
Leveraging Dynamic and Heterogeneous Workload Knowledge to
Boost the Performance of Index Advisors

Zijia Wang
Haoran Liu
Chen Lin

School of Informatics,
Xiamen University

China
chenlin@xmu.edu.cn

zjwang@stu.xmu.edu.cn
liuhr@stu.xmu.edu.cn

Zhifeng Bao
RMIT University

Australia
zhifeng.bao@rmit.edu.au

Guoliang Li
Department of Computer

Science, Tsinghua
University
China

liguoliang@tsinghua.edu.cn

Tianqing Wang
Huawei Company

China
wangtianqing2@huawei.com

ABSTRACT
Current index advisors often struggle to balance efficiency and
effectiveness when dealing with workload shifts. This arises from
ignorance of the continual similarity and distant variety in work-
loads. This paper proposes a novel learning-based index advisor
called BALANCE, which boosts indexing performance by leverag-
ing knowledge obtained from dynamic and heterogeneous work-
loads. Our approach consists of three components. First, we build
separate Lightweight Index Advisors (LIAs) on sequential chunks
of similar workloads, where each LIA is trained with a small batch
of workloads drawn from the chunk, and it provides direct index
recommendations for all workloads in the same chunk. Second,
we perform a policy transfer mechanism by adapting the LIA’s
index selection strategy from historical knowledge, substantially
reducing the training overhead. Third, we employ a self-supervised
contrastive learning method to provide an off-the-shelf workload
representation, enabling the LIA to generate more accurate index
recommendations. Extensive experiments across various bench-
marks demonstrate that BALANCE improves the state-of-the-art
learning-based index advisor, SWIRL, by 10.03% while reducing
training overhead by 35.70% on average.

PVLDB Reference Format:
Zijia Wang, Haoran Liu, Chen Lin, Zhifeng Bao, Guoliang Li, and Tianqing
Wang. Leveraging Dynamic and Heterogeneous Workload Knowledge to
Boost the Performance of Index Advisors. PVLDB, 17(7): 1642 - 1654, 2024.
doi:10.14778/3654621.3654631

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/XMUDM/BALANCE.

1 INTRODUCTION
Selecting appropriate attributes to build indexes can accelerate
data retrieval at the cost of storage overhead and index mainte-
nance [27]. This can be formalized as the Index Selection Problem

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.
doi:10.14778/3654621.3654631

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Time (hours)

c1
c2
c3
c4
c5
c6
c7
c8
c9Ac

ce
ss

 C
ol

um
ns

0
5
10
15
20
25

Fr
eq

ue
nc

y

Figure 1: An illustrative example of the frequency of columns
accessed by the workload every hour

(ISP), which is to select the set of indexes for a given workload to
maximize the workload’s performance while satisfying the storage
cost constraints.

The ISP has been proven to be NP-hard [28], and many index ad-
visors have been proposed to solve it. Early Index Advisors (IAs) are
usually heuristic-based [3, 4, 6, 12, 32, 36, 37], which use predefined
rules to add or remove indexes to the output index configuration
iteratively. Recently, learning-based IAs have emerged, and they are
mostly based on deep Reinforcement Learning (RL) [17, 18, 22, 31]
or Monte Carlo tree search [38, 41] to make index selection deci-
sions.

However, in real-world scenarios, workloads evolve over time.
Existing IAs struggle to deliver effective index configurations effi-
ciently for dynamic and heterogeneous workloads due to the costly
tuning overhead (e.g., time cost to train IAs, time cost to determine
index selections, etc.). We argue that they neglect two important
temporal properties of workloads, i.e., continual similarity and dis-
tant variety.

The continual similarity refers to situations where the workload
experiences relatively minor changes in the short term. As shown
in Figure 1, workloads from hour 1 to hour 8 have similar query
patterns, e.g., access columns 𝑐1, 𝑐2, 𝑐5 with the same frequency.
This property has been observed in many production database sys-
tems. For example, BusTracker 1 is a mobile phone application for
live-tracking of the public transit bus system. On weekdays during
commuting hours, the workloads contain many commute-related
queries, such as checking bus arrival times, planning routes to de-
sired destinations, etc. Another example is App-X [34] for trading
on the stock exchange. During the opening bell, most queries are
value-based, such as stock buyers searching for the current price of
specific stocks or checking market trends.

1http://www.cs.cmu.edu/~malin199/data/tiramisu-sample

1642

https://doi.org/10.14778/3654621.3654631
https://github.com/XMUDM/BALANCE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3654621.3654631
http://www.cs.cmu.edu/~malin199/data/tiramisu-sample
https://www.acm.org/publications/policies/artifact-review-and-badging-current

The distant variety pertains to situations where the workload
undergoes significant evolution over the long term. As shown in Fig-
ure 1, workloads from hour 9 to hour 16 access columns 𝑐2, 𝑐3, 𝑐6, 𝑐8,
which is a different set of columns than hour 1 − 8. Distant variety
is also observed in real scenarios, and it can result from a shift in
user intent or workload evolution. For example, Bustracker queries
during weekends are more activity-related, such as users exploring
bus schedules and alternative routes for leisure activities. In the
case of App-X [34], queries during the market closing time are more
technology-based, such as the securities company staff perform-
ing transaction monitoring of specific stock categories. Moreover,
workload shift is observed [23] in MOOC 2 whenever new fea-
tures are released because more queries exploring and utilizing new
functionalities emerge.

The continual similarity and distant variety raise two questions
for learning-based index advisors.

First, existing learning-based index advisors [17, 18, 31] often
overlook continual similarity and need to implement expensive
trials to fit each workload. A natural question arises: can we train the
IA with a small batch of samples and use it to directly predict indexes
for similar workloads in a certain period of time? Since workloads
in adjacent hours have common query patterns and demands, they
would benefit from employing similar index selection strategies.
Here, we emphasize that directly recommending indexes for similar
workloads is non-trivial because the indexing policy is based on
accurate workload representation that captures the subtle, index-
aware differences in similar workloads.

Second, when workloads evolve, existing learning-based index
advisors utilize only the index trials on the current workload and
discard potentially valuable historical index selection experiences
on distant workloads in the past. Can we improve the learning ef-
ficiency and reduce the training overhead of index advisors by fully
exploiting historical samples on past workloads? Since machine learn-
ing models can improve themselves through training experiences,
it is plausible that with appropriate treatments, past experiences
can give the index advisor a better initialization on the current
workload, and the index advisor will converge to the optimal index
selection faster. Nonetheless, integrating historical experiences into
the current training process is challenging because of the distant
variety. Clearly, the index selection strategies need to adapt and
undergo considerable changes to cater to the varied requirements of
distant workloads. The indexing policy must be carefully designed
to transfer knowledge from past experiences without negatively
impacting the current workload.

Most RL-based index advisors take a long training time to achieve
sufficiently good index recommendations, primarily because they
overlook the importance of continual similarity and distant variety
in their training process. For example, SWIRL [17] demonstrates
the state-of-the-art effectiveness for dynamic workloads. Yet, it
still requires approximately of training duration on the TPC-H
10GB dataset. By effectively leveraging the continual similarity and
distant variety, as we will show shortly, we only need 3.3 min of
training duration to achieve the same indexing performance.

2https://www.mooc.org/

Our Contributions. To address the above issues, we propose
BALANCE: a transfer RL-based index advisor for dynamic work-
loads in real scenarios.

First, BALANCE builds separate Lightweight Index Advisors
(LIAs) on sequential chunks of similar workloads. Each LIA is
trained with a small batch of samples drawn from the chunk, in-
stead of the whole chunk (i.e., lightweight). It can provide direct
index recommendations for other workloads in the same chunk
(Section 3.2). BALANCE achieves comparable indexing results to
the near-optimal Extend [32] with less than 0.6% inference runtime.

Second, BALANCE presents a policy transfer mechanism to
adapt the current LIA from previously trained LIAs based on work-
load similarities. Thus, knowledge learned from distant workloads
is transferred without introducing noise or fusing dissimilar work-
loads, and the training efficiency of reinforcement learning is im-
proved (Section 5). BALANCE improves SWIRL by 10.03% while
reducing the training overhead by 35.70% on average.

Third, BALANCE employs a self-supervised contrastive learning
method before training LIAs to obtain off-the-shelf workload repre-
sentations. Thus, the workload representations are obtained more
efficiently without actually implementing the time-costly reinforce-
ment learning trials. Furthermore, the workload representations
reveal key characteristics of the workloads related to indexing per-
formance and enable LIAs to produce more reliable and accurate
index recommendations (Section 4). Ablation study on BALANCE
shows that, compared with workload representations extracted
from query text [31], the self-supervised workload representation
can reduce workload execution cost by up to 6.6%.

2 RELATEDWORK
2.1 Index Advisor
Some heuristic-based index advisors reduce a comprehensive set of
initial index candidates step by step [3, 37]. These methods often
lead to excessively long runtime because many iterations are re-
quired to satisfy the specified budget [16]. Other works add indexes
iteratively to an empty set, where the indexes can be single-column
indexes [12] or multi-column indexes [4, 6, 32, 36].

Recently, learning-based methods based on reinforcement learn-
ing [35] have shown great potential in both efficiency and accuracy.
Their difference mainly lies in state representations, which can be (1)
workload-independent [27, 41], e.g., treating potential index combi-
nations as tree nodes and fetching index configurations via Monte
Carlo Tree Search (MCTS); (2) query level [18], e.g., including the
frequency of queries; (3) column level [30, 31], e.g., incorporating
a selectivity vector of each attribute; or (4) plan level [17], e.g.,
incorporating query operators parsed from the execution plan.

As per [16], heuristic methods are shown towork poorly for large
databases and complex workloads because such methods cannot
balance between high inference efficiency and high index quality.
As per [17], Extend [32] produces the best workload execution cost,
and SWIRL [17] makes comparable workload cost reduction while
significantly reducing inference time and training overhead.

2.2 Transfer Reinforcement Learning
Reinforcement learning faces the problem of sparse feedback and
sample inefficiency, especially in high-complexity state and action

1643

https://www.mooc.org/

spaces, where obtaining enough interaction samples is prohibi-
tive [1]. Transfer learning has emerged as a promising approach to
address the problem of sample inefficiency and accelerate RL [42].

One line of work transfers reward/value function, such as using
reward shaping [5] or estimating the reward function from source
task samples [19]. Nevertheless, the transfer of value functions or
samples typically depends on accurate estimations or prior knowl-
edge formeasuring similarity. This reliance increases computational
complexity, making it infeasible for practical applications.

