
UltraLogLog: A Practical and More Space-Efficient Alternative to
HyperLogLog for Approximate Distinct Counting

Otmar Ertl
Dynatrace Research

Linz, Austria
otmar.ertl@dynatrace.com

ABSTRACT
Since its invention HyperLogLog has become the standard algo-
rithm for approximate distinct counting. Due to its space efficiency
and suitability for distributed systems, it is widely used and also
implemented in numerous databases. This work presents UltraLog-
Log, which shares the same practical properties as HyperLogLog. It
is commutative, idempotent, mergeable, and has a fast guaranteed
constant-time insert operation. At the same time, it requires 28%
less space to encode the same amount of distinct count information,
which can be extracted using the maximum likelihood method.
Alternatively, a simpler and faster estimator is proposed, which
still achieves a space reduction of 24%, but at an estimation speed
comparable to that of HyperLogLog. In a non-distributed setting
where martingale estimation can be used, UltraLogLog is able to
reduce space by 17%. Moreover, its smaller entropy and its 8-bit
registers lead to better compaction when using standard compres-
sion algorithms. All this is verified by experimental results that
are in perfect agreement with the theoretical analysis which also
outlines potential for even more space-efficient data structures. A
production-ready Java implementation of UltraLogLog has been
released as part of the open-source Hash4j library.

PVLDB Reference Format:
Otmar Ertl. UltraLogLog: A Practical and More Space-Efficient Alternative
to HyperLogLog for Approximate Distinct Counting. PVLDB, 17(7): 1655 -
1668, 2024.
doi:10.14778/3654621.3654632

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/dynatrace-research/ultraloglog-paper.

1 INTRODUCTION
Many applications require counting the number of distinct elements
in a data set or data stream. It is well-known that exact counting
needs linear space [6]. However, the space requirements can be dras-
tically reduced, if approximate results suffice. HyperLogLog (HLL)
[23] with improved small-range estimation [20, 27, 39, 43, 51] rep-
resents the state-of-the-art approximate distinct-count algorithm.
It allows distributed counting of up to the order of 264 ≈ 1.8 · 1019

distinct elements with a relative standard error of 1.04/√𝑚 using

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.
doi:10.14778/3654621.3654632

only 6𝑚 bits [27]. Therefore, it is nowadays offered by a big number
of data stores as part of their query language (see e.g. documen-
tation of Timescale, Redis, Oracle Database, Snowflake, Microsoft
SQL Server, Google BigQuery, Vertica, Elasticsearch, Aerospike,
Amazon Redshift, KeyDB, DuckDB, or Dynatrace Grail). Further ap-
plications of HLL include query optimization [25, 34], caching [48],
graph analysis [9, 38], attack detection [13, 15], network volume
estimation [8], or metagenomics [7, 10, 19, 31].

HLL is actually very simple as exemplified in Algorithm 1.
It typically consists of a densely packed array of 6-bit registers
𝑟0, 𝑟1, . . . , 𝑟𝑚−1 [27] where the number of registers 𝑚 is a power of
2,𝑚 = 2𝑝 . The choice of the precision parameter 𝑝 allows trading
space for better estimation accuracy. Adding an element requires
calculating a 64-bit hash value. 𝑝 bits are used to choose a register
for the update. The number of leading zeros (NLZ) of the remaining
64 − 𝑝 bits are interpreted as a geometrically distributed update
value with success probability 1

2 and positive support, that is used
to update the selected register, if its current value is smaller. Estimat-
ing the distinct count from the register values is more challenging,
but can also be implemented using a few lines of code [20, 23].

The popularity of HLL is based on following advantageous fea-
tures that make it especially useful in distributed systems:

Speed: Element insertion is a fast and allocation-free operation
with a constant time complexity independent of the sketch size. In
particular, given the hash value of the element, the update requires
only a few CPU instructions.
Idempotency: Further insertions of the same element will never
change the state. This is actually a natural property every count-
distinct algorithm should support to prevent duplicates from chang-
ing the result.
Mergeability: Partial results calculated over subsets can be easily
merged to a final result. This is important when data is distributed
or processed in parallel.
Reproducibility: The result does not depend on the processing
order, which often cannot be guaranteed in practice anyway. Re-
producibility is achieved by a commutative insert operation and a
commutative and associative merge operation.
Reducibility: The state can be reduced to a smaller state corre-
sponding to a smaller precision parameter. The reduced state is
identical to that obtained by direct recording with lower precision.
This property allows adjusting the precision without affecting the
mergeability with older records.
Estimation: A fast and robust estimation algorithm ensures nearly
unbiased estimates with a relative standard error bounded by a
constant over the full range of practical distinct counts.
Simplicity: The implementation requires only a few lines of code.
The entire state can be stored in a single byte array of fixed length

1655

https://doi.org/10.14778/3654621.3654632
https://github.com/dynatrace-research/ultraloglog-paper
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3654621.3654632
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Algorithm 1: Inserts an element with 64-bit hash value ⟨ℎ63ℎ62 . . . ℎ0⟩2 into a
HyperLogLog consisting of 𝑚 = 2𝑝 (𝑝 ≥ 2) 6-bit registers 𝑟0, 𝑟1, . . . , 𝑟𝑚−1 with
initial values 𝑟𝑖 = 0.
𝑖 ← ⟨ℎ63ℎ62 . . . ℎ64−𝑝 ⟩2 ⊲ extract register index
𝑎 ← ⟨ 0 . . . 0

𝑝

ℎ63−𝑝ℎ62−𝑝 . . . ℎ0⟩2 ⊲ mask register index bits

𝑘 ← nlz(𝑎) − 𝑝 + 1 ⊲ update value 𝑘 ∈ [1, 65 − 𝑝]
⊲ function nlz returns the number of leading zeros

𝑟𝑖 ← max(𝑟𝑖 , 𝑘) ⊲ update register

which makes serialization very fast and convenient. Furthermore,
add and in-place merge operations do not require any additional
memory allocations.
To our knowledge HLL is so far the most space-efficient practical
data structure having all these desired properties. Space-efficiency
can be measured in terms of the memory-variance product (MVP)
[37], which is the relative variance of the (unbiased) distinct-count
estimate �̂� multiplied by the storage size in bits

MVP := Var(�̂�/𝑛) × (storage size in bits), (1)
where 𝑛 is the true distinct count. If the MVP is asymptotically (for
sufficiently large distinct counts) a constant specific to the data
structure, it can be used for comparison as it eliminates the general
inverse dependence of the relative estimation error on the root
of the storage size. Most HLL implementations use 6-bit registers
[27] to support distinct counts beyond the billion range, resulting
in a MVP of 6.48 [37]. A recent theoretical work conjectured a
general lower bound of 1.98 for the MVP of sketches supporting
mergeability and reproducibility [36], which shows the potential
for improvement. Many different approaches have been proposed
to beat the space efficiency of HLL, but they all sacrificed at least
one of the properties listed above.

1.1 Related Work
Lossless compression of HyperLogLog (HLL) can significantly re-
duce the storage size [18, 29, 40]. Since the compressed state pre-
vents random access to registers as required for insertion, bulking
is needed to realize at least amortized constant update times. The
required buffer partially cancels out the memory savings. Recent
techniques avoid buffering of insertions. The Apache Data Sketches
library [2] provides an implementation using 4 bits per register to
store the most frequent values relative to a global offset. Out of
range values are kept separately in an associative array. Overall,
this leads to a smaller MVP but also to a more expensive insert
operation. Its runtime is proportional to the memory size in the
worst case, because all registers must be updated whenever the
global offset is increased. HyperLogLogLog [28] takes this strategy
to the extreme with 3-bit registers and achieves a space saving of
around 40% at the expense of an insert operation which, except for
very large numbers, has been reported to be on average more than
an order of magnitude slower compared to HLL [28].

Interestingly, lossless compression of probabilistic counting with
stochastic averaging (PCSA) [24], a less-space efficient (when un-
compressed) predecessor of HLL also known as FM-sketch, yields
a smaller MVP than compression of HLL [29, 40]. The compressed
probability counting (CPC) sketch as part of the Apache Data
Sketches library [2] uses this finding. The serialized representa-
tion of the CPC sketch achieves a MVP of around 2.31 [3] that

Table 1: Notation

Symbol Comment

𝑛 distinct count
�̂� distinct count estimate
𝑏 base, 𝑏 > 1, defines distribution of update values, compare (2)
𝑝 precision parameter
𝑚 number of registers,𝑚 = 2𝑝
𝑤 maximum possible update value, cf. Section 2.1
𝑞 number of bits used for storing the maximum occurred update values, 2𝑞 > 𝑤
𝑑 number of additional register bits to indicate updates with smaller values
𝑟𝑖 value of 𝑖-th register , 0 ≤ 𝑖 <𝑚, 0 ≤ 𝑟𝑖 < (𝑤 + 1)2𝑑
𝑢𝑖 maximum occurred update value for 𝑖-th register,𝑢𝑖 = ⌊𝑟𝑖 /2𝑑 ⌋, 0 ≤ 𝑢𝑖 ≤ 𝑤
𝑐 𝑗 number of registers with value 𝑗 , 𝑐 𝑗 := | {𝑖 |𝑟𝑖 = 𝑗 } |
𝜌reg probability mass function (PMF) of register values, see (4)
�̃�reg approximated PMF of register values, see (5)
L likelihood function, L = L(𝑛 |𝑟0 . . . 𝑟𝑚−1)
I Fisher information, I = E(−𝜕2/𝜕𝑛2 ln L) , see (7)
H Shannon entropy, H = E(− log2 L) , see (9)
𝜏 free parameter of generalized remaining area (GRA) estimators
𝑧𝑘 short notation for exp(−𝑛 (𝑏 − 1)/(𝑚𝑏𝑘)) , compare (3)
Γ gamma function, Γ (𝑥) :=

∫ ∞
0 𝑦𝑥−1𝑒−𝑦𝑑𝑦

Z Hurvitz zeta function, Z (𝑥, 𝑦) :=
∑︁∞
𝑢=0 (𝑢 + 𝑦)−𝑥 = 1

Γ (𝑥)
∫ ∞
0

𝑧𝑥−1𝑒−𝑦𝑧
1−𝑒−𝑧 𝑑𝑧

` state change probability
⟨. . .⟩2 binary representation, e.g. ⟨110⟩2 = 6
⌊ . . .⌋ floor function, e.g. ⌊3.7⌋ = 3

is already quite close to the conjectured lower bound of 1.98 [36].
However, the need of bulked updates to achieve amortized constant-
time insertions more than doubles the memory footprint which also
makes serialization significantly slower than for the original HLL.
Similar to all compressed variants of HLL, the insert operation of
the CPC sketch takes time proportional to the sketch size in the
worst case.

Lossy compression of HLL has also been proposed [49, 50]. How-
ever, like other approaches such as HyperBitBit/HyperBit [41], they
trade idempotency for less space and are therefore risky to use
[36]. In contrast, sacrificing mergeability for less space is of greater
practical interest [14, 26, 30]. When the data is not distributed and
a merge operation is not actually needed, the MVP of HLL can be
reduced by 36% down to 4.16 by martingale also known as historic
inverse probability (HIP) estimation [16, 42]. The theoretical limit
of MVP for non-mergeable sketches is at most 1.63 [37], and is also
nearly reached by the serialized representation of the CPC sketch
[3]. Data structures with in-memory representations that can be
updated in constant time in the worst case are HLL with vectorized
counters [11] and the martingale curtain sketch which achieves a
MVP of 2.31 [37]. As the insertions are not commutative, all these
non-mergeable approaches also do not support reproducibility.

The only mergeable data structure we know of that is more space-
efficient than HLL while having essentially the same properties,
in particular constant-time worst-case updates, is ExtendedHyper-
LogLog (EHLL) [33]. It extends the HLL registers from 6 to 7 bits to
store not only the maximum update value, but also whether there
was an update with a value smaller by one. This additional infor-
mation can be used to obtain more accurate estimates. In particular,
the MVP is reduced by 16% to 5.43. The only thing missing to make
it really practical is an estimator for small distinct counts. As with
the original HLL [23], it was only proposed to switch to the linear
probabilistic count estimator [47]. However, this is problematic
because the estimation error in the transition region can be large
[20, 27]. Nevertheless, EHLL motivated us to generalize its basic
idea by extending HLL registers even further.

1656

1.2 Summary of Contributions
We first describe a data structure that generalizes the known data
structures HyperLogLog (HLL) [23], ExtendedHyperLogLog (EHLL)
[33], and probabilistic counting with stochastic averaging (PCSA)
[24]. We derive analytic expressions for the Fisher information and
the Shannon entropy as functions of the data structure parameters.
Although these expressions reveal even more space-efficient con-
figurations that could be the subject of future research, the focus of
this work is on a setting that leads to a very practical data sketch
called UltraLogLog (ULL) with a MVP of 4.63 which is 28% below
that of HLL. Since the Shannon entropy is also 24% smaller for
the same estimation error, ULL is also more compact when using
lossless compression. Moreover, our experimental results indicate
that standard compression algorithms additionally benefit from the
8-bit register size of ULL.

