
Efficient Exact Subgraph Matching via GNN-based Path
Dominance Embedding

Yutong Ye
East China Normal University

Shanghai, China
52205902007@stu.ecnu.edu.cn

Xiang Lian
Kent State University

Kent, Ohio, USA
xlian@kent.edu

Mingsong Chen
East China Normal University

Shanghai, China
mschen@sei.ecnu.edu.cn

ABSTRACT
The classic problem of exact subgraph matching returns those sub-
graphs in a large-scale data graph that are isomorphic to a given
query graph, which has gained increasing importance in many
real-world applications such as social network analysis, knowledge
graph discovery in the Semantic Web, bibliographical network min-
ing, and so on. In this paper, we propose a novel and effective graph
neural network (GNN)-based path embedding framework (GNN-PE),
which allows efficient exact subgraph matching without introducing
false dismissals. Unlike traditional GNN-based graph embeddings
that only produce approximate subgraph matching results, in this
paper, we carefully devise GNN-based embeddings for paths, such
that: if two paths (and 1-hop neighbors of vertices on them) have
the subgraph relationship, their corresponding GNN-based embed-
ding vectors will strictly follow the dominance relationship. With
such a newly designed property of path dominance embeddings,
we are able to propose effective pruning strategies based on path
label/dominance embeddings and guarantee no false dismissals for
subgraph matching. We build multidimensional indexes over path
embedding vectors, and develop an efficient subgraph matching
algorithm by traversing indexes over graph partitions in parallel
and applying our pruning methods. We also propose a cost-model-
based query plan that obtains query paths from the query graph
with low query cost. Through extensive experiments, we confirm
the efficiency and effectiveness of our proposed GNN-PE approach
for exact subgraph matching on both real and synthetic graph data.

PVLDB Reference Format:
Yutong Ye, Xiang Lian, and Mingsong Chen. Efficient Exact Subgraph
Matching via GNN-based Path Dominance Embedding. PVLDB, 17(7): 1628
- 1641, 2024.
doi:10.14778/3654621.3654630

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/JamesWhiteSnow/GNN-PE.

1 INTRODUCTION
For the past decades, graph data management has received much
attention from the database community, due to its wide spectrum
of real applications such as the Semantic Web [47], social networks

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.
doi:10.14778/3654621.3654630

database

data_security

server_managementtesting

𝒗𝒗𝟕𝟕
database

𝒗𝒗𝟔𝟔
web_design

𝒗𝒗𝟖𝟖

server_management

𝒗𝒗𝟒𝟒
testing

𝒒𝒒𝟐𝟐
database

𝒒𝒒𝟏𝟏
web_design

𝒒𝒒𝟑𝟑
server_management

𝒒𝒒𝟒𝟒
testing

web_design

data_security

subgraph 𝒈𝒈

𝒗𝒗𝟓𝟓

𝒗𝒗𝟐𝟐

𝒗𝒗𝟗𝟗 𝒗𝒗𝟏𝟏𝟏𝟏

𝒗𝒗𝟑𝟑

𝒗𝒗𝟏𝟏

(a) collaboration social network𝐺

database

data_security

server_managementtesting

𝒗𝒗𝟕𝟕
database

𝒗𝒗𝟔𝟔
web_design

𝒗𝒗𝟖𝟖

server_management

𝒗𝒗𝟒𝟒
testing

𝒒𝒒𝟐𝟐
database

𝒒𝒒𝟏𝟏
web_design

𝒒𝒒𝟑𝟑
server_management

𝒒𝒒𝟒𝟒
testing

web_design

data_security

subgraph 𝒈𝒈

𝒗𝒗𝟓𝟓

𝒗𝒗𝟐𝟐

𝒗𝒗𝟗𝟗 𝒗𝒗𝟏𝟏𝟏𝟏

𝒗𝒗𝟑𝟑

𝒗𝒗𝟏𝟏

(b) query graph 𝑞

Figure 1: An example of the subgraph matching in collabora-
tion social networks.

[61], biological networks (e.g., gene regulatory networks [32] and
protein-to-protein interaction networks [56]), road networks [17,
69], and so on. In these graph-related applications, one of the most
important and classic problems is the subgraph matching query,
which retrieves subgraphs 𝑔 from a large-scale data graph𝐺 that
match with a given query graph pattern 𝑞.

Below, we give an example of the subgraph matching in real
applications of skilled team formation in collaboration networks.

Example 1. (Skilled Team Formation in Collaboration So-
cial Networks [3]) In order to successfully accomplish a task, a
project manager is interested in finding an experienced team that
consists of members with complementary skills and having previous
collaboration histories. Figure 1(a) illustrates a collaboration social
network, 𝐺 , which contains user vertices, 𝑣1 ∼ 𝑣10, with skill labels
(e.g., 𝑣7 with the skill “database”) and edges (each connecting two user
vertices, e.g., 𝑣7 and 𝑣8, indicating that they have collaborated in some
project before). Figure 1(b) shows a query graph 𝑞, specified by the
project manager, which involves the required team members, 𝑞1 ∼ 𝑞4,
with specific skills and their historical collaboration requirements
(e.g., the edge between nodes 𝑞1 and 𝑞2 that indicates the front-end
and back-end collaborations). In this case, the project manager can
specify this query graph 𝑞 and issue a subgraph matching query over
the collaboration network𝐺 to obtain candidate teams matching with
𝑞 (e.g., subgraph 𝑔 isomorphic to 𝑞, circled in Figure 1(a)). ■

The subgraph matching has many other real applications. For
example, in the Semantic Web application like the knowledge graph
search [41], a SPARQL query can be transformed to a query graph 𝑞,
and thus the SPARQL query answering is equivalent to a subgraph
matching query over an RDF knowledge graph, which retrieves
RDF subgraphs isomorphic to the transformed query graph 𝑞.
Prior Works. The subgraph isomorphism problem is known to be
NP-complete [18, 23, 38], which is thus not tractable. Prior works
on the subgraph matching problem usually followed the filter-and-
refine paradigm [30, 34, 60, 67, 70], which first filters out subgraph
false alarms with no false dismissals and then returns actual match-
ing subgraphs by refining the remaining candidate subgraphs.

1628

https://doi.org/10.14778/3654621.3654630
https://github.com/JamesWhiteSnow/GNN-PE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3654621.3654630
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Due to the high computation cost of exact subgraph matching,
an alternative direction is to quickly obtain approximate subgraph
matching results, trading the accuracy for efficiency. Previousworks
on approximate subgraph matching [19, 21, 40, 72] usually searched
𝑘 most similar subgraphs in the data graph by using various graph
similarity measures (e.g., graph edit distance [40, 72], chi-square
statistic [21], and Sylvester equation [19]).

Moreover, several recent works [6, 39] utilized deep-learning-
based approaches such asGraph Neural Networks (GNNs) to conduct
approximate subgraph matching. Specifically, GNNs can be used
to transform entire (small) complex data graphs into vectors in an
embedding space offline. Then, we can determine the subgraph
relationship between data and query graphs by comparing their
embedding vectors, via either neural networks [6] or similarity
measures (e.g., Euclidean or Hamming distance [39]). Although
GNN-based approaches can efficiently, but approximately, assert
the subgraph relationship between any two graphs, there is no
theoretical guarantee about the accuracy of such an assertion, which
results in approximate (but not exact) subgraph answers. Worse
still, these GNN-based approaches usually work for comparing two
graphs only, which are not suitable for tasks like retrieving the
locations of matching subgraphs in a large-scale data graph.
Our Contributions. In this paper, we focus on exact subgraph
matching queries over a large-scale data graph, and present a novel
GNN-based path embedding (GNN-PE) framework for exact and
efficient subgraph matching. In contrast to traditional GNN-based
embeddings without any evidence of accuracy guarantees, we de-
sign an effective GNN-based path dominance embedding technique,
which trains our newly devised GNN models to obtain embed-
dings of nodes (and their neighborhood structures) on paths such
that: any two paths (including 1-hop neighbors of vertices
on them) with the subgraph relationship will strictly yield
embeddings with the dominance [14] relationship. This way,
we can transform our subgraph matching problem to a dominating
region search problem in the embedding space and guarantee a
100% recall ratio so that we do not miss any query results. In other
words, we can retrieve candidate paths (including their locations
in the data graph) matching with those in the query graph with
no false dismissals. Further, we propose an effective approach to
enhance the pruning power by using multiple sets of GNN-based
path embeddings over randomized vertex labels in the data graph.

To deal with large-scale data graphs, we divide the data graph
into multiple subgraph partitions and train GNN models for differ-
ent partitions to enable parallel processing over path embeddings in
a scalablemanner.We also build an index over path label/dominance
embedding vectors for each partition to facilitate the pruning, and
develop an efficient and exact subgraph matching algorithm for
(parallel) candidate path retrieval and refinement via our proposed
cost-model-based query plan.

In this paper, we make the following contributions:
(1) We propose a novel GNN-PE framework for exact subgraph

matching via GNN-based path embeddings in Section 2.
(2) We design an effective GNN-based path dominance embed-

ding approach for exact subgraph retrieval in Section 3.
(3) We develop an efficient parallel subgraph matching algo-

rithm that traverses indexes over GNN-based path embed-
dings by using effective pruning methods in Section 4.

Table 1: Symbols and Descriptions

Symbol Description
𝐺 a data graph
𝑞 a query graph
𝑔 a subgraph of the data graph𝐺
𝑣𝑖 (or 𝑞𝑖) a vertex in graph𝐺 (or 𝑞)
𝑒𝑖 𝑗 (or 𝑒𝑞𝑖𝑞𝑗) an edge in graph𝐺 (or 𝑞)
𝑚 the number of graph partitions𝐺 𝑗

𝑀𝑗 a GNN model for𝐺 𝑗

𝑔𝑣𝑖 (or 𝑠𝑣𝑖) a unit star graph (or substructure) of center vertex 𝑣𝑖
𝑜 (𝑔𝑣𝑖) (or 𝑜 (𝑣𝑖)) an embedding vector of center vertex 𝑣𝑖 from unit star graph 𝑔𝑣𝑖
𝑜 (𝑝𝑧) (or 𝑜 (𝑝𝑞)) a path dominance embedding vector of path 𝑝𝑧 (or 𝑝𝑞)
𝑜0 (𝑝𝑧) (or 𝑜0 (𝑝𝑞)) a path label embedding vector of path 𝑝𝑧 (or 𝑝𝑞)

(4) We devise a novel cost model for selecting the best query
plan of the subgraph matching in Section 5.

(5) Through extensive experiments, we confirm the efficiency
and effectiveness of our GNN-PE approach for exact sub-
graph matching over real/synthetic graphs in Section 6.

Section 7 reviews related works on exact/approximate subgraph
matching and GNNs. Finally, Section 8 concludes this paper.

2 PROBLEM DEFINITION
Table 1 depicts the commonly used symbols and their descriptions.

2.1 Graph Data Model
We first give the model for an undirected, labeled graph, 𝐺 , below.

Definition 1. (Graph,𝐺)A graph,𝐺 , is represented by a quadru-
ple (𝑉 (𝐺), 𝐸 (𝐺), 𝜙 (𝐺), 𝐿(𝐺)), where𝑉 (𝐺) is a set of vertices 𝑣𝑖 , 𝐸 (𝐺)
is a set of edges 𝑒𝑖 𝑗 (= (𝑣𝑖 , 𝑣 𝑗)) between vertices 𝑣𝑖 and 𝑣 𝑗 , 𝜙 (𝐺) is a
mapping function 𝑉 (𝐺)×𝑉 (𝐺)→𝐸 (𝐺), and 𝐿(𝐺) is a labeling func-
tion that associates each vertex 𝑣𝑖 ∈ 𝑉 (𝐺) with a label 𝐿(𝑣𝑖).

2.2 Graph Isomorphism
In this subsection, we give the definition of the classic graph iso-
morphism problem between undirected, labeled graphs.

Definition 2. (Graph Isomorphism [5, 23]) Given two graphs
𝐺𝐴 = (𝑉𝐴, 𝐸𝐴, 𝜙𝐴, 𝐿𝐴) and 𝐺𝐵 = (𝑉𝐵, 𝐸𝐵, 𝜙𝐵, 𝐿𝐵), we say that 𝐺𝐴
is isomorphic to 𝐺𝐵 (denoted as 𝐺𝐴 ≡ 𝐺𝐵), if there exists an edge-
preserving bijective function 𝑓 : 𝑉𝐴 → 𝑉𝐵 , such that: i) ∀𝑣𝑖 ∈ 𝑉𝐴 ,
𝐿𝐴 (𝑣𝑖) = 𝐿𝐵 (𝑓 (𝑣𝑖)), and ii) ∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉𝐴 , if (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸𝐴 holds, we
have (𝑓 (𝑣𝑖), 𝑓 (𝑣 𝑗)) ∈ 𝐸𝐵 .

In Definition 2, the graph isomorphism problem checks whether
or not two graphs 𝐺𝐴 and 𝐺𝐵 exactly match each other.

Moreover, we say that𝐺𝐴 is subgraph isomorphic to𝐺𝐵 (denoted
as 𝐺𝐴 ⊆ 𝐺𝐵), if 𝐺𝐴 is isomorhic to an induced subgraph, 𝑔𝐵 , of
graph 𝐺𝐵 (i.e., 𝐺𝐴 ≡ 𝑔𝐵). Note that, the subgraph isomorphism
problem has been proven to be NP-complete [18, 38].

2.3 Subgraph Matching Queries
We now define a subgraph matching query over a large data graph
𝐺 , which obtains subgraphs, 𝑔, that match with a query graph 𝑞.

Definition 3. (SubgraphMatching Query)Given a data graph
𝐺 and a query graph 𝑞, a subgraph matching query retrieves all the
subgraphs 𝑔 of the data graph 𝐺 that are isomorphic to the query
graph 𝑞 (i.e., 𝑔 ≡ 𝑞).

