
Intelligent Pooling: Proactive Resource Provisioning in
Large-scale Cloud Service

Deepak Ravikumar ∗†

Purdue University, USA
dravikum@purdue.edu

Alex Yeo∗†
Netflix, USA

alexsyeo@gmail.com

Yiwen Zhu∗
Microsoft, USA

yiwzh@microsoft.com

Aditya Lakra
Microsoft, USA

adityalakra@microsoft.com

Harsha Nagulapalli
Microsoft, USA

hanagula@microsoft.com

Santhosh Ravindran
Microsoft, USA

saravi@microsoft.com

Steve Suh
Microsoft, USA

stsuh@microsoft.com

Niharika Dutta
Microsoft, USA

nidutta@microsoft.com

Andrew Fogarty
Microsoft, USA

anfog@microsoft.com

Yoonjae Park
Microsoft, USA

yoonjae.park@microsoft.com

Sumeet Khushalani
Microsoft, USA

sukhusha@microsoft.com

Arijit Tarafdar
Microsoft, USA

arijitt@microsoft.com

Kunal Parekh
Microsoft, India

kunalparekh@microsoft.com

Subru Krishnan
Microsoft, Spain

subru@microsoft.com

ABSTRACT
The proliferation of big data and analytic workloads has driven
the need for cloud compute and cluster-based job processing. With
Apache Spark, users can process terabytes of data at ease with hun-
dreds of parallel executors. Providing low latency access to Spark
clusters and sessions is a challenging problem due to the large
overheads of cluster creation and session startup. In this paper, we
introduce Intelligent Pooling, a system for proactively provisioning
compute resources to combat the aforementioned overheads. Our
system (1) predicts usage patterns using an innovative hybrid Ma-
chine Learning (ML) model with low latency and high accuracy; and
(2) optimizes the pool size dynamically to meet customer demand
while reducing extraneous COGS.

The proposed system auto-tunes its hyper-parameters to balance
between performance and operational cost with minimal to no
engineering input. Evaluated using large-scale production data,
Intelligent Pooling achieves up to 43% reduction in cluster idle
time compared to static pooling when targeting 99% pool hit rate.
Currently deployed in production, Intelligent Pooling is on track
to save tens of million dollars in COGS per year as compared to
traditional pre-provisioned pools.

PVLDB Reference Format:
Deepak Ravikumar, Alex Yeo, Yiwen Zhu, Aditya Lakra, Harsha
Nagulapalli, Santhosh Ravindran, Steve Suh, Niharika Dutta, Andrew
Fogarty, Yoonjae Park, Sumeet Khushalani, Arijit Tarafdar, Kunal Parekh,
and Subru Krishnan. Intelligent Pooling: Proactive Resource Provisioning
in Large-scale Cloud Service. PVLDB, 17(7): 1618 - 1627, 2024.
doi:10.14778/3654621.3654629

∗Authors contributed equally to this research.
†Work done while at Microsoft
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

1 INTRODUCTION
Cloud computing has emerged as a top choice for executing big
data analytic workloads in various business domains. To cope with
rapidly increasing demand, cloud vendors (e.g., Amazon AWS [3],
Microsoft Azure [36] and Google GCP [20]) have funneled sizable
resources into their own managed Spark services [38, 48], including
Google Cloud’s Serverless Spark [21], Spark through Vertex AI [22],
Azure HDInsight [33], Azure Synapse Analytics [34] and AWS
EMR [6]. The flexibility of such cloud offerings allows users to easily
lease and release compute resources as required and, consequently,
enjoy potentially significant cost-effectiveness. However, to provide
such flexibility, service providers must address various challenges
with respect to resource provisioning.

The implementation of multi-tenancy and scalability in such
systems results in prolonged latencies in accessing clusters. With
Azure Synapse [34], it is common to experience a cluster initial-
ization time of over 60 seconds. According to Databricks [14], this
provisioning time can be even longer than the duration of the job
execution. However, proactive provisioning solutions are often chal-
lenging due to: (1) The unpredictability of user behavior and, (2)
the difficulty in developing any policy that both enhances perfor-
mance and decreases cost-of-goods-sold (COGS), which requires an
explainable, comprehensive decision-making process in real-world
production. Accurately modeling multi-tenant cloud performance
and its impact on customer experience can be complicated involving
complex modeling [13, 52].

State-of-the-art approach. Proactive auto-scaling (after applica-
tion starts) has been introduced in data stream processing engines

licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.
doi:10.14778/3654621.3654629

1618

https://doi.org/10.14778/3654621.3654629
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3654621.3654629


(e.g., Apache Storm [5], Apache Flink [4]) and network provision-
ing [10, 51] to dynamically scaling up (or down) the compute re-
sources when the workload is heavy [27], and performance model-
ing is developed to ensure the QoS requirements are fulfilled [28].
Time-series forecasting is used to determine the possible repeating
patterns as inputs [8]. A detailed review of similar applications in
streaming systems can be seen in [29].