To extract all the information contained in the ULL sketch, we
applied the maximum likelihood (ML) method that achieves an es-
timation error as theoretically predicted by the Cramér-Rao bound
[12]. Alternatively, we present a faster approach based on a fur-
ther generalization of the recently proposed generalized remaining
area (GRA) estimator [46]. Even though our theoretical analysis
shows a smaller estimation efficiency than the ML estimator, the
MVP with a value of 4.94 still corresponds to a 24% space reduc-
tion compared to HLL. As the GRA estimator, the basic version of
our new estimator works only for distinct counts that are neither
too small nor too large. Therefore, we developed two additional
estimators specific to those ranges that are also easy to evaluate.
Using a novel approach, they are seamlessly combined with the
basic estimator to cover the full range of distinct count values. We
also analyzed martingale estimation, which can be used for non-
distributed data, and found that in this case ULL reduces the MVP
by 17% to 3.47 compared to HLL.

All theoretically derived estimators were verified by intensive
simulations, which all show perfect agreement with the theoreti-
cally predicted estimation errors. In particular, we use a technique
that allows verification for distinct counts on the order of 264, which
is not possible using traditional simulations. Finally, we also present
the results of speed benchmarks, which show that ULL is similarly
fast as HLL.

An implementation of ULL is publicly available as part of the
Hash4j open-source Java library at https://github.com/dynatrace-
oss/hash4j. Detailed instructions together with the necessary source
code to reproduce all presented results and figures can be found
at https://github.com/dynatrace-research/ultraloglog-paper. A ver-
sion of this paper extended by an appendix with mathematical
derivations and proofs is also available [22].

2 GENERALIZED DATA STRUCTURE
We start by introducing a data structure for approximate distinct
counting that generalizes HyperLogLog (HLL) [23], ExtendedHy-
perLogLog (EHLL) [33], and probabilistic counting with stochastic
averaging (PCSA) [24]. As those, it consists of 𝑚 registers which
are initially set to zero. For every added element a uniformly dis-
tributed hash value is computed. This hash value is used to extract
a uniform random register index 𝑖 ∈ [0,𝑚) and some geometrically

distributed integer value with probability mass function (PMF)

𝜌update (𝑘) = (𝑏 − 1)𝑏−𝑘 𝑘 ≥ 1, 𝑏 > 1, (2)

parameterized by the base parameter 𝑏, that is used to update the
𝑖-th register. Each register consists of 𝑞 + 𝑑 bits. 𝑞 bits are used
to store the maximum update value 𝑢𝑖 seen so far. The remaining
𝑑 bits indicate whether there have been any updates with values
𝑢𝑖 − 1, . . . , 𝑢𝑖 − 𝑑 , respectively. Obviously, this update procedure is
idempotent meaning that further occurrences of the same elements
will never change any register state. As a consequence, the final
state of this data structure can be used to estimate the number of
inserted distinct elements 𝑛.

Every register state can be described by an integer value 𝑟𝑖 with
0 ≤ 𝑟𝑖 < 2𝑞+𝑑 . We assume that the most significant 𝑞 bits of 𝑟𝑖 are
used to store 𝑢𝑖 , which can therefore be simply obtained by 𝑢𝑖 =
⌊𝑟𝑖/2𝑑 ⌋. As example for 𝑞 = 6 and 𝑑 = 2, 𝑟𝑖 = ⟨00011010⟩2 would
mean that the largest update value was 𝑢𝑖 = ⟨000110⟩2 = 6. The
right-most 𝑑 bits indicate that the register was also already updated
with a value of 5 but not yet with 4. If the register gets further
updated with value 8, the state would become 𝑟𝑖 = ⟨00100001⟩2
where the first 𝑞 = 6 bits encode 𝑢𝑖 = ⟨001000⟩2 = 8 and the left-
most 𝑑 = 2 bits indicate that there was no update with value 7 but
one with 6. Information about smaller update values is lost. If𝑢𝑖 ≤ 𝑑 ,
there are only 𝑢𝑖 − 1 smaller update values and therefore only 𝑢𝑖 − 1
of the𝑑 extra bits are relevant and some values like 𝑟𝑖 = ⟨00001001⟩2
for 𝑞 = 6 and 𝑑 = 2 cannot be attained. Enumerating just possible
states would lead to a slightly more compact encoding. However,
for the sake of simplicity and also to avoid special cases, we refrain
from this small improvement.

In practice, the number of registers 𝑚 is usually some power
of 2, 𝑚 = 2𝑝 with 𝑝 being the precision parameter. In this way, a
uniform random register index can be chosen by just taking 𝑝 bits
from the hash value. Furthermore, the parameter 𝑏 is often 2 such
that the update value 𝑘 can be easily obtained from the number of
leading zeros (NLZ) of the remaining hash bits and therefore usually
requires just a single CPU instruction. Obviously, the cases 𝑏 = 2,
𝑑 = 0 and 𝑏 = 2, 𝑑 = 1 correspond to HLL and EHLL, respectively.
Furthermore, since PCSA effectively keeps track of any update
values, the stored information corresponds to our generalized data
structure with 𝑏 = 2, 𝑑 →∞. (PCSA typically uses just 64 bits for
each register which is sufficient as update values greater than 64
are unlikely for real-world distinct counts.) Another advantage of
choosing 𝑚 as a power of 2 and 𝑏 = 2 is that the data structure
can be implemented in such a way that it can later be reduced to a
smaller precision parameter [20]. The result will then be identical as
if the smaller precision parameter was chosen from the beginning.
This is important for migration scenarios where precision needs
to be changed in a way that is compatible and mergeable with
historical data.

2.1 Statistical Model
For simplification, we use the common Poisson approximation
[20, 23, 46] that the number of inserted distinct elements is not fixed,
but follows a Poisson distribution with mean 𝑛. As a consequence,
since updates are evenly distributed over all registers, the number
of updates with value 𝑘 per register is again Poisson distributed

1657

https://github.com/dynatrace-oss/hash4j
https://github.com/dynatrace-oss/hash4j
https://github.com/dynatrace-research/ultraloglog-paper

with mean 𝑛𝜌update (𝑘)/𝑚 = 𝑛(𝑏 − 1)/(𝑚𝑏𝑘). The probability that
a register was updated with value 𝑘 at least once, denoted by event
𝐴𝑘 , is therefore

Pr(𝐴𝑘) = 1 − 𝑧𝑘 with 𝑧𝑘 := exp(−𝑛(𝑏 − 1)/(𝑚𝑏𝑘)) . (3)
The probability that 𝑢 was the largest update value, which implies
that there were no updates with values greater than 𝑢, is given by
Pr(𝐴𝑢 ∧

⋀︁∞
𝑘=𝑢+1 𝐴𝑘) = (1 − 𝑧𝑢)

∏︁∞
𝑘=𝑢+1 𝑧𝑘 = 𝑧

1
𝑏−1
𝑢 (1 − 𝑧𝑢). The

Poisson approximation results in registers that are independent
and identically distributed. For the generalized data structure the
corresponding probability mass function (PMF) can be written as
𝜌reg (𝑟 |𝑛) = Pr(𝑟𝑖 = 𝑟) = (4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑧
1

𝑏−1
0 𝑟=0,

𝑧
1

𝑏−1
𝑢 (1−𝑧𝑢)

∏︁𝑢−1
𝑗=1 𝑧

1−𝑙 𝑗
𝑢− 𝑗 (1−𝑧𝑢− 𝑗)𝑙 𝑗 𝑟=𝑢2𝑑+⟨𝑙1 ...𝑙𝑢−1 ⟩22𝑑+1−𝑢 , 1≤𝑢≤𝑑,

𝑧
1

𝑏−1
𝑢 (1−𝑧𝑢)

∏︁𝑑
𝑗=1 𝑧

1−𝑙 𝑗
𝑢− 𝑗 (1−𝑧𝑢− 𝑗)𝑙 𝑗 𝑟=𝑢2𝑑+⟨𝑙1 ...𝑙𝑑 ⟩2, 𝑑+1≤𝑢<𝑤,

(1−𝑧
1

𝑏−1
𝑤−1)

∏︁𝑑
𝑗=1 𝑧

1−𝑙 𝑗
𝑤− 𝑗 (1−𝑧𝑤− 𝑗)𝑙 𝑗 𝑟=𝑤2𝑑+⟨𝑙1 ...𝑙𝑑 ⟩2,

0 else.

This formula takes into account that update values are limited to
the range [1,𝑤]. The upper limit is on the one hand a consequence
of the number of register bits reserved for storing the maximum
update value. If 𝑞 bits are used, the update values must be truncated
at 2𝑞 − 1 because higher update values cannot be stored. On the
other hand, the way the geometrically distributed integer values are
typically determined also leads to an upper limit. For example, the
update values in Algorithm 1 do not exceed 65 − 𝑝 , which results
from extracting the update value and the register index from a
single 64-bit hash value.

For our theoretical analysis, we consider a simplified model. We
assume that registers are initially set to −∞ and that there are
no restrictions on the update values. In particular, there are also
updates with non-positive values𝑘 ≤ 0 with corresponding (virtual)
events 𝐴𝑘 occurring with probabilities according to (3). Then the
PMF for a register simplifies to

�̃�reg (𝑟 |𝑛) = Pr(𝑟𝑖 = 𝑟) = 𝑧
1

𝑏−1
𝑢 (1 − 𝑧𝑢)

𝑑∏︂
𝑗=1

𝑧
1−𝑙 𝑗
𝑢− 𝑗 (1 − 𝑧𝑢− 𝑗)𝑙 𝑗

with 𝑟 = 𝑢2𝑑 + ⟨𝑙1 . . . 𝑙𝑑 ⟩2 . (5)

If all register values are in the range [(𝑑 + 1)2𝑑 ,𝑤2𝑑), which is
usually the case for not too small and not too large distinct counts,
(4) and (5) are equivalent. As a consequence, the following theoret-
ical results will also hold for (4) when the distinct count is in the
intermediate range.

2.2 Theoretical Analysis
Given the register states 𝑟0, . . . , 𝑟𝑚−1, the log-likelihood function
can be expressed as

lnL = lnL(𝑛 |𝑟0, . . . , 𝑟𝑚−1) =
∑︁𝑚−1
𝑖=0 ln 𝜌reg (𝑟𝑖 |𝑛). (6)

When assuming the simplified PMF (5), the Fisher information can
be written as (see extended paper [22])

I = E

(︃
− 𝜕2

𝜕𝑛2 lnL
)︃
≈ 𝑚

𝑛2
1

ln𝑏 Z
(︄
2, 1 + 𝑏−𝑑

𝑏 − 1

)︄
(7)

−40%

−30%

−20%

−10%

0%

10%

20%

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

m
em

or
y-

va
ri

an
ce

pr
od

uc
t

HLL

EHLL

ULL

@ = 6

−40%

−30%

−20%

−10%

0%

10%

20%

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
base 1

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

m
em

or
y-

va
ri

an
ce

pr
od

uc
t

@ = 7

Figure 1: The theoretical asymptotic memory-variance prod-
uct (MVP) (8) over the base 𝒃 for 𝒒 = 6 and 𝒒 = 7 and various
values of 𝒅 when assuming a memory footprint of 𝒎(𝒒 + 𝒅)
bits. The top chart shows the 28% improvement of UltraLog-
Log (ULL) over HyperLogLog (HLL).

using the Hurvitz zeta function Z as defined in Table 1. The approxi-
mation is based on the fact that the Fisher information is a periodic
function of log𝑏 𝑛 with period 1 and tiny relative amplitude that
can be ignored in practice as shown in the extended paper [22].
Formula (7) matches the results reported for the special cases of
generalized HLL (𝑑 = 0) and generalized PCSA (𝑑 →∞) [36].

According to Cramér-Rao [12] the reciprocal of the Fisher in-
formation I is a lower bound for the variance of any unbiased
estimator. Our experiments will show that for a sufficiently large
number of registers 𝑚, this lower bound can be actually reached
using maximum likelihood (ML) estimation. The corresponding
asymptotic MVP is given by

MVP =𝑚(𝑞 + 𝑑) Var
(︃
�̂�

𝑛

)︃
=
𝑚(𝑞 + 𝑑)
I𝑛2 ≈ (𝑞 + 𝑑) ln𝑏

Z (2, 1 + 𝑏−𝑑
𝑏−1)

. (8)

(𝑞 + 𝑑) is the number of bits used for a single register. 𝑞 bits are
used for storing the maximum update value and 𝑑 is the number
of extra bits as already described before. The MVP (8) is plotted in
Figure 1 over the base 𝑏 for 𝑞 = 6 and 𝑞 = 7 and various values
of 𝑑 and allows comparing the memory-efficiencies of different
configurations, when assuming that the state takes overall𝑚(𝑞 +𝑑)
bits and is not further compressed.