1629

Algorithm 1: The GNN-Based Path Embedding (GNN-
PE) Framework for Exact Subgraph Matching
Input: a data graph𝐺 and a query graph 𝑞
Output: subgraphs 𝑔 (⊆ 𝐺) that are isomorphic to 𝑞
// Offline Pre-Computation Phase

1 divide graph𝐺 into𝑚 disjoint subgraphs𝐺1 ,𝐺2 , ..., and𝐺𝑚

2 for each subgraph partition𝐺 𝑗 (1 ≤ 𝑗 ≤ 𝑚) do
// train GNN models for graph node/edge embeddings

3 train a GNN model𝑀𝑗 with node dominance embedding over vertices
in𝐺 𝑗

4 generate embedding vectors 𝑜 (𝑝𝑧) for paths 𝑝𝑧 of lengths 𝑙 in𝐺 𝑗 via
𝑀𝑗

// build an index over subgraph 𝐺 𝑗

5 build aggregate R∗-tree indexes, I𝑗 , over embedding vectors for paths of
length 𝑙 in𝐺 𝑗

// Online Subgraph Matching Phase
6 for each query graph 𝑞 do

// retrieve candidate paths

7 compute a cost-model-based query plan 𝜑 of multiple query paths 𝑝𝑞
8 obtain a query embedding vector 𝑜 (𝑞𝑖) of each vertex 𝑞𝑖 in 𝑞 from

GNNs𝑀𝑗 , and embeddings 𝑜 (𝑝𝑞) of query paths 𝑝𝑞
9 find candidate path sets, 𝑝𝑞 .𝑐𝑎𝑛𝑑_𝑙𝑖𝑠𝑡 , that match with query paths,

𝑝𝑞 , by traversing indexes I𝑗
// obtain and refine candidate subgraphs

10 assemble candidate subgraphs 𝑔 from candidate paths in 𝑝𝑞 .𝑐𝑎𝑛𝑑_𝑙𝑖𝑠𝑡
and refine subgraphs 𝑔 via multi-way hash join

11 return subgraphs 𝑔 (≡ 𝑞)

The subgraphmatching query (as given in Definition 3) has many
real-world applications such as social network analysis. In this
paper, we consider exact subgraph matching that obtains strictly
isomorphic subgraphs, in contrast to approximate one [19, 39, 40]
(i.e., finding subgraphs not exactly matching with query graph 𝑞).

2.4 GNN-Based Subgraph Matching Framework
Algorithm 1 presents a novel GNN-based path embedding (GNN-PE)
framework for efficiently answering subgraph matching queries
via path embeddings, which consists of two phases, offline pre-
computation and online subgraph matching phases. That is, we
first pre-process the data graph 𝐺 offline by building indexes over
path embedding vectors via GNNs (lines 1-5), and then answer
online subgraph matching queries over indexes (lines 6-11). For the
detailed descriptions, please refer to our technical report [64].

3 GNN-BASED DOMINANCE EMBEDDING
In this section, we discuss how to calculate GNN-based dominance
embeddings for vertices/paths (lines 3-4 of Algorithm 1), which can
enable subgraph relationships to be preserved in the embedding
space and support efficient and accurate path candidate retrieval.
Due to space limitations, we provide proofs of lemmas in our
technical report [64] and omit them below.

3.1 GNN Model for the Node Embedding
In this work, we use a GNN model (e.g., Graph Attention Network
(GAT) [58]) to enable the node embedding in the data graph 𝐺 .
Specifically, the GNN takes a unit star graph 𝑔𝑣𝑖 (i.e., a star subgraph
containing a center vertex 𝑣𝑖 ∈ 𝑉 (𝐺) and its 1-hop neighbors) as
input and an embedding vector,𝑜 (𝑣𝑖), of vertex 𝑣𝑖 as output. Figure 2
illustrates an example of this GNN model (with unit star graph 𝑔𝑣1
as input), which consists of input, hidden, and output layers.

𝒗𝒗𝟏𝟏 𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

unit star graph 𝒈𝒈𝒗𝒗𝟏𝟏

𝒙𝒙𝟏𝟏 𝑥𝑥2
𝑥𝑥4

𝑥𝑥3

embedding
vector 𝒐𝒐(𝒗𝒗𝟏𝟏)

feature vectors

input layer output layerhidden layers

center vertex

G
AT L

ayer

𝒗𝒗𝟏𝟏 𝑣𝑣2

𝑣𝑣3

𝑣𝑣4 R
eadout L

ayer

Fully C
onnected L

ayer𝑥𝑥3′

𝒙𝒙𝟏𝟏′ 𝑥𝑥2′
𝑥𝑥4′

𝒚𝒚𝟏𝟏

GNN Model

𝒐𝒐(𝒈𝒈𝒗𝒗𝟏𝟏)

Figure 2: Illustration of our GNN model.

Input Layer. As mentioned earlier, the input of the GNN model
is a unit star graph 𝑔𝑣𝑖 (or its star substructure/subgraph, denoted
as 𝑠𝑣𝑖). Each vertex 𝑣 𝑗 in 𝑔𝑣𝑖 (or 𝑠𝑣𝑖) is associated with an initial
feature vector 𝑥 𝑗 of size 𝐹 , which is obtained via either vertex label
encoding or one-hot encoding [12].

Figure 3 shows an example of unit star graph 𝑔𝑣1 in data graph
𝐺 and one of its star substructures 𝑠𝑣1 (⊆ 𝑔𝑣1), which are centered
at vertex 𝑣1. In Figure 3(a), vertices 𝑣1 ∼ 𝑣4 have their initial feature
vectors 𝑥1 ∼ 𝑥4, respectively. The case of the star substructure 𝑠𝑣1
in Figure 3(b) is similar.
Hidden Layers. As shown in Figure 2, our GNN model consists of
GAT [58], readout, and fully connected layers.

GAT layer: In the first GAT layer, the feature vector of each vertex
will go through a linear transformation parameterized by a weight
matrixW ∈ R𝐹

′×𝐹 . Specifically, we compute an attention coefficient,
𝑎𝑐𝑣𝑖 𝑣𝑗 , between any vertices 𝑣𝑖 and 𝑣 𝑗 as follows:

𝑎𝑐𝑣𝑖 𝑣𝑗 = 𝑎
(
W𝑥𝑖 ,W𝑥 𝑗

)
, (1)

which indicates the importance of vertex 𝑣𝑖 to vertex 𝑣 𝑗 , where
the shared attentional mechanism 𝑎(·, ·) is a function (e.g., a single-
layer neural network with learnable parameters): R𝐹

′ × R𝐹
′ → R

that outputs the correlation between two feature vectors.
DenoteN(𝑣𝑖) as the neighborhood of a vertex 𝑣𝑖 . For each vertex

𝑣𝑖 , we aggregate feature vectors of its 1-hop neighbors 𝑣 𝑗 ∈ N (𝑣𝑖).
That is, we first use a softmax function to normalize attention
coefficients 𝑎𝑐𝑣𝑖 𝑣𝑗 as follows:

𝛼𝑣𝑖 𝑣𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑎𝑐𝑣𝑖 𝑣𝑗) =
𝑒𝑥𝑝 (𝑎𝑐𝑣𝑖 𝑣𝑗)∑

𝑣𝑘 ∈N(𝑣𝑖) 𝑒𝑥𝑝 (𝑎𝑐𝑣𝑖 𝑣𝑘)
. (2)

Then, the output of the GAT layer is computed by a linear com-
bination of feature vectors:

𝑥 ′𝑖 = 𝜎
©­«

∑︁
𝑣𝑗 ∈N𝑣𝑖

𝛼𝑣𝑖 𝑣𝑗W𝑥 𝑗
ª®¬ , (3)

where 𝜎 (𝑍) is a nonlinear activation function (e.g., rectified linear
unit [46], Sigmoid [25], etc.) with input and output vectors, 𝑍 and
𝜎 (𝑍), of length 𝐹 ′, respectively.

To stabilize the learning process of self-attention, GAT uses a
multi-head attention mechanism similar to [57], where each head
is an independent attention function and 𝐾 heads execute the trans-
formation of Eq. (3) in parallel. Thus, an alternative GAT output 𝑥 ′

𝑖
can be a concatenation of feature vectors generated by 𝐾 heads:

𝑥 ′𝑖 =

𝐾
𝑘=1𝜎

©­«
∑︁

𝑣𝑗 ∈N𝑣𝑖

𝛼
(𝑘)
𝑣𝑖 𝑣𝑗W

(𝑘)𝑥 𝑗
ª®¬ , (4)

1630

Algorithm 2: GNN Model Training
Input: i) a subgraph partition𝐺 𝑗 ⊆ 𝐺 ; ii) a training data set 𝐷 𝑗 , and; iii) a

learning rate 𝜂
Output: a trained GNN model𝑀𝑗

// generate a training data set 𝐷 𝑗

1 𝐷 𝑗 = ∅
2 for each vertex 𝑣𝑖 ∈ 𝑉 (𝐺 𝑗) do
3 obtain the unit star subgraph 𝑔𝑣𝑖 and its star substructures 𝑠𝑣𝑖
4 add all pairs (𝑔𝑣𝑖 , 𝑠𝑣𝑖) to 𝐷 𝑗

5 randomly shuffle pairs in 𝐷 𝑗

// train a GNN model𝑀𝑗 until the loss equals to 0
6 do

// the training epoch

7 for each batch 𝐵 ⊆ 𝐷 𝑗 do
8 obtain embedding vectors of pairs in 𝐵 by𝑀𝑗

9 compute the loss function L(𝐵) of𝑀𝑗 by Eq. (7)
10 𝑀𝑗 .𝑢𝑝𝑑𝑎𝑡𝑒 (L(𝐵), 𝜂)

// the testing epoch

11 𝐿𝑒 = 0
12 for each batch 𝐵 ⊆ 𝐷 𝑗 do
13 obtain embedding vectors of pairs in 𝐵 by𝑀𝑗

14 compute the loss function L(𝐵) of𝑀𝑗 by Eq. (7)
15 𝐿𝑒 ← 𝐿𝑒 + L(𝐵)
16 while (𝐿𝑒 = 0) ;
17 repeat lines 6-16 to train 𝑏 GNN models with random initial weight

parameters to avoid local optimality
18 select the best model𝑀𝑗 (satisfying 𝐿𝑒 = 0) with the smallest expected query

cost𝐶𝑜𝑠𝑡𝑀𝑗
(given in Eq. (8))

19 return the best trained GNN model𝑀𝑗

𝒗𝒗𝟏𝟏 𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑣𝑣5

data graph 𝑮𝑮

unit star graph 𝒈𝒈𝒗𝒗𝟏𝟏

𝑥𝑥1 𝑥𝑥2

𝑥𝑥5

𝑥𝑥3

𝑥𝑥4

center vertex
𝒗𝒗𝟏𝟏 𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑣𝑣5

star substructure 𝒔𝒔𝒗𝒗𝟏𝟏

𝑥𝑥1 𝑥𝑥2

𝑥𝑥5

𝑥𝑥3

𝑥𝑥4

data graph 𝑮𝑮

(a) unit star graph 𝑔𝑣1 ⊆𝐺

𝒗𝒗𝟏𝟏 𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑣𝑣5

data graph 𝑮𝑮

unit star graph 𝒈𝒈𝒗𝒗𝟏𝟏

𝑥𝑥1 𝑥𝑥2

𝑥𝑥5

𝑥𝑥3

𝑥𝑥4

center vertex

𝒗𝒗𝟏𝟏 𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑣𝑣5

star substructure 𝒔𝒔𝒗𝒗𝟏𝟏

𝑥𝑥1 𝑥𝑥2

𝑥𝑥5

𝑥𝑥3

𝑥𝑥4

data graph 𝑮𝑮

(b) star substructure 𝑠𝑣1 ⊆𝑔𝑣1

Figure 3: Illustration of the input for the GNN model.

where ∥𝐾
𝑘=1 is the concatenation operator of 𝐾 vectors, 𝛼 (𝑘)𝑣1𝑣𝑗 is the

normalized attention coefficient computed by the 𝑘-th attention
head, and W(𝑘) is the 𝑘-th parameterized weight matrix.

Readout layer: A readout layer [65, 68] generates an embedding
vector, 𝑦𝑖 , for the entire unit star graph 𝑔𝑣𝑖 , by summing up feature
vectors 𝑥 ′

𝑗
of all vertices 𝑣 𝑗 in 𝑔𝑣𝑖 , which is permutation invariant.

That is, we obtain:
𝑦𝑖 =

∑︁
∀𝑣𝑗 ∈𝑉 (𝑔𝑣𝑖)

𝑥 ′𝑗 . (5)

Fully Connected Layer: A fully connected layer performs a non-
linear transformation of 𝑦𝑖 (given in Eq. (5)) via an activation func-
tion 𝜎 (·) and obtains the embedding vector, 𝑜 (𝑔𝑣𝑖), of size 𝑑 for
vertex 𝑣𝑖 . That is, we have:

𝑜 (𝑔𝑣𝑖) = 𝜎 (W𝑦𝑖), (6)

where 𝜎 (·) is an activation function and W is a 𝑑 × (𝐾 · 𝐹 ′) weight
matrix. In this paper, we used the Sigmoid function 𝜎 (𝑥) = 1

1+𝑒−𝑥
(∈ (0, 1)), where 𝑒 is a mathematical constant. We will leave the
study of using other activation functions as our future work.

Output Layer. In this layer, we output 𝑜 (𝑔𝑣𝑖) (given in Eq. (6)) as
the embedding vector, 𝑜 (𝑣𝑖), of center vertex 𝑣𝑖 .