Another line of work tries to reuse the policy directly in the
source tasks. This method usually considers many-to-one scenarios.
For instance, probabilistic policy reuse assigns probabilities to each
source policy based on their expected performance gain in the target
domain [11], generalized policy improvement extends one source
policy to multiple policies [2], optimize source policy selection
using MAB techniques [21], etc.
Remarks. (1) Existing reinforcement-learning-based index advi-
sors ignore the historical workloads and hurt their training over-
head and index performance. Our proposed scheme introduces
separate lightweight index advisors with a policy transfer mech-
anism. This approach enhances the efficiency of reinforcement
learning by transferring knowledge from distant workloads while
maintaining strong generalization capabilities within each index ad-
visor. (2) Workload representation is vital in ISP, and most previous
studies rely on fixed strategies to extract workload representations
from queries [17, 31]. We argue that they do not accurately reflect
the characteristics between workloads and their impacts on index
selection. Thus, we present a self-supervised contrastive learning
method to obtain workload representations relevant to index selec-
tion.

3 SOLUTION OVERVIEW
In this section, we start with preliminaries, followed by a formal
definition of the index selection problem, as well as an overview of
our solution. Frequently used notations are listed in Table 1.

3.1 Problem Formulation
A workload refers to a set of queries with their frequencies, i.e.,
𝑤 = (𝑞1, 𝑓1), · · · , (𝑞 |𝑤 | , 𝑓 |𝑤 |), where𝑞𝑖 is a query, 𝑓𝑖 is the frequency
of 𝑞𝑖 , |𝑤 | is the number of queries in workload𝑤 .

Definition 3.1. Index Selection Problem (ISP). For a certain data-
base D, given a workload 𝑤 , a set of index candidates I, and a
storage budget 𝐵, the ISP is to determine an index configuration
𝐼∗ ⊆ I so that 𝐼∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐼⊆I𝑐𝑜𝑠𝑡 (𝑤, 𝐼) subject to𝑀 (𝐼) ≤ 𝐵.

Here the workload cost under an index configuration 𝐼∗ is
an aggregation of each query cost in the workload, 𝑐𝑜𝑠𝑡 (𝑤, 𝐼) =∑ |𝑤 |
𝑖=1 𝑓𝑖 · 𝑐𝑜𝑠𝑡 (𝑞𝑖 , 𝐼), where 𝑐𝑜𝑠𝑡 (𝑞𝑖 , 𝐼) is the execution cost of 𝑞𝑖

which is evaluated by a what-if caller [7]. The total storage of an in-
dex candidate amounts to𝑀 (𝐼) = ∑

𝑖∈𝐼𝑚𝑖 , where𝑚𝑖 is the required
storage of index 𝑖 .

3.2 Overview of Our Solution
We first explain the motivation. Workloads for real-world applica-
tions are never static [23]. Among the few existing IAs that address
dynamic workloads, they struggle to balance training efficiency

Table 1: Frequently used notations

Notations Brief Description

𝑊 A workload chunk contains a set of similar workloads
𝜋 Agent policy of a sub-model for a workload chunk
𝑤 Workload contains a set of queries with their frequencies
I A set of index candidates for a workload
𝐼∗ Index configuration selected from index candidates
𝑐𝑜𝑠𝑡 (𝑤, 𝐼) Execution cost of workload𝑤 under index configuration 𝐼
𝑀 (𝐼) Required storage of index configuration 𝐼
𝐵 Storage budget of index configuration
𝑑𝑚𝑎𝑥 The maximum number of attributes contained in an index
p The off-the-shelf representation of workload

②

③

④
⑤

Workload
Representation	Module

Database

Agent
Option	Module

Index
Advisor	T

Workloads

(c)	Workload	Representation (a)	Workload	Chunk	Segment

①

Workload
Representation	Module

Database
Index

Advisor	T

Workloads

Index	Rank

Pre-train

Environment

Index
Advisor	1

Workload
Chunk	1

Index
Advisor	2

Workload
Chunk	2

Workload
Chunk	T-1

Source
model
pool

Workload
Embedder

⑥

(b)	Transfer	Reinforcement	Learning

Index
Advisor	T-1

Time

Workload
Chunk	T

...

...

Figure 2: Framework overview of BALANCE

and effectiveness. For example, they either repetitively run expen-
sive indexing trials on the workload at hand and deliver the best
index configuration during the trials [31], or train one model on the
entire set of workloads and their variants with extensive training
overhead to enable direct index recommendation [17].

Our goal is to directly make accurate index selections without
training on a large set of workloads. To achieve this goal, the key
idea is to split the workloads into chunks of similar workloads,
build a separate IA for each chunk, train it with a small portion of
workloads sampled from the chunk, and use it to make direct index
selections for other workloads in the chunk. Such a framework is
more efficient than existing index advisors because (1) each separate
IA is lightweight, i.e., training with a small number of workloads
requires significantly fewer interactions with the database environ-
ment and leads to less training time and fewer resources, and (2)
each index advisor is in a one-off fashion, i.e., once the model is
trained, it can directly recommend index selections for any work-
load and no trial indexes are required.

We also want the IAs to learn from past experiences enhancing
their robustness to workload shifts. Since the workloads are dy-
namic and heterogeneous, a policy transfer mechanism is required
to transfer useful knowledge (e.g., learned from similar historical
workloads instead of simply mixing all indexing experiences).

To improve index accuracy, it is necessary to capture workload
characteristics and encode them as representation vectors. A bet-
ter workload representation can (1) facilitate the index advisor to
adapt its index selection strategy to different workloads; (2) identify
workloads with potential relevant index performances and transfer
knowledge learned from the appropriate workloads. Most prior
index advisors extract the workload representations from query

1644

text and query plans via predefined strategies, which is sub-optimal.
For example, extracting operators in query plans and neglecting
the range values [17]. Because the information within the query
text or plan typically does not directly relate to index selectivity or
does not cover the details of index selection comprehensively, these
approaches often fail to accurately capture the relationship between
the query and index selection. Thus, the workload representations
must be learned to distinguish subtle differences in workloads that
are crucial for index selections.

Ideally, the workload representation learning should be off-the-
shelf, i.e., the workload representations should be obtained before
the IA’s training procedure because updating theworkload represen-
tation during the index learning process can be time-consuming and
impractical. Secondly, the parameters to encode workload represen-
tations should not be updated during the index learning procedure.
Otherwise, since only a limited number of queries and indexes are
exposed in producing indexing trials, the workload representations
learned would be less discriminative.

To achieve the above, we propose BALANCE (Boosting index
Advisor by LeverAging dyNamiC and HeterogEneous workload).
As shown in Figure 2, BALANCE contains three major components,
and they are implemented in the following workflow.

Before the index recommendation process, BALANCE proposes
an offline workload representation module (Section 4). This mod-
ule outputs a numerical vector (i.e., representation) for each input
workload. The module adopts self-supervised contrastive learning,
i.e., the training of workload representation does not involve an
index advisor. It automatically generates a set of workloads, im-
plements them on a database given certain heuristically defined
indexes, observes their index preferences (i.e., Index Rank), and
optimizes a neural network to obtain the workload representation.

In a nutshell, the workload stream is segmented into chunks
of similar workloads determined by the differences between their
workload templates (more details in Section 6.7), and a separate
index advisor is built for each chunk. Each index advisor is an agent
trained by transfer RL.For a new workload chunk𝑊𝑇 currently
arrived, a small portion of workloads is sampled, and BALANCE
implements the following steps. ① Call the off-the-shelf workload
representation module and initialize the workload representation.
② The workload representation, the current index configuration,
and other meta information are sent to the agent as the current state.
③ The agent generates an action, i.e., choosing an index based on
the current state, according to its action policy. ④ The environment
provides the reward of the current action via the what-if optimizer
to the agent. ⑤ The option module decides whether and how to
update the current policy by transferring knowledge from previous
policies, i.e., index advisors for chunk 1, · · · ,𝑇 − 1 3. The process
iterates from step ② until the maximum number of iterations or the
indexing budget is exceeded. After the index advisor 𝑇 is trained,
we use it to offer index recommendations for other workloads in
chunk 𝑇 . ⑥ We put the current index advisor 𝑇 into the source
model pool and proceed to chunk 𝑇 + 1.

3In practice, for a large and complex dataset, we can keep at most 𝑘 most recent index
advisors𝑇 −𝑘 + 1, · · · ,𝑇 in the source model pool (i.e., keep a fixed number of source
IAs). An experimental study on the number of 𝑘 is shown in Section 6.6.

Query	1

Query	m

...

Query
Freq

Workload	i

Workload	j

Query	
Plan	1

BOO	
Embedder

Workload	Embedder

Value
Exactor

operator

value

Concat

MLP

What-
If

...	...

...

Workload	k

Positive
Pair

Negative
Pair

pi

pj

pk

Query	
Plan	1

Figure 3: Workload representation module architecture

4 WORKLOAD REPRESENTATION LEARNING
For each input workload𝑤 , the workload representation module
aims to output a numerical vector p𝑤 ∈ R𝐷𝑝

called the workload
representation, where 𝐷𝑝 is the embedding size.

4.1 Architecture
We focus on learning to encode p instead of defining heuristic
strategies [17, 18, 31], because pre-fixed strategies are incomplete
to derive a fine-grained understanding of the workload characteris-
tics to guide index selection. Moreover, the workload representation
module is trained off-the-shelf, meaning it is trained prior to the
index recommendation process without actually running the work-
loads in the system to avoid resource consumption in the production
workflow.

We resort to self-supervised contrastive learning [15], which has
demonstrated superior performance in computer vision [13] and
natural language processing [24] due to its capability of learning
from unlabeled data. Our objective is to unveil the workload’s hid-
den characteristics without the index labels because it is infeasible
to gather the gold standard labels, i.e., the Index Selection Problem
is NP-hard, and we can only obtain near-optimal index labels at
best. Consequently, contrastive learning is suitable and scalable for
our problem.

As shown in Figure 3, first, we randomly generate a set of work-
loads. Then, for each batch of workloads, we call the what-if op-
timizer to extract features from the query plans and concatenate
these features. The features go through a network to obtain repre-
sentation vectors for each workload. Finally, we optimize the model
parameters based on the contrastive loss, i.e., bringing positive
sample pairs closer together and pushing negative sample pairs
farther apart in the representation space.