It is also interesting to study the case where the state is ideally
compressed, which means that the number of bits needed to store
the state is given by its Shannon entropy. Considering the resulting
MVP, also called Fisher-Shannon (FISH) number [36], again allows

1658

a better comparison. Using the simplified PMF (5), the Shannon
entropy can be approximated by (see extended paper [22])

H = E(− log2 L)

≈ 𝑚
(ln 2) (ln𝑏)

(︃(︂
1 + 𝑏−𝑑

𝑏−1

)︂−1
+

∫ 1
0 𝑧

𝑏−𝑑
𝑏−1 (1−𝑧) ln(1−𝑧)

𝑧 ln𝑧 𝑑𝑧

)︃
. (9)

Combining (7) and (9) gives for the MVP under the assumption of
an efficient estimator and optimal compression

MVP = H Var
(︃
�̂�

𝑛

)︃
=
H
I𝑛2 ≈

(1+𝑏−𝑑
𝑏−1)−1+

∫ 1
0 𝑧

𝑏−𝑑
𝑏−1 (1−𝑧) ln(1−𝑧)

𝑧 ln𝑧 𝑑𝑧

Z (2,1+𝑏−𝑑
𝑏−1) ln 2

.

(10)
This function is plotted in Figure 2 over the base 𝑏 for various
values of 𝑑 . The results agree with the conjecture that the MVP of
sketches supporting mergeability and reproducibility is fundamen-
tally bounded by [36]

lim
𝑏−𝑑
𝑏−1→0

H
I𝑛2 ≈

1 +
∫ 1
0
(1−𝑧) ln(1−𝑧)

𝑧 ln𝑧 𝑑𝑧

Z (2, 1) ln 2 ≈ 1.98.

2.3 Choice of Parameters
The data structure proposed in Section 2 has four parameters, the
base 𝑏, the number of registers𝑚 = 2𝑝 , the number of register bits
𝑞 reserved for storing the maximum update value, and the number
of additional bits 𝑑 to indicate the occurrences of the 𝑑 next smaller
update values relative to the maximum. The previous theoretical
results allow us to find parameters that lead to a small MVP. Here
we can essentially leave𝑚 aside since it can be used to define the
accuracy/space tradeoff, but has essentially no effect on the MVP
according to (8) and (10).

The parameters 𝑏 and 𝑞 define the operating range of the data
structure and must be chosen such that it is very unlikely that all
registers get saturated. In other words, the fraction of registers with
𝑟𝑖 ≥ 𝑤2𝑑 must be small. This requires according to (4) that Pr(𝑟𝑖 <
𝑤2𝑑) = 𝑧

1
𝑏−1
𝑤−1 = exp(− 𝑛

𝑚𝑏𝑤−1) ≈ 1 or 𝑛 ≪ 𝑚𝑏𝑤−1. Hence, the
maximum supported distinct count 𝑛max can be roughly estimated
by 𝑛max ≈𝑚𝑏𝑤−1. If𝑤 is limited by the register size (𝑤 = 2𝑞 − 1, cf.
Section 2.1), we get𝑛max ≈𝑚𝑏2𝑞−2. For HLL with𝑚 = 256 registers,
𝑏 = 2, and a registers size of 𝑞 = 5 bits, as originally proposed,
we have 𝑛max ≈ 275 billions which might not be sufficient in all
situations. Therefore, most HLL implementations use nowadays
𝑞 = 6 [27], which is definitely sufficient for any realistic counts.
Some implementations even use a whole byte per register (𝑞 = 8),
but mainly to have more convenient register access in memory [5].

Bearing in mind the operating range defined by 𝑚, 𝑏, and 𝑞,
we explore the theoretical MVP (8) for different configurations as
shown in Figure 1. First we consider the case 𝑏 = 2 which also
covers HLL (𝑏 = 2, 𝑑 = 0) and EHLL (𝑏 = 2, 𝑑 = 1) and is of
particular practical interest due to the very fast mapping of hash
values to update values as discussed in Section 2. For 𝑏 = 2, we need
to choose 𝑞 = 6, if we want to make sure that any realistic distinct
counts can be handled. According to Figure 1 the optimal choice
for 𝑏 = 2 would be 𝑑 = 3 resulting in a theoretical MVP of 4.4940.
Despite its slightly larger theoretical MVP of 4.6313, the case 𝑑 = 2
is very attractive from a practical point of view since a register takes
𝑞 + 𝑑 = 8 bits and fits perfectly into a single byte. This enables fast

−40%

−20%

0%

20%

40%

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
base 1

2.0

2.5

3.0

3.5

4.0

4.5

m
em

or
y-

va
ri

an
ce

pr
od

uc
t

HLL

EHLL

ULL

Figure 2: The theoretical asymptotic memory-variance prod-
uct (MVP) (10) over the base 𝒃 for various values of 𝒅 under
the assumption of optimal lossless compression. The MVP
of UltraLogLog (ULL) is 24% smaller than that of HyperLog-
Log (HLL).

updates as registers can be directly accessed and modified when
stored in a byte array. This is why we picked 𝑏 = 2, 𝑑 = 2, 𝑞 = 6 as
configuration for our new data structure called UltraLogLog (ULL).
Its theoretical MVP is 28% smaller than that of HLL with a register
size of 𝑞 = 6 and a MVP of 6.4485. This even corresponds to a 46%
improvement, when compared to HLL implementations that use
𝑞 = 8 bits per register [5] leading to MVP ≈ 8.5981.

Figure 1 shows that the MVP could be further reduced by choos-
ing bases 𝑏 other than 2. For 𝑞 = 6, a minimum MVP of 3.4030
is achieved for 𝑏 ≈ 1.1976 and 𝑑 = 18. However, a small 𝑏
leads to a small operating range. For example, 𝑏 = 1.1976 yields
𝑛max ≈ 18 millions for 𝑚 = 256 which is too small for many ap-
plications. However, the working range can be extended again by
increasing 𝑞. For 𝑞 = 7 the minimum MVP ≈ 3.5338 is obtained for
𝑑 = 23 and 𝑏 ≈ 1.1642 leading to 𝑛max ≈ 53 billions for 𝑚 = 256.
From a practical point of view the configuration 𝑞 = 7, 𝑑 = 9,
𝑏 =

√
2 with MVP ≈ 3.9025 could be an interesting choice for

future research. The operating range would be similar to ULL or
HLL, registers would take exactly two bytes (𝑞 + 𝑑 = 16), and the
mapping of hash values to update values for 𝑏 =

√
2 according to

(2) could be accomplished without expensive logarithm evaluations
or table lookups. The update value can be obtained by doubling the
number of leading zeros (NLZ) and adding 0 or 1 depending on the
remaining hash bits, whose value range is divided into two parts in
the ratio 1 :

√
2. However, a single 64-bit hash value might not be

sufficient in this case.
Figure 2 shows the MVP under the assumption of optimal lossless

compression as given by (10). The ULL configuration with 𝑑 = 2
leads to MVP ≈ 2.3122 which is 24% less than for HLL with 𝑑 = 0
and MVP ≈ 3.0437. Therefore, ULL is potentially superior to any
variant of HLL that uses lossless compression techniques [2, 28], if
similar techniques are also applied to ULL.

3 DISTINCT COUNT ESTIMATION
The theoretical results show clearly that UltraLogLog (ULL) as a
special case of the presented generalized data structure with 𝑏 = 2,
𝑑 = 2 and 𝑞 = 6 encodes distinct count information, uncompressed

1659

and compressed, more efficiently than HLL with 𝑏 = 2, 𝑑 = 0 and
𝑞 = 6. However, an open question is whether this information
can also be readily accessed using a simple and robust estimation
procedure, which will be the focus of the following sections.

3.1 Maximum-Likelihood Estimator
Since we know the probability mass function (PMF) (4) when us-
ing the Poisson approximation, we can simply use the maximum
likelihood (ML) method. For 𝑏 = 2, the log-likelihood function (6)
is shaped like

lnL = − 𝑛
𝑚𝛼 +∑︁𝑤−1

𝑢=1 𝛽𝑢 ln(1 − 𝑒− 𝑛
𝑚2𝑢),

where for ULL with 𝑑 = 2 the coefficients 𝛼 and 𝛽𝑢 are given by

𝛼 = 𝑐0+ 𝑐4
2 +

3𝑐8+𝑐10
4 +

(︂∑︁𝑤−1
𝑢=3

7𝑐4𝑢+3𝑐4𝑢+1+5𝑐4𝑢+2+𝑐4𝑢+3
2𝑢

)︂
+ 3𝑐4𝑤+𝑐4𝑤+1+2𝑐4𝑤+2

2𝑤−1 ,

𝛽1 = 𝑐4+𝑐10+𝑐13+𝑐15, 𝛽2 = 𝑐8+𝑐10+𝑐14+𝑐15+𝑐17+𝑐19,

𝛽𝑢 = 𝑐4𝑢+𝑐4𝑢+1+𝑐4𝑢+2+𝑐4𝑢+3+𝑐4𝑢+6+𝑐4𝑢+7+𝑐4𝑢+9+𝑐4𝑢+11 for 3 ≤ 𝑢 ≤ 𝑤 − 2,

𝛽𝑤−1 = 𝑐4𝑤−4+𝑐4𝑤−3+𝑐4𝑤−2+𝑐4𝑤−1+𝑐4𝑤+𝑐4𝑤+1+2𝑐4𝑤+2+2𝑐4𝑤+3 .

𝑐 𝑗 := |{𝑖 |𝑟𝑖 = 𝑗}| is the number of registers having value 𝑗 .
As the corresponding ML equation has the same shape as that

for HLL, we can reuse the numerically robust solver we developed
based on the secant method [20]. This algorithm avoids the evalu-
ation of expensive mathematical functions, but is still somewhat
costly as the solution needs to be found iteratively. The ML esti-
mate �̂�ML can be further improved by correcting for the first-order
bias [17]. Applying the correction factor as derived in the extended
paper [22] under the assumption of the simplified PMF (5) gives for
ULL with 𝑏 = 2 and 𝑑 = 2

�̂� = �̂�ML

(︃
1 + 1

𝑚

3(ln 2)Z (3, 5
4)

2(Z (2, 5
4))2

)︃−1
≈ �̂�ML

(︂
1 + 0.48147

𝑚

)︂−1
(11)

where Z denotes again the Hurvitz zeta function.
The ML method is known to be asymptotically efficient as 𝑚 →

∞. The experimental results presented later in Section 5.1 show that
the ML estimate really matches the theoretically predicted MVP (8).
For HLL, estimators have been found that are easier to compute
than the ML estimator while giving almost equal estimates over
the whole value range [20]. This was our motivation to look for
simpler estimators for ULL.

3.2 GRA Estimator
Recently, the generalized remaining area (GRA) estimator was pro-
posed, which can be easily computed and is more efficient than
existing estimators for probabilistic counting with stochastic av-
eraging (PCSA) and HyperLogLog (HLL) [46]. Therefore, we in-
vestigated if this estimation approach is also suitable for our gen-
eralized data structure and in particular for ULL. The basic idea
is to sum up 𝑏−𝜏𝑘 with some constant 𝜏 > 0 for all update val-
ues 𝑘 that we know with certainty, based on the current regis-
ter value 𝑟 = 𝑢2𝑑 + ⟨𝑙1 . . . 𝑙𝑑 ⟩2, could not have occurred previ-
ously. The corresponding statistic for our generalized data struc-
ture can be expressed as

∑︁𝑢−1
𝑘=𝑢−𝑑 (1 − 𝑙𝑢−𝑘)𝑏−𝜏𝑘 +

∑︁∞
𝑘=𝑢+1 𝑏

−𝜏𝑘 =

𝑏−𝜏𝑢 (1
𝑏𝜏−1 +

∑︁𝑑
𝑠=1 (1 − 𝑙𝑠)𝑏𝜏𝑠). The analysis of the first two mo-

ments of this statistic under the assumption of the simplified PMF
(5), together with the delta method (see extended paper [22]) yields

1.0 1.2 1.4 1.6 1.8 2.0
base 1

0.70

0.75

0.80

0.85

0.90

0.95

1.00

es
ti

m
at

or
e�

ic
ie

nc
y

0 1 2
g

a)

1 = 2, 3 = 2optimal g

b)

Figure 3: a) The asymptotic GRA estimator efficiency over
the base 𝒃 for 𝒒 = 6 and various values of 𝒅. b) The efficiencies
of the GRA estimator and our proposed FGRA estimator as
a function of 𝝉 for 𝒃 = 2 and 𝒅 = 2. Crosses indicate optimal
choices of 𝝉 .

the distinct count estimator

�̂� =𝑚1+ 1
𝜏 ·

(︂∑︁𝑚−1
𝑖=0 𝑔(𝑟𝑖)

)︂− 1
𝜏 ·

(︂
1 + 1+𝜏

2
𝑣
𝑚

)︂−1
(12)

where the individual register contributions are defined as

𝑔(𝑟) := (𝑏−1+𝑏−𝜏)𝜏 ln𝑏
Γ (𝜏) 𝑏−𝜏𝑢

(︂
1

𝑏𝜏−1 +
∑︁𝑑
𝑠=1 (1 − 𝑙𝑠)𝑏𝑠𝜏

)︂
(13)

with 𝑟 = 𝑢2𝑑 + ⟨𝑙1 . . . 𝑙𝑑 ⟩2 and

𝑣 = 1
𝜏2

⎛⎜⎜⎝
Γ (2𝜏) ln𝑏
(Γ (𝜏))2

⎛⎜⎜⎝1 + 2𝑏−𝜏𝑑
𝑏𝜏−1 +

∑︁𝑑
𝑠=1

2𝑏−𝜏𝑠(︂
1 + (𝑏−1)𝑏−𝑠

𝑏−1+𝑏−𝑑
)︂2𝜏 ⎞⎟⎟⎠ − 1

⎞⎟⎟⎠ .
The last factor of the estimator (12) comes from applying the second-
order delta method [12] and corrects some bias similar to the last
factor in (11).

