion-Operator/blob/main/

fullpaper.pdf

[7] 2023. What is Shared Mobility? https://sharedusemobilitycenter.org/what-is-

shared-mobility/

[8] Mohammad Asghari and Cyrus Shahabi. 2017. An On-Line Truthful and Individu-

ally Rational Pricing Mechanism for Ride-Sharing (SIGSPATIAL ’17). Association
for Computing Machinery, New York, NY, USA, Article 7, 10 pages.

[9] Di Chen, Ye Yuan, Wenjin Du, Yurong Cheng, and Guoren Wang. 2021. On-

line Route Planning over Time-Dependent Road Networks. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). 325–335.

[10] Di Chen, Ye Yuan, Wenjin Du, Yurong Cheng, and Guoren Wang. 2021. Online

Route Planning over Time-Dependent Road Networks. In 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021.
IEEE, 325–335.

[11] Lu Chen, Qilu Zhong, Xiaokui Xiao, Yunjun Gao, Pengfei Jin, and Christian S.

Jensen. 2018. Price-and-Time-Aware Dynamic Ridesharing. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE Computer Society,

Los Alamitos, CA, USA, 1061–1072.

[12] Peng Cheng, Hao Xin, and Lei Chen. 2017. Utility-Aware Ridesharing on Road

Networks. In Proceedings of the 2017 ACM International Conference on Manage-
ment of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing

Machinery, New York, NY, USA, 1197–1210.

[13] Blerim Cici, Athina Markopoulou, and Nikolaos Laoutaris. 2015. Designing an

On-Line Ride-Sharing System. In Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems (Seattle, Washington)

(SIGSPATIAL ’15). Association for Computing Machinery, New York, NY, USA,

Article 60, 4 pages.

[14] Camila F. Costa and Mario A. Nascimento. 2021. Last Mile Delivery Considering

Time-Dependent Locations. In Proceedings of the 29th International Conference
on Advances in Geographic Information Systems (Beijing, China) (SIGSPATIAL
’21). Association for Computing Machinery, New York, NY, USA, 121–132.

[15] Tianlun Dai, Bohan Li, Ziqiang Yu, Xiangrong Tong, Meng Chen, and Gang

Chen. 2021. PARP: A Parallel Traffic Condition Driven Route Planning Model

on Dynamic Road Networks. ACM Trans. Intell. Syst. Technol. 12, 6, Article 73
(dec 2021), 24 pages.

[16] Esteban Feuerstein and Leen Stougie. 2001. On-Line Single-Server Dial-a-Ride

Problems. Theor. Comput. Sci. 268, 1 (oct 2001), 91–105.
[17] Wesam Mohamed Herbawi and Michael Weber. 2012. A Genetic and Insertion

Heuristic Algorithm for Solving the Dynamic Ridematching Problem with Time

Windows. In Proceedings of the 14th Annual Conference on Genetic and Evolution-
ary Computation (Philadelphia, Pennsylvania, USA) (GECCO ’12). Association
for Computing Machinery, New York, NY, USA, 385–392.

[18] Yan Huang, Favyen Bastani, Ruoming Jin, and Xiaoyang Sean Wang. 2014. Large

Scale Real-Time Ridesharing with Service Guarantee on Road Networks. Proc.
VLDB Endow. 7, 14 (oct 2014), 2017–2028.

[19] Lauri Häme. 2011. An adaptive insertion algorithm for the single-vehicle dial-

a-ride problem with narrow time windows. European Journal of Operational
Research 209, 1 (2011), 11–22.

[20] Ke Li, Xuan Rao, Xiaobing Pang, Lisi Chen, and Siqi Fan. 2021. Route Search and

Planning: A Survey. Big Data Res. 26 (2021), 100246.
[21] Yafei Li, Ji Wan, Rui Chen, Jianliang Xu, Xiaoyi Fu, Hongyan Gu, Pei Lv, and

Mingliang Xu. 2021. Top-𝑘 Vehicle Matching in Social Ridesharing: A Price-

Aware Approach. IEEE Transactions on Knowledge and Data Engineering 33, 3

(2021), 1251–1263.

[22] Zhidan Liu, Zengyang Gong, Jiangzhou Li, and Kaishun Wu. 2020. Mobility-

Aware Dynamic Taxi Ridesharing. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE). 961–972.