3.2 Node Dominance Embedding
In this subsection, we propose an effective GNN-based node domi-
nance embedding approach to train the GNN model (discussed in
Section 3.1), such that our node embedding via GNN can reflect
the subgraph relationship between unit star graph 𝑔𝑣𝑖 and its star
substructures 𝑠𝑣𝑖 in the embedding space. Such a node dominance
embedding can enable exact subgraph matching.
Loss Function. Specifically, for the GNN model training, we use a
training data set𝐷 𝑗 that contains all pairs of unit star graphs𝑔𝑣𝑖 and
their substructures 𝑠𝑣𝑖 (for all vertices 𝑣𝑖 in the subgraph partition
𝐺 𝑗 of data graph 𝐺). Then, we design a loss function L(𝐷 𝑗) over a
training data set 𝐷 𝑗 as follows:

L(𝐷 𝑗) =
∑︁

∀(𝑔𝑣𝑖 ,𝑠𝑣𝑖) ∈𝐷 𝑗

𝑚𝑎𝑥 {0, 𝑜 (𝑠𝑣𝑖) − 𝑜 (𝑔𝑣𝑖)}

22, (7)

where 𝑜 (𝑔𝑣𝑖) and 𝑜 (𝑠𝑣𝑖) are the embeddings of a unit star graph 𝑔𝑣𝑖
and its substructures 𝑠𝑣𝑖 , respectively, and | |·| |2 is the 𝐿2-norm.
GNN Model Training. To guarantee that we do not lose any
candidate vertices for exact subgraph matching, we train (or even
overfit) the GNNmodel until the loss functionL(·) (given in Eq. (7))
is equal to 0. Intuitively, from Eq. (7), when the loss function L(𝐷 𝑗)
= 0 holds, the embedding vector 𝑜 (𝑠𝑣𝑖) of any star substructure 𝑠𝑣𝑖 is
dominating [14] (or equal to) that, 𝑜 (𝑔𝑣𝑖), of its corresponding unit
star graph𝑔𝑣𝑖 . In the sequel, wewill simply say that𝑜 (𝑠𝑣𝑖) dominates
𝑜 (𝑔𝑣𝑖) (denoted as 𝑜 (𝑠𝑣𝑖) ⪯ 𝑜 (𝑔𝑣𝑖)), if 𝑜 (𝑠𝑣𝑖) [𝑡] ≤ 𝑜 (𝑔𝑣𝑖) [𝑡] for all
1 ≤ 𝑡 ≤ 𝑑 (including the case where 𝑜 (𝑠𝑣𝑖) = 𝑜 (𝑔𝑣𝑖)).

In other words, given the subgraph relationship between 𝑠𝑣𝑖
and 𝑔𝑣𝑖 (i.e., 𝑠𝑣𝑖 ⊆ 𝑔𝑣𝑖), our GNN-based node dominance embedding
approach can always guarantee that their embedding vectors 𝑜 (𝑠𝑣𝑖)
and 𝑜 (𝑔𝑣𝑖) follow the dominance relationship (i.e., 𝑜 (𝑠𝑣𝑖) ⪯ 𝑜 (𝑔𝑣𝑖)).

Algorithm 2 illustrates the training process of a GNN model𝑀𝑗

over a subgraph parititon 𝐺 𝑗 (1 ≤ 𝑗 ≤ 𝑚). For each vertex 𝑣𝑖 ∈ 𝐺 𝑗 ,
we obtain all (shuffled) pairs of unit star subgraphs 𝑔𝑣𝑖 and their
star substructures 𝑠𝑣𝑖 , which result in a training data set 𝐷 𝑗 (lines
1-5). Then, for each training iteration, we use a training epoch to
update model parameters (lines 6-10), and a testing epoch to obtain
the loss 𝐿𝑒 (lines 11-15). The training loop of the GNN model 𝑀𝑗

terminates until the loss 𝐿𝑒 equals 0 (line 16).
To obtain GNN-based node embeddingswith high pruning power,

we train multiple GNNmodels with 𝑏 sets of random initial weights
(line 17), and select the one with zero loss and the highest quality
of the generated node embeddings (i.e., the lowest expected query
cost, 𝐶𝑜𝑠𝑡𝑀𝑗

, as discussed in Eq. (8) below; line 18). Finally, we
return the best trained GNN model𝑀𝑗 (line 19).
Complexity Analysis of the GNN Training. In Algorithm 2,
we extract all star substructures 𝑠𝑣𝑖 from each unit star subgraph
𝑔𝑣𝑖 (line 3), which are used for GNN training. Thus, the num-
ber of pairs in the training data set is

∑
𝑣𝑖 ∈𝑉 (𝐺 𝑗) 2

𝑑𝑒𝑔 (𝑣𝑖) , where
𝑑𝑒𝑔(𝑣𝑖) is the degree of vertex 𝑣𝑖 . On the other hand, we train 𝑏
GNN models (as mentioned in Section 3.1) with different initial
weights to achieve high pruning power (line 17). For each GNN
model, the time complexity of the computation on the GAT layer is
𝑂 ((|𝑉 (𝑔𝑣𝑖) | + |𝐸 (𝑔𝑣𝑖) |) · 𝐹 ′), and that for the fully connected layer

1631

is 𝑂 (𝐹 ′ · 𝑑). In this paper, for the input unit star subgraph 𝑔𝑣𝑖 (or
star substructure 𝑠𝑣𝑖), we have |𝑉 (𝑔𝑣𝑖) | = 𝑑𝑒𝑔(𝑣𝑖) + 1 and |𝐸 (𝑔𝑣𝑖) | =
𝑑𝑒𝑔(𝑣𝑖). Therefore, the total time complexity of the GNN training
is given by 𝑂

(
𝑏 ·∑𝑣𝑖 ∈𝑉 (𝐺 𝑗) 2

𝑑𝑒𝑔 (𝑣𝑖) · (2 · 𝑑𝑒𝑔(𝑣𝑖) + 𝑑 + 1) · 𝐹 ′ · N
)
,

where N is the number of training epochs until zero loss.
Since vertex degrees in real-world graphs usually follow the

power-law distribution [7], only a small fraction of vertices have
high degrees. For example, in US Patents graph data [53], the av-
erage vertex degree is around 9, which incurs about 512 (= 29)
star substructures per vertex. Thus, this is usually acceptable for
offline GNN training on a single machine. In practice, for vertices
𝑣𝑖 with high degrees 𝑑𝑒𝑔(𝑣𝑖) (e.g., greater than a threshold 𝜃), in-
stead of enumerating a large number of 2𝑑𝑒𝑔 (𝑣𝑖) star substructures,
we simply set their embeddings 𝑜 (𝑣𝑖) to all-ones vectors 1. This
is because embeddings of those high-degree vertices often have
low pruning power, and it would be better to directly consider
them as vertex candidates without costly star substructure enumer-
ation/training. This way, our GNN training complexity is reduced
to𝑂

(
𝑏 ·∑𝑣𝑖 ∈𝑉 (𝐺 𝑗),𝑑𝑒𝑔 (𝑣𝑖)≤𝜃 2

𝑑𝑒𝑔 (𝑣𝑖) · (2 · 𝑑𝑒𝑔(𝑣𝑖) + 𝑑 + 1) · 𝐹 ′ ·N
)
.

Usage of theNodeDominance Embedding for Exact Subgraph
Matching. Intuitively, with the node dominance embeddings, we
can convert exact subgraph matching into the dominance search
problem in the embedding space. Specifically, if a vertex 𝑞𝑖 in the
query graph 𝑞 matches with a vertex 𝑣𝑖 in some subgraph 𝑔 of 𝐺 ,
then it must hold that 𝑜 (𝑔𝑞𝑖) ⪯ 𝑜 (𝑔𝑣𝑖), where 𝑜 (𝑔𝑞𝑖) is an embed-
ding vector of vertex 𝑞𝑖 (and its 1-hop neighbors) in query graph 𝑞
via the trained GNN.

This way, we can always use the embedding vector 𝑜 (𝑔𝑞𝑖) of 𝑞𝑖
to retrieve candidate vertices 𝑣𝑖 in𝐺 (i.e., those vertices with embed-
ding vectors 𝑜 (𝑔𝑣𝑖) dominated by 𝑜 (𝑔𝑞𝑖) in the embedding space).
Our trained GNN with overfitting (i.e., the loss is 0) can guarantee
that vertices 𝑣𝑖 dominated by 𝑜 (𝑔𝑞𝑖) will not miss any truly match-
ing vertices (i.e., with 100% recall ratio). This is because all possible
query star structures 𝑔𝑞𝑖 have already been offline enumerated and
trained during the GNN training process (i.e., 𝑔𝑞𝑖 ≡ 𝑔𝑠𝑖).

The Quality of the Generated Node Embeddings:Note that,𝑏 GNN
models can produce at most 𝑏 sets of node embeddings that can
fully satisfy the dominance relationships (i.e., with zero loss). Thus,
in line 18 of Algorithm 2, we need to select one GNNmodel with the
best node embedding quality, which is defined as the expected query
cost𝐶𝑜𝑠𝑡𝑀𝑗

(or the expected number of embedding vectors, 𝑜 (𝑔𝑣𝑥),
generated from unit star subgraphs dominated by that, 𝑜 (𝑔𝑞𝑖), of
query star subgraphs) below:

𝐶𝑜𝑠𝑡𝑀𝑗
=

∑
∀𝑔𝑞𝑖

��{∀𝑣𝑥 ∈ 𝑉 (𝐺) | 𝑜 (𝑔𝑞𝑖) ⪯ 𝑜 (𝑔𝑣𝑥)}��
of query unit star subgraphs 𝑔𝑞𝑖

, (8)

where 𝑔𝑞𝑖 are all the possible query unit star subgraphs (i.e., all star
substructures 𝑠𝑣𝑥 extracted from 𝑔𝑣𝑥), and the # of possible query
unit star subgraphs 𝑔𝑞𝑖 is given by |𝐷 𝑗 |.

Example 2. Figure 4 illustrates an example of the node dominance
embedding between data graph 𝐺 and query graph 𝑞. Each vertex
𝑣𝑖 ∈ 𝑉 (𝐺) has a 2D embedding vector 𝑜 (𝑣𝑖) via the GNN, whereas
each query vertex 𝑞𝑖 ∈ 𝑉 (𝑞) is transformed to a 2D vector 𝑜 (𝑞𝑖). For
example, as shown in the tables, we have 𝑜 (𝑣1) = (0.78, 0.79) and
𝑜 (𝑞1) = (0.62, 0.61). We plot the embedding vectors of vertices in a 2D
embedding space on the right side of the figure. We can see that 𝑜 (𝑞1)

2D embedding space

𝒗𝒗𝟏𝟏

𝒒𝒒𝟏𝟏
𝒗𝒗𝟐𝟐

𝒗𝒗𝟑𝟑

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐

𝒗𝒗𝟑𝟑

𝑣𝑣4

𝑣𝑣5
data graph 𝑮𝑮

Vertex 𝒗𝒗𝒊𝒊 Embedding 𝒐𝒐(𝒗𝒗𝒊𝒊)
𝒗𝒗𝟏𝟏 (0.78, 0.79)
𝒗𝒗𝟐𝟐 (0.75, 0.77)
𝒗𝒗𝟑𝟑 (0.73, 0.58)
𝑣𝑣4 (0.56, 0.54)
𝑣𝑣5 (0.54, 0.78)

𝒒𝒒𝟏𝟏 𝑞𝑞2

𝑞𝑞3
query graph 𝒒𝒒

𝑣𝑣5

Vertex 𝒒𝒒𝒊𝒊 Embedding 𝒐𝒐(𝒒𝒒𝒊𝒊)
𝒒𝒒𝟏𝟏 (0.62, 0.61)
𝑞𝑞2 (0.56, 0.54)
𝑞𝑞3 (0.59, 0.57)

𝑣𝑣4

0.5 1

1

𝒐𝒐
𝒗𝒗 𝒊𝒊

[1
]

𝒐𝒐 𝒗𝒗𝒊𝒊 [0]

dominating region 𝑫𝑫𝑫𝑫(𝒐𝒐(𝒒𝒒𝟏𝟏))

Figure 4: An example of node dominance embedding.

is dominating 𝑜 (𝑣1) and 𝑜 (𝑣2), which implies that 𝑔𝑞1 is potentially
a subgraph of (i.e., matching with) 𝑔𝑣1 and 𝑔𝑣2 . On the other hand,
since 𝑜 (𝑞1) is not dominating 𝑜 (𝑣3) in the 2D embedding space, query
vertex 𝑞1 cannot match with vertex 𝑣3 in the data graph 𝐺 . ■

Multi-GNN Node Dominance Embedding. In order to further
reduce the number of candidate vertices 𝑣𝑖 that match with a query
vertex 𝑞𝑖 ∈ 𝑉 (𝑞) (or enhance the pruning power), we use multiple
independent GNNs to embed vertices. Specifically, for each sub-
graph partition 𝐺 𝑗 , we convert the label of each vertex to a new
randomized label (e.g., via a hash function or using the vertex label
as a seed to generate a pseudo-random number). This way, we can
obtain a new subgraph 𝐺 ′

𝑗
with the same graph structure, but dif-

ferent vertex labels, and train/obtain a new GNN model 𝑀′
𝑗
with

new embeddings 𝑜′ (𝑣𝑖) of vertices 𝑣𝑖 ∈ 𝑉 (𝐺 ′𝑗).
With multiple versions of randomized vertex labels, we can ob-

tain different vertex embeddings 𝑜′ (𝑣𝑖), where the subgraph rela-
tionships between the unit star subgraph and its star substructures
also follow the dominance relationships of their embedding vectors.

Therefore, for each vertex 𝑣𝑖 , we can compute different versions
(via different GNNs) of embedding vectors (e.g., 𝑜 (𝑣𝑖) and 𝑜′ (𝑣𝑖)),
which can be used together for retrieving candidate vertices 𝑣𝑖 that
match with a query vertex 𝑞𝑖 with higher pruning power.
ConvergenceAnalysis.To guarantee no false dismissals for online
subgraph matching, we need to offline train/overfit a GNN model
𝑀𝑗 , until the training loss equals zero (i.e., L(𝐷 𝑗) = 0). Below, we
give the convergence analysis of the GNNmodel training, including
i) parameter settings for achieving sufficient GNN capacity, ii) the
existence of GNN parameters to achieve the training goal, and iii)
the target accessibility of the GNN training.