As 𝜏 is a free parameter, it is ideally chosen to minimize the
variance approximated by (see extended paper [22])

Var(�̂�/𝑛) ≈ 𝑣/𝑚 + O(𝑚−2). (14)

For ULL with 𝑏 = 2 and 𝑑 = 2, numerical minimization gives
𝑣 ≈ 0.616990 for 𝜏 ≈ 0.755097. In this case (13) can be written as

𝑔(𝑟) := 2−𝜏 ⌊𝑟/4⌋[𝑟 mod 4 (15)

with coefficients [0 ≈ 4.841356, [1 ≈ 2.539198, [2 ≈ 3.477312,
[3 ≈ 1.175153. The corresponding MVP is 8𝑣 = 4.935917 which
is slightly greater than the theoretical MVP (8) with a value of
4.631289. Hence, the efficiency of the GRA estimator is 93.8%.

Figure 3a shows the asymptotic GRA estimator efficiency as
𝑚 → ∞ relative to (8) over the base 𝑏 for 𝑞 = 6 and for various
values of 𝑑 . The GRA estimator is very efficient for 𝑑 = 0 and
therefore for HLL. It can be clearly seen that its efficiency is lower
for other configurations with 𝑑 ≥ 1. Therefore, we investigated if
we can find a more efficient estimator for ULL, that is as simple and
cheap to evaluate as the GRA estimator.

3.3 New FGRA Estimator
Our idea is to further generalize the GRA estimator, by choosing
not only 𝜏 but also the coefficients [0, [1, [2, and [3 in (15) such that

1660

the variance is minimized. This is why we call the new estimator
further generalized remaining area (FGRA) estimator. The optimal
values for [0, [1, [2, and [3 for fixed 𝜏 are given by [22]

[𝑗 = ln𝑏
Γ (𝜏)

𝜔 𝑗 (𝜏)
𝜔 𝑗 (2𝜏)

(︃
𝜔2

0 (𝜏)
𝜔0 (2𝜏) +

𝜔2
1 (𝜏)

𝜔1 (2𝜏) +
𝜔2

2 (𝜏)
𝜔2 (2𝜏) +

𝜔2
3 (𝜏)

𝜔3 (2𝜏)

)︃−1
(16)

where the functions 𝜔0, 𝜔1, 𝜔2, and 𝜔3 are defined as
𝜔0 (𝜏) := 1

(𝑏3−𝑏+1)𝜏 −
1

𝑏3𝜏 ,

𝜔1 (𝜏) := 1
(𝑏2−𝑏+1)𝜏 −

1
𝑏2𝜏 − 1

(𝑏3−𝑏+1)𝜏 +
1

𝑏3𝜏 ,

𝜔2 (𝜏) := 1
(𝑏3−𝑏2+1)𝜏 −

1
(𝑏3−𝑏2+𝑏)𝜏 −

1
(𝑏3−𝑏+1)𝜏 +

1
𝑏3𝜏 ,

𝜔3 (𝜏) := 1
(𝑏3−𝑏+1)𝜏 −

1
(𝑏3−𝑏2+1)𝜏 +

1
(𝑏3−𝑏2+𝑏)𝜏 −

1
𝑏3𝜏 − 1

(𝑏2−𝑏+1)𝜏 +
1

𝑏2𝜏 +1− 1
𝑏𝜏

.

The minimum variance is then given by (14) with

𝑣 = 1
𝜏2

(︄
Γ (2𝜏) ln𝑏
(Γ (𝜏))2

(︃
𝜔2

0 (𝜏)
𝜔0 (2𝜏) +

𝜔2
1 (𝜏)

𝜔1 (2𝜏) +
𝜔2

2 (𝜏)
𝜔2 (2𝜏) +

𝜔2
3 (𝜏)

𝜔3 (2𝜏)

)︃−1
− 1

)︄
.

Numerical minimization of this expression with regard to 𝜏 for
the ULL case with 𝑏 = 2 and 𝑑 = 2 yields 𝜏 ≈ 0.819491 for which
𝑣 ≈ 0.611893 and the corresponding coefficients following (16) are

[0 ≈ 4.663135, [1 ≈ 2.137850, [2 ≈ 2.781145, [3 ≈ 0.982408.
The resulting MVP = 8𝑣 ≈ 4.895145 corresponds to an efficiency
of 94.6%, which is a small improvement over the GRA estimator as
shown in Figure 3b.

An interesting but not optimal choice would be 𝜏 = 1, since this
would make exponentiations in (12) and (15) particularly cheap. The
corresponding coefficients would be [0 ≈ 6.037409, [1 ≈ 2.415940,
[2 ≈ 3.364340, [3 ≈ 0.934924, which result in 𝑣 ≈ 0.617163 and a
MVP of 8𝑣 ≈ 4.937304 corresponding to an efficiency of 93.8%. In
contrast, the efficiency of the GRA estimator would already drop
to 91.3% if 𝜏 = 1 is chosen.

3.4 Corrections for GRA/FGRA Estimators
Both the GRA as well as our newly proposed FGRA estimator as-
sume that register values are distributed according to (5) rather
than (4). However, as mentioned in Section 2.1, this assumption is
not valid, if a significant number of register values lies outside of
[(𝑑 + 1)2𝑑 ,𝑤2𝑑). For small (large) distinct counts, there are register
values below (above) this range, and the presented plain GRA/FGRA
estimators would no longer work without the corrections intro-
duced below.

Previous work has often not properly addressed this problem.
For example, the estimation error of the original HLL estimator [23]
exceeded the predicted asymptotic error significantly for certain
distinct counts. To be useful in practice, the distinct count estimate
should be within the same error bounds over the entire range. While
the estimator for HLL was patched in the meantime [20, 27, 39, 43,
51], recent algorithms such as EHLL [33] or HyperLogLogLog [28]
still suggest, like the original HLL algorithm [23], to switch between
different estimators. However, the corresponding transitions are
not seamless which results in discontinuous estimation errors [20].
In the following we present a technique, which generalizes ideas
presented in our earlier works [20, 21], to compose estimators of
kind (12) with specific estimators for small and large distinct counts
such that the resulting estimator works seamlessly over the whole
value range.

A register state 𝑟 = 𝑢2𝑑 + ⟨𝑙1 . . . 𝑙𝑑 ⟩2 allows to draw conclusions
about the occurrence of certain events 𝐴𝑘 as introduced in Sec-
tion 2.1. For example, if 𝑢 < 𝑤 , we know for sure that 𝐴𝑢 has
occurred while events 𝐴𝑘 with 𝑘 > 𝑢 have not occurred. Bit 𝑙𝑠
indicates the occurrence of 𝐴𝑢−𝑠 as long as 𝑢 > 𝑠 . However, we
know nothing about events 𝐴𝑘 with 𝑘 < 𝑢 − 𝑑 or 𝑘 ≤ 0.

We can derive the PMF �̃�reg (𝑟 |𝑟, 𝑛), conditioned on the secured
information about event occurrences we know from 𝑟 , for register
values 𝑟 following the simple model (5). For the case 𝑑 + 1 ≤ 𝑢 < 𝑤

corresponding to (𝑑 + 1)2𝑑 ≤ 𝑟 < 𝑤2𝑑 , 𝑟 and 𝑟 will always be equal,
which yields �̃�reg (𝑟 |𝑟, 𝑛) = [𝑟 = 𝑟] when using the Iverson bracket
notation. A complete derivation of �̃�reg (𝑟 |𝑟, 𝑛) for ULL with 𝑑 = 2
and 𝑏 = 2 is given in the extended paper [22].

Assuming that the distinct count is equal to the estimate �̂�alt
obtained by an alternative distinct count estimator, we define the
corrected register contribution 𝑔corr (𝑟), to be used in (12) as re-
placement for 𝑔(𝑟), as the expected register contribution of 𝑔(𝑟)
where 𝑟 follows the conditional PMF �̃�reg (𝑟 |𝑟, 𝑛 = �̂�alt)

𝑔corr (𝑟) =
∑︁∞
𝑟=−∞ �̃�reg (𝑟 |𝑟, 𝑛 = �̂�alt)𝑔(𝑟) . (17)

This approach leads to 𝑔corr (𝑟) = 𝑔(𝑟) for the case (𝑑 + 1)2𝑑 ≤
𝑟 < 𝑤2𝑑 . Hence, if all registers are in this intermediate range, the
estimator (12) remains unchanged. This is expected as the PMFs (4)
and (5) are equivalent in this case. However, the corrected contribu-
tions 𝑔corr (𝑟) of very small and very large register values will differ
significantly from 𝑔(𝑟). For ULL with 𝑑 = 2 and 𝑏 = 2 where 𝑔(𝑟)
follows (15), the corrected register contributions can be written as

𝑔corr (𝑟)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜎 (�̂�0) 𝑟=0,

2−𝜏𝜓 (�̂�0) 𝑟=4,

4−𝜏 (�̂�0 ([0−[1)+[1) 𝑟=8,

4−𝜏 (�̂�0 ([2−[3)+[3) 𝑟=10,

2−𝜏 ⌊𝑟/4⌋[𝑟 mod 4 𝑟 ∈[12,4𝑤),
�̂�𝑤 (1+

√
�̂�𝑤)[0+2−𝜏

√
�̂�𝑤 (�̂�𝑤 ([0−[2)+[2)+𝜑 (

√
�̂�𝑤)

2𝜏𝑤 (1+√�̂�𝑤) (1+�̂�𝑤) 𝑟=4𝑤,

�̂�𝑤 (1+
√
�̂�𝑤)[1+2−𝜏

√
�̂�𝑤 (�̂�𝑤 ([0−[2)+[2)+𝜑 (

√
�̂�𝑤)

2𝜏𝑤 (1+√�̂�𝑤) (1+�̂�𝑤) 𝑟=4𝑤+1,
�̂�𝑤 (1+

√
�̂�𝑤)[2+2−𝜏

√
�̂�𝑤 (�̂�𝑤 ([1−[3)+[3)+𝜑 (

√
�̂�𝑤)

2𝜏𝑤 (1+√�̂�𝑤) (1+�̂�𝑤) 𝑟=4𝑤+2,
�̂�𝑤 (1+

√
�̂�𝑤)[3+2−𝜏

√
�̂�𝑤 (�̂�𝑤 ([1−[3)+[3)+𝜑 (

√
�̂�𝑤)

2𝜏𝑤 (1+√�̂�𝑤) (1+�̂�𝑤) 𝑟=4𝑤+3

(18)

(see extended paper [22]). The functions𝜓 , 𝜎 , and 𝜑 are given by

𝜓 (𝑧) :=𝑧 (𝑧 (𝑧 ([0−[1−[2+[3)+([2−[3))+([1−[3))+[3, (19)

𝜎 (𝑧) := 1
𝑧

∑︁∞
𝑢=0 2𝜏𝑢 (𝑧2𝑢 −𝑧2𝑢+1)𝜓 (𝑧2𝑢+1), (20)

𝜑 (𝑧) := 4−𝜏
1−𝑧

∑︁∞
𝑢=0 2−𝜏𝑢 (𝑧2−𝑢−1−𝑧2−𝑢)𝜓 (𝑧2−𝑢) (21)

= 4−𝜏
2−2−𝜏

⎛⎜⎝ 2𝜓 (𝑧)√𝑧
1+√𝑧 +

∑︁∞
𝑢=1

𝑧2−𝑢−1 (︃
2𝜓 (𝑧2−𝑢)−(𝑧2−𝑢−1 +𝑧2−𝑢)𝜓 (𝑧2−𝑢+1)

)︃
2𝜏𝑢

∏︁𝑢+1
𝑗=1 (1+𝑧2− 𝑗)

⎞⎟⎠.
Furthermore, �̂�0 and �̂�𝑤 are defined as �̂�0 := 𝑒−

�̂�alt
𝑚 and �̂�𝑤 :=

𝑒−
�̂�alt
𝑚2𝑤 and are therefore estimates of 𝑧0 = 𝑒−

𝑛
𝑚 and 𝑧𝑤 = 𝑒−

𝑛
𝑚2𝑤 ,

respectively. According to (18), �̂�0 is only needed for register values
from {0, 4, 8, 10}. Therefore, the estimator �̂�0 must work well only
for small distinct counts. Similarly, the estimator �̂�𝑤 must work only
for large distinct counts, when there are registers greater than or
equal to 4𝑤 . Corresponding estimators for both cases are presented
in the next sections.