4.2 Constructing positive and negative pairs
Contrastive learning extracts meaningful features by discerning
similarities and differences between samples, aiming to bring simi-
lar samples closer while pushing dissimilar ones apart. Constructing
positive and negative samples is crucial. For example, in computer
vision, the original image is treated as an anchor, and the positive
samples are constructed by image augmentation [8] (color jittering,
random cropping, and resizing, etc.), while other samples are used
as negative samples. In natural language processing, the positive
sample can be obtained by replacing or masking random tokens in
the sequence [40].

None of these augmentation techniques are feasible for our prob-
lem. For example, dropping a sub-clause will largely affect the index

1645

selection of a query; masking several tokens will make the query
non-executable. Thus, the augmented queries will not be considered
similar to the anchor query.

We propose an automated procedure to construct samples and
identify positive and negative pairs. Suppose we generate a set of
workloadsN = {𝑤} 4. For each workload𝑤 , we extract the relevant
columns and derive a set of index candidates I𝑤 where the maximal
index width is 𝑑𝑚𝑎𝑥 , which is a pre-defined hyper-parameter.

Next, we measure the similarity between workloads by their
index performances. We propose Index Rank to reflect a workload’s
index preference. The what-if optimizer is invoked to assess and
rank the index candidates based on the estimated cost of the work-
load w.r.t. each index candidate. Formally, for every workload 𝑤 ,
an index rank sequence 𝑅𝑤 is defined as:

𝑅𝑤 =< 𝐼𝑤1 , 𝐼
𝑤
2 , · · · , 𝐼

𝑤
𝑛𝑤 >,

∀𝑥 < 𝑦, 𝑐𝑜𝑠𝑡 (𝑤, 𝐼𝑤𝑥) < 𝑐𝑜𝑠𝑡 (𝑤, 𝐼𝑤𝑦),
(1)

where 𝐼𝑤
𝑖

∈ I𝑤 ,∀1 ≤ 𝑖 ≤ 𝑛𝑤 , and 𝑛𝑤 is the size of I𝑤 . Note that
Index Rank is independent of index advisors, meaning that we can
perceive the workload’s index preference without specifying an
index advisor.

Then, we present a set-based correlation metric to quantify the
similarity between two workloads:

𝛼 (𝑤, 𝑤′) =
min𝑖∈N 𝑛𝑖∑︁

𝑡=1

|𝑅𝑤
1:𝑡 ∩ 𝑅

𝑤′
1:𝑡 |

𝑡
, (2)

where 𝑅𝑤1:𝑡 denotes the set of all elements in the 𝑅𝑤 from position
1 to position 𝑡 . The correlation measures from position 𝑡 = 1 to the
minimal length of all index ranks in the training set, calculates the
set similarity between two workloads at each position 𝑡 of their
index ranks, and aggregates the similarity at all positions.

Lastly, we compute the similarity distribution among all pairs
(i.e., |N | × |N |, |N | is the number of workloads inN) of workloads
within the training set. For any anchor workload𝑤 , workloads with
a similarity value 𝛼 (𝑤,𝑤 ′) > 𝜏+ is its positive sample set 𝑒+ (𝑤),
and others are the negative set 𝑒− (𝑤), where 𝜏+ is the threshold.

As illustrated in Figure 4, we derive the index candidates of
workloads𝑤1,𝑤2,𝑤3 and obtain the index rank sequences via what-
if optimizer. Based on these sequences, we calculate the similarity
between them to determine positive samples (e.g., < 𝑤1,𝑤2 >) and
negative samples (e.g., < 𝑤1,𝑤3 > and < 𝑤2,𝑤3 >).

4.3 Workload Feature
We encode the semantic information of workloads. We build tree-
structured query plans by utilizing the DBMS’s optimizer (i.e.,
what-if optimizer) and Bag Of Operator (BOO) to encode the query
operators. Specifically, the operators of each plan relevant to in-
dex selection are converted into a textual representation. For ex-
ample, in the filter condition T1.COL2<5, a textual representation
TabScan_T1_COL2_Pred< will be generated.

An operator dictionary is constructed to store all textual rep-
resentations. Suppose the size of the operator dictionary is 𝐾 , for
each query 𝑖 , the BOO embedder uses a sequence of binary indica-
tors 𝑏𝑖 =< 𝑏𝑖,1, · · · , 𝑏𝑖,𝐾 >, where 𝑏𝑖,𝑘 = 1 suggests that the query
contains the 𝑘−th operator in the operator dictionary. Since the
features produced by BOO embedder are too sparse, we construct a
4The workloads can be populated from pre-defined query templates.

SELECT	*	FROM	T1	WHERE	T1.COL2	>	0.2	AND	T1.COL1	=	0	
SELECT	*	FROM	T2	WHERE	T2.COL2	<	1.5	
...	...

W1

W2
SELECT	*	FROM	T1	WHERE	T1.COL3	>	0.2	OR	T1.COL1	=	0	
...	...

W3
SELECT	*	FROM	T2	WHERE	T2.COL2	=	0.5	AND	T2.COL1	=	0	
...	...

workload index cost

W1 T1.COL1 3003.47

W1 T1.COL2 8713.42

W1 T2.COL2 4120.96

W2 T1.COL3 1829.66

...	...

Generate	Index	Candidate	&	Estimate	Workload	Cost Index	Rank	

①	T1.COL1
②	T2.COL2
③	T1.COL2
...	...

①	T1.COL3
②	T1.COL1
...	...

①	T2.COL1
②	T2.COL2
...	...

R1

R2

R3

Positive	Set:

Negative	Set:

<W1,W2>,

<W1,W3>,	<W2,W3>,

Figure 4: Example of constructing positive and negative pairs

Latent Semantic Indexing (LSI) model [9] for dimension reduction,
and the output is denoted as l𝑖 .

Next, we proceed to encode the value of the query. Similar to
operator encoding, we parse the query plan and extract the values
corresponding to the operator. For example, in the filter condi-
tion T1.COL2<5, there is the value 5 corresponding to the operator
TabScan_T1_COL2_Pred<. We maintain a sequence of value encod-
ing, 𝑣𝑖 =< 𝑣𝑖,1, · · · , 𝑣𝑖,𝐾 >, where 𝑣𝑖,𝑘 is the value representation
corresponding to the 𝑘−th operator in the operator dictionary. Val-
ues can be divided into two types, including the numeric value and
string value:
(1) For numeric value, we normalize it, i.e., 𝑣𝑖,𝑘 = 𝑣𝑎𝑙−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛 ,
where 𝑣𝑎𝑙 is the value in the query,𝑚𝑖𝑛 is the minimum value,
and𝑚𝑎𝑥 is the maximum value of the respective column in the
training data.

(2) For string value, we encode it with a data binning represen-
tation. For a column of string type, its𝐻 -size value binning bor-
derline is denoted as𝑢 =< 𝑢0, · · · , 𝑢𝐻 >, where𝑢ℎ suggests that
in this column ℎ/𝐻 of the values are smaller than 𝑢ℎ in lexico-
graphic order. In this way, we locate the binℎ : 𝑢ℎ−1 < 𝑣𝑎𝑙 ≤ 𝑢ℎ ,
and the string value is encoded as 𝑣𝑖,𝑘 = ℎ

𝐻
.

For 𝑣𝑖,𝑘 where the 𝑘-th operator does not correspond to any val-
ues, padding can be applied, i.e., 𝑣𝑖,𝑘 = 0. As operator encoding, we
use PCA to reduce the dimension of 𝑣𝑖 . Finally, the value encoding
is denoted as c𝑖 .

We concatenate operator encoding, value encoding, and query
frequency of each query in a workload,

z𝑤 = [l𝑖 , c𝑖 , 𝑓𝑖] |𝑤 |
𝑖=1 . (3)

4.4 Training
The workload feature vector z𝑤 is fed into a Multi-Layer Perceptron
(MLP) to obtain the workload representation:

p𝑤 = 𝑀𝐿𝑃 (z𝑤) . (4)

The parameters of the MLP are optimized via the contrastive
loss, i.e., minimizing the distance between positive pairs in 𝑒+ and
maximizing the distance between negative pairs in 𝑒− :

L𝐶 = −𝑙𝑜𝑔
∑︁
𝑤∈B

∑
𝑤′∈𝑒+ (𝑤) p𝑤 · p𝑤′∑
𝑤′∈𝑒− (𝑤) p𝑤 · p𝑤′ , (5)

where B is a batch of training instances.

1646

State/Reward

Termination

Option o

Source
Agents IA	1 IA	T-1...

...

Wrokload

What-If
OptimizerMeta	

Information

STATE
Frequencies

Wrokload
Representation

Cost	per	Query

Cost	&	Storage

Index	Information

Transfer	
Loss

Action	Mask

DataBase
Underlying	Data

What-If
Optimizer

Index
Configuration

Query	1

Query	m

Workload
Representation
Module

Current	Index

ACTION	POLICY

TRANSFER

IA	2

Action

Figure 5: Architecture of the index advisor

5 TRANSFER RL INDEX ADVISOR
Let𝑊 𝑡 , 𝑡 = 1, · · · ,𝑇 denote the workload chunk 𝑡 , and 𝑇 is the
maximal number of chunks. Each workload chunk contains a set
of workloads, i.e.,𝑊 𝑡 = {𝑤𝑡1, · · · ,𝑤

𝑡
𝐸𝑡
}, where 𝐸𝑡 is the number of

workloads in chunk 𝑡 . For each workload chunk, a lightweight index
advisor is trained on the training workloads, 𝜋 = {𝜋1, · · · , 𝜋𝑇 }.

The backbone of each index advisor is based on SWIRL [17],
which is a reinforcement learning method. In RL, the IA acts as
an agent and interacts with the DB environment. During training,
a portion of workloads is sampled from the workload chunk as
training workloads. Let’s denote them as 𝑊̃ 𝑡 = {𝑤𝑡1, · · · ,𝑤

𝑡
𝑉 𝑡 },

where 𝑉 𝑡 ≪ 𝐸𝑡 . An IA repeatedly produces index configurations
on the training workloads. Specifically, at each step 𝑖 , the agent
observes the environment and encodes the current state in a vector
s𝑖 . Based on the current state s𝑖 , the agent selects an action 𝑎𝑖 ,
which is an index to be added to the index configuration 𝐼∗, and the
procedure repeats until the index budget is satisfied, i.e.,𝑀 (𝐼∗) ≤ 𝐵.