GNN Model Capacity for Overfitting: As mentioned in [22], the
GNN model needs enough capacity to overfit the training data
sets (e.g., achieving zero loss). In particular, the capacity of a GNN
model𝑀𝑗 [43] can be defined as𝑀𝑗 .𝑐𝑎𝑝 = 𝑀𝑗 .𝑑𝑒𝑝×𝑀𝑗 .𝑤𝑖𝑑 , where
𝑀𝑗 .𝑑𝑒𝑝 and𝑀𝑗 .𝑤𝑖𝑑 are the depth (i.e., # of layers) and width (i.e.,
the maximum dimension of intermediate node embeddings in all
layers) of the GNN model𝑀𝑗 , respectively.

According to [43], the GNN model capacity to accomplish graph
tasks with overfitting needs to satisfy the following condition:

𝑀𝑗 .𝑐𝑎𝑝 ≥ Ω̃(|𝑉 (·) |𝛿), (9)

where 𝛿 ∈ [1/2, 2] is an exponent factor reflecting the complexity
of the task (e.g., solving some NP-hard problems necessitates 𝛿 = 2),
|𝑉 (·) | is the size of the input graph, and Ω̃(·) indicates that as the
graph size increases, the GNN model capacity also increases with
the same rate (up to a logarithmic factor).

1632

In our subgraph matching task, the GNN model aims to learn
a partial order between a unit star subgraph 𝑔𝑣𝑖 and its star sub-
structure 𝑠𝑣𝑖 in each pair of the training data set 𝐷 𝑗 . Since this
partial order exists in each individual pair, the GNN capacity is
only relevant to the maximum input size of unit star subgraphs, i.e.,
max∀𝑔𝑣𝑖 ∈𝐷 𝑗

{|𝑉 (𝑔𝑣𝑖) |}𝛿 . Therefore, by overestimating the 𝛿 value
(i.e., 𝛿 = 2), we have the lower bound of the GNN capacity𝑀𝑗 .𝑐𝑎𝑝

to solve our partial-order learning problem below:
𝑀𝑗 .𝑐𝑎𝑝 ≥ max

∀𝑔∈𝐷 𝑗

{
|𝑉 (𝑔) |2

}
. (10)

Note that, for our task of learning partial order, counter-intuitively,
the GNN model capacity is constrained theoretically by the input
graph size, instead of the size of the training data set 𝐷 𝑗 [43].

Specifically, the GNN model𝑀𝑗 we use in this paper (as shown
in Figure 2) has 3 hidden layers (i.e., GNN depth 𝑀𝑗 .𝑑𝑒𝑝 = 3). If
we set 𝐹 = 1, 𝐾 = 3, 𝐹 ′ = 32, and 𝑑 = 2 by default, then we
have the GNN width 𝑀𝑗 .𝑤𝑖𝑑 = 𝐾 · 𝐹 ′ = 96. As a result, we have
the model capacity 𝑀𝑗 .𝑐𝑎𝑝 = 𝑀𝑗 .𝑑𝑒𝑝 × 𝑀𝑗 .𝑤𝑖𝑑 = 3 × 96 = 288.
On the other hand, since we set the degree threshold 𝜃 = 10 for
node embeddings (as discussed in the complexity analysis above),
the maximum input size of unit star subgraph does not exceed 11
(i.e.,𝑚𝑎𝑥∀𝑔∈𝐷 𝑗

(|𝑉 (𝑔) |) = 11). Thus, we can see that Inequality (10)
holds (i.e., 288 = 𝑀𝑗 .𝑐𝑎𝑝 ≥ max∀𝑔∈𝐷 𝑗

{
|𝑉 (𝑔) |2

}
= 112 holds),

which implies that our GNN model 𝑀𝑗 has enough capacity to
overfit the training data set 𝐷 𝑗 with zero loss.

The Existence of the GNN Model that Meets the Training Target:
Next, we prove that there exists at least one set of GNN model
parameters that make the loss equal to zero over the training data.

In the following lemma, we give a special case of GNN model
parameters, which can ensure the dominance relationship between
node embedding vectors 𝑜 (𝑔𝑣𝑖) and 𝑜 (𝑠𝑣𝑖) (satisfying 𝑜 (𝑠𝑣𝑖) ⪯
𝑜 (𝑔𝑣𝑖)) of any two star subgraphs 𝑔𝑣𝑖 and 𝑠𝑣𝑖 (satisfying 𝑠𝑣𝑖 ⊆ 𝑔𝑣𝑖).

Lemma 3.1. (A Special Case of GNN Model Parameter Set-
tings) For a unit star subgraph𝑔𝑣𝑖 and its star substructure 𝑠𝑣𝑖 (⊆ 𝑔𝑣𝑖),
their GNN-based node embedding vectors satisfy the dominance con-
dition that: 𝑜 (𝑠𝑣𝑖) ⪯ 𝑜 (𝑔𝑣𝑖), if values of the weight matrix W (in
Eq. (6)) in the fully connected layer are all zeros, i.e., W = 0.

In the special case of Lemma 3.1, the loss function L(𝐷 𝑗) given
in Eq. (7) over all the training pairs in 𝐷 𝑗 is always equal to 0. Note
that, although there is no pruning power in this special case (i.e.,
all the node embedding vectors are the same, which preserves the
dominance relationships), it at least indicates that there exists a set
of weight parameters (in Lemma 3.1) that can achieve zero loss.

In reality (e.g., from our experimental results), there are multiple
possible sets of GNN parameters that can reach zero training loss
(e.g., the special case of 𝑜 (𝑠𝑣𝑖) = 𝑜 (𝑔𝑣𝑖) given in Lemma 3.1). This is
because we are looking for embedding vectors that preserve domi-
nance relationships between individual pairs (𝑔𝑣𝑖 , 𝑠𝑣𝑖) in 𝐷 𝑗 (rather
than seeking for a global dominance order for all star subgraphs).

The Target Accessibility of the GNN Training:Up to now,we have
proved that we can guarantee enough GNN capacity for overfitting
via parameter settings, and GNN parameters that can achieve zero
loss exist. We now illustrate the accessibility of our GNN training
that can meet the training target (i.e., the loss equals zero).

First, based on [43], if a GNNmodel𝑀𝑗 over connected attributed
graphs has enough capacity, then the GNN model can approach the

(a) # of pairs (|𝑉 (𝐺 𝑗) | = 500𝐾) (b) convergence (|𝑉 (𝐺 𝑗) | = 500𝐾)

(c) # of pairs (𝑎𝑣𝑔_𝑑𝑒𝑔 (𝐺 𝑗) = 5) (d) convergence (𝑎𝑣𝑔_𝑑𝑒𝑔 (𝐺 𝑗)=5)

Figure 5: Illustration of the GNN training performance for
node dominance embeddings.

optimal solution infinitely. That is, we have:

|𝑓𝑗 (·) − 𝑓𝑜𝑝𝑡 (·) | → 0, (11)

where 𝑓𝑗 (·) is a non-linear function with input 𝑥𝑖 and output 𝑜 (𝑣𝑖)
that learned by the GNN model𝑀𝑗 , and 𝑓𝑜𝑝𝑡 (·) is an optimal func-
tion for GNN that achieves zero loss.

Moreover, from [20], with randomized initial weights, first-order
methods (e.g., Stochastic Gradient Descent (SGD) [35] with the Adam
optimizer used in our work) can achieve zero training loss, at a
linear convergence rate. That is, it can find a solution with L(·) ≤ 𝜖
in 𝑂 (𝑙𝑜𝑔(1/𝜖)) epochs, where 𝜖 is the desired accuracy.

Note that, to handle some exceptional cases that zero training
loss cannot be achieved within a limited number of epochs, we may
remove those relevant pairs (causing the loss to be non-zero) and
train a new GNN on them, which we will leave as our future work.

In summary, we can train our GNN model for node dominance
embeddings, and the training process can converge to zero loss.
The GNN Training Scalability w.r.t. Node Dominance Embed-
ding.We train a GNN model (with 𝐹 = 1, 𝐾 = 3, 𝐹 ′ = 32, and 𝑑 = 2)
over large training data sets 𝐷 𝑗 (containing pairs (𝑔𝑣𝑖 , 𝑠𝑣𝑖)), where
by default the vertex label domain size |Σ| = 500, the default aver-
age vertex degree, 𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺 𝑗) = 5, |𝑉 (𝐺 𝑗) | = 500𝐾 , the learning
rate of the Adam optimizer 𝜂 = 0.001, and batch size 1𝐾 ∼ 4𝐾 .

Figure 5(a) illustrates the number of training pairs (𝑔𝑣𝑖 , 𝑠𝑣𝑖) that
the GNN model (in Figure 2) can support (i.e., the loss function
L(𝐷 𝑗) achieves zero), where we vary the average vertex degree,
𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺 𝑗) from 3 to 10. From our experimental results, our GNN
model can learn as many as ≥ 511𝑀 pairs for a graph with 500𝐾
vertices and an average degree equal to 10.

Figure 5(b) reports the convergence performance of our GNN-PE
approach, where 𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺 𝑗) varies from 3 to 10. As described in
Algorithm 2, we train/update the parameters of the GNN model
after each batch of a training epoch, and evaluate the loss of the
GNN model after training all batches in 𝐷 𝑗 at the end of each
training epoch. From the figure, the GNN training needs no more
than three epochs (before the loss becomes 0), which confirms that

1633

Figure 6: A visualization of node dominance embeddings.

we can train our designed GNN model 𝑀𝑗 for node dominance
embeddings within a small number of epochs, and the training
process can converge fast to zero loss.

Figures 5(c) and 5(d) vary the graph size |𝑉 (𝐺 𝑗) | from 5𝐾 to 1𝑀 ,
and similar experimental results can be obtained, in terms of the #
of training pairs and the convergence performance, respectively.
Visualization Analysis of Node Dominance Embeddings. We
randomly sample 10 vertices 𝑣𝑖 from synthetic graph 𝐺 𝑗 (used in
Figure 5). For each vertex 𝑣𝑖 , we obtain its unit star subgraph 𝑔𝑣𝑖
and all star substructures 𝑠𝑣𝑖 , and plot in Figure 6 their GNN-based
node dominance embeddings 𝑜 (𝑔𝑣𝑖) (blue points) and 𝑜 (𝑠𝑣𝑖) (pink
points), respectively, in a 2D embedding space.

As a case study shown in Figure 6, given a query node embedding
𝑜 (𝑞𝑖) (red star point), its dominating region 𝐷𝑅(𝑜 (𝑞𝑖)) contains
true positive (green diamond; matching vertex) and false positive
(orange square; mismatching candidate vertex). The purple triangle
point is not in𝐷𝑅(𝑜 (𝑞𝑖)), which is true negative (i.e., not a matching
vertex). From the visualization, our GNN-based embedding vectors
are distributed on some piecewise curves, and their dominance
relationships can be well-preserved.

3.3 Path Dominance Embedding
Next, we discuss how to obtain path dominance embedding from
node embeddings (as discussed in Section 3.2). Specifically, given
a path 𝑝𝑧 in 𝐺 starting from 𝑣𝑖 and with length 𝑙 , we concatenate
embedding vectors 𝑜 (𝑣 𝑗) of all consecutive vertices 𝑣 𝑗 on path 𝑝𝑧
and obtain a path embedding vector 𝑜 (𝑝𝑧) of size ((𝑙 + 1) · 𝑑),
where 𝑙 is the length of path 𝑝𝑧 and 𝑑 is the dimensionality of node
embedding vector 𝑜 (𝑣 𝑗). That is, we have:

𝑜 (𝑝𝑧) =

∀𝑣𝑗 ∈𝑝𝑧𝑜 (𝑣 𝑗), (12)

where ∥ is the concatenation operator. Note that, node dominance
embedding can be considered as a special case of path dominance
embedding, where path 𝑝𝑧 has a length equal to 0.
Property of the Path Dominance Embedding. Given two paths
𝑝𝑞 and 𝑝𝑧 , if path 𝑝𝑞 (and 1-hop neighbors of vertices on 𝑝𝑞) is a
subgraph of 𝑝𝑧 (and 1-hop neighbors of vertices on 𝑝𝑧), then it must
hold that 𝑜 (𝑝𝑞) ⪯ 𝑜 (𝑝𝑧).

Example 3. Figure 7 shows an example of the path dominance em-
bedding for paths with length 2. Consider a path 𝑝𝑧 = 𝑣3𝑣1𝑣2, and its
6D path embedding vector 𝑜 (𝑝𝑧) = (0.73, 0.58; 0.78, 0.79; 0.75, 0.77),
which is a concatenation of three 2D embedding vectors 𝑜 (𝑣3) | |𝑜 (𝑣1)
| |𝑜 (𝑣2) (as given in Figure 4). Similarly, in the query graph 𝑞, we can
obtain a 6D embedding vector 𝑜 (𝑝𝑞) of a path 𝑝𝑞 = 𝑞3𝑞1𝑞2.

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐

𝒗𝒗𝟑𝟑

𝑣𝑣4

𝑣𝑣5
data graph 𝑮𝑮

Path 𝒑𝒑𝒛𝒛 Embedding 𝒐𝒐(𝒑𝒑𝒛𝒛)
𝑣𝑣4𝑣𝑣1𝑣𝑣2 (0.56, 0.54, 0.78, 0.79, 0.75, 0.77)
𝑣𝑣1𝑣𝑣2𝑣𝑣5 (0.78, 0.79, 0.75, 0.77, 0.54, 0.78)
𝒗𝒗𝟑𝟑𝒗𝒗𝟏𝟏𝒗𝒗𝟐𝟐 (0.73, 0.58, 0.78, 0.79, 0.75, 0.77)
𝑣𝑣3𝑣𝑣5𝑣𝑣2 (0.73, 0.58, 0.54, 0.78, 0.75, 0.77)

⋯ ⋯

𝒒𝒒𝟏𝟏 𝒒𝒒𝟐𝟐

𝒒𝒒𝟑𝟑
query graph 𝒒𝒒

Path 𝒑𝒑𝒒𝒒 Embedding 𝒐𝒐(𝒑𝒑𝒒𝒒)
𝒒𝒒𝟑𝟑𝒒𝒒𝟏𝟏𝒒𝒒𝟐𝟐 (0.59, 0.57, 0.62, 0.61, 0.56, 0.54)

𝒐𝒐(𝒒𝒒𝟑𝟑𝒒𝒒𝟏𝟏𝒒𝒒𝟐𝟐) ≼ 𝒐𝒐(𝒗𝒗𝟑𝟑𝒗𝒗𝟏𝟏𝒗𝒗𝟐𝟐)

Figure 7: An example of path dominance embedding.