[23] Hui Luo, Zhifeng Bao, Farhana M. Choudhury, and J. Shane Culpepper. 2021.

Dynamic Ridesharing in Peak Travel Periods. IEEE Transactions on Knowledge
and Data Engineering 33, 7 (2021), 2888–2902.

[24] Wenjun Lyu, Kexin Zhang, Baoshen Guo, Zhiqing Hong, Guang Yang, Guang

Wang, Yu Yang, Yunhuai Liu, and Desheng Zhang. 2022. Towards Fair Work-

load Assessment via Homogeneous Order Grouping in Last-Mile Delivery. In

Proceedings of the 31st ACM International Conference on Information & Knowl-
edge Management (Atlanta, GA, USA) (CIKM ’22). Association for Computing

Machinery, New York, NY, USA, 3361–3370.

[25] Shuo Ma, Yu Zheng, and Ouri Wolfson. 2013. T-share: A large-scale dynamic

taxi ridesharing service. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE). 410–421.

[26] Shuo Ma, Yu Zheng, and Ouri Wolfson. 2015. Real-Time City-Scale Taxi Rideshar-

ing. IEEE Transactions on Knowledge and Data Engineering 27, 7 (2015), 1782–

1795.

[27] Masayo Ota, Huy Vo, Cláudio Silva, and Juliana Freire. 2017. STaRS: Simulating

Taxi Ride Sharing at Scale. IEEE Transactions on Big Data 3, 3 (2017), 349–361.
[28] Zhiwei Tony Qin, Hongtu Zhu, and Jieping Ye. 2021. Reinforcement Learning

for Ridesharing: A Survey. In 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC). 2447–2454.

[29] Douglas O. Santos and Eduardo C. Xavier. 2013. Dynamic Taxi and Ridesharing:

A Framework and Heuristics for the Optimization Problem. In Proceedings of
the Twenty-Third International Joint Conference on Artificial Intelligence (Beijing,
China) (IJCAI ’13). AAAI Press, 2885–2891.

[30] Susan Shaheen, Adam Cohen, Ismail Zohdy, and Beaudry Kock. 2016. Shared

Mobility: Current Practices and Guiding Principles Brief. (2016).

[31] Ali Siahkamari, Aditya Gangrade, Brian Kulis, and Venkatesh Saligrama. 2020.

Piecewise Linear Regression via a Difference of Convex Functions. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event (Proceedings of Machine Learning Research), Vol. 119. PMLR,

8895–8904.

[32] Qian Tao, Yuxiang Zeng, Zimu Zhou, Yongxin Tong, Lei Chen, and Ke Xu. 2018.

Multi-Worker-Aware Task Planning in Real-Time Spatial Crowdsourcing. In

Database Systems for Advanced Applications, Jian Pei, Yannis Manolopoulos,

Shazia Sadiq, and Jianxin Li (Eds.). Springer International Publishing, Cham,

301–317.

[33] Raja Subramaniam Thangaraj, Koyel Mukherjee, Gurulingesh Raravi, Asmita

Metrewar, Narendra Annamaneni, and Koushik Chattopadhyay. 2017. Xhare-a-

Ride: A Search Optimized Dynamic Ride Sharing System with Approximation

Guarantee. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE).
1117–1128.

[34] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, and Ke Xu. 2022. Unified

Route Planning for Shared Mobility: An Insertion-Based Framework. ACM Trans.
Database Syst. 47, 1, Article 2 (may 2022), 48 pages.

[35] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. 2018.

A Unified Approach to Route Planning for Shared Mobility. Proc. VLDB Endow.
11, 11 (jul 2018), 1633–1646.

[36] Jiachuan Wang, Peng Cheng, Libin Zheng, Lei Chen, and Wenjie Zhang. 2022.

Online Ridesharing with Meeting Points. Proceedings of the VLDB Endowment
15, 13 (2022), 3963–3975.

[37] Yong Wang, Guoliang Li, and Nan Tang. 2019. Querying Shortest Paths on Time

Dependent Road Networks. Proc. VLDB Endow. 12, 11 (jul 2019), 1249–1261.
[38] Yishu Wang, Ye Yuan, Hao Wang, Xiangmin Zhou, Congcong Mu, and Guoren

Wang. 2021. Constrained Route Planning over Large Multi-Modal Time-

Dependent Networks. In 2021 IEEE 37th International Conference on Data Engi-
neering (ICDE). IEEE Computer Society, Los Alamitos, CA, USA, 313–324.