BALANCE improves SWIRL on two major aspects. (1)
BALANCE provides a more accurate state by integrating the fine-
grained workload representation in Section 4. (2) BALANCE en-
hances each index advisor by transferring knowledge from previ-
ous index advisors. As shown in Figure 5, BALANCE consists of
three components, state representation, action policy, and
transfer network.

5.1 State Representation
In reinforcement learning, state representation plays a crucial role
as it compresses the complex, high-dimensional environmental
input into a low-dimensional vector that reveals key attributes
for the task at hand. Our approach employs a comprehensive state
representation, as depicted in Figure 5, which includes the workload
information, meta information, and index information.
Workload information. First, we encode the query semantics to
offer the agent a good understanding of the workload. Thus, we feed
the workload 𝑤 = (𝑞1, 𝑓1), · · · , (𝑞 |𝑤 | , 𝑓 |𝑤 |) into the workload rep-
resentation model and obtain p𝑤 . To reflect the performance of the
current action, we define s𝐹 ∈ R |𝑤 | , where 𝑠𝐹

𝑗
= 𝑓𝑗 is the frequency

of each query 𝑗 , and s𝐸 ∈ R |𝑤 | , where 𝑠𝐸
𝑗
= 𝑐𝑜𝑠𝑡 (𝑞 𝑗 , 𝑎<𝑖) is the

estimated cost of each query under the current index configuration.
The workload information is a vector s𝑊 ∈ R𝐷𝑊

= [p𝑤 , s𝐹 , s𝐸],
where the embedding size is pre-determined.
Meta information.Meta information is a fixed-length vector s𝑀 ∈
R4, containing four scalar features: (1) the specified storage budget,

(2) the current storage consumption, (3) the workload execution cost
without any indexes, and (4) the workload cost under the current
index configuration estimated by what-if optimizer.
Index information. The index information is a vector s𝐼 ∈ R𝐷𝐼

that encodes the current action for each indexable column, with 𝐷𝐼
being the number of indexable columns. For multi-column indexes,
since the primary column is more important, the value of each
column is decremented based on its position in the index. Formally,
s𝐼
𝑗
=
∑
𝑎𝑖 1/𝑘 (𝑗, 𝑎𝑖) where 𝑘 (𝑗, 𝑎𝑖) is the position of column 𝑗 in

action 𝑎𝑖 .
Finally, the current state concatenates the above information

vectors, i.e., s = [s𝑊 , s𝑀 , s𝐼].

5.2 Action policy
The action policy component is a 2-layer Feed-Forward Network
(FFN) taking the state s𝑖 as input. The index advisor selects an
action 𝑎𝑖 based on the value of 𝜋𝑡 (𝑎𝑖 , s𝑖). Note that we use dis-
crete actions; each action corresponds to choosing an index from
the index candidates. For each workload, we generate all syn-
tactically relevant index candidates according to the specified
maximal index width 𝑑𝑚𝑎𝑥 . For instance, for query "select *
from T1 where T1.COL1>3 and T1.COL3<5" we generate in-
dex candidates { (T1.COL1),(T1.COL3), (T1.COL1,T1.COL3),
(T1.COL3,T1.COL1) }.

The complexity of index selection is closely related to the in-
dex candidate space. Too many actions can affect the convergence
speed of RL algorithms. Additionally, when we consider specific
workloads, particular actions might be illegal (e.g., indexes that
exceed the storage budget).

To address the issues above, we employ action masking before
each step 𝑖 to control the action space. (1) Pruning indexes that
exceed the storage budget. Before each step, we consider
the current storage consumption and ensure the next actions will
not exceed the specified budget. (2) Deleting indexes with an
invalid precondition. According to the intuition in [6] "that
for a two-column index to be desirable, a single-column index on
its leading column must also be desirable", at each step 𝑖 , we mask
a multi-attribute index if its primary column is not selected in
previous actions 𝑎<𝑖 .

5.3 Transfer network
Conventional RL training, i.e., training the lightweight index advi-
sor from scratch on the training workload, takes a large training
overhead. Because RL training needs to obtain feedback from the
environment by running (or estimating) the workload on different
index actions, it converges slowly. Furthermore, because of the lim-
ited samples in the training workloads and the enormous amount of
possible workloads in the workload size, conventional RL training
can not generalize well to dynamic workloads.

To address the above issues, we incorporate a transfer network
component in the IA.Transfer learning exploits the knowledge
gained from a source task or domain to improve generalization
on a target task or domain. Our idea is to transfer the knowledge
(i.e., action policy) of appropriate agents well-trained in the past to
guide the learning of the current agent. In this manner, the conver-
gence will be more speedy with the supervision of more ripe agents,

1647

and the learned policy will be more robust to dynamic workloads
because the policy is trained with a larger sample complexity.

Note that we do not simply reuse a previous agent since we want
to use all training workloads fully. Instead, we use previous agents
to regulate the action of the current agent. Also, we do not fix a
source supervisor, i.e., the appropriate agents are different in each
state. Allowing the supervisor to change according to the state can
provide more accurate supervision.

Inspired by [39], the transfer network is decomposed into two
sub-modules, i.e., the termination network and the option network.
Due to the same input and the relatively simple functionality of
the termination and option networks, to increase the inference
efficiency, we employ 2-layer FNNs. First, we initialize a set of
options denoted by 𝑂 = {o1, · · · , o𝑇−1}, where o𝑗 ∈ R𝑇−1 is a
one-hot vector. The 𝑗-th element in o𝑗 is set to 1, representing the
previous agent 𝜋 𝑗 , i.e., 𝜋o𝑗 = 𝜋 𝑗 . The termination network takes a
state and an option as input and outputs the probability of changing
the current supervisor 𝛽 (s, o) ∈ [0, 1]. The option network also
takes the state and an option as input and outputs the probability
of taking the particular option as the supervisor 𝑄 (s, o) ∈ [0, 1].

Suppose at workload chunk 𝑇 , the index advisor 𝜋𝑇 can seek
guidance from previous agents 𝜋1, · · · , 𝜋𝑇−1. At the first step of a
training trial (i.e., producing the index configuration for a training
workload), the transfer network selects an option o by the option
network, i.e., o = 𝑎𝑟𝑔𝑚𝑎𝑥o∈𝑂𝑄 (s, o). In the following steps, the
index advisor will judge whether or not to keep choosing the su-
pervisor by drawing a switch from 𝛽 . If the switch terminates the
current choice, another supervisor will be chosen based on option
network 𝑄 .

5.4 Update action policy
To update the action policy 𝜋 , we employ proximal policy optimiza-
tion (PPO) [33], because ISP involves a large number of indexes
to choose from, and PPO can handle a complex action space and
provide faster updates.

The action policy is updated to maximize the expected reward
of all training trials. We utilize relative costs as the reward, which
calculates the ratio of cost reduction concerning the initial cost.
We also consider the impact on index storage and incorporate the
storage increment before and after the index selection in the re-
ward at each step 𝑟𝑖 . This encourages the agent to consider storage
consumption while striving to reduce workload costs.

𝑟𝑖 =
𝑐𝑜𝑠𝑡

(
𝑤, 𝐼 ∗

𝑖−1
)
− 𝑐𝑜𝑠𝑡

(
𝑤, 𝐼 ∗

𝑖

)
𝑐𝑜𝑠𝑡

(
𝑤, 𝐼 ∗0

)
∗
(
𝑀

(
𝑤, 𝐼 ∗

𝑖

)
−𝑀

(
𝑤, 𝐼 ∗

𝑖−1
)) , (6)

where 𝑐𝑜𝑠𝑡
(
𝑤, 𝐼∗

𝑖−1
)
and𝑀

(
𝑤, 𝐼∗

𝑖−1
)
are the workload cost and stor-

age consumption of indexes made by previous 𝑖 − 1 action steps.
Furthermore, we consider the transfer loss. The supervisor at

each state is also recorded, and the transfer loss is defined between
the source policy and the current policy L𝐻 = 𝐻 (𝜋o | |𝜋𝑇), where
𝐻 (·| |·) is the cross-entropy loss. We combine the reward and the
transfer loss, weighted by an attenuation factor 𝛿𝑡 , in the loss de-
pendent on the action policy:

L(𝜋𝑇) =
∑︁
𝑖

(
𝑟𝑖𝜋𝑇 (𝑎𝑖 , s𝑖) + 𝛿𝑡 (𝜋𝑇 (𝑎𝑖 , s𝑖)𝑙𝑜𝑔𝜋o (𝑎𝑖 , s𝑖)

+ (1 − 𝜋𝑇 (𝑎𝑖 , s𝑖)𝑙𝑜𝑔(1 − 𝜋o (𝑎𝑖 , s𝑖))))
)
.

(7)

Q1:	select	T1.COL1	from	T1	where	T1.COL2	>	39	
Q2:	select	T2.COL3	from	T2	where	T2.COL1	<	4	

Q1:	select	T1.COL1	from	T1	where	T1.COL2	>	97	
Q2:	select	T2.COL3	from	T2	where	T2.COL1	<	9	

(a) Query Variation
Q1:	select	T1.COL1	from	T1	where	T1.COL2	>	39;	f	=	3
Q2:	select	T2.COL3	from	T2	where	T2.COL1	<	4;	f	=	15

Q1:	select	T1.COL1	from	T1	where	T1.COL2	>	39;	f	=	1
Q2:	select	T2.COL3	from	T2	where	T2.COL1	<	4;	f	=	10

(b) Frequency Variation
Q1:	select	T1.COL1	from	T1	where	T1.COL2	>	39;	f	=	3
Q2:	select	T2.COL3	from	T2	where	T2.COL1	<	4;	f	=	15

Q1:	select	T1.COL1	from	T1	where	T1.COL2	>	97;	f	=	1
Q2:	select	T2.COL3	from	T2	where	T2.COL1	<	9;	f	=	10

(c) A Combination of Query Variation and Frequency Variation

Figure 6: Example of three workload chunk settings

5.5 Update transfer network
We opt for a value-based approach [25] to update the transfer net-
work because the number of source policies in the transfer network
is significantly smaller than the number of index actions, and using
value-based approaches is faster.

To update the option network𝑄o (s, o), we first sample a batch of
𝐷 transitions (s𝑖 , 𝑎𝑖 , 𝑟𝑖 , s𝑖+1, o𝑖) from replay bufferD that records the
state, action, reward, next state, and the supervisor option at a step
𝑖 . Then, we use the source policy 𝜋o of option o𝑖 to select an action
𝑎𝑖 at state s𝑖 . If the source policy outputs the identical action with
the target policy, i.e., 𝑎𝑖 = 𝑎𝑖 , we can use the expected return of the
transition to update the option network. The objective minimizes
the difference between the option network and the expected return.