In the figure, we can see that 𝑜 (𝑝𝑞) dominates 𝑜 (𝑝𝑧), which indi-
cates that path 𝑝𝑧 may potentially match path 𝑝𝑞 (according to the
property of the path dominance embedding). ■

4 SUBGRAPH MATCHINGWITH GNN-BASED
PATH EMBEDDING

4.1 Pruning Strategies
In this subsection, we present effective pruning strategies, namely
path label and path dominance pruning, to filter out false alarms of
subgraphs 𝑔 (⊆ 𝐺) that cannot match with a given query graph 𝑞.
Path Label Pruning. Let 𝑠0 (𝑣𝑖) (or 𝑠0 (𝑞𝑖)) be a special star sub-
structure containing an isolated vertex 𝑣𝑖 (or 𝑞𝑖 ; without any 1-
hop neighbors). Assume that we can obtain an embedding vector,
𝑜 (𝑠0 (𝑣𝑖)) (or 𝑜 (𝑠0 (𝑞𝑖))), of the isolated vertex 𝑣𝑖 (or 𝑞𝑖) via the GNN
model (discussed in Section 3.2). For simplicity, we denote 𝑜 (𝑠0 (𝑣𝑖))
(or 𝑜 (𝑠0 (𝑞𝑖))) as 𝑜0 (𝑣𝑖) (or 𝑜0 (𝑞𝑖)).

Similarly, we can concatenate embedding vectors𝑜0 (𝑣𝑖) (or𝑜0 (𝑞𝑖))
of vertices 𝑣𝑖 (or𝑞𝑖) on path 𝑝𝑧 (or 𝑝𝑞) and obtain a path label embed-
ding vector 𝑜0 (𝑝𝑧) = ∥∀𝑣𝑖 ∈𝑝𝑧𝑜0 (𝑣𝑖) (or 𝑜0 (𝑝𝑞) = ∥∀𝑞𝑖 ∈𝑝𝑞𝑜0 (𝑞𝑖)),
which intuitively encodes labels of vertices on the path 𝑝𝑧 (or 𝑝𝑞).

Lemma 4.1. (Path Label Pruning) Given a path 𝑝𝑧 in the sub-
graph 𝑔 of data graph 𝐺 and a query path 𝑝𝑞 in query graph 𝑞, path
𝑝𝑧 can be safely pruned, if it holds that 𝑜0 (𝑝𝑧) ≠ 𝑜0 (𝑝𝑞).

Path Dominance Pruning. For paths 𝑝𝑧 ⊆ 𝐺 (or 𝑝𝑞 ⊆ 𝑞) of length
𝑙 , their embedding vectors, 𝑜 (𝑝𝑧) (or 𝑜 (𝑝𝑞)), follow the property of
the path dominance embedding (as discussed in Section 3.3). Thus,
we have the lemma of the path dominance pruning below.

Lemma 4.2. (Path Dominance Pruning) Given a path 𝑝𝑧 in the
subgraph 𝑔 of data graph 𝐺 and a query path 𝑝𝑞 in query graph 𝑞,
path 𝑝𝑧 can be safely pruned, if 𝑜 (𝑝𝑞) ⪯ 𝑜 (𝑝𝑧) does not hold (denoted
as 𝑜 (𝑝𝑞) ⪯̸ 𝑜 (𝑝𝑧)).

4.2 Indexing Mechanism
In this subsection, we discuss how to obtain paths of length 𝑙 in
(expanded) subgraph partitions𝐺 𝑗 and offline construct indexes, I𝑗 ,
over these paths to facilitate efficient processing of exact subgraph
matching. Specifically, starting from each vertex 𝑣𝑖 ∈ 𝑉 (𝐺 𝑗), we
extract all paths 𝑝𝑧 of length 𝑙 (i.e., in an expanded subgraph par-
tition that extends 𝐺 𝑗 outward by 𝑙-hop) and compute their path
dominance embedding vectors 𝑜 (𝑝𝑧) via the GNN model𝑀𝑗 . Then,
we will build an aggregate R∗-tree (or aR-tree) [8, 37] over these
path embedding vectors 𝑜 (𝑝𝑧), by using standard insert operator.

1634

In addition to the minimum bounding rectangles (MBRs) of path
embedding vectors 𝑜 (𝑝𝑧) in index nodes, we store aggregate data
such as those MBRs of path embedding vectors, 𝑜′ (𝑝𝑧), via multi-
GNNs (trained over randomized vertex labels, as discussed in Sec-
tion 3.2), which is a concatenation of node embedding vectors 𝑜′ (𝑣𝑡)
for vertices 𝑣𝑡 ∈ 𝑝𝑧 (Section 3.3). Moreover, in index nodes, we en-
code MBRs of path label embedding 𝑜0 (𝑝𝑧), which can be used for
path label pruning (as given by Lemma 4.1 in Section 4.1).
Leaf Nodes. Each leaf node 𝑁 ∈ I𝑗 contains multiple paths 𝑝𝑧 ,
where each path has an embedding vector 𝑜 (𝑝𝑧) via a GNN in𝑀𝑗 .

Each path 𝑝𝑧 ∈ 𝑁 is associated with aggregate data as follows:
• 𝑛 path dominance embedding vectors 𝑜′ (𝑝𝑧) obtained from
𝑛 multi-GNNs, respectively, over randomized vertex labels
in subgraph partition 𝐺 𝑗 , and;

• a path label embedding vector 𝑜0 (𝑝𝑧) via the GNN𝑀𝑗 .
Non-Leaf Nodes. Each non-leaf node 𝑁 ∈ I𝑗 contains multiple
entries 𝑁𝑖 , each of which is an MBR, 𝑁𝑖 .𝑀𝐵𝑅, of all path embedding
vectors 𝑜 (𝑝𝑧) for all paths 𝑝𝑧 under entry 𝑁𝑖 .

Each entry 𝑁𝑖 ∈ 𝑁 is associated with aggregate data as follows:
• 𝑛 MBRs, 𝑁𝑖 .𝑀𝐵𝑅′, on path dominance embedding vectors
𝑜′ (𝑝𝑧) via 𝑛 GNNs, resp., for all paths 𝑝𝑧 in entry 𝑁𝑖 , and;
• anMBR,𝑁𝑖 .𝑀𝐵𝑅0, over path label embedding vector𝑜0 (𝑝𝑧)

for all paths 𝑝𝑧 under entry 𝑁𝑖 .

4.3 Index-Level Pruning
We present effective pruning methods on the node level of indexes
I𝑗 , which are used to prune (a group of) path false alarms in nodes.
Index-Level Path Label Pruning. We first discuss the index-
level path label pruning, which prunes entries, 𝑁𝑖 , in index nodes,
containing path labels that do not match with the query path 𝑝𝑞 .

Lemma 4.3. (Index-Level Path Label Pruning) Given a query
path 𝑝𝑞 and an entry 𝑁𝑖 of index node 𝑁 , entry 𝑁𝑖 can be safely
pruned, if it holds that 𝑜0 (𝑝𝑞) ∉ 𝑁𝑖 .𝑀𝐵𝑅0.
Index-Level Path Dominance Pruning. Similarly, we can obtain
the index-level path dominance pruning, which rules out those index
node entries𝑁𝑖 , under which all path dominance embedding vectors
are not dominated by that of the query path 𝑝𝑞 .

Let 𝐷𝑅(𝑜 (𝑝𝑞)) be a dominating region that is dominated by an
embedding vector 𝑜 (𝑝𝑞) in the embedding space. For example, as
shown in Figure 4, the embedding vector 𝑜 (𝑞1) of vertex 𝑞1 (i.e.,
a special case of a path with length 0) has a dominating region,
𝐷𝑅(𝑜 (𝑞1)). Then, we have the following lemma:

Lemma 4.4. (Index-Level Path Dominance Pruning) Given a
query path 𝑝𝑞 and a node entry 𝑁𝑖 , entry 𝑁𝑖 can be safely pruned, if
𝐷𝑅(𝑜 (𝑝𝑞)) ∩ 𝑁𝑖 .𝑀𝐵𝑅 = ∅ or 𝐷𝑅(𝑜′ (𝑝𝑞)) ∩ 𝑁𝑖 .𝑀𝐵𝑅′ = ∅ holds.

In Lemma 4.4, if embedding vector 𝑜 (𝑝𝑞) (or 𝑜′ (𝑝𝑞)) does not
fully or partially dominate 𝑁𝑖 .𝑀𝐵𝑅 (or 𝑁𝑖 .𝑀𝐵𝑅′), then the entire
index entry 𝑁𝑖 can be pruned. This is because any path 𝑝𝑧 under
entry 𝑁𝑖 cannot be dominated by 𝑝𝑞 in the embedding space, and
thus cannot be a candidate path that matches with query path 𝑝𝑞 .

4.4 GNN-Based Subgraph Matching Algorithm
In this subsection, we illustrate the exact subgraph matching algo-
rithm by traversing the indexes over GNN-based path embeddings
in Algorithm 3. Specifically, given a query graph 𝑞, we first obtain

Algorithm 3: Exact Subgraph Matching with GNN-
Based Path Dominance Embedding
Input: i) a query graph 𝑞; ii) a trained GNN model𝑀𝑗 , and; iii) an aR-tree

index I𝑗 over subgraph partition𝐺 𝑗

Output: a set, S, of matching subgraphs
1 obtain query path set𝑄 with length 𝑙 from a cost-model-based query plan 𝜑

for each query path 𝑝𝑞 ∈ 𝑄 do
2 𝑝𝑞 .𝑐𝑎𝑛𝑑_𝑙𝑖𝑠𝑡 = ∅
3 obtain 𝑜 (𝑝𝑞) and 𝑜 ′ (𝑝𝑞) via multi-GNNs
4 obtain 𝑜0 (𝑝𝑞) via𝑀𝑗

// traverse index I𝑗 to find candidate paths

5 initialize a maximum heap H accepting entries in the form (𝑁,𝑘𝑒𝑦 (𝑁))
6 𝑟𝑜𝑜𝑡

(
I𝑗
)
.𝑙𝑖𝑠𝑡 ← 𝑄

7 insert
(
𝑟𝑜𝑜𝑡

(
I𝑗
)
, 0
)
into H

8 while H is not empty do
9 deheap an entry (𝑁,𝑘𝑒𝑦 (𝑁)) = H.𝑝𝑜𝑝 () ;

10 if 𝑘𝑒𝑦 (𝑁) < min∀𝑝𝑞 ∈𝑄 { | |𝑜 (𝑝𝑞) | |1 } then
11 terminate the loop;

12 if 𝑁 is a leaf node then
13 for each path 𝑝𝑧 ∈ 𝑁 do
14 for each query path 𝑝𝑞 ∈ 𝑁 .𝑙𝑖𝑠𝑡 do
15 if 𝑜0 (𝑝𝑞) = 𝑜0 (𝑝𝑧) // Lemma 4.1

16 then
17 if 𝑜 (𝑝𝑞) ⪯ 𝑜 (𝑝𝑧) and 𝑜 ′ (𝑝𝑞) ⪯ 𝑜 ′ (𝑝𝑧) then
18 𝑝𝑞 .𝑐𝑎𝑛𝑑_𝑙𝑖𝑠𝑡 ← 𝑝𝑞 .𝑐𝑎𝑛𝑑_𝑙𝑖𝑠𝑡 ∪ {𝑝𝑧 }

// Lemma 4.2

19 else
20 for each child node 𝑁𝑖 ∈ 𝑁 do
21 for each query path 𝑝𝑞 ∈ 𝑁 .𝑙𝑖𝑠𝑡 do
22 if 𝑜0 (𝑝𝑞) ∈ 𝑁𝑖 .𝑀𝐵𝑅0 // Lemma 4.3

23 then
24 if 𝐷𝑅 (𝑜 (𝑝𝑞)) ∩ 𝑁𝑖 .𝑀𝐵𝑅 ≠ ∅ and

𝐷𝑅 (𝑜 ′ (𝑝𝑞)) ∩ 𝑁𝑖 .𝑀𝐵𝑅
′ ≠ ∅ then

25 𝑁𝑖 .𝑙𝑖𝑠𝑡 ← 𝑁𝑖 .𝑙𝑖𝑠𝑡 ∪ {𝑝𝑞 } // Lemma 4.4

26 if 𝑁𝑖 .𝑙𝑖𝑠𝑡 ≠ ∅ then
27 insert (𝑁𝑖 , 𝑘𝑒𝑦 (𝑁𝑖)) into heap H

28 concatenate all candidate paths in 𝑝𝑞 .𝑐𝑎𝑛𝑑_𝑙𝑖𝑠𝑡 for 𝑝𝑞 ∈ 𝑄 and
refine/obtain matching subgraphs 𝑔 in S

29 return S;

all query paths of length 𝑙 in a set 𝑄 from the query plan 𝜑 (line
1). Then, for each query path 𝑝𝑞 ∈ 𝑄 , we generate path embedding
vectors 𝑜 (𝑝𝑞), 𝑜′ (𝑝𝑞) (via multi-GNNs), and 𝑜0 (𝑝𝑞) (via𝑀𝑗) (lines
2-5). Next, we traverse the index I𝑗 once to retrieve path candidate
sets for each query path 𝑝𝑞 ∈ 𝑄 (lines 6-28). Finally, we refine can-
didate paths and join the matched paths to obtain/return subgraphs
𝑔 ∈ S that are isomorphic to 𝑞 (lines 29-30).
Refinement. After finding all candidate paths in 𝑝𝑞 .𝑐𝑎𝑛𝑑_𝑙𝑖𝑠𝑡 for
each query path 𝑝𝑞 ∈ 𝑄 , we will assemble these paths (with overlap-
ping vertex IDs) into candidate subgraphs to be refined and return
the actual matching subgraph answers in S (lines 29-30).