1661

The numerical evaluation of 𝜎 is very cheap, because only ba-
sic mathematical operations are involved and the infinite series
converges quickly. The convergence is slowest for arguments �̂�0
close to 1. The largest arguments smaller than 1 occur for distinct
counts equal to 1, which implies �̂�0 ≈ 𝑒−

1
𝑚 . However, even in this

extreme case, empirical analysis showed numerical convergence
after the first 𝑝 + 7 terms for any precision 𝑝 ∈ [3, 26] when using
double-precision floating-point arithmetic. For not too small values
of 𝑝 , the estimation costs are dominated by the iteration over all
𝑚 = 2𝑝 registers to sum up the individual register contributions.

When using 64-bit hash values, the maximum update value is
given by 𝑤 = 65 − 𝑝 (see Section 2.1). In this case, registers with
values ≥ 4𝑤 are very unlikely in practice and the evaluation of 𝜑
is rarely needed. Nevertheless, it also can be computed efficiently
with the second (more complex appearing) expression for 𝜑 , which
converges numerically after at most 22 terms for any 𝑝 ∈ [3, 26].

3.5 Estimator for Small Distinct Counts
The original HLL algorithm [23] switches, in case of small distinct
counts with many registers equal to zero, to the estimator

�̂�low =𝑚 ln(𝑚/𝑐0), (22)
known from probabilistic linear counting [47]. 𝑐0 := |{𝑖 |𝑟𝑖 = 0}|
denotes the number of registers that have never been updated. This
estimator corresponds to the ML estimator, when considering just
the number of registers with 𝑟𝑖 = 0 and using Pr(𝑟𝑖 = 0) = 𝑧0 =
𝑒−

𝑛
𝑚 which follows from (4) for 𝑏 = 2. For HLL, the combination

of this estimator with (17) leads to the same correction terms as
we have previously derived in a different way [20]. The resulting
so-called corrected raw (CR) estimator was shown to be nearly as
efficient as the ML estimator.

This finding provides confidence that the same approach also
works for ULL to correct the GRA/FGRA estimator. Even though
(22) could be used again to estimate small distinct counts, we found
a simple estimator that is able to exploit more information. We
consider the four smallest possible register states 𝑟𝑖 ∈ {0, 4, 8, 10}
with corresponding probabilities following (4) and apply the ML
method to estimate 𝑧0 = 𝑒−

𝑛
𝑚 . As shown in the extended paper

[22] the resulting ML estimator can be written as

�̂�0 = ((
√︁
𝛽2 + 4𝛼𝛾 − 𝛽)/(2𝛼))4 . (23)

Here 𝛼 , 𝛽 , 𝛾 are defined as
𝛼 :=𝑚+3(𝑐0+𝑐4+𝑐8+𝑐10), 𝛽 :=𝑚−𝑐0−𝑐4, 𝛾 := 4𝑐0+2𝑐4+3𝑐8+𝑐10

and 𝑐 𝑗 := |{𝑖 |𝑟𝑖 = 𝑗}| is again the number of registers with value 𝑗 .

3.6 Estimator for Large Distinct Counts
An estimator for large distinct counts can be found in a similar
way through ML estimation when considering the largest 4 register
states 𝑟𝑖 ∈ {4𝑤, 4𝑤 + 1, 4𝑤 + 2, 4𝑤 + 3}. The ML estimator for
𝑧𝑤 = 𝑒−

𝑛
𝑚2𝑤 can be written as [22]

�̂�𝑤 =
√︂
(
√︁
𝛽2 + 4𝛼𝛾 − 𝛽)/(2𝛼). (24)

Here 𝛼 , 𝛽 , 𝛾 are defined as
𝛼 :=𝑚+3(𝑐4𝑤+𝑐4𝑤+1+𝑐4𝑤+2+𝑐4𝑤+3), 𝛽 := 𝑐4𝑤+𝑐4𝑤+1+2𝑐4𝑤+2+2𝑐4𝑤+3,

𝛾 :=𝑚+2𝑐4𝑤+𝑐4𝑤+2−𝑐4𝑤+3 .

−40%

−20%

0%

20%

40%

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
base 1

3

4

5

6

m
em

or
y-

va
ri

an
ce

pr
od

uc
t

HLL

EHLL

ULL

@ = 6

Figure 4: The memory-variance product (MVP) (26) as a func-
tion of the base 𝒃 for 𝒒 = 6 and various values of 𝒅 when
using martingale estimation. The MVP of UltraLogLog (ULL)
is 17% smaller compared to HyperLogLog (HLL).

3.7 Martingale Estimator
If the data is not distributed and merging of sketches is not needed,
the distinct count can be estimated in an online fashion by incre-
mental updates, which is known as martingale or historic inverse
probability (HIP) estimation [16, 42] and which even leads to smaller
estimation errors. This estimation approach can also be used for
ULL. It keeps track of the state change probability `. Initially, ` = 1
as the first update will certainly change the state. Whenever a regis-
ter is changed, the probability of state changes for further elements
decreases. The probability, that a new unseen element changes the
ULL state is given by

` (𝑟0, . . . , 𝑟𝑚−1) =
𝑚−1∑︂
𝑖=0

ℎ(𝑟𝑖) .

ℎ(𝑟𝑖) returns the probability that register 𝑟𝑖 is changed with the next
new element. Obviously, we have ℎ(0) = 1

𝑚 and ℎ(4𝑤 + 3) = 0 for
the smallest and largest possible states, respectively. In the general
case we have (see extended paper [22])

ℎ(0) = 1
𝑚 , ℎ(4) = 1

2𝑚 , ℎ(8) = 3
4𝑚 , ℎ(10) = 1

4𝑚 ,

ℎ(𝑟) = 7−2𝑙1−4𝑙2
2𝑢𝑚 for 𝑟 = 4𝑢 + ⟨𝑙1𝑙2⟩2 and 3 ≤ 𝑢 < 𝑤, (25)

ℎ(𝑟) = 3−𝑙1−2𝑙2
2𝑤−1𝑚

for 𝑟 = 4𝑤 + ⟨𝑙1𝑙2⟩2 .
The martingale estimator is incremented with every state change

by 1
` prior the update as demonstrated by Algorithm 2. ` itself can

also be incrementally adjusted, such that the whole update takes
constant time. The values of ℎ can be stored in a lookup table. The
martingale estimator is unbiased and optimal [37], but cannot be
used if the data is distributed and mergeability is required. For our
generalized data structure introduced in Section 2, the asymptotic
MVP can be derived as (see extended paper [22])

MVP ≈ (𝑞 + 𝑑) 1
2 ln(𝑏) (1 + 𝑏−𝑑

𝑏−1). (26)

This expression is consistent with previous specific results reported
for HLL [37] and EHLL [33] and is plotted in Figure 4 for 𝑞 = 6 and
various values of 𝑏 and 𝑑 . For 𝑏 = 2, the ULL configuration with
𝑑 = 2 is even optimal. ULL achieves MVP ≈ 3.4657 which is 17%
less than for HLL with MVP ≈ 4.1589.

1662

4 PRACTICAL IMPLEMENTATION
As registers of ULL have 𝑞 +𝑑 = 8 bits, they can be stored in a plain
byte array. Algorithm 3 shows the update procedure for insert-
ing an element. The actual input is the hash value of the element
from which the register index 𝑖 and an update value 𝑘 are obtained.
As for other probabilistic data structures it is essential to use a
high-quality hash function such as WyHash [52], Komihash [45], or
PolymurHash [35] whose outputs are in practice indistinguishable
from true random integers. If 64-bit hash values are used, the maxi-
mum update value is limited to 𝑤 = 65 − 𝑝 leading to a maximum
distinct count of roughly 𝑛max ≈ 𝑚2𝑤−1 = 264 (cf. Section 2.3)
which is more than sufficient for any realistic application.

Algorithm 3 updates the 𝑖-th register by first unpacking its value
to a 64-bit value 𝑥 = ⟨𝑥63𝑥62 . . . 𝑥1𝑥0⟩2 (see Algorithm 5) where bit
𝑥 𝑗+1 indicates the occurrence of update value 𝑗 . After setting the
corresponding bit for the new update value 𝑘 , 𝑥 is finally packed
again into a register value (see Algorithm 4), preserving just the in-
formation about the maximum update value 𝑢 and whether update
values 𝑢 − 1 and 𝑢 − 2 have already occurred.

Although the update algorithm for HLL (cf. Algorithm 1) looks
simpler, in practice the implementation complexity is similar if
one also includes the bit twiddling required to pack 6-bit registers
densely into a byte array. ULL insertions can be implemented en-
tirely branch-free, as exemplified by the implementation in our
Hash4j Java library (see https://github.com/dynatrace-oss/hash4j),
which however uses the transformation 𝑟 → 𝑟 + 4𝑝 − 8 for non-
zero registers, so that the largest possible register state is always
(4𝑤 + 3) + 4𝑝 − 8 = 255, the maximum value of a byte.

Algorithm 6 summarizes FGRA estimation including corrections
for small and large distinct counts as described in Section 3.4. For
intermediate counts, if registers are all in the range [12, 4𝑤), the
algorithm just sums up the individual register contributions 𝑔(𝑟𝑖)
given by (15). The values of 𝑔 can be pre-computed and stored in
a lookup table for all possible register values. Following (12), the
final estimate is obtained by exponentiating the sum of all register
contributions by − 1

𝜏 and multiplying by the precomputed factor _𝑝 .
For small distinct counts, when there are any registers smaller than
12, thus 𝑐0 + 𝑐4 + 𝑐8 + 𝑐10 > 0, the small range correction branch
is executed, which requires computing the estimator described in
Section 3.5. Similarly, for large distinct counts with registers greater
than or equal to 4𝑤 , equivalent to 𝑐4𝑤+𝑐4𝑤+1+𝑐4𝑤+2+𝑐4𝑤+3 > 0, the
large range correction is applied based on the estimator presented
in Section 3.6.

4.1 Merging and Downsizing
ULL sketches can be merged which is important if the data is dis-
tributed over space and/or time and partial results must be com-
bined. The final result will only depend on the set of added elements
and not on the insertion or merge order. It is even possible to merge
ULL sketches with different precisions. For that, the sketch with
higher precision must be reduced first to the lower precision of the
other sketch.

Downsizing from precision 𝑝′ to 𝑝 < 𝑝′ is realized by merging
the information of batches of 2𝑝′−𝑝 consecutive registers. The re-
sulting register value depends not only on the individual register
values, but also on the least significant 𝑝′ − 𝑝 bits of the register

Algorithm 2: Incrementally updates the martingale estimate �̂�martingale and the
state change probability ` whenever a register is altered from 𝑟 to 𝑟 ′ (𝑟 < 𝑟 ′).
Initially, �̂�martingale = 0 and ` = 1.

�̂�martingale ← �̂�martingale + 1
` ⊲ update estimate

` ← ` − ℎ(𝑟) + ℎ(𝑟 ′) ⊲ update state change probability, see (25)

Algorithm 3: Inserts an element with 64-bit hash value ⟨ℎ63ℎ62 . . . ℎ0⟩2 into
an UltraLogLog with registers 𝑟0, 𝑟1, . . . , 𝑟𝑚−1, initial values 𝑟𝑖 = 0, and 𝑚 = 2𝑝
(𝑝 ≥ 3).
𝑖 ← ⟨ℎ63ℎ62 . . . ℎ64−𝑝 ⟩2 ⊲ extract register index
𝑎 ← ⟨ 0 . . . 0

𝑝

ℎ63−𝑝ℎ62−𝑝 . . . ℎ0⟩2 ⊲ mask register index bits

𝑘 ← nlz(𝑎) − 𝑝 + 1 ⊲ update value 𝑘 ∈ [1, 65 − 𝑝]
𝑥 ←unpack(𝑟𝑖) ⊲ see Algorithm 5 for unpack
𝑥 ← 𝑥 or 2𝑘+1 ⊲ bitwise or-operation
𝑟𝑖 ←pack(𝑥) ⊲ see Algorithm 4 for pack

Algorithm 4: Packs a 64-bit value 𝑥 ≥ 4 into an 8-bit register. 𝑥 =
⟨𝑥63𝑥62 . . . 𝑥1𝑥0⟩2 is interpreted as bitset where bit 𝑥𝑘+1 indicates the occurrence
of update value 𝑘 .
function pack(𝑥)

𝑢 ← 62 − nlz(𝑥) ⊲ extract maximum update value
return 4𝑢 + ⟨𝑥𝑢𝑥𝑢−1⟩2 ⊲ return 8-bit register value, is always ≥ 4

Algorithm 5: Unpacks an 8-bit register 𝑟 = ⟨𝑞7𝑞6 . . . 𝑞0⟩2 into a 64-bit integer
indicating the occurrence of update values if interpreted as bitset.
function unpack(𝑟)

if 𝑟 < 4 then return 0 ⊲ special case for initial state when 𝑟 = 0
𝑢 ← ⟨𝑞7𝑞6 . . . 𝑞2⟩2 ⊲ get maximum update value, same as ⌊𝑟/4⌋
return ⟨ 0 . . . 0

62−𝑢
1𝑞1𝑞00 . . . 0

𝑢−1
⟩2 ⊲ return 64-bit value, is always ≥ 4

indices. Only the value of the first register of a batch, whose in-
dex has 𝑝′ − 𝑝 trailing zeros, is relevant. All other registers need
to be treated differently, as the 𝑝′ − 𝑝 trailing index bits would
have affected the calculation of the number of leading zeros (NLZ)
computation in Algorithm 3 when recorded with lower precision 𝑝 .