L(𝑄o) =
1
𝐷

∑
𝑖 (𝑔𝑖 − 𝑄o (s𝑖 , o))2, (8)

where 𝑔𝑖 is the expected return at step 𝑖 and is generally defined as:

𝑔𝑖 = 𝑟𝑖 + 𝛾𝑈 (s𝑖+1, o), (9)

the quality of the next state given source o is measured by𝑈 (s𝑖+1, o)
and is combined to the expected return 𝑔𝑖 with a discount factor 𝛾 .

Based on the transfer mechanism in Section 5.3, the quality of
the next state given source o is defined as
𝑈 (s𝑖+1, o) = 𝛽 (s𝑖+1, 𝑜) max

o′∈𝑂
𝑄o′ (s𝑖+1, o′) +

(
1 − 𝛽 (s𝑖+1, o)

)
𝑄o (s𝑖+1, o),

(10)
where 𝛽 (s𝑖+1, o) is the terminate network which outputs the prob-
ability of determining the current option o. If 𝛽 (s𝑖+1, o) = 1, then
the quality of the next state given source o is dependent on the
next chosen option maxo′∈𝑂 𝑄o′ (s𝑖+1, o′). Otherwise, the quality
is given by the next state of the same source option 𝑄o (s𝑖+1, o).

To update the termination network 𝛽 , since the termination
network controls the transition between supervisors, the goal is to
maximize the quality𝑈 (s1, o1) with regard to the first step in each
indexing trials,

L(𝛽) =
∑︁
s1∈D

𝑈 (s1, o1) . (11)

6 EXPERIMENT
In this section, we conduct extensive experiments to evaluate the
proposed techniques by answering the following questions:

1648

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s)

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
10
15
20
25
30
35
40
45
50

DQN DRLindex SWIRL Extend DB2Adisor BALANCE

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s)

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
10
15
20
25
30
35
40
45
50

DQN DRLindex SWIRL Extend DB2Adisor BALANCE

(a) TPC-H 1GB
Setting1Setting2Setting3

50
55
60
65
70
75
80
85
90

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s)

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
10
15
20
25
30
35
40
45
50

DQN DRLindex SWIRL Extend DB2Adisor BALANCE

(b) TPC-H 10GB
Setting1Setting2Setting3

50
55
60
65
70
75
80
85
90

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s)

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
10
15
20
25
30
35
40
45
50

DQN DRLindex SWIRL Extend DB2Adisor BALANCE

(c) TPC-H 100GB
Setting1Setting2Setting3

50
55
60
65
70
75
80
85
90

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s)

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
10
15
20
25
30
35
40
45
50

DQN DRLindex SWIRL Extend DB2Adisor BALANCE

(d) TPC-DS 1GB
Setting1Setting2Setting3

50
55
60
65
70
75
80
85
90

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s)

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
10
15
20
25
30
35
40
45
50

DQN DRLindex SWIRL Extend DB2Adisor BALANCE

(e) TPC-DS 10GB
Setting1Setting2Setting3

50
55
60
65
70
75
80
85
90

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s)

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
10
15
20
25
30
35
40
45
50

DQN DRLindex SWIRL Extend DB2Adisor BALANCE

(f) TPC-DS 100GB
Setting1Setting2Setting3

50
55
60
65
70
75
80
85
90

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s)

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50
55
60
65
70
75
80
85
90

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
50

60

70

80

90

100

Setting1Setting2Setting3
10
15
20
25
30
35
40
45
50

DQN DRLindex SWIRL Extend DB2Adisor BALANCE

(g) JOB

Figure 7: Relative workload cost of different index advisors

• RQ1: How does BALANCE reduce the workload execution cost,
training overhead, and inference runtime, compared with other
index advisors?

• RQ2: Can BALANCE generalize to dynamic workloads with
different frequencies and query costs?

• RQ3: How does each component in BALANCE contribute to
the overall performance? In particular, RQ3.1: Can the work-
load representation module improve BALANCE’s performance?
RQ3.2: How does the size of the pre-train dataset affect the
workload representation module? RQ3.3: What is the impact
of the transfer module in reducing workload cost and training
overhead? RQ3.4: Does chunk segmentation affect BALANCE’s
superiority, especially in extreme cases (e.g., random workload
shifts)?

6.1 Experiment Setup
Environment and Implementation. All the experiments are
conducted with Python 3.7, PostgreSQL 12.5on a workstation with
two Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz, 256 GB main
memory, and a GeForce RTX 2080 Ti graphics card.
Datasets. Since we focus on indexing for analytic workloads and
do not consider index maintenance and update costs, we use the
following three OLAP benchmarks: (1)TPC-H [29] is an open-source
OLAP benchmark that contains eight tables and 61 columns; (2)
TPC-DS [26] is an open-source OLAP benchmark that contains 25
tables and 429 columns; (3) JOB [20] is based on the IMDB dataset
and contains 21 tables and 108 columns. For TPC-H and TPC-DS
benchmarks, we generate three different data sizes (i.e., 1GB, 10GB,
and 100GB) to study the effect of data volume. For JOB, we employ
the default data volume of 7.5GB.
Workloads. To simulate dynamic workloads, we synthesize four
workload chunks, i.e., <𝑊 1, · · · ,𝑊 4 >. In each chunk, we generate
300 workloads, each containing |𝑤 | queries, by randomly selecting
and populating query templates within the benchmark (|𝑤 | = 14 for
TPC-H, |𝑤 | = 40 for TPC-DS and |𝑤 | = 30 for JOB) and assigning
random frequencies (between 1 and 10000) to these queries. Each
chunk adopts a different set of query templates, and a different dis-
tribution (i.e., with different random seeds) to draw query variants,
values, and query frequencies. This is to reflect the distant variety of
real workloads. Note that templates are randomly selected because
we want to minimize constraints on the workload shift, e.g., we do
not ask the workload stream to have a cyclic pattern, and we do
not assume workload chunks to be a fixed set of templates, etc.

Unless otherwise stated (e.g., we will explore extremely random
workload shifts in Section 6.7), workloads in each chunk are gen-
erated from a fixed set of query templates and query structures.
Furthermore, we consider the following three settings of similar
workloads.
Setting 1: Query Variation. As shown in Figure 6a, queries
in different workloads are instances of the same templates with
varying predicate values (i.e., TPC-H and TPC-DS) or the same
predefined query structures with different selections (i.e., JOB). In
many domains, query variation workloads are encountered when
users interact with databases and issue queries using different at-
tributes or values to retrieve specific information, tailoring the
results to their needs. For example, customers of an e-commerce
website may search for different product keywords or filter for
different price ranges to compare products.
Setting 2: Frequency Variation. As shown in Figure 6b, the
different workloads contain identical queries with varying query
frequencies. Workloads of frequency variation occur when a fixed
set of queries can express the user demands, and the query fre-
quency is influenced by factors such as celebrities, seasonal trends,
or specific events. For example, in social media, the user’s search
frequency of a particular celebrity tends to align with the fluctua-
tions in social hot spots.
Setting 3: A Combination of Query Variation and
Frequency Variation. As shown in Figure 6c, combining the
above two settings, different workloads contain different instances
of the same set of predefined query templates and query structures.
Moreover, the frequencies of each query can vary. This setting is
also typical in real scenarios. For example, on a stock trading appli-
cation, users can search according to different stock codes, names,
etc., and the query frequency fluctuates with market conditions.
Models. We compare BALANCE with five state-of-the-art competi-
tors, including (1) DQN [18], which adopts the Deep Q-Network
algorithm and requires indexing trials for each workload; (2) DR-
Lindex [30, 31], which also adopts the Deep Q-Network algo-
rithm and directly recommends indexes by training a network;
(3) SWIRL [17], which employs proximal policy optimization al-
gorithm and recommends indexes for workloads containing un-
seen queries; (4) Extend [32], which employs a recursive strategy
and produces near-optimal workload cost for small index selection
problems; (5) DB2Advisor [36], which maintains a sorted order
of indexes and adds indexes to the final index configuration. As
per [17], Extend [32] performs the best workload cost reduction,
and SWIRL [17] is comparable with Extend in workload cost but

1649

with smaller inference runtime. We leverage the open-source imple-
mentation of the heuristic-based index advisors (i.e., DB2Advisor
and Extend) 5, DQN [18], SWIRL [17] and we implement DRLindex
as per the original paper [30, 31].
Training and Testing. Each experiment is repeated for three runs
with different random seeds to make our analysis more reliable. In
each run, we randomly draw 10 workloads from the fourth work-
load chunk𝑊 4 as testing workloads and let all models make index
recommendations. Note that DRLindex and SWIRL can make direct
recommendations, while DQN needs to perform indexing trials
on each testing workload. We allow DQN to iterate for 800 trial
epochs, which we observe is sufficient for DQN to converge. Unless
otherwise stated, in training BALANCE, from each chunk, we ran-
domly draw 200 workloads (which are not testing workloads) and
train four index advisor sub-modules with 2000 training epochs, as
depicted in Section 3.2. To train DRLindex and SWIRL, we randomly
draw 200 non-testing workloads from the fourth workload chunk
and train them with 3000 training epochs. Using too many training
workloads for these methods will dramatically increase the training
complexity and hurt their performance. Hence, we only use the
target workload chunk as training workloads. Extend, DB2Advisor,
and DQN do not need training.
Other implementation details. The storage budget is randomly
picked from a fixed range (500-10000MB for TPC-H 1GB and TPC-
DS 1GB, 5000-100000MB for TPC-H 10GB and TPC-DS 10GB, 50000-
1000000MB for TPC-H 100GB and TPC-DS 100GB, 500-12500MB for
JOB). All benchmark-defined secondary indexes are removed for
the following experiments. We adopt HypoPG [14] for the what-if
optimizer. We use |N | = 300 random workloads to pre-train the
workload representation module and define the threshold 𝜏+ as the
20% quantile in the training set (details in Section 4).
Evaluation Metrics.We evaluate the index advisor’s performance
from three angles. (1) Relative Workload Cost: the ratio of work-
load execution cost with index to that without index. A smaller
relative workload cost suggests a better indexing performance. (2)
Training Overhead: for RL-base index advisors that need to be
trained, training overhead is the time consumed from the start of
training to model loss convergence. (3) Inference Runtime: the
time consumption of the algorithms in choosing index configura-
tions for each workload.