[39] Yi Xu, Yongxin Tong, Yexuan Shi, Qian Tao, Ke Xu, and Wei Li. 2019. An

Efficient Insertion Operator in Dynamic Ridesharing Services. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). 1022–1033.

[40] Yi Xu, Yongxin Tong, Yexuan Shi, Qian Tao, Ke Xu, and Wei Li. 2020. An Efficient

Insertion Operator in Dynamic Ridesharing Services. IEEE Transactions on
Knowledge and Data Engineering (2020), 1–1.

[41] Jieping Ye. 2018. Big Data at Didi Chuxing. In The 41st International ACM SIGIR
Conference on Research and Development in Information Retrieval (Ann Arbor, MI,

USA) (SIGIR ’18). Association for Computing Machinery, New York, NY, USA,

1341.

[42] Jieping Ye. 2019. Transportation: A Data Driven Approach. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery; Data
Mining (Anchorage, AK, USA) (KDD ’19). Association for Computing Machinery,

New York, NY, USA, 3183.

[43] Yuxiang Zeng, Yongxin Tong, and Lei Chen. 2019. Last-Mile Delivery Made

Practical: An Efficient Route Planning Framework with Theoretical Guarantees.

Proc. VLDB Endow. 13, 3 (2019), 320–333.
[44] Yuxiang Zeng, Yongxin Tong, and Lei Chen. 2021. HST+: An Efficient Index for

Embedding Arbitrary Metric Spaces. In 37th IEEE International Conference on
Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 648–659.

[45] Yuxiang Zeng, Yongxin Tong, Yuguang Song, and Lei Chen. 2020. The Simpler

the Better: An Indexing Approach for Shared-Route Planning Queries. Proc.
VLDB Endow. 13, 13 (sep 2020), 3517–3530.

[46] Mengxuan Zhang, Lei Li, and Xiaofang Zhou. 2021. An Experimental Evaluation

and Guideline for Path Finding in Weighted Dynamic Network. Proc. VLDB
Endow. 14, 11 (2021), 2127–2140.

[47] Bolong Zheng, Chenze Huang, Christian S. Jensen, Lu Chen, Nguyen Quoc

Viet Hung, Guanfeng Liu, Guohui Li, and Kai Zheng. 2020. Online Trichromatic

Pickup and Delivery Scheduling in Spatial Crowdsourcing. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). 973–984.

[48] Libin Zheng, Lei Chen, and Jieping Ye. 2018. Order Dispatch in Price-Aware

Ridesharing. Proc. VLDB Endow. 11, 8 (apr 2018), 853–865.
[49] Libin Zheng, Peng Cheng, and Lei Chen. 2019. Auction-Based Order Dispatch

and Pricing in Ridesharing. In 2019 IEEE 35th International Conference on Data

1681

https://global.cainiao.com/
https://www.didiglobal.com/
https://www.google.com/maps/
https://www.meituan.com
http://www.openstreetmap.com/
https://github.com/gzyhkust/Insertion-Operator/blob/main/fullpaper.pdf
https://github.com/gzyhkust/Insertion-Operator/blob/main/fullpaper.pdf
https://sharedusemobilitycenter.org/what-is-shared-mobility/
https://sharedusemobilitycenter.org/what-is-shared-mobility/


Engineering (ICDE). 1034–1045.
[50] Guanzhou Zhu, Dong Zhao, Yizong Wang, Haotian Wang, Desheng Zhang, and

Huadong Ma. 2023. COME: Learning to Coordinate Crowdsourcing and Regular

Couriers for Offline Delivery During Online Mega Sale Days. In 2023 IEEE 39th
International Conference on Data Engineering (ICDE). 3126–3139.

1682


	Abstract
	1 Introduction
	2 Problem Statement and Baseline Method
	2.1 Basic Concepts
	2.2 Problem Definition
	2.3 Baseline Method

	3 Our Methodology
	3.1 Preliminary
	3.2 Improve Time Complexity to O(n2) by using O(n2) Compound Travel Functions
	3.3 Optimize Time Complexity to O(n) by using Only O(n) Compound Travel Functions

	4 Experiment Study
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