Algorithm 7 shows in detail how an ULL sketch with precision 𝑝′
can be merged in-place into another one with precision 𝑝 ≤ 𝑝′. The
algorithm simplifies a lot when the precisions are equal, because
𝑝′ = 𝑝 implies 2𝑝′−𝑝 = 1 and consequently the inner loop can be
skipped entirely. In this case, and also due to the byte-sized registers,
the ULL merge operation is very well suited for single-instruction
multiple-data (SIMD) processing.

Algorithm 7 can also be applied to just downsize a ULL sketch
from precision 𝑝′ to 𝑝 , if the sketch is simply added to an empty
ULL sketch with precision 𝑝 and all registers equal to zero, 𝑟𝑖 = 0.
In this case the first unpack operation can be skipped as it would
always return zero.

4.2 Compatibility to HyperLogLog
When using the same hash function for elements, ULL can be im-
plemented in a way that is compatible with an existing HLL imple-
mentation meaning that an ULL sketch can be mapped to a HLL
sketch of same precision by just dropping the last 2 register bits
corresponding to the transformation ⌊𝑟 (ULL)

𝑖
/4⌋ → 𝑟

(HLL)
𝑖

. This
allows to migrate to ULL, even if there is historical data that was
recorded using HLL and still needs to be combined with newer

1663

https://github.com/dynatrace-oss/hash4j

Algorithm 6: Estimates the number of distinct elements from a given Ultra-
LogLog with registers 𝑟0, 𝑟1, . . . , 𝑟𝑚−1 and 𝑚 = 2𝑝 (𝑝 ≥ 3) using the FGRA es-
timator. The constants are defined as 𝑤 := 65 − 𝑝 , 𝜏 := 0.8194911375910897,
𝑣 := 0.6118931496978437, [0 := 4.663135422063788, [1 := 2.1378502137958524,
[2 := 2.781144650979996, [3 := 0.9824082545153715, and _𝑝 :=𝑚1+ 1

𝜏 /(1+ 1+𝜏
2

𝑣
𝑚).

𝑠 ← 0 ⊲ used to sum up
∑︁𝑚−1
𝑖=0 𝑔corr (𝑟𝑖), see (18)

(𝑐0, 𝑐4, 𝑐8, 𝑐10, 𝑐4𝑤 , 𝑐4𝑤+1, 𝑐4𝑤+2, 𝑐4𝑤+3) ← (0, 0, 0, 0, 0, 0, 0, 0)
for 𝑖 ← 0 to𝑚 − 1 do ⊲ iterate over all𝑚 registers

if 𝑟𝑖 < 12 then
if 𝑟𝑖 = 0 then 𝑐0 ← 𝑐0 + 1
if 𝑟𝑖 = 4 then 𝑐4 ← 𝑐4 + 1
if 𝑟𝑖 = 8 then 𝑐8 ← 𝑐8 + 1
if 𝑟𝑖 = 10 then 𝑐10 ← 𝑐10 + 1

else if 𝑟𝑖 < 4𝑤 then
𝑠 ← 𝑠 + 𝑔(𝑟𝑖) ⊲ see (15), 𝑔(𝑟𝑖) can be precomputed

else
if 𝑟𝑖 = 4𝑤 then 𝑐4𝑤 ← 𝑐4𝑤 + 1
if 𝑟𝑖 = 4𝑤 + 1 then 𝑐4𝑤+1 ← 𝑐4𝑤+1 + 1
if 𝑟𝑖 = 4𝑤 + 2 then 𝑐4𝑤+2 ← 𝑐4𝑤+2 + 1
if 𝑟𝑖 = 4𝑤 + 3 then 𝑐4𝑤+3 ← 𝑐4𝑤+3 + 1

if 𝑐0 + 𝑐4 + 𝑐8 + 𝑐10 > 0 then ⊲ small range correction
𝛼 ←𝑚 + 3(𝑐0 + 𝑐4 + 𝑐8 + 𝑐10)
𝛽 ←𝑚 − 𝑐0 − 𝑐4
𝛾 ← 4𝑐0 + 2𝑐4 + 3𝑐8 + 𝑐10
𝑧 ← ((

√︁
𝛽2 + 4𝛼𝛾 − 𝛽)/(2𝛼))4 ⊲ see (23)

if 𝑐0 > 0 then 𝑠 ← 𝑠 + 𝑐0 · 𝜎 (𝑧) ⊲ for 𝜎 see (20)
if 𝑐4 > 0 then 𝑠 ← 𝑠 + 𝑐4 · 2−𝜏 ·𝜓 (𝑧) ⊲ for𝜓 see (19)
if 𝑐8 > 0 then 𝑠 ← 𝑠 + 𝑐8 · (4−𝜏 · (𝑧 · ([0 − [1) + [1))
if 𝑐10 > 0 then 𝑠 ← 𝑠 + 𝑐10 · (4−𝜏 · (𝑧 · ([2 − [3) + [3))

if 𝑐4𝑤 + 𝑐4𝑤+1 + 𝑐4𝑤+2 + 𝑐4𝑤+3 > 0 then ⊲ large range correction
𝛼 ←𝑚 + 3(𝑐4𝑤 + 𝑐4𝑤+1 + 𝑐4𝑤+2 + 𝑐4𝑤+3)
𝛽 ← 𝑐4𝑤 + 𝑐4𝑤+1 + 2𝑐4𝑤+2 + 2𝑐4𝑤+3
𝛾 ←𝑚 + 2𝑐4𝑤 + 𝑐4𝑤+2 − 𝑐4𝑤+3

𝑧 ←
√︂
(
√︁
𝛽2 + 4𝛼𝛾 − 𝛽)/(2𝛼) ⊲ see (24)

𝑧′ ← √𝑧
𝑠′ ← 𝑧 · (1 + 𝑧′) · ([0 · 𝑐4𝑤 + [1 · 𝑐4𝑤+1 + [2 · 𝑐4𝑤+2 + [3 · 𝑐4𝑤+3)
𝑠′ ← 𝑠′ + 2−𝜏 · 𝑧′ · (𝑧 · ([0 − [2) + [2) · (𝑐4𝑤 + 𝑐4𝑤+1)
𝑠′ ← 𝑠′ + 2−𝜏 · 𝑧′ · (𝑧 · ([1 − [3) + [3) · (𝑐4𝑤+2 + 𝑐4𝑤+3)
𝑠′ ← 𝑠′ + 𝜑 (𝑧′) · (𝑐4𝑤 + 𝑐4𝑤+1 + 𝑐4𝑤+2 + 𝑐4𝑤+3) ⊲ for 𝜑 see (21)
𝑠 ← 𝑠 + 𝑠′/(2𝜏𝑤 · (1 + 𝑧′) · (1 + 𝑧))

return _𝑝 · 𝑠−1/𝜏 ⊲ return distinct count estimate, see (12)

data. Our Hash4j library also contains a HLL implementation that
is compatible with its ULL implementation.

5 EXPERIMENTS
Various experiments have been conducted to confirm the theo-
retical results and to demonstrate the practicality of ULL. For
better reproduction, instructions and source code for all experi-
ments including figure generation have been published at https:
//github.com/dynatrace-research/ultraloglog-paper. The simula-
tions used the ULL and HLL implementations available in our open-
source Hash4j library (v0.17.0) and were executed on an Amazon
EC2 c5.metal instance running Ubuntu Server 22.04 LTS.

Extensive empirical tests [44] have shown that the output of
modern hash functions such as WyHash [52], Komihash [45], or
PolymurHash [35] can be considered like uniform random values.
Otherwise, field-tested probabilistic data structures like HLL would
not work. This fact allows us to simplify the experiments and per-
form them without real or artificially generated data. Insertion
of a new element can be simulated by simply generating a 64-bit

Algorithm7:Merges an UltraLogLog with registers 𝑟 ′0, 𝑟
′
1, . . . , 𝑟

′
𝑚′−1 and𝑚′ = 2𝑝′

into another UltraLogLog with registers 𝑟0, 𝑟1, . . . , 𝑟𝑚−1 and𝑚 = 2𝑝 where 𝑝 ≤ 𝑝′.
This algorithm also allows to downsize an existing UltraLogLog by merging it
into an empty UltraLogLog (𝑟𝑖 = 0) with smaller precision parameter 𝑝 < 𝑝′.
𝑗 ← 0
for 𝑖 ← 0 to𝑚 − 1 do

𝑥 ← unpack(𝑟𝑖) or (unpack(𝑟 ′𝑗) · 2𝑝
′−𝑝)

⊲ bitwise or-operation, see Algorithm 5 for unpack
𝑗 ← 𝑗 + 1
for 𝑙 ← 1 to 2𝑝′−𝑝 − 1 do

if 𝑟 ′
𝑗
≠ 0 then

𝑘 ← nlz(𝑙) + 𝑝′ − 𝑝 − 63 ⊲ 𝑙 is assumed to have 64 bits
𝑥 ← 𝑥 or 2𝑘+1 ⊲ bitwise or-operation

𝑗 ← 𝑗 + 1
if 𝑥 ≠ 0 then 𝑟𝑖 ←pack(𝑥) ⊲ see Algorithm 4 for pack

random value to be used directly as the hash value of the inserted
element in Algorithm 3.

5.1 Estimation Error
To simulate the estimation error for a predefined distinct count
value, the estimate is computed after updating the ULL sketch us-
ing Algorithm 3 with a corresponding number of random values
and finally compared against the true distinct count. By repeating
this process with many different random sequences, in our exper-
iments 100 000, the bias and the root-mean-square error (RMSE)
can be empirically determined. However, this approach becomes
computationally infeasible for distinct counts beyond 1 million and
we need to switch to a different strategy.

After the first million of insertions, for which a random value was
generated each time, we just generate the waiting time (the number
of distinct count increments) until a register is processed with a
certain update value the next time. For each insertion, the probabil-
ity that a register is updated with any possible value 𝑘 ∈ [1, 65− 𝑝]
is given by 1/(𝑚2min(𝑘,64−𝑝)). Therefore, the number of distinct
count increments until a register is updated with a specific value
𝑘 the next time is geometrically distributed with corresponding
success probability. In this way, we determine the next update time
for each register and for each possible update value. Since the same
update value can only modify a register once, we do not need to
consider further updates which might occur with the same value
for the same register. Knowing these 𝑚 × (65 − 𝑝) distinct count
values in advance, where the state may change, enables us to make
large distinct count increments, resulting in a huge speedup. This
eventually allowed us to simulate the estimation error for distinct
counts up to values of 1021 and also to test the presented estimators
over the entire operating range.

Figure 5 shows the empirically determined relative bias and
RMSE as well as the theoretical RMSE given by

√︁
MVP/(8𝑚)

for the FGRA, ML, and the martingale estimator for precisions
𝑝 ∈ {8, 12, 16}. For intermediate distinct counts, for which the
assumptions of our theoretical analysis hold, perfect agreement
with theory is observed. For small distinct counts, the difference in
efficiency between ML and FGRA is more significant, but not par-
ticularly relevant in practice, as the estimation errors in both cases
are well below the theoretically predicted errors. Interestingly, the

1664

https://github.com/dynatrace-research/ultraloglog-paper
https://github.com/dynatrace-research/ultraloglog-paper

0

2

4

6

re
la

ti
ve

er
ro

r
(%

)

ULL, ? = 8

0.0

0.5

1.0

1.5

re
la

ti
ve

er
ro

r
(%

)

ULL, ? = 12

100 103 106 109 1012 1015 1018 1021

distinct count =

0.0

0.1

0.2

0.3

re
la

ti
ve

er
ro

r
(%

)

ULL, ? = 16

FGRA theory
FGRA rmse
FGRA bias

ML theory
ML rmse
ML bias

martingale theory
martingale rmse
martingale bias

Figure 5: The relative bias and the RMSE for the FGRA, ML,
and the martingale estimator for precisions 𝒑 ∈ {8, 12, 16}
obtained from 100 000 simulation runs. The theoretically
predicted errors perfectly match the experimental results.
Individual insertions were simulated up to a distinct count
of 106 before switching to the fast simulation strategy.

estimation error also decreases slightly near the end of the operat-
ing range, which is as predicted on the order of 264 ≈ 1.8 · 1019. The
estimators are essentially unbiased. The tiny bias which appears for
small precisions for the ML and FGRA estimators can be ignored
in practice as it is much smaller than the RMSE.