Specifically, we consider the following two steps to obtain candi-
date subgraphs: 1) local join within each partition and 2) global join
for partition boundaries. First, inside each partition, we perform
themulti-way hash join by joining vertex IDs of candidate paths for
different query paths. Then, for those boundary candidate paths
across partitions, we also use the multi-way hash join to join them
with candidate paths from all partitions globally. Finally, we can
refine and return the resulting candidate subgraphs.
Complexity Analysis. Due to space limitations, please see the
detailed descriptions for Algorithm 3 in our technical report [64].

1635

Algorithm 4: Cost-Model-Based Query Plan Selection
Input: i) a query graph 𝑞; ii) path length 𝑙 ;
Output: a set,𝑄 , of query paths in the query plan 𝜑

1 𝑄 = ∅;𝐶𝑜𝑠𝑡𝑄 (𝜑) = +∞;
2 select a starting vertex 𝑞𝑖 with the highest degree
3 obtain a set, 𝑃 , of initial paths of length 𝑙 containing 𝑞𝑖
// apply OIP, AIP, or 𝜺IP strategy in Section 5.2

4 for each possible initial path 𝑝𝑞 ∈ 𝑃 do
5 𝑙𝑜𝑐𝑎𝑙_𝑄 = {𝑝𝑞 }; 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 = 0;
6 while at least one vertex of𝑉 (𝑞) is not covered do
7 select a path 𝑝 of length 𝑙 that connects with𝑄 with minimum

overlapping and minimum weight 𝑤 (𝑝)
8 𝑙𝑜𝑐𝑎𝑙_𝑄 ← 𝑙𝑜𝑐𝑎𝑙_𝑄 ∪ {𝑝 }
9 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 ← 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 + 𝑤 (𝑝)

10 if 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 < 𝐶𝑜𝑠𝑡𝑄 (𝜑) then
11 𝑄 ← 𝑙𝑜𝑐𝑎𝑙_𝑄
12 𝐶𝑜𝑠𝑡𝑄 (𝜑) ← 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡

13 return𝑄

5 COST-MODEL-BASED QUERY PLAN
5.1 Cost Model
In this subsection, we provide a formal cost model to estimate the
query cost of a query plan 𝜑 , which contains a set𝑄 of query paths
𝑝𝑞 from query graph 𝑞 (used for retrieving matching paths from
the index). Intuitively, fewer query paths with small overlapping
would result in lower query cost, and fewer candidate paths that
match with query paths will also lead to lower query cost.

Based on this observation, we define the query cost, 𝐶𝑜𝑠𝑡𝑄 (𝜑),
for query paths 𝑝𝑞 ∈ 𝑄 as follows:

𝐶𝑜𝑠𝑡𝑄 (𝜑) =
∑︁
𝑝𝑞 ∈𝑄

𝑤 (𝑝𝑞), (13)

where𝑤 (𝑝𝑞) is the weight (or query cost) of a query path 𝑝𝑞 .
Thus, our goal is to find a good query plan 𝜑 with query paths

in 𝑄 that minimize the cost function 𝐶𝑜𝑠𝑡𝑄 (𝜑) given in Eq. (13).
Discussions on the Calculation of Path Weights. We next dis-
cuss how to compute the path weight 𝑤 (𝑝𝑞) in Eq. (13), which
implies the search cost of query path 𝑝𝑞 . Intuitively, when degrees
of vertices in query path 𝑝𝑞 are high, the number of candidate
paths that may match with 𝑝𝑞 is expected to be small, which incurs
low query cost. We can thus set𝑤 (𝑝𝑞) = −

∑
𝑞𝑖 ∈𝑝𝑞 𝑑𝑒𝑔(𝑞𝑖), where

𝑑𝑒𝑔(𝑞𝑖) is the degree of vertex 𝑞𝑖 on query path 𝑝𝑞 .
Alternatively, we can use other query cost metrics, such as the

number of candidate paths (to be retrieved and refined) dominated
by 𝑞𝑝 in the embedding space. For example, we can set: 𝑤 (𝑝𝑞) =
|𝐷𝑅(𝑜 (𝑝𝑞)) |, where |𝐷𝑅(𝑜 (𝑝𝑞)) | is the number of candidate paths
in the region, 𝐷𝑅(𝑜 (𝑝𝑞)), dominated by embedding vector 𝑜 (𝑝𝑞).

5.2 Cost-Model-Based Query Plan Selection
Algorithm 4 illustrates how to select the query plan 𝜑 in light of
the cost model (given in Eq. (13)), which returns a set, 𝑄 , of query
paths from query graph 𝑞. Specifically, we first initialize an empty
set 𝑄 and query cost 𝑐𝑜𝑠𝑡𝑄 (𝜑) (line 1). Then, we select a starting
vertex 𝑞𝑖 with the highest degree, whose node embedding vector
expects to have high pruning power (line 2). Next, we obtain a
set, 𝑃 , of initial paths that pass through vertex 𝑞𝑖 (line 3). We start
from each initial path, 𝑝𝑞 , in 𝑃 , and each time expand the local path
set 𝑙𝑜𝑐𝑎𝑙_𝑄 by including one path 𝑝 that minimally overlaps with
𝑙𝑜𝑐𝑎𝑙_𝑄 and has minimum weight 𝑤 (𝑝) (lines 4-9). For different

Table 2: Statistics of real-world graph data sets.

Data Sets |𝑉 (𝐺) | |𝐸 (𝐺) | |∑ | 𝑎𝑣𝑔_𝑑𝑒𝑔 (𝐺)
Yeast (ye) 3,112 12,519 71 8.0
Human (hu) 4,674 86,282 44 36.9
HPRD (hp) 9,460 34,998 307 7.4
WordNet (wn) 76,853 120,399 5 3.1
DBLP (db) 317,080 1,049,866 15 6.6
Youtube (yt) 1,134,890 2,987,624 25 5.3
US Patents (up) 3,774,768 16,518,947 20 8.8

initial paths in 𝑃 , we always keep the best-so-far path set in 𝑄 and
the smallest query cost in𝐶𝑜𝑠𝑡𝑄 (𝜑) (lines 10-12). Finally, we return
the best query path set 𝑄 with the lowest query cost (line 13).
Discussions on the Initial Path Selection Strategy. In line 3 of
Algorithm 4, we use one of the following three strategies to select
initial query path(s) in 𝑃 :

• One-Initial-Path (OIP): select one path 𝑝𝑞 with the mini-
mum weight𝑤 (𝑝𝑞) that passes by the starting vertex 𝑞𝑖 ;

• All-Initial-Path (AIP): select all paths that pass through
the starting vertex 𝑞𝑖 ; and

• 𝜺-Initial-Path (𝜺IP): randomly select 𝜀 paths passing through
the starting vertex 𝑞𝑖 .

6 EXPERIMENTAL EVALUATION
6.1 Experimental Settings
To evaluate the effectiveness and efficiency of our GNN-PE ap-
proach, we conduct experiments on an Ubuntu server equipped
with an Intel Core i9-12900K CPU, 128GB memory, and NVIDIA
GeForce RTX 4090 GPU. The GNN training of our approach is imple-
mented by PyTorch, where embedding vectors are offline computed
on the GPU. The online subgraph matching is implemented in C++
with multi-threaded support on the CPU to enable parallel search
on multiple subgraph partitions.

For the GNN model (as mentioned in Section 3.2), by default,
we set the dimension of initial input node feature 𝐹 = 1, attention
heads 𝐾 = 3, the dimension of hidden node feature 𝐹 ′ = 32, and
the dimension of the output node embedding 𝑑 = 2. During the
training process, we use the Adam optimizer to update parameters
and set the learning rate𝜂 = 0.001. Due to different data sizes, we set
different batch sizes for different data sets (from 128 to 1,024). Based
on the statistics of real data graphs (e.g., only 7.24% vertices have a
degree greater than 10 in Youtube), we set the degree threshold 𝜃
to 10 by default. Our source code and real/synthetic graph data sets
are available at URL: https://github.com/JamesWhiteSnow/GNN-PE.
Baseline Methods. We compare the performance of our GNN-
PE approach with that of eight representative subgraph matching
baseline methods as follows: GraphQL (GQL) [28], QuickSI (QSI)
[51], RI [13], CFLMatch (CFL) [11], VF2++ (VF) [31], DP-iso (DP)
[26], CECI [10], and Hybrid [53] (mixed by GQL, RI, and QSI).
Real/Synthetic Graph Data Sets. We use both real and synthetic
graphs to evaluate our GNN-PE approach, compared with baselines.

Real-world graphs.We used seven real-world graph data used by
previous works [10, 11, 26–28, 49, 51, 53, 55, 71]. Based on graph
sizes, we divide Yeast, Human, or HPRD into 5 partitions, WordNet
into 7 subgraphs, DBLP into 30 partitions, Youtube into 346 parti-
tions, and US Patents into 1,000 partitions. Statistics of these real
graphs are summarized in Table 2.

1636

https://github.com/JamesWhiteSnow/GNN-PE

Table 3: Parameter settings.

Parameters Values
the path length 𝑙 1, 2, 3
the dimension, 𝑑 , of the node embedding vector 2, 3, 4, 5
the number, 𝑛, of multi-GNNs 0, 1, 2, 3, 4
the number, 𝑏 , of GNNs with randomized initial weights 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
the size, |𝑉 (𝑞) | , of the query graph 𝑞 5, 6, 8, 10, 12
the average degree, 𝑎𝑣𝑔_𝑑𝑒𝑔 (𝑞) , of the query graph 𝑞 2, 3, 4
the size, |𝑉 (𝐺) |/𝑚, of subgraph partitions 5K, 6K, 10K, 20K, 50K
the number, |∑ | , of distinct labels 100, 200, 500, 800, 1K
the average degree, 𝑎𝑣𝑔_𝑑𝑒𝑔 (𝐺) , of the data graph𝐺 3, 4, 5, 6, 7
the size, |𝑉 (𝐺) | , of the data graph𝐺 10K, 30K, 50K, 80K, 100K, 500K, 1M

(a) path length 𝑙 (b) # of initial GNNs, 𝑏 (c) query plan selection

Figure 8: GNN-PE efficiency evaluation w.r.t different param-
eters 𝒍 , 𝒃, and query plan selection strategies.

(a) real-world graphs (b) synthetic graphs

Figure 9: GNN-PE pruning power on real/synthetic graphs.

Synthetic graphs. We generated synthetic graphs via NetworkX
[24] which produces small-world graphs following the Newman-
Watts-Strogatz model [62]. Parameter settings of synthetic graphs
are depicted in Table 3. For each vertex 𝑣𝑖 , we generate its label 𝐿(𝑣𝑖)
by randomly picking up an integer in the range [1, |∑ |], following
the Uniform, Gaussian, or Zipf distribution. Accordingly, we obtain
three types of data graphs, 𝑆𝑦𝑛-𝑈𝑛𝑖 , 𝑆𝑦𝑛-𝐺𝑎𝑢, and 𝑆𝑦𝑛-𝑍𝑖𝑝 𝑓 .
Query Graphs. Similar to previous works [4, 10, 11, 26, 27, 33, 49,
55], for each graph data set 𝐺 , we randomly extract/sample 100
connected subgraphs from𝐺 as query graphs, where parameters of
query graphs 𝑞 (e.g., |𝑉 (𝑞) | and 𝑎𝑣𝑔_𝑑𝑒𝑔(𝑞)) are depicted in Table 3.
Specifically, to generate a query graph 𝑞, we first perform a random
walk in the data graph 𝐺 until obtaining |𝑉 (𝑞) | vertices, and then
check whether or not the average degree of the induced subgraph is
larger than or equal to 𝑎𝑣𝑔_𝑑𝑒𝑔(𝑞). If yes, we randomly delete edges
from the subgraph, until the average degree becomes 𝑎𝑣𝑔_𝑑𝑒𝑔(𝑞);
otherwise, we start from a new vertex to perform the random walk.
Evaluation Metrics. In our experiments, we report the efficiency
of our GNN-PE approach and baseline methods, in terms of the wall
clock time (including both filtering and refinement time costs). We
also evaluate the pruning power of our path label/dominance prun-
ing strategies (as mentioned in Section 4.1), which is the percentage
of candidate paths that can be ruled out by our pruning methods.
For all the experiments, we take an average of each metric over
100 runs (w.r.t. 100 query graphs, resp.). We also test offline pre-
computation costs of our GNN-PE approach, including the GNN
training time, path embedding time, and index construction time.

Table 3 depicts parameter settings in our experiments, where
default parameter values are in bold. For each set of subsequent
experiments, we vary the value of one parameter while setting
other parameters to their default values.

6.2 Parameter Tuning
The GNN-PE Efficiency Evaluation w.r.t. Path Length 𝒍 . Fig-
ure 8(a) illustrates the GNN-PE performance, by varying the path
length 𝑙 from 1 to 3, where other parameters are by default. When
𝑙 increases, more vertex labels and dominance embeddings on each
path are used for pruning, which incurs higher pruning power. On
the other hand, however, longer path length 𝑙 will result in more
data paths from graph 𝐺 and higher dimensionality of the index,
which may lead to higher costs to process more candidate paths.
Thus, the GNN-PE efficiency is affected by the two factors above.
From the figure, when 𝑙 = 1, 2, the wall clock times are compara-
ble for all the three synthetic graphs; when 𝑙 = 3, the time cost
suddenly increases due to much more candidate paths to process
and the “dimensionality curse” [9]. Nonetheless, for all 𝑙 values, the
wall clock time remains low (i.e., 0.0033 𝑠𝑒𝑐 ∼ 0.1096 𝑠𝑒𝑐).
The GNN-PE Efficiency Evaluation w.r.t. Number, 𝒃, of GNNs
with Random Initial Weights. Figure 8(b) illustrates the per-
formance of our GNN-PE approach, by varying the number, 𝑏, of
the trained GNN models with random initial weights from 1 to
10, where other parameters are set by default. The experimental
results show that the GNN-PE performance is not very sensitive
to 𝑏. Since more GNNs trained will lead to higher training costs,
in this paper, we set 𝑏 = 1 by default. Nonetheless, for different 𝑏
values, the query cost remains low (i.e., 0.01 𝑠𝑒𝑐 ∼ 0.04 𝑠𝑒𝑐).
TheGNN-PEEfficiency Evaluationw.r.t. Query Plan Selection
Strategies. Figure 8(c) reports the performance of our GNN-PE
approach with different query plan selection strategies, OIP, AIP,
and 𝜺IP (as mentioned in Section 5), where the path weight𝑤 (𝑝𝑞)
is estimated by vertex degrees or counts in dominating regions
(denoted as (deg) and (DR), respectively), and default values are
used for all parameters. From the figure, we can see that different
strategies result in slightly different performances, and AIP (deg)
consistently achieves the best performance.