6.2 Performance Comparison
Relative workload cost. To study the performance of BALANCE
(RQ1), we first report the relative workload cost produced by each
method on the five datasets under the three settings in Figure 7. We
have the following observations. (1) Compared with other learning-
based competitors, BALANCE significantly reduces workload cost
on each dataset under all three settings. On average, BALANCE
reduces the workload cost by 15.27%, 38.62% and 10.03% on all
datasets than DQN, DRLindex, and SWIRL, respectively. On the
contrary, the competitors perform poorly in some situations. For
example, DRLindex and DQN’s performance is unsatisfying on
TPC-DS dataset, e.g., the execution cost is still 90% of the cost with-
out indexes, which means that the recommended indexes are not
properly working. (2) Notably, BALANCE is capable of encoding

5https://github.com/hyrise/rl_index_selection

Table 2: Inference runtime comparison (seconds)

Dataset DQN DRLindex SWIRL Extend DB2Advisor BALANCE

TPC-H 1GB 6.25 30.18 0.47 77.70 4.04 0.45
TPC-H 10GB 8.53 38.84 0.55 89.43 4.69 0.50
TPC-H 100GB 12.69 49.80 0.72 103.41 5.34 0.68
TPC-DS 1GB 19.77 189.67 5.40 2369.23 14.02 5.02
TPC-DS 10GB 23.67 249.80 6.67 2782.33 20.91 6.41
TPC-DS 100GB 28.10 335.29 8.03 3290.45 27.57 7.80

Table 3: Range of high, medium, low cost and frequency

low medium high

Query Cost 𝑐𝑜𝑠𝑡 (𝑞, ∅) 1-100000 100001-200000 200001-800000
Frequency 𝑓 1-3000 4000-6000 7000-10000

any query, from simple queries to queries with richer syntax. For
example, template-18 queries in TPC-H benchmark include "index
nested loop join" operator, which BALANCE effectively supports
with strong performance. (3) BALANCE is comparable to Extend,
which is considered near-optimal. On JOB dataset, BALANCE out-
performs Extend by 26.47% on average. We want to emphasize
that BALANCE is much faster than Extend in making the index
recommendation, which will be shown below.
Inference runtime. Table 2 presents the average sum of inference
runtime (10 test workloads are executed 3 times in each of the 3
settings) using different index advisors. We can see that BALANCE
takes minimal inference runtime to make index recommendations.
Firstly, the inference runtime of BALANCE is 2 to 3 orders of magni-
tude faster than Extend. This is because BALANCE directly recom-
mends indexes by feeding the workload features to the network and
performing forward inference in less than a second, while heuristic-
based index advisors such as Extend require significant time to
iteratively search for a satisfactory solution. Secondly, BALANCE
is much faster than learning-based index advisors such as DQN and
DRLindex. BALANCE reduces search time through action masking.
On the other hand, methods like DQN and DRLindex have a time-
consuming search process for index recommendations, especially
when dealing with large databases. Thirdly, SWIRL is the second
fastest index advisor because it also makes direct recommendations.
Nonetheless, BALANCE is faster than SWIRL, which shows the
efficiency of using a pre-trained workload representation module.
Training overhead. For DQN, SWIRL, and BALANCE with the
least inference runtime, we further investigate their training over-
head. In each run, we record the average relative workload cost of
ten test workloads the above methods can achieve in each train-
ing epoch. Since the time for completing a training epoch varies
among methods, for a fair comparison, we plot the workload cost
of the ten testing workloads w.r.t the training time for three runs.
As shown in Figure 8, we have three observations: (1) BALANCE
achieves optimal workload cost while requiring a shorter training
time, i.e., converges faster than other RL-based competitors. This
indicates that BALANCE effectively transfers knowledge from the
source policy via the transfer module, supporting faster training
and reducing the overall training runtime. (2) BALANCE generally
exhibits smaller variance, implying higher stability in predicting
accurate indexes over different runs, which generalize better across

1650

https://github.com/hyrise/rl_index_selection

0 50 100 150 200 250
Time (s)

50
60
70
80
90

100

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s) Setting 1

0 50 100 150 200 250
Time (s)

Setting 2

0 100 200 300 400
Time (s)

Setting 3

0 200 400 600
Time (s)

60

70

80

90

100

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s) Setting 1

0 200 400 600
Time (s)

Setting 2

0 300 600 900 1200
Time (s)

Setting 3

0 1000 2000 3000
Time (s)

85

90

95

100

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s) Setting 1

0 1000 2000 3000
Time (s)

Setting 2

0 1000 2000 3000
Time (s)

Setting 3

DQN SWIRL BALANCE

(a) TPC-H 1GB0 50 100 150 200 250
Time (s)

50
60
70
80
90

100

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s) Setting 1

0 50 100 150 200 250
Time (s)

Setting 2

0 100 200 300 400
Time (s)

Setting 3

0 200 400 600
Time (s)

60

70

80

90

100

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s) Setting 1

0 200 400 600
Time (s)

Setting 2

0 300 600 900 1200
Time (s)

Setting 3

0 1000 2000 3000
Time (s)

85

90

95

100

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s) Setting 1

0 1000 2000 3000
Time (s)

Setting 2

0 1000 2000 3000
Time (s)

Setting 3

DQN SWIRL BALANCE

(b) TPC-H 100GB

0 50 100 150 200 250
Time (s)

50
60
70
80
90

100

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s) Setting 1

0 50 100 150 200 250
Time (s)

Setting 2

0 100 200 300 400
Time (s)

Setting 3

0 200 400 600
Time (s)

60

70

80

90

100

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s) Setting 1

0 200 400 600
Time (s)

Setting 2

0 300 600 900 1200
Time (s)

Setting 3

0 1000 2000 3000
Time (s)

85

90

95

100

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s) Setting 1

0 1000 2000 3000
Time (s)

Setting 2

0 1000 2000 3000
Time (s)

Setting 3

DQN SWIRL BALANCE

(c) TPC-DS 100GB

Figure 8: Average workload cost w.r.t the training time

different workloads. (3) When the database size or the number
of tables increases, the training overhead of all methods increases.
This is reasonable because a larger database or more tables result
in a substantial increase in the time required for calling the what-
if optimizer. But BALANCE experiences a comparatively smaller
increase than DQN and SWIRL. For example, from TPC-H 1GB to
TPC-H 100GB, to obtain 95% relative workload cost reduction, the
training overhead increases from 100 sec to 700 sec for SWIRL, and
50 sec to 400 sec for BALANCE. Compared with DQN and SWIRL,
BALANCE can achieve good performance with fewer trials through
the transfer module, minimizing the usage of the what-if optimizer.
Consequently, BALANCE demonstrates acceptable training over-
head even on large and complex databases.

In summary, the comparative experiments show that BALANCE
can achieve near-optimal index recommendation with the least in-
ference runtime, and BALANCE significantly increases the training
efficiency compared with other learning-based index advisors.

6.3 Generalization
The study the generalization of BALANCE (RQ2), we evaluate
BALANCE using different testing workloads on TPC-DS 1GB. As
listed in Table 3, we randomly generate queries and partition them
into three categories, representing queries with high, medium, and
low execution costs, respectively, denoted as 𝑄ℎ , 𝑄𝑚 , and 𝑄𝑙 . We
construct workloads𝑤ℎ ,𝑤𝑚 ,𝑤𝑙 to contain only queries with high,
medium, and low execution costs. And we use 𝑤𝑐 to denote the
union of all workloads. Formally,𝑤𝑐 = {𝑤ℎ,𝑤𝑚,𝑤𝑙 }, and∀(𝑞𝑖 , 𝑓𝑖) ∈
𝑤ℎ , 𝑞𝑖 ∈ 𝑄ℎ ; ∀(𝑞𝑖 , 𝑓𝑖) ∈ 𝑤𝑚 , 𝑞𝑖 ∈ 𝑄𝑚 ; and ∀(𝑞𝑖 , 𝑓𝑖) ∈ 𝑤𝑙 , 𝑞𝑖 ∈ 𝑄𝑙 .

Next, we consider three different cases to assign query frequen-
cies in 𝑤ℎ , 𝑤𝑚 , 𝑤𝑙 . (1) Case 1: Assign high, medium, and low
frequencies to queries with high, medium, and low execution cost
categories, respectively. (2) Case 2: Assign low, medium, and high
frequencies to queries with high, medium, and low execution cost

wh wm wl wc

40
60
80

100

Re
la

tiv
e

 w
or

kl
oa

d
co

st

wh wm wl wc

40
60
80

100

Re
la

tiv
e

 w
or

kl
oa

d
co

st

wh wm wl wc

40
60
80

100

Re
la

tiv
e

 w
or

kl
oa

d
co

st

DQN SWIRL BALANCE

(a) Case 1wh wm wl wc

40
60
80

100

Re
la

tiv
e

 w
or

kl
oa

d
co

st

wh wm wl wc

40
60
80

100

Re
la

tiv
e

 w
or

kl
oa

d
co

st

wh wm wl wc

40
60
80

100

Re
la

tiv
e

 w
or

kl
oa

d
co

st

DQN SWIRL BALANCE

(b) Case 2

wh wm wl wc

40
60
80

100

Re
la

tiv
e

 w
or

kl
oa

d
co

st

wh wm wl wc

40
60
80

100

Re
la

tiv
e

 w
or

kl
oa

d
co

st

wh wm wl wc

40
60
80

100

Re
la

tiv
e

 w
or

kl
oa

d
co

st

DQN SWIRL BALANCE

(c) Case 3

Figure 9:Workload cost of BALANCEwith different test cases

30 60 75 150 300 600 900 1200 1500
Training Dataset Size

50

55

60

65

70

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
 w

it
ho

ut
 in

de
xe

s) Query Variation
Frequency Variation
Combined Variation

Figure 10: Average workload cost obtained by pre-training
with different training data size on TPC-H 1GB dataset

categories, respectively. (3) Case 3: Assign medium, high, and low
frequencies to queries with high, medium, and low execution cost
categories, respectively.

Figure 9 reports BALANCE’s relative workload cost of 𝑤𝑐 ,𝑤ℎ ,
𝑤𝑚 ,𝑤𝑙 , compared with DQN and SWIRL. (1) Overall, BALANCE
outperforms both SWIRL and DQN in 𝑤𝑐 ,𝑤ℎ,𝑤𝑚 . This indicates
that BALANCE is efficient for queries with high potential to be
optimized because BALANCE can encode indexing aware charac-
teristics of queries. (2) All methods perform better in Case 2 than
in Case 3. This enhancement occurs because in Case 2, we assign a
higher frequency to 𝑄𝑙 , leading to an increase in the optimization
benefit of𝑤𝑙 .