Previous experiments have already confirmed that the proposed
estimators for HLL [20, 37] and EHLL [33] do not undercut and at
best reach the corresponding theoretical MVPs given by (8) and (26).
Therefore, the perfect agreement with the theory for ULL observed
in our experiments finally proves the claimed and theoretically
predicted improvements in storage efficiencies over the state of the
art as shown in Figures 1 and 4.

5.2 Compression
To analyze the compressibility of the state, we generated 100 ran-
dom sketches for predefined distinct counts and applied various
standard compression algorithms (LZMA, Deflate, zstd, and bzip2)
from the Apache Compress Java library [1]. The corresponding aver-
age inverse compression ratios over the distinct count are shown in
Figure 6 for HLL and ULL. The results indicate that the algorithms
generally work better for ULL than HLL, since the compressed size
is closer to the theoretical limit given by the Shannon entropy (9).
Interestingly, the compression for HLL improves, if its 6-bit regis-
ters are first represented as individual bytes (cf. HLL* in Figure 6).
Even though this leads to compression ratios that are sometimes

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

in
ve

rs
e

co
m

pr
es

si
on

ra
ti

o

ULL, ? = 8 ULL, ? = 12
0
1
2
3
4
5
6
7

th
eo

re
ti

ca
lM

V
P

ULL, ? = 16

0.0

0.2

0.4

0.6

0.8

1.0

in
ve

rs
e

co
m

pr
es

si
on

ra
ti

o

HLL, ? = 8 HLL, ? = 12
0
1
2
3
4
5
6
7

th
eo

re
ti

ca
lM

V
P

HLL, ? = 16

100 106 1012 1018

distinct count =

0.0

0.2

0.4

0.6

0.8

1.0

in
ve

rs
e

co
m

pr
es

si
on

ra
ti

o

HLL*, ? = 8

100 106 1012 1018

distinct count =

HLL*, ? = 12
0
1
2
3
4
5
6
7

th
eo

re
ti

ca
lM

V
P

100 106 1012 1018

distinct count =

HLL*, ? = 16

uncompressed
theoretical limit

LZMA
Deflate

zstd
bzip2

Figure 6: The average inverse compression ratio for HLL and
ULL over the distinct count for various standard compres-
sion algorithms. For HLL*, the 6-bit registers are mapped to
individual bytes before compression. The gray dashed line
indicates the theoretical lower bound for intermediate dis-
tinct counts given by (10).

better than for ULL, ULL is still more memory-efficient overall due
to the significant lower MVP when uncompressed.

The theoretical lower bound applies only to intermediate distinct
counts under the validity of the simple model (5). The observed
high compressibility at small and large distinct counts is due to
the large number of initial and saturated registers, respectively.
Therefore, many HLL implementations support a sparse mode that
encodes only non-zero registers [27]. We expect that this and other
lossless compression techniques developed for HLL [2, 28] can also
be applied to ULL, but obviously at the cost of slower updates and
memory reallocations.

5.3 Performance
Since low processing costs are also critical for practical use, we
measured the average time for inserting a given number of distinct
elements into HLL and ULL sketches configured with precisions
𝑝 ∈ {8, 10, 12, 14, 16}. To reduce the impact of variable processor
frequencies, Turbo Boost was disabled on the used Amazon EC2
c5.metal instance by setting the processor P-state to 1 [4]. The
benchmarks were executed using OpenJDK 21.0.2.

The measurements shown in Figure 7 also include sketch initial-
ization as well as the generation of random numbers which were
used instead of hash values as described before. The initialization
costs dominate for small distinct counts, which are proportional to
𝑚 = 2𝑝 due to the allocated register array. For large distinct counts

1665

10−8

10−7

10−6

10−5

ti
m

e
pe

r
el

em
en

t
(s

)

HLL ULL

100 102 104 106

distinct count =

10−8

10−7

10−6

10−5

ti
m

e
pe

r
el

em
en

t
(s

)

HLL + martingale estimator

100 102 104 106

distinct count =

ULL + martingale estimator

Figure 7: Average insertion time per element when initializ-
ing a HLL or ULL sketch with 𝒑 ∈ {8, 10, 12, 14, 16} and adding
the given number of distinct elements.

the initialization costs can be neglected, and the average time per
insertion converges to a value that is essentially independent of
𝑝 . There, it becomes apparent that HLL insertions are significantly
slower, mainly caused by the overhead of accessing the 6-bit reg-
isters packed in a byte array. If the insertions are accompanied by
martingale estimator updates following Algorithm 2, the difference
is less clear. Only for large distinct counts, where changes of register
values become less frequent, ULL is significantly faster again.

We also investigated the estimation costs for precisions 𝑝 ∈
[8, 16] and 𝑛 ∈ {1, 2, 5, 10, 20, 50, . . . , 107} as shown in Figure 8. We
considered the ML estimator for both, the new FGRA estimator
for ULL, and the corrected raw (CR) estimator for HLL [20]. The
latter corresponds to the GRA estimator with 𝜏 = 1 which is for
HLL almost as efficient as the ML and optimal GRA estimators
[46]. ML estimation is more expensive for ULL than for HLL for
larger distinct counts. The CR and the FGRA estimator are most
of the time significantly faster than their ML counterparts. The
costs of the CR estimator are roughly constant, while the FGRA
estimator peaks briefly before it falls back on the same level as the
CR estimator for equal 𝑝 . Our investigations showed that this peak
is related to the more difficult branch prediction in Algorithm 6,
when significant portions of registers have values from {0, 4, 8, 10}
and also values greater than or equal to 12.

A fair comparison must take into account that an ULL sketch
with same precision generally leads to smaller errors. According
to (1) the theoretical relative errors for HLL and ULL are given

by
√︂

MVP(HLL)/(6 · 2𝑝 (HLL)) and
√︂

MVP(ULL)/(8 · 2𝑝 (ULL)). They are
approximately equal if 𝑝(HLL) ≈ 𝑝(ULL) + 0.8, which means that an
ULL with 𝑝 = 8 is rather compared to a HLL with 𝑝 = 9. Figure 9
shows the average estimation time for 𝑛 = 106 and averaged over
the cases 𝑛 ∈ {1, 2, 5, 10, 20, 50, . . . , 107}, which shows that FGRA
estimation from an ULL is often faster (except for the peaks) than
CR estimation from an HLL of equivalent precision.

6 FUTUREWORK
Although the ML estimator has been shown to be efficient and
achieves the Cramér-Rao bound, it is slower than the FGRA esti-
mator, which in turn has a worse efficiency of 94.6%. Improving

10−6

10−5

10−4

es
ti

m
at

io
n

ti
m

e
(s

)

HLL ML ULL ML

100 102 104 106

distinct count =

10−6

10−5

10−4

es
ti

m
at

io
n

ti
m

e
(s

)

HLL CR

100 102 104 106

distinct count =

ULL FGRA

Figure 8: Average estimation time over the true distinct count
for HLL and ULL for various precisions 𝒑 ∈ [8, 16].

1 10
theoretical relative error (%)

10−6

10−5

10−4
es

ti
m

at
io

n
ti

m
e

(s
)

= = 106

1 10
theoretical relative error (%)

average

ULL FGRA
ULL ML
HLL CR
HLL ML

Figure 9: Estimation time for 𝒏 = 106 (left) and averaged
over the cases 𝒏 ∈ {1, 2, 5, 10, 20, 50, . . . , 107} (right) versus the
theoretical relative error when varying 𝒑 ∈ [8, 16].

the ML solver could be a way to achieve better estimation perfor-
mance. Possibly, an alternative estimation method may also lead
to a faster and even more efficient estimator. Another interesting
question is whether parameter choices with smaller MVPs, as dis-
cussed in Section 2.3, can be turned into practical data structures
with efficient estimation algorithms. Finally, since HLL has also
been successfully applied for set similarity estimation [20, 21, 32],
what is the space efficiency of ULL in this context, and can a fast
and robust estimation algorithm be found for that as well?

7 CONCLUSION
We derived the ULL sketch as a special case of a generalized data
structure unifying HLL, EHLL, and PCSA. The theoretically pre-
dicted space savings of 28%, 24%, and 17% over HLL when using
the ML, FGRA, and martingale estimator, respectively, were per-
fectly matched by our experiments. The byte-sized registers lead
to faster recording speed as well as better compressibility. Since
ULL also has the same properties as HLL (constant-time insertions,
idempotency, mergeability, reproducibility, reducibility), efficient
and robust estimation with similar execution speed is possible,
and even compatibility with HLL can be achieved, we believe that
ULL has the potential to become the new standard algorithm for
approximate distinct counting.

1666

REFERENCES
[1] [n.d.]. Apache Commons Compress. Retrieved March 17, 2024 from https:

//commons.apache.org/proper/commons-compress/
[2] [n.d.]. Apache Data Sketches: A software library of stochastic streaming algorithms.

Retrieved March 17, 2024 from https://datasketches.apache.org/
[3] [n.d.]. Apache Data Sketches: Features Matrix for Distinct Count Sketches.

Retrieved March 17, 2024 from https://datasketches.apache.org/docs/
DistinctCountFeaturesMatrix.html

[4] [n.d.]. Processor state control for your EC2 instance. Retrieved March 17, 2024
from https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_
control.html

[5] [n.d.]. Snowflake Documentation: Estimating the Number of Distinct Values. Re-
trieved March 17, 2024 from https://docs.snowflake.com/en/user-guide/querying-
approximate-cardinality

[6] N. Alon, Y. Matias, and M. Szegedy. 1999. The Space Complexity of Approxi-
mating the Frequency Moments. J. Comput. System Sci. 58, 1 (1999), 137–147.
https://doi.org/10.1006/jcss.1997.1545

[7] D. N. Baker and B. Langmead. 2019. Dashing: fast and accurate genomic distances
with HyperLogLog. Genome Biology 20, 265 (2019). https://doi.org/10.1186/
s13059-019-1875-0

[8] R. B. Basat, G. Einziger, S. L. Feibish, J. Moraney, and D. Raz. 2018. Network-
wide routing-oblivious heavy hitters. In Proceedings of the 16th Symposium on
Architectures for Networking and Communications Systems (ANCS). 66–73. https:
//doi.org/10.1145/3230718.3230729

[9] P. Boldi, M. Rosa, and S. Vigna. 2011. HyperANF: Approximating the neigh-
bourhood function of very large graphs on a budget. In Proceedings of the
20th International Conference on World Wide Web (WWW). 625–634. https:
//doi.org/10.1145/1963405.1963493

[10] F. P. Breitwieser, D. N. Baker, and S. L. Salzberg. 2018. KrakenUniq: confident
and fast metagenomics classification using unique k-mer counts. Genome biology
19, 1 (2018), 1–10. https://doi.org/10.1186/s13059-018-1568-0

[11] V. Bruschi, P. Reviriego, S. Pontarelli, D. Ting, and G. Bianchi. 2021. More
Accurate Streaming Cardinality Estimation With Vectorized Counters. IEEE
Networking Letters 3, 2 (2021), 75–79. https://doi.org/10.1109/LNET.2021.3076048

[12] G. Casella and R. L. Berger. 2002. Statistical Inference (2nd ed.). Duxbury, Pacific
Grove, CA.