Due to space limitations, for the tuning of other parameters (e.g.,
𝑑 and 𝑛), please refer to our technical report [64]. In subsequent
experiments, we will set parameters 𝑙 = 2, 𝑑 = 2, 𝑛 = 2, and 𝑏 = 1,
and use AIP (deg) as our default query plan selection strategy.

6.3 Evaluation of the GNN-PE Effectiveness
The GNN-PE Pruning Power on Real/Synthetic Graphs. Fig-
ure 9 shows the pruning power of our proposed pruning strategies
(i.e., path label/dominance pruning in Section 4.1) over both real
and synthetic graphs, where the default values are used for all pa-
rameters. In subfigures, we can see that for all real/synthetic graphs,
the pruning power can reach as high as 99.17% ∼ 99.99% (i.e., filter-
ing out 99.17% ∼ 99.99% of candidate paths), which confirms the
effectiveness of our pruning strategies and the efficiency of our
proposed GNN-PE approach.

6.4 Evaluation of the GNN-PE Efficiency
The GNN-PE Efficiency on Real/Synthetic Graph Data Sets.
Figure 10 compares the efficiency of our GNN-PE approach with 8

1637

(a) real-world graphs (b) synthetic graphs

Figure 10: GNN-PE efficiency on real/synthetic graphs, com-
pared with baseline methods.

(a) chain (b) star (c) tree

Figure 11: The GNN-PE efficiency w.r.t query graph patterns.

baseline methods over both real-world and synthetic graphs, where
all parameters are set to default values. From the subfigures, we can
see that our GNN-PE approach always outperforms baseline meth-
ods. Especially, for large-scale real (e.g., 𝑦𝑡 and 𝑢𝑝) and synthetic
graphs (𝑆𝑦𝑛-𝑈𝑛𝑖 , 𝑆𝑦𝑛-𝐺𝑎𝑢, and 𝑆𝑦𝑛-𝑍𝑖𝑝 𝑓), GNN-PE can achieve
better performance than baselines by 1-2 orders of magnitude. For
all real/synthetic graphs (even for 𝑢𝑝 with 3.77M vertices), the time
cost of our GNN-PE approach remains low (i.e., <0.56 𝑠𝑒𝑐).

To evaluate our GNN-PE query efficiency, in subsequent exper-
iments, we vary different parameter values on synthetic graphs
(e.g., query graph patterns, |𝑉 (𝑞) |, 𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺), |𝑉 (𝐺) |, average de-
gree of partitions, and # of edge cuts between partitions). To better
illustrate the trends of curves, we omit the baseline results below.
The GNN-PE Efficiency w.r.t Query Graph Patterns. Figure 11
compares the performance of our GNN-PE approach with that of 8
baselines, for different query graph patterns, including chain, star,
and tree, where the length of chain is 6, the degree of star is 6, the
depth and fanout of tree are 3, respectively, and default values are
used for other parameters. From the figure, we can see that, GNN-
PE can achieve better performance than baselines by 1-2 orders of
magnitude. For all synthetic graphs, the time cost of our GNN-PE
approach remains low (i.e., <0.16 𝑠𝑒𝑐).
The GNN-PE Efficiency w.r.t. Query Graph Size |𝑽 (𝒒)|. Fig-
ure 12 illustrates the performance of our GNN-PE approach by
varying the query graph size, |𝑉 (𝑞) |, from 5 to 12, where default
values are used for other parameters. When the number, |𝑉 (𝑞) |, of
vertices in query graph 𝑞 increases, more query paths from 𝑞 are
expected, which results in higher query costs for index traversal
and refinement. Thus, larger |𝑉 (𝑞) | incurs higher wall clock time.
For different query graph sizes |𝑉 (𝑞) |, our GNN-PE approach can
achieve low time costs (i.e., 0.01 𝑠𝑒𝑐 ∼ 0.73 𝑠𝑒𝑐).
The GNN-PE Efficiency w.r.t. Average Degree, 𝒂𝒗𝒈_𝒅𝒆𝒈(𝑮), of
the Data Graph 𝑮. Figure 13(a) presents the performance of our
GNN-PE approach with different average degrees, 𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺), of

(a) real-world graphs (b) synthetic graphs

Figure 12: GNN-PE efficiency w.r.t. query graph size |𝑽 (𝒒)|.

(a) 𝑎𝑣𝑔_𝑑𝑒𝑔 (𝐺) (b) |𝑉 (𝐺) |

(c) average partition degree (d) # of edge cuts

Figure 13: GNN-PE efficiency evaluation on synthetic graphs.

the data graph 𝐺 , where 𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺) = 3, 4, ..., and 7, and default
values are used for other parameters. Intuitively, higher degree
𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺) in data graph𝐺 incurs lower pruning power and more
candidate paths. Thus, when 𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺) becomes higher, the wall
clock time also increases. Nevertheless, the wall clock time remains
small (i.e., less than 0.035 𝑠𝑒𝑐 for 𝑆𝑦𝑛-𝑈𝑛𝑖 and 𝑆𝑦𝑛-𝐺𝑎𝑢, and 0.109
𝑠𝑒𝑐 for 𝑆𝑦𝑛-𝑍𝑖𝑝 𝑓) for different 𝑎𝑣𝑔_𝑑𝑒𝑔(𝐺) values.
The GNN-PE Scalability Test w.r.t. Data Graph Size |𝑽 (𝑮)|.
Figure 13(b) tests the scalability of our GNN-PE approach with
different data graph sizes, |𝑉 (𝐺) |, from 10K to 1M, where default
values are assigned to other parameters. Since graphs are divided
into partitions of similar sizes and processed with multiple threads
in parallel, the GNN-PE performance over 𝑆𝑦𝑛-𝑈𝑛𝑖 or 𝑆𝑦𝑛-𝐺𝑎𝑢
is not very sensitive to |𝑉 (𝐺) |. Moreover, for 𝑆𝑦𝑛-𝑍𝑖𝑝 𝑓 , due to
the skewed keyword distributions, the refinement step generates
more intermediate results, which are more costly to join for larger
|𝑉 (𝐺) |. Nevertheless, for graph sizes from 10K to 1M, the wall
clock time remains low (i.e., 0.010 𝑠𝑒𝑐 ∼ 0.015 𝑠𝑒𝑐 for 𝑆𝑦𝑛-𝑈𝑛𝑖 and
𝑆𝑦𝑛-𝐺𝑎𝑢, and 0.031 𝑠𝑒𝑐 ∼ 0.34 𝑠𝑒𝑐 for 𝑆𝑦𝑛-𝑍𝑖𝑝 𝑓), which confirms
the scalability of our GNN-PE approach for large graph sizes.
The GNN-PE Efficiency w.r.t. Average Degree of Partitions.
Figure 13(c) reports the performance of our GNN-PE approach by
varying the average degree of partitions from 2 to 4, where # of edge
cuts between any two partitions is 1,000 on average, and default
values are used for other parameters. Higher degrees of partitions
lead to more edge cuts and cross-partition paths, which incurs

1638

(a) pre-computation (b) index building time (c) index storage cost

Figure 14: The GNN-PE offline pre-computation cost.

higher filtering/refinement costs. Thus, the time cost increases for
a higher degree of partitions but remains small (i.e., <0.03 𝑠𝑒𝑐).
The GNN-PE Efficiency w.r.t. # of Edge Cuts Between Parti-
tions. Figure 13(d) shows the GNN-PE performance by varying the
average number of edge cuts between any two partitions from 100
to 2, 000, where the partition degree is 3, and default parameter val-
ues are used. In general, more edge cuts between partitions produce
more candidate paths, which results in higher retrieval/refinement
costs. There are some exceptions over 𝑆𝑦𝑛-𝑍𝑖𝑝 𝑓 (i.e., high query
costs for fewer edge cuts), which is due to the skewed distribution
of vertex labels in 𝑆𝑦𝑛-𝑍𝑖𝑝 𝑓 . Nonetheless, the query cost remains
low (i.e., <0.03 𝑠𝑒𝑐) for different # of cross-partition edge cuts.

For other parameters (e.g., average degree, 𝑎𝑣𝑔_𝑑𝑒𝑔(𝑞), of the
query graph 𝑞, subgraph partition size |𝑉 (𝐺) |/𝑚, and #, |∑ |, of
distinct vertex labels), please refer to our technical report [64].

6.5 Offline Pre-Computation Performance
The GNN-PE Offline Pre-Computation Cost w.r.t. Data Graph
Size |𝑉 (𝐺) |. Figure 14(a) evaluates the offline pre-computation time
of our GNN-PE approach, including time costs of the graph parti-
tioning, GNN training, and index construction on path embeddings,
compared with online GNN-PE query time, over synthetic graph
𝑆𝑦𝑛-𝑈𝑛𝑖 on a single machine, where we vary the graph size |𝑉 (𝐺) |
from 10𝐾 to 1𝑀 and other parameters are set to default values.
Specifically, for graph sizes from 10𝐾 to 1𝑀 , the time costs of
the graph partitioning, GNN training, and index construction are
0.06∼4.7 𝑠𝑒𝑐 , 3.07𝑚𝑖𝑛∼4.79ℎ𝑜𝑢𝑟𝑠 , 21.07 𝑠𝑒𝑐∼36.63𝑚𝑖𝑛, respectively.
The overall offline pre-computation time varies from 3.43𝑚𝑖𝑛 to
5.4 ℎ𝑜𝑢𝑟𝑠 , and the subgraph matching query cost is much smaller
(i.e., 0.01∼0.014 𝑠𝑒𝑐). Please refer to our technical report [64] for
similar experimental results over 𝑆𝑦𝑛-𝐺𝑎𝑢 and 𝑆𝑦𝑛-𝑍𝑖𝑝 𝑓 .
The GNN-PE Index Construction Time/Space Costs on Syn-
thetic Graphs. Figures 14(b) and 14(c) compare the index con-
struction time and storage cost, respectively, between our GNN-PE
approach (path length 𝑙 = 1 or 2) and 8 baselines, where other pa-
rameters to default values. From these figures, compared with base-
lines, in general, our GNN-PE approach needs higher time costs for
offline index construction andmore space costs for storing/indexing
pre-computed GNN-based path embeddings. Note that, unlike base-
line methods that construct an index for each query graph during
online subgraph matching, our index construction is offline and
one-time only, and the index construction time and storage cost are
the summations over all partitions, which can be further optimized
by using multiple servers in a distributed parallel environment (as
our future work). Thus, our offline constructed index can be used to
accelerate numerous online subgraph matching requests from users

simultaneously with high throughput. Please refer to our technical
report [64] for similar experimental results over real data sets.

7 RELATEDWORK
Exact SubgraphMatching. Prior works on exact subgraph match-
ing fall into two major categories, i.e., join-based [1, 2, 36, 45, 54]
and backtracking-search-based algorithms [10, 11, 15, 26, 55]. In
contrast, our proposed GNN-PE approach transforms graph paths
to GNN-based embeddings in the embedding space (instead of di-
rectly over graph structures) and utilizes spatial indexes to conduct
efficient searches at low query costs.

Several existing works [29, 52, 63] also considered subgraph
matching by using feature vectors (e.g., frequency vectors based on
path [29, 52] or non-path [63] patterns) to represent graphs. How-
ever, they retrieve small graphs in a graph database (e.g., chemical
molecules) that contain the query graph, which differs from our
problem that finds subgraphs in a single large data graph.
Approximate Subgraph Matching. An alternative problem is to
develop methods to quickly return approximate subgraphs similar
to a given query graph 𝑞. Existing works on approximate subgraph
matching usually search for top-𝑘 most similar subgraphs from
the data graph by using different measures [19, 21, 40, 72]. With
AI techniques, recent works [6, 39, 42, 44, 59] proposed to use
GNNs/DNNs to improve the efficiency of approximate subgraph
matching. Although these methods can quickly check the subgraph
isomorphism by avoiding the comparison of graph structures, they
cannot guarantee the accuracy of query answers and have limited
task scenarios (e.g., only applicable to approximately comparing
two graphs, instead of finding subgraph locations in a data graph).
Learning-BasedGraphDataAnalytics.Recentworks on learning-
based graph data analytics used GNNs to generate graph embed-
dings for tasks like subgraph counting [16, 66], graph distance
prediction [48], and subgraph matching [42, 50]). These works,
however, either considered a different problem (e.g., count or graph
distance estimation) or only reported approximate subgraph match-
ing answers (instead of exact subgraph matching in our problem).
Thus, we cannot apply their GNN embeddings to solve our problem.

8 CONCLUSIONS
In this paper, we propose a novel GNN-based path embedding (GNN-
PE) framework for efficient processing of exact subgraph matching
queries over a large-scale data graph. We carefully design GNN
models to encode paths (and their surrounding 1-hop neighbors)
in the data graph into embedding vectors, where subgraph rela-
tionships are strictly reflected by vector dominance constraints
in the embedding space. The resulting embedding vectors can be
used for efficient exact subgraph matching without false dismissals.
Extensive experiments have been conducted to show the efficiency
and effectiveness of our proposed GNN-PE approach over both real
and synthetic graph data sets.

ACKNOWLEDGEMENTS
This work was supported by Natural Science Foundation of China
(62272170), Natural Science Foundation (NSF CCF-2217104), and
Shanghai International Joint Lab of Trustworthy Intelligent Soft-
ware (22510750100). Mingsong Chen is the corresponding author.