6.4 Ablation on workload representation
To investigate the role of self-supervised workload representation
learning (RQ3.1), we consider four variants of the workload repre-
sentation while fixing other components in BALANCE. (1) column:
The workload representation is a matrix denoted by the occur-
rence of the indexable attribute(s) in each query [30, 31]. (2) BOO:
The workload representation is obtained by the Bag of Operator
method [17]. (3) codeBERT: The workload representation is derived
by feeding query text into a pre-trained codeBERTmodel [10]. Code-
BERT is a well-trained program representation learned from con-
ventional pre-training tasks. (4) w/o CL (contrastive learning):

1651

Table 4: Related workload cost by variants of workload rep-
resentation on TPC-H 1GB dataset.

Setting column BOO codeBERT w/o CL BALANCE

Setting 1 59.69 59.92 58.92 57.72 56.53
Setting 2 60.64 58.81 58.45 57.55 56.64
Setting 3 60.53 59.73 58.32 58.21 57.42

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
80

100
120
140
160
180
200

Tr
ai

ni
ng

 O
ve

rh
ea

d
(s

)

Setting 1
Setting 2
Setting 3

(a) Workload cost in Setting 1

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60
Re

la
ti

ve
 w

or
kl

oa
d

co
st

 (

%
of

f w
it

ho
ut

 in
de

xe
s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
80

100
120
140
160
180
200

Tr
ai

ni
ng

 O
ve

rh
ea

d
(s

)

Setting 1
Setting 2
Setting 3

(b) Workload cost in Setting 2w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
80

100
120
140
160
180
200

Tr
ai

ni
ng

 O
ve

rh
ea

d
(s

)

Setting 1
Setting 2
Setting 3

(c) Workload cost in Setting 3

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
50

52

54

56

58

60

Re
la

ti
ve

 w
or

kl
oa

d
co

st

 (
%

of
f w

it
ho

ut
 in

de
xe

s)

w/o transfer
BALANCE-1

BALANCE-3
BALANCE-5

BALANCE-7
80

100
120
140
160
180
200

Tr
ai

ni
ng

 O
ve

rh
ea

d
(s

)

Setting 1
Setting 2
Setting 3

(d) Training overhead

Figure 11: Workload cost and training overhead by variants
of transfer module on TPC-H 1GB dataset

The workload representation defined by Equation 3, including the
operator encoding and the value encoding.

We compare BALANCE with the above variants. The average
workload cost is shown in Table 4. We have the following observa-
tions. (1) BALANCE achieves a workload cost reduction of 1.67%
compared to w/o CL. This observation reveals the importance of
incorporating indexing performance-related information into work-
load representations via unsupervised contrastive learning. (2) Pars-
ing workload representation from the query plan (i.e., BOO, w/o
CL, and BALANCE) outperforms other variants (i.e., column and
codeBERT), indicating that more effective information can be ex-
tracted from the query plan. Simply relying on the information in
the query text is unsuitable for the index selection problem, as the
query plan provides additional details about query execution and
is updated during the index selection process. (3) Workload rep-
resentation by column is comparable to workload representation
by codeBERT. While masked language pre-training excels in NLP,
this observation suggests that treating queries as text with masked
language pre-training is ineffective for representing ISP workloads.

6.5 Impact of Pre-training Data Size
To uncover the impact of training data size in pre-training the
workload representation module (RQ3.2), we report the relative
workload cost, averaged over three runs, with respect to different
sizes of the pre-training dataN on the TPC-H 1GB dataset. We have
the following observations from Figure 10. (1) The workload cost
decreases as the pre-train dataset size increases. This is reasonable
because large training data provide more diverse workload samples,
and the workload representation module can better discriminate

workloads with different indexing properties in contrastive learning.
The workload representation will be more fine-grained and benefit
the ISP. (2) BALANCE’s performance plateaus when |N | ≥ 150, in-
dicating that the performance of BALANCE does not require a very
large pre-training dataset size. A moderate size (e.g., |N | = 300) can
ensure good indexing performance with fewer resources. Consider-
ing the trade-off between performance and training cost, choosing
a moderate size for the pre-training dataset is recommended.

6.6 Ablation on the Transfer Module
To verify the importance of transfer learning in BALANCE (RQ3.3),
we compare with the following variants. (1) w/o transfer: We
remove the transfer module and train BALANCE using workloads
from the target workload chunk. (2) BALANCE-X: We construct𝑋 +1
workload chunks, where 𝑋 = 1, 3, 5, 7, and the former 𝑋 index
advisor sub-modules are considered source models to supervise the
last index advisor for workload chunk𝑊𝑋+1.

Figure 11 reports the workload cost and the training overhead of
variants under different settings on TPC-H 1GB. The experimental
results reveal the following: (1) Incorporating the policy transfer
mechanism reduces the training overhead and relative workload
cost. This improvement is due to the enhanced sample efficiency
of reinforcement learning through the guidance of source models,
resulting in more accurate index recommendations by the target
model. (2) As the number of source models increases, both the
relative workload cost and training overhead show a downward
trend. (3) Compared with without transfer learning, BALANCE-1
exhibits a larger variance across the three runs. This outcome can
be attributed to the fact that when there is only one source model,
the target model is more heavily influenced by this single model,
leading to an unstable performance. (4) Under all three settings,
employing 5 source models produces satisfactory performance,
and employing more source models has a negligible improvement.
This observation highlights BALANCE’s long-term adaptability,
i.e., BALANCE only needs to maintain a small number of source
models (i.e., resource requirements and computational demands are
relatively constant) to achieve good transfer effects for workloads
that continue in a longer time period.

6.7 Impact of Chunk Segmentation
To extensively investigate BALANCE’s capability in more extreme
scenarios, e.g., workloads are completely random over time, or
no pattern in chunks can be exploited (RQ3.4), we synthesize a
different flow of workloads on TPC-DS 1GB dataset. In the first
timestamp, we randomly select 40 templates. In the following times-
tamps, we substitute a random portion of query templates in the
previous workload. The predicate values and frequencies of the
queries are randomized. We repeat the above for 30 timestamps.

To segment the workload flow into chunks, we first adopt a
Split-X% approach, which merges subsequent timestamps into a
chunk if the difference of query templates is less than 𝑋%. For ex-
ample, suppose the query templates in current chunk 𝑡 are denoted
as a set P𝑡 , and the query templates in the next timestamp𝑚 are
denoted as P𝑚 . If

(
P𝑡 ∩ P𝑚

)
/|P𝑚 | ≥ (1 − 𝑋%), where 𝑋% is the

given difference threshold, then timestamp𝑚 is merged into chunk
𝑡 . Otherwise, a new chunk 𝑡 + 1 that contains 𝑚 is constructed.

1652

Table 5: Workload cost under different splitting methods

Method Split-10% Split-20% Split-40% Split-60% w/o pattern

DQN 85.31 77.47 72.36 79.08 78.10
Extend 64.34 64.39 62.09 56.56 62.25
DB2Advisor 68.46 68.78 63.76 58.90 66.69
SWIRL 66.10 68.37 65.87 63.28 70.91
BALANCE 64.03 67.55 64.39 59.53 67.76

Table 6: Workload cost w.r.t. storage budgets in Setting 3

Budget DQN DRLindex SWIRL DB2Advisor Extend BALANCE

500 MB 71.59 76.33 67.94 68.48 65.75 65.21
1000 MB 69.25 70.64 62.90 65.53 61.00 61.80
5000 MB 64.55 66.51 55.83 58.99 54.12 54.87
10000 MB 58.62 61.85 54.74 57.12 52.29 52.72

Clearly, chunks segmented on the workload flow in this subsection
can accommodate larger workload changes than the three settings
in previous subsections. A larger 𝑋 indicates a larger variety in
each chunk. We then adopt a w/o pattern approach, by simply
putting 300 workloads into a chunk. Then, workloads in each chunk
undergo severe changes, and no pattern can be exploited. We want
to point out that all approaches in this paper do not need future
workload forecasting to segment workload chunks, and the split-
X% percentage is given by the user, which relies on the application
scenario, i.e., workload shift and computational resource.

Table 5 reports the workload cost, and we have the following ob-
servations. (1) Performance of BALANCE generally decreases as 𝑋
increases, while DQN, DB2Advisor and Extend are relatively stable.
This is attributed to the large inconsistency between BALANCE’s
training set (i.e., a small set of samples drawn from the chunk) and
the testing set (i.e., the other workloads in the same chunk). (2) Nev-
ertheless, BALANCE outperforms DQN and SWIRL on different X.
BALANCE is even comparable to DBA2Advis in Split-60%, which is
a surprisingly good performance, considering BALANCE’s ability
to make direct recommendations with little inference runtime. (3)
BALANCE’s performance degradation is acceptable (i.e., compara-
ble to DB2Advisor) on w/o pattern chunks. It shows that, despite
the workloads being entirely distinct, common knowledge can still
be transferred and benefit index selection strategies.

6.8 Impact of Storage Budget
To evaluate the impact of the storage budgets, we conducted exper-
iments on the TPC-H 1 GB dataset under different storage budgets
(e.g., 500MB, 1000MB, 5000MB, 10000MB).

Table 6 reports the relative workload cost under different storage
budgets in Setting 3. The experimental results reveal the follow-
ing conclusions. (1) As the storage budget increases, BALANCE
more significantly decreases the workload cost, as a larger budget
allows BALANCE to include a greater number of indexes in the in-
dex configuration. (2) BALANCE outperforms other learning-based
competitors across diverse storage budgets. BALANCE considers
the impact on index storage in the RL framework and enables the
model to identify indexes with high efficiency and low storage
consumption. In contrast, DQN and DRLindex prioritize high bene-
fits, reaching storage budgets after selecting several indexes and

Steps of reinforcement learning trial0.0

0.1

0.2

Va
lid

 a
ct

io
ns

 (

%
 o

f a
ll

ac
ti

on
s)

d=1 d=2 d=3 Remaining budget

0.00

0.25

0.50

0.75

1.00

Re
m

ai
ni

ng
 b

ud
ge

t
 (

%
 o

f t
ot

al
 b

ud
ge

t)

Figure 12: Valid action w.r.t step of RL trial

limiting further choices. (3) BALANCE demonstrates comparable
performance to Extend and even outperforms it under a 500MB stor-
age budget, indicating that BALANCE effectively adapts to various
storage budgets, achieving near-optimal performance with short
inference time. This adaptability highlights BALANCE’s potential
across various resource constraints and dynamic scenarios.