[13] Y. Chabchoub, R. Chiky, and B. Dogan. 2014. How can sliding HyperLogLog and
EWMA detect port scan attacks in IP traffic? EURASIP Journal on Information
Security 2014, 5 (2014). https://doi.org/10.1186/1687-417X-2014-5

[14] A. Chen, J. Cao, L. Shepp, and T. Nguyen. 2011. Distinct Counting With a
Self-Learning Bitmap. J. Amer. Statist. Assoc. 106, 495 (2011), 879–890. https:
//doi.org/10.1198/jasa.2011.ap10217

[15] V. Clemens, L.-C. Schulz, M. Gartner, and D. Hausheer. 2023. DDoS Detection
in P4 Using HYPERLOGLOG and COUNTMIN Sketches. In Network Operations
and Management Symposium (NOMS). 1–6. https://doi.org/10.1109/NOMS56928.
2023.10154315

[16] E. Cohen. 2015. All-Distances Sketches, Revisited: HIP Estimators for Massive
Graphs Analysis. IEEE Transactions on Knowledge and Data Engineering 27, 9
(2015), 2320–2334. https://doi.org/10.1109/TKDE.2015.2411606

[17] D. R. Cox and E. J. Snell. 1968. A General Definition of Residuals. Journal
of the Royal Statistical Society. Series B (Methodological) 30, 2 (1968), 248–275.
http://www.jstor.org/stable/2984505

[18] M. Durand. 2004. Combinatoire analytique et algorithmique des ensembles de
données. Ph.D. Dissertation. École Polytechnique, Palaiseau, France. https:
//pastel.hal.science/pastel-00000810

[19] R. A. L. Elworth, Q. Wang, P. K. Kota, C. J. Barberan, B. Coleman, A. Balaji, G.
Gupta, R. G. Baraniuk, A. Shrivastava, and T. J. Treangen. 2020. To Petabytes
and beyond: recent advances in probabilistic and signal processing algorithms
and their application to metagenomics. Nucleic Acids Research 48, 10 (2020),
5217–5234. https://doi.org/10.1093/nar/gkaa265

[20] O. Ertl. 2017. New cardinality estimation algorithms for HyperLogLog sketches.
(2017). arXiv:1702.01284 [cs.DS]

[21] O. Ertl. 2021. SetSketch: Filling the Gap between MinHash and HyperLogLog
(extended version). (2021). arXiv:2101.00314 [cs.DS]

[22] O. Ertl. 2023. UltraLogLog: A Practical and More Space-Efficient Alternative to
HyperLogLog for Approximate Distinct Counting (extended version). (2023).
arXiv:2308.16862 [cs.DS]

[23] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. 2007. HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm. In Proceedings of the
International Conference on the Analysis of Algorithms (AofA). 127–146. https:
//doi.org/10.46298/dmtcs.3545

[24] P. Flajolet and G. N. Martin. 1985. Probabilistic counting algorithms for data
base applications. Journal of computer and system sciences 31, 2 (1985), 182–209.
https://doi.org/10.1016/0022-0000(85)90041-8

[25] M. J. Freitag and T. Neumann. 2019. Every Row Counts: Combining Sketches
and Sampling for Accurate Group-By Result Estimates. In Proceedings of the 9th
Conference on Innovative Data Systems Research (CIDR).

[26] A. Helmi, J. Lumbroso, C. Martínez, and A. Viola. 2012. Data Streams as Random
Permutations: the Distinct Element Problem. In Proceedings of the 23rd Interna-
tional Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the
Analysis of Algorithms (AofA). 323–338. https://doi.org/10.46298/dmtcs.3002

[27] S. Heule, M. Nunkesser, and A. Hall. 2013. HyperLogLog in Practice: Algorithmic
Engineering of a State of the Art Cardinality Estimation Algorithm. In Proceedings
of the 16th International Conference on Extending Database Technology (EDBT).
683–692. https://doi.org/10.1145/2452376.2452456

[28] M. Karppa and R. Pagh. 2022. HyperLogLogLog: Cardinality Estimation With
One Log More. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD). 753––761. https://doi.org/10.1145/3534678.
3539246

[29] K. J. Lang. 2017. Back to the Future: an Even More Nearly Optimal Cardinality
Estimation Algorithm. (2017). arXiv:1708.06839 [cs.DS]

[30] J. Lu, H. Chen, J. Zhang, T. Hu, P. Sun, and Z. Zhang. 2023. Virtual self-adaptive
bitmap for online cardinality estimation. Information Systems 114, 102160 (2023).
https://doi.org/10.1016/j.is.2022.102160

[31] G. Marçais, B. Solomon, R. Patro, and C. Kingsford. 2019. Sketching and Sublinear
Data Structures in Genomics. Annual Review of Biomedical Data Science 2, 1
(2019), 93–118. https://doi.org/10.1146/annurev-biodatasci-072018-021156

[32] A. Nazi, B. Ding, V. Narasayya, and S. Chaudhuri. 2018. Efficient Estimation
of Inclusion Coefficient Using Hyperloglog Sketches. In Proceedings of the 44th
International Conference on Very Large Data Bases (VLDB). 1097–1109.

[33] T. Ohayon. 2021. ExtendedHyperLogLog: Analysis of a new Cardinality Estimator.
(2021). arXiv:2106.06525 [cs.DS]

[34] C. Pavlopoulou, M. J. Carey, and V. J. Tsotras. 2022. Revisiting Runtime Dynamic
Optimization for Join Queries in Big Data Management Systems. In Proceedings
of the 25th International Conference on Extending Database Technology (EDBT).
https://doi.org/10.5441/002/edbt.2022.01

[35] O. Peters. [n.d.]. PolymurHash. Retrieved March 17, 2024 from https://github.
com/orlp/polymur-hash

[36] S. Pettie and D. Wang. 2021. Information Theoretic Limits of Cardinality Esti-
mation: Fisher Meets Shannon. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC). 556–569. https://doi.org/10.1145/
3406325.3451032

[37] S. Pettie, D. Wang, and L. Yin. 2021. Non-Mergeable Sketching for Cardinality
Estimation. In 48th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), Vol. 198. 104:1–104:20. https://doi.org/10.4230/LIPIcs.ICALP.
2021.104

[38] B. W. Priest, R. Pearce, and G. Sanders. 2018. Estimating Edge-Local Triangle
Count Heavy Hitters in Edge-Linear Time and Almost-Vertex-Linear Space. In
Proceedings of the IEEE High Performance Extreme Computing Conference (HPEC).
https://doi.org/10.1109/HPEC.2018.8547721

[39] J. Qin, D. Kim, and Y. Tung. 2016. LogLog-Beta and More: A New Al-
gorithm for Cardinality Estimation Based on LogLog Counting. (2016).
arXiv:1612.02284 [cs.DS]

[40] B. Scheuermann and M. Mauve. 2007. Near-optimal compression of probabilistic
counting sketches for networking applications. In Proceedings of the 4th ACM
International Workshop on Foundations of Mobile Computing (FOMC).

[41] R. Sedgewick. 2022. HyperBit: A Memory-Efficient Alternative to HyperLog-
Log. (2022). https://www.birs.ca/workshops/2022/22w5004/files/BobSedgewick/
HyperBit.pdf Analytic and Probabilistic Combinatorics Workshop at the Banff
International Research Station (BIRS) for Mathematical Innovation and Discov-
ery.

[42] D. Ting. 2014. Streamed Approximate Counting of Distinct Elements: Beating
Optimal Batch Methods. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). 442–451. https:
//doi.org/10.1145/2623330.2623669

[43] D. Ting. 2019. Approximate distinct counts for billions of datasets. In Proceedings
of the International Conference on Management of Data (SIGMOD). 69–86. https:
//doi.org/10.1145/3299869.3319897

[44] R. Urban. [n.d.]. SMhasher: Hash function quality and speed tests. Retrieved
March 17, 2024 from https://github.com/rurban/smhasher

[45] A. Vaneev. [n.d.]. Komihash. Retrieved March 17, 2024 from https://github.com/
avaneev/komihash

[46] D. Wang and S. Pettie. 2023. Better Cardinality Estimators for HyperLogLog,
PCSA, and Beyond. In Proceedings of the 42nd ACM Symposium on Principles of
Database Systems (PODS). 317—-327. https://doi.org/10.1145/3584372.3588680

[47] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. 1990. A Linear-Time
Probabilistic Counting Algorithm for Database Applications. ACM Transactions
on Database Systems 15, 2 (1990), 208—-229. https://doi.org/10.1145/78922.78925

[48] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and A. Warfield. 2014. Characterizing
storage workloads with counter stacks. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 335–349. https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/wires

[49] Q. Xiao, S. Chen, Y. Zhou, and J. Luo. 2020. Estimating Cardinality for Arbitrarily
Large Data Stream With Improved Memory Efficiency. IEEE/ACM Transactions
on Networking 28, 2 (2020), 433–446. https://doi.org/10.1109/TNET.2020.2970860

1667

https://commons.apache.org/proper/commons-compress/
https://commons.apache.org/proper/commons-compress/
https://datasketches.apache.org/
https://datasketches.apache.org/docs/DistinctCountFeaturesMatrix.html
https://datasketches.apache.org/docs/DistinctCountFeaturesMatrix.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://docs.snowflake.com/en/user-guide/querying-approximate-cardinality
https://docs.snowflake.com/en/user-guide/querying-approximate-cardinality
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1186/s13059-019-1875-0
https://doi.org/10.1186/s13059-019-1875-0
https://doi.org/10.1145/3230718.3230729
https://doi.org/10.1145/3230718.3230729
https://doi.org/10.1145/1963405.1963493
https://doi.org/10.1145/1963405.1963493
https://doi.org/10.1186/s13059-018-1568-0
https://doi.org/10.1109/LNET.2021.3076048
https://doi.org/10.1186/1687-417X-2014-5
https://doi.org/10.1198/jasa.2011.ap10217
https://doi.org/10.1198/jasa.2011.ap10217
https://doi.org/10.1109/NOMS56928.2023.10154315
https://doi.org/10.1109/NOMS56928.2023.10154315
https://doi.org/10.1109/TKDE.2015.2411606
http://www.jstor.org/stable/2984505
https://pastel.hal.science/pastel-00000810
https://pastel.hal.science/pastel-00000810
https://doi.org/10.1093/nar/gkaa265
https://arxiv.org/abs/1702.01284
https://arxiv.org/abs/2101.00314
https://arxiv.org/abs/2308.16862
https://doi.org/10.46298/dmtcs.3545
https://doi.org/10.46298/dmtcs.3545
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.46298/dmtcs.3002
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1145/3534678.3539246
https://doi.org/10.1145/3534678.3539246
https://arxiv.org/abs/1708.06839
https://doi.org/10.1016/j.is.2022.102160
https://doi.org/10.1146/annurev-biodatasci-072018-021156
https://arxiv.org/abs/2106.06525
https://doi.org/10.5441/002/edbt.2022.01
https://github.com/orlp/polymur-hash
https://github.com/orlp/polymur-hash
https://doi.org/10.1145/3406325.3451032
https://doi.org/10.1145/3406325.3451032
https://doi.org/10.4230/LIPIcs.ICALP.2021.104
https://doi.org/10.4230/LIPIcs.ICALP.2021.104
https://doi.org/10.1109/HPEC.2018.8547721
https://arxiv.org/abs/1612.02284
https://www.birs.ca/workshops/2022/22w5004/files/Bob Sedgewick/HyperBit.pdf
https://www.birs.ca/workshops/2022/22w5004/files/Bob Sedgewick/HyperBit.pdf
https://doi.org/10.1145/2623330.2623669
https://doi.org/10.1145/2623330.2623669
https://doi.org/10.1145/3299869.3319897
https://doi.org/10.1145/3299869.3319897
https://github.com/rurban/smhasher
https://github.com/avaneev/komihash
https://github.com/avaneev/komihash
https://doi.org/10.1145/3584372.3588680
https://doi.org/10.1145/78922.78925
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://doi.org/10.1109/TNET.2020.2970860

[50] Q. Xiao, Y. Zhou, and S. Chen. 2017. Better with fewer bits: Improving the
performance of cardinality estimation of large data streams. In IEEE Conference
on Computer Communications (IEEE INFOCOM). 1–9. https://doi.org/10.1109/
INFOCOM.2017.8057088

[51] Y. Zhao, S. Guo, and Y. Yang. 2016. Hermes: An Optimization of HyperLogLog
Counting in real-time data processing. In Proceedings of the International Joint

Conference on Neural Networks (IJCNN). 1890–1895. https://doi.org/10.1109/
IJCNN.2016.7727430

[52] W. Yi. [n.d.]. Wyhash. Retrieved March 17, 2024 from https://github.com/wangyi-
fudan/wyhash

1668

https://doi.org/10.1109/INFOCOM.2017.8057088
https://doi.org/10.1109/INFOCOM.2017.8057088
https://doi.org/10.1109/IJCNN.2016.7727430
https://doi.org/10.1109/IJCNN.2016.7727430
https://github.com/wangyi-fudan/wyhash
https://github.com/wangyi-fudan/wyhash

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Summary of Contributions

	2 Generalized Data Structure
	2.1 Statistical Model
	2.2 Theoretical Analysis
	2.3 Choice of Parameters

	3 Distinct Count Estimation
	3.1 Maximum-Likelihood Estimator
	3.2 GRA Estimator
	3.3 New FGRA Estimator
	3.4 Corrections for GRA/FGRA Estimators
	3.5 Estimator for Small Distinct Counts
	3.6 Estimator for Large Distinct Counts
	3.7 Martingale Estimator

	4 Practical Implementation
	4.1 Merging and Downsizing
	4.2 Compatibility to HyperLogLog

	5 Experiments
	5.1 Estimation Error
	5.2 Compression
	5.3 Performance

	6 Future Work
	7 Conclusion
	References