1639

REFERENCES
[1] Christopher R Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun,

and Christopher Ré. 2017. Emptyheaded: A relational engine for graph processing.
ACM Transactions on Database Systems 42, 4 (2017), 1–44.

[2] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. 2018.
Distributed evaluation of subgraph queries using worstcase optimal lowmemory
dataflows. In Proceedings of the International Conference on Very Large Data Bases
(PVLDB). 691—-704.

[3] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and
Stefano Leonardi. 2012. Online team formation in social networks. In Proceedings
of the Web Conference (WWW). 839–848.

[4] Blair Archibald, Fraser Dunlop, Ruth Hoffmann, Ciaran McCreesh, Patrick
Prosser, and James Trimble. 2019. Sequential and parallel solution-biased search
for subgraph algorithms. In Proceedings of the Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research (CPAIOR). 20–38.

[5] László Babai. 2018. Group, graphs, algorithms: the graph isomorphism problem.
In Proceedings of the International Congress of Mathematicians: Rio de Janeiro
2018. World Scientific, 3319–3336.

[6] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang.
2019. Simgnn: A neural network approach to fast graph similarity computation.
In Proceedings of the International Conference on Web Search and Data Mining
(WSDM). 384–392.

[7] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random
networks. science 286, 5439 (1999), 509–512.

[8] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-tree: An efficient and robust access method for points and rectangles.
In Proceedings of the International Conference on Management of Data (SIGMOD).
322–331.

[9] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. 1996. The X-tree : An
Index Structure for High-Dimensional Data. In Proceedings of the International
Conference on Very Large Data Bases (PVLDB). 28–39.

[10] Bibek Bhattarai, Hang Liu, and H Howie Huang. 2019. Ceci: Compact embedding
cluster index for scalable subgraph matching. In Proceedings of the International
Conference on Management of Data (SIGMOD). 1447–1462.

[11] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient
subgraph matching by postponing cartesian products. In Proceedings of the
International Conference on Management of Data (SIGMOD). 1199–1214.

[12] Ekaba Bisong and Ekaba Bisong. 2019. Introduction to Scikit-learn. Build-
ing Machine Learning and Deep Learning Models on Google Cloud Platform: A
Comprehensive Guide for Beginners (2019), 215–229.

[13] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Al-
fredo Ferro. 2013. A subgraph isomorphism algorithm and its application to
biochemical data. BMC bioinformatics 14, 7 (2013), 1–13.

[14] S. Borzsony, D. Kossmann, and K. Stocker. 2001. The skyline operator. In Pro-
ceedings of the International Conference on Data Engineering (ICDE). 421–430.

[15] Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento. 2017.
Challenging the time complexity of exact subgraph isomorphism for huge and
dense graphs with VF3. IEEE Transactions on Pattern Analysis and Machine
Intelligence 40, 4 (2017), 804–818.

[16] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. 2020. Can graph
neural networks count substructures?. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS). 10383–10395.

[17] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, and Jeffrey Xu Yu. 2009. Monitor-
ing path nearest neighbor in road networks. In Proceedings of the International
Conference on Management of Data (SIGMOD). 591–602.

[18] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub)
graph isomorphism algorithm for matching large graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence 26, 10 (2004), 1367–1372.

[19] Boxin Du, Si Zhang, Nan Cao, and Hanghang Tong. 2017. First: Fast interactive
attributed subgraph matching. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining (SIGKDD). 1447–1456.

[20] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. 2019. Gradient descent
provably optimizes over-parameterized neural networks. In Proceedings of the
International Conference on Learning Representations (ICLR). 1–19.

[21] Sourav Dutta, Pratik Nayek, and Arnab Bhattacharya. 2017. Neighbor-aware
search for approximate labeled graph matching using the chi-square statistics.
In Proceedings of the Web Conference (WWW). 1281–1290.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[23] Martin Grohe and Pascal Schweitzer. 2020. The graph isomorphism problem.
Commun. ACM 63, 11 (2020), 128–134.

[24] Aric Hagberg and Drew Conway. 2020. Networkx: Network analysis with python.
URL: https://networkx. github. io (2020).

[25] Jun Han and Claudio Moraga. 1995. The influence of the sigmoid function
parameters on the speed of backpropagation learning. In Proceedings of the
International Workshop on Artificial Neural Networks (IWANN). 195–201.

[26] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han.
2019. Efficient subgraph matching: Harmonizing dynamic programming, adap-
tive matching order, and failing set together. In Proceedings of the International

Conference on Management of Data (SIGMOD). 1429–1446.
[27] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: towards

ultrafast and robust subgraph isomorphism search in large graph databases. In
Proceedings of the International Conference on Management of Data (SIGMOD).
337–348.

[28] Huahai He and Ambuj K Singh. 2008. Graphs-at-a-time: query language and
access methods for graph databases. In Proceedings of the International Conference
on Management of Data (SIGMOD). 405–418.

[29] Craig A James. 2004. Daylight theory manual. http://www. daylight.
com/dayhtml/doc/theory/theory. toc. html (2004).

[30] Xin Jin, Zhengyi Yang, Xuemin Lin, Shiyu Yang, Lu Qin, and You Peng. 2021.
Fast: Fpga-based subgraph matching on massive graphs. In Proceedings of the
International Conference on Data Engineering (ICDE). 1452–1463.

[31] Alpár Jüttner and Péter Madarasi. 2018. VF2++—An improved subgraph isomor-
phism algorithm. Discrete Applied Mathematics 242 (2018), 69–81.

[32] Guy Karlebach and Ron Shamir. 2008. Modelling and analysis of gene regulatory
networks. Nature Reviews Molecular Cell Biology 9, 10 (2008), 770–780.

[33] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. 2017. Subgraph query-
ing with parallel use of query rewritings and alternative algorithms. In Proceed-
ings of the International Conference on Extending Database Technology (EDBT).
25–36.

[34] Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong,
and Wook-Shin Han. 2021. Versatile equivalences: Speeding up subgraph query
processing and subgraph matching. In Proceedings of the International Conference
on Management of Data (SIGMOD). 925–937.

[35] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimiza-
tion. In Proceedings of the International Conference on Learning Representations
(ICLR). 1–15.

[36] Longbin Lai, Zhu Qing, Zhengyi Yang, Xin Jin, Zhengmin Lai, Ran Wang,
Kongzhang Hao, Xuemin Lin, Lu Qin, Wenjie Zhang, et al. 2019. Distributed sub-
graph matching on timely dataflow. In Proceedings of the International Conference
on Very Large Data Bases (PVLDB). 1099–1112.

[37] Iosif Lazaridis and Sharad Mehrotra. 2001. Progressive Approximate Aggregate
Queries with aMulti-Resolution Tree Structure. In Proceedings of the International
Conference on Management of Data (SIGMOD). 401–412.

[38] Harry R Lewis. 1983. Michael R. ΠGarey and David S. Johnson. Computers
and intractability. A guide to the theory of NP-completeness. WH Freeman and
Company, San Francisco1979, x+ 338 pp. The Journal of Symbolic Logic 48, 2
(1983), 498–500.

[39] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph matching networks for learning the similarity of graph structured objects.
In Proceedings of the International Conference on Machine Learning (ICML). 3835–
3845.

[40] Zijian Li, Xun Jian, Xiang Lian, and Lei Chen. 2018. An efficient probabilistic ap-
proach for graph similarity search. In Proceedings of the International Conference
on Data Engineering (ICDE). IEEE, 533–544.

[41] Xiang Lian and Lei Chen. 2011. Efficient query answering in probabilistic RDF
graphs. In Proceedings of the International Conference on Management of Data
(SIGMOD). 157–168.

[42] Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec,
et al. 2020. Neural subgraph matching. arXiv preprint arXiv:2007.03092 (2020).

[43] Andreas Loukas. 2020. What graph neural networks cannot learn: depth vs
width. In Proceedings of the International Conference on Learning Representations
(ICLR). 1–17.

[44] Brian McFee and Gert Lanckriet. 2009. Partial order embedding with multiple
kernels. In Proceedings of the International Conference onMachine Learning (ICML).
721–728.

[45] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing subgraph queries by
combining binary and worst-case optimal joins. In Proceedings of the International
Conference on Very Large Data Bases (PVLDB). 1692–1704.

[46] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the International Conference on Machine
Learning (ICML). 807–814.

[47] Abdelghny Orogat and Ahmed El-Roby. 2022. SmartBench: demonstrating
automatic generation of comprehensive benchmarks for question answering
over knowledge graphs. In Proceedings of the International Conference on Very
Large Data Bases (PVLDB). 3662–3665.

[48] Rishabh Ranjan, Siddharth Grover, Sourav Medya, Venkatesan Chakaravarthy,
Yogish Sabharwal, and Sayan Ranu. 2022. Greed: A neural framework for learning
graph distance functions. In Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS). 22518–22530.

[49] Xuguang Ren and JunhuWang. 2015. Exploiting vertex relationships in speeding
up subgraph isomorphism over large graphs. In Proceedings of the International
Conference on Very Large Data Bases (PVLDB). 617–628.

[50] Indradyumna Roy, Venkata Sai Baba Reddy Velugoti, Soumen Chakrabarti, and
Abir De. 2022. Interpretable neural subgraph matching for graph retrieval. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 8115–8123.

1640

[51] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming
verification hardness: an efficient algorithm for testing subgraph isomorphism.
In Proceedings of the International Conference on Very Large Data Bases (PVLDB).
364–375.

[52] Dennis Shasha, Jason TL Wang, and Rosalba Giugno. 2002. Algorithmics and ap-
plications of tree and graph searching. In Proceedings of the Principles of Database
Systems (PODS). 39–52.

[53] Shixuan Sun and Qiong Luo. 2020. In-memory subgraph matching: An in-depth
study. In Proceedings of the International Conference on Management of Data
(SIGMOD). 1083–1098.

[54] Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He. 2020. Rapid-
match: A holistic approach to subgraph query processing. In Proceedings of the
International Conference on Very Large Data Bases (PVLDB). 176–188.

[55] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012.
Efficient Subgraph Matching on Billion Node Graphs. In Proceedings of the Inter-
national Conference on Very Large Data Bases (PVLDB). 788–799.

[56] Damian Szklarczyk, Andrea Franceschini, Stefan Wyder, Kristoffer Forslund,
Davide Heller, Jaime Huerta-Cepas, Milan Simonovic, Alexander Roth, Alberto
Santos, Kalliopi P Tsafou, et al. 2015. STRING v10: protein–protein interaction
networks, integrated over the tree of life. Nucleic Acids Research 43, D1 (2015),
D447–D452.

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS). 1–11.

[58] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In Proceedings of the
International Conference on Learning Representations (ICLR). 1–12.

[59] Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. 2016. Order-
embeddings of images and language. In Proceedings of the International Conference
on Learning Representations (ICLR). 1–12.

[60] Hanchen Wang, Ying Zhang, Lu Qin, Wei Wang, Wenjie Zhang, and Xuemin Lin.
2022. Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching. In Proceedings of the International Conference on Data Engineering
(ICDE). 245–258.

[61] Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods
and applications. (1994).

[62] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. Nature 393, 6684 (1998), 440–442.

[63] Xifeng Yan, Philip S Yu, and Jiawei Han. 2004. Graph indexing: a frequent
structure-based approach. In Proceedings of the International Conference on Man-
agement of Data (SIGMOD). 335–346.

[64] Yutong Ye, Xiang Lian, and Mingsong Chen. 2023. Efficient Exact Subgraph
Matching via GNN-based Path Dominance Embedding (Technical Report).
arXiv:2309.15641 [cs.DB]

[65] Zhitao Ying, Jiaxuan You, ChristopherMorris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS). 4805–4815.

[66] Xingtong Yu, Zemin Liu, Yuan Fang, and Xinming Zhang. 2023. Learning to
count isomorphisms with graph neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI). 4845–4853.

[67] Ye Yuan, Delong Ma, Zhenyu Wen, Zhiwei Zhang, and Guoren Wang. 2021.
Subgraph matching over graph federation. In Proceedings of the International
Conference on Very Large Data Bases (PVLDB). 437–450.

[68] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An
end-to-end deep learning architecture for graph classification. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI). 4438–4445.

[69] Yikai Zhang and Jeffrey Xu Yu. 2022. Relative Subboundedness of Contraction Hi-
erarchy and Hierarchical 2-Hop Index in Dynamic Road Networks. In Proceedings
of the International Conference on Management of Data (SIGMOD). 1992–2005.

[70] Yuejia Zhang,Weiguo Zheng, Zhijie Zhang, Peng Peng, and Xuecang Zhang. 2022.
Hybrid Subgraph Matching Framework Powered by Sketch Tree for Distributed
Systems. In Proceedings of the International Conference on Data Engineering (ICDE).
1031–1043.

[71] Peixiang Zhao and Jiawei Han. 2010. On graph query optimization in large
networks. In Proceedings of the International Conference on Very Large Data Bases
(PVLDB). 340–351.

[72] Linhong Zhu, Wee Keong Ng, and James Cheng. 2011. Structure and attribute
index for approximate graph matching in large graphs. Information Systems 36,
6 (2011), 958–972.

1641

https://arxiv.org/abs/2309.15641

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Graph Data Model
	2.2 Graph Isomorphism
	2.3 Subgraph Matching Queries
	2.4 GNN-Based Subgraph Matching Framework

	3 GNN-based Dominance Embedding
	3.1 GNN Model for the Node Embedding
	3.2 Node Dominance Embedding
	3.3 Path Dominance Embedding

	4 Subgraph Matching with GNN-Based Path Embedding
	4.1 Pruning Strategies
	4.2 Indexing Mechanism
	4.3 Index-Level Pruning
	4.4 GNN-Based Subgraph Matching Algorithm

	5 Cost-Model-Based Query Plan
	5.1 Cost Model
	5.2 Cost-Model-Based Query Plan Selection

	6 Experimental Evaluation
	6.1 Experimental Settings
	6.2 Parameter Tuning
	6.3 Evaluation of the GNN-PE Effectiveness
	6.4 Evaluation of the GNN-PE Efficiency
	6.5 Offline Pre-Computation Performance

	7 Related Work
	8 Conclusions
	References