6.9 Effectiveness of Action Masking
To investigate the effectiveness of action masking , we track the
percentage of valid actions w.r.t. index widths 𝑑 = 1, 2, or 3 at
each step during a test workload RL trial on TPC-H 1GB dataset in
Figure 12. We have the following observations. (1) Initially, approx-
imately 0.10% of the actions are valid, gradually increasing to 0.25%
as the trial progresses. This is attributed to many multi-attribute
indexes (i.e., 𝑑 = 2, 3) being deleted due to invalid preconditions,
and as the trial progresses, more single-attribute indexes (i.e., 𝑑 = 1)
are added to the index configuration, previously excluded multi-
attribute indexes become valid actions. (2) As the trial continues
and the remaining storage budget decreases, more indexes become
invalid, mainly because they exceed the permissible size limit. (3)
Through the entire trial process, most valid actions consist of in-
dexes with widths of 1 and 2, and the fraction of valid actions did
not surpass 0.25%. This outcome highlights the efficacy of the action
masking in effectively constraining the action space.

7 CONCLUSION AND FUTUREWORK
We propose BALANCE for dynamic and heterogeneous workloads
in real-world scenarios with a novel transfer RL-based framework
and an unsupervised workload representation learning method.
Experimental results show that our method outperforms existing
approaches in efficiency and effectiveness. Several open problems
lie ahead in the domain of index advisors. The first is to enhance
the index advisor’s generalization across various database systems,
considering differences in schema, query optimization strategies,
and data distributions. The second is to extend the index advisor to
cater to cloud-based or distributed databases, focusing on elastic
resource provisioning and optimized communication in the dis-
tributed architecture.

ACKNOWLEDGEMENTS
Chen Lin is the corresponding author. Chen Lin is supported by
the Natural Science Foundation of China (No.62372390) and CCF-
Huawei Populus Grove Fund. Guoliang Li is supported by the Na-
tional Key R&D Program of China (2023YFB4503600), NSF of China
(61925205, 62232009, 62102215), and Zhongguancun Lab. Zhifeng
Bao is supported in part by ARC DP240101211.

1653

REFERENCES
[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. 2017. Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Processing Magazine 34, 6 (2017), 26–38.

[2] André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, David
Silver, and Hado van Hasselt. 2017. Successor Features for Transfer in Reinforce-
ment Learning. In Advances in Neural Information Processing Systems. 4055–4065.

[3] Nicolas Bruno and Surajit Chaudhuri. 2005. Automatic Physical Database Tun-
ing: A Relaxation-based Approach. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data. 227–238.

[4] Nicolas Bruno and Surajit Chaudhuri. 2007. An Online Approach to Physical
Design Tuning. In 2007 IEEE 23rd International Conference on Data Engineering.
826–835.

[5] Tim Brys, Anna Harutyunyan, Matthew E. Taylor, and Ann Nowé. 2015. Policy
Transfer using Reward Shaping. In Proceedings of the 2015 International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS ’15). 181–188.

[6] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. In Proceedings of the 23rd International
Conference on Very Large Data Bases. 146–155.

[7] Surajit Chaudhuri and Vivek R. Narasayya. 1998. AutoAdmin ’What-if’ Index
Analysis Utility. In Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data. 367–378.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of the 37th International Conference on Machine Learning, Vol. 119.
1597–1607.

[9] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. 1990. Indexing by Latent Semantic Analysis. Journal
of the American Society for Information Science 41, 6 (1990), 391–407.

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020. 1536–1547.

[11] Fernando Fernández and Manuela M. Veloso. 2006. Probabilistic policy reuse
in a reinforcement learning agent. In Proceedings of the Fifth International Joint
Conference on Autonomous Agents andMultiagent Systems (AAMAS ’06). 720–727.

[12] Michael Hammer and Arvola Chan. 1976. Index Selection in a Self-Adaptive Data
Base Management System. In Proceedings of the 1976 ACM SIGMOD International
Conference on Management of Data. 1–8.

[13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. 2020.
Momentum Contrast for Unsupervised Visual Representation Learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 9726–9735.

[14] HypoPG. 2015. https://github.com/HypoPG/hypopg.
[15] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-

jee, and Fillia Makedon. 2020. A Survey on Contrastive Self-supervised Learning.
arXiv Preprint (2020). https://arxiv.org/abs/2011.00362

[16] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic
mirror in my hand, which is the best in the land? An Experimental Evaluation
of Index Selection Algorithms. Proc. VLDB Endow. 13, 11 (2020), 2382–2395.

[17] Jan Kossmann, Alexander Kastius, and Rainer Schlosser. 2022. SWIRL: Selection
ofWorkload-aware Indexes using Reinforcement Learning. In EDBT. 2:155–2:168.

[18] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep
Reinforcement Learning. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management. 2105–2108.

[19] Romain Laroche and Merwan Barlier. 2017. Transfer Reinforcement Learn-
ing with Shared Dynamics. In Proceedings of the AAAI Conference on Artificial
Intelligence. 2147–2153.

[20] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[21] Siyuan Li and Chongjie Zhang. 2018. An Optimal Online Method of Selecting
Source Policies for Reinforcement Learning. In Proceedings of the AAAI Conference
on Artificial Intelligence. 3562–3570.

[22] Gabriel Paludo Licks, Júlia Mara Colleoni Couto, Priscilla de Fátima Miehe,
Renata De Paris, Duncan Dubugras A. Ruiz, and Felipe Meneguzzi. 2020. SmartIX:

A database indexing agent based on reinforcement learning. Applied Intelligence
50, 8 (2020), 2575–2588.

[23] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo,
and Geoffrey J. Gordon. 2018. Query-based Workload Forecasting for Self-
Driving Database Management Systems. In Proceedings of the 2018 International
Conference on Management of Data. 631–645.

[24] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing Systems. 3111–3119.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. arXiv Preprint (2013). https://arxiv.org/abs/
1312.5602

[26] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS.
In Proceedings of the 32nd International Conference on Very Large Data Bases.
1049–1058.

[27] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata
Borovica-Gajic. 2021. DBA bandits: Self-driving index tuning under ad-hoc,
analytical workloads with safety guarantees. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). 600–611.

[28] Gregory Piatetsky-Shapiro. 1983. The Optimal Selection of Secondary Indices is
NP-Complete. SIGMOD Rec. 13, 2 (1983), 72–75.

[29] Meikel Pöss and Chris Floyd. 2000. New TPC Benchmarks for Decision Support
and Web Commerce. SIGMOD Rec. 29, 4 (2000), 64–71.

[30] Zahra Sadri, Le Gruenwald, and Eleazar Leal. 2020. DRLindex: deep reinforcement
learning index advisor for a cluster database. In Proceedings of the 24th Symposium
on International Database Engineering & Applications. 11:1–11:8.

[31] Zahra Sadri, Le Gruenwald, and Eleazar Leal. 2020. Online Index Selection
Using Deep Reinforcement Learning for a Cluster Database. In 2020 IEEE 36th
International Conference on Data Engineering Workshops (ICDEW). 158–161.

[32] Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable
Multi-attribute Index Selection Using Recursive Strategies. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). 1238–1249.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv Preprint (2017). https:
//arxiv.org/abs/1707.06347

[34] Vishal Sharma and Curtis E. Dyreson. 2022. Indexer++: workload-aware online
index tuning with transformers and reinforcement learning. In Proceedings of
the 37th ACM/SIGAPP Symposium on Applied Computing. 372–380.

[35] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An
Introduction. IEEE Trans. Neural Networks 9, 5 (1998), 1054–1054.

[36] Gary Valentin, Michael Zuliani, Daniel C. Zilio, GuyM. Lohman, and Alan Skelley.
2000. DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes.
In Proceedings of 16th International Conference on Data Engineering. 101–110.

[37] Kyu-YoungWhang. 1987. Index Selection in Relational Databases. In Foundations
of Data Organization. 487–500.

[38] Wentao Wu, Chi Wang, Tarique Siddiqui, Junxiong Wang, Vivek R. Narasayya,
Surajit Chaudhuri, and Philip A. Bernstein. 2022. Budget-aware Index Tuning
with Reinforcement Learning. In Proceedings of the 2022 International Conference
on Management of Data. 1528–1541.

[39] Tianpei Yang, Jianye Hao, Zhaopeng Meng, Zongzhang Zhang, Yujing Hu,
Yingfeng Chen, Changjie Fan, Weixun Wang, Wulong Liu, Zhaodong Wang,
and Jiajie Peng. 2020. Efficient Deep Reinforcement Learning via Adaptive Policy
Transfer. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20. 3094–3100.

[40] Zonghan Yang, Yong Cheng, Yang Liu, and Maosong Sun. 2019. Reducing Word
Omission Errors in Neural Machine Translation: A Contrastive Learning Ap-
proach. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, Vol. 1. 6191–6196.

[41] Xuanhe Zhou, Luyang Liu, Wenbo Li, Lianyuan Jin, Shifu Li, Tianqing Wang,
and Jianhua Feng. 2022. AutoIndex: An Incremental Index Management System
for Dynamic Workloads. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). 2196–2208.

[42] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. 2020. Transfer Learning in Deep
Reinforcement Learning: A Survey. arXiv Preprint (2020). https://arxiv.org/abs/
2009.07888

1654

https://github.com/HypoPG/hypopg
https://arxiv.org/abs/2011.00362
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2009.07888
https://arxiv.org/abs/2009.07888

	Abstract
	1 Introduction
	2 Related Work
	2.1 Index Advisor
	2.2 Transfer Reinforcement Learning

	3 Solution Overview
	3.1 Problem Formulation
	3.2 Overview of Our Solution

	4 Workload Representation Learning
	4.1 Architecture
	4.2 Constructing positive and negative pairs
	4.3 Workload Feature
	4.4 Training

	5 Transfer RL Index Advisor
	5.1 State Representation
	5.2 Action policy
	5.3 Transfer network
	5.4 Update action policy
	5.5 Update transfer network

	6 Experiment
	6.1 Experiment Setup
	6.2 Performance Comparison
	6.3 Generalization
	6.4 Ablation on workload representation
	6.5 Impact of Pre-training Data Size
	6.6 Ablation on the Transfer Module
	6.7 Impact of Chunk Segmentation
	6.8 Impact of Storage Budget
	6.9 Effectiveness of Action Masking

	7 Conclusion and Future Work
	References