For Spark [49] clusters, there has not been an automated solution
to manage cluster provisioning. Some vendors, like Databricks [14],
provide mechanisms to maintain clusters until a fixed threshold
of idle time is reached and offer customers instruction on “best
practices” for managing Spark clusters on their own. Despite its
potential benefits, this approach still requires manual tuning from
the user’s perspective andmay result in unsatisfactory performance.

In this paper, we tackle the issue of improving the customer
experience of waiting for the initialization of Spark clusters where
a cluster needs to be prepared for a newly submitted Spark job at
its startup time, which is one of the major bottlenecks for many
Spark systems. Compared to auto-scaling while the application
is running, this problem can be more challenging because at the
application submission time or even before (if supporting proactive
provisioning), there can be little-to-no information known for a
particular customer or application. Auto-scaling relies on real-time
information such as cardinality estimates, number of tasks queued,
etc., which becomes available when the application starts, to ad-
just the number of nodes and executors. Auto-scaling during the
lifetime of an application is out of scope for this paper, and for
Fabric, there is a different service to scale up/down the number of
nodes in the compute cluster as well as the number of executors in
real time based on the incoming workload characteristics and the
tracking of task execution, which include richer information about
the application and the Service Level Agreements (SLAs) that need
to be met [9, 39, 44].

Challenges. In order to reduce the wait time for cluster initializa-
tion, we aim to use machine learning to proactively provision Spark
clusters. However, this presents a number of challenges, including::

Uncertainty of user behavior [C1]. Intuitively, it would be possi-
ble to provision a cluster in advance if we could accurately predict
when a customer will submit a job. However, this is difficult to
achieve in practice due to the high degree of uncertainty of individ-
ual user behavior. Training an individual model for each customer,
as is done in [40], is not feasible due to scalability constraints.

Difficulty of modeling performance-cost trade-offs [C2]. In
tandem with the proactive provisioning mechanism, one needs
to model the performance observed by customers (for example
the wait time for accessing a cluster and starting a job) and es-
timate the extraneous COGS from the operator’s point of view.
Any mismanagement of resources, including over-provisioning or
under-provisioning, will result in either significant financial losses
or an unsatisfactory customer experience.

Compliance for service level agreements [C3]. The inherent
unpredictability and opacity of machine learning is always the
biggest concern. While most cloud operators are mandatory to
meet specific service level agreements, a robust and consistent
algorithm is critical. However, the algorithm may fail to converge

in certain corner cases, and using a black-box approach like ML
introduces significant challenges in debugging and error triage.

Requirements of full automation [C4] and low latency [C5].
For a production-level system, it is necessary to have a fully auto-
mated and reliable solution. Additionally, the provisioning system
must be able to adapt to a constantly changing environment by tak-
ing into account the real-time state of the system. To achieve this,
it is necessary to develop and maintain a low-latency monitoring
system, as well as simple and efficient algorithms.

Introduction to Intelligent Pooling. To overcome these chal-
lenges, we propose Intelligent Pooling, a self-adaptive solution that
proactively creates clusters based on monitoring of demand.

We introduce the notion of a Spark “live pool”, where a number of
clusters are proactively created and pre-configured for various users.
[C1].Whenever a customer requests a cluster, one cluster will be
immediately evicted from the pool and made available for use. At
the same time, a new cluster is provisioned and added to maintain
a constant cluster number, a process referred to as "re-hydration."

We introduce a self-tuning system to dynamically learn the optimal
pool size based on demand, considering the cost-performance trade-
offs [C2, C5].One of the biggest concerns of the live pool mechanism
is the COGS. At the scale of Microsoft Fabric [32], we expect simple
threshold-based provisioning to quickly exceed 10,000 CPU cores,
resulting in tens of millions of dollars in COGS. To address this
challenge, our work proposes dynamically adjusting the size of the
pool based on customer demand. We propose an efficient linear
programming (LP) solution to model the two factors (performance
and cost) based on the Pareto frontier to determine the optimal
pool size. A self-adaptive system is proposed that automatically
balances the trade-off between the cost of maintaining idle clusters
and the potential for long wait times for customers.

We introduce an efficient, and robust hybrid time-series forecasting
algorithm of the future demand at the aggregate level with high
accuracy and robustness [C1, C3, C5]. The models predict future
demand, measured by the cluster request rate, based on historical
demand and the latest observation of the cluster creation request
rate. The predictions then serve as inputs to the optimization model.
With an end-to-end run time (training, inferencing, and optimizing)
reduced to mere seconds, we ensure that the recommendations are
always up-to-date by retraining the model with high frequency
(e.g., < 5min). To improve the robustness of the model prediction
[C3], we developed a new policy to smooth the input data, which
significantly reduces performance regressions.

We have implemented a real-time monitoring system that provides
continuous inputs to constantly learn the optimal provisioning policy
[C4, C5]. The telemetry data collected is then fed into our optimiza-
tion algorithm in real-time. The same dashboard is also used to
evaluate the performance of the system.

The end-to-end solution is lightweight and implemented in C# as
an integral part of the core Spark infrastructure [C5]. The recom-
mendation engine can be executed in a single invocation of the
pipeline, with fast and accurate recommendation generation and
persistence in configuration files in mere seconds, ready to use for
the pooling service. We integrate the modules with the new Fabric
service, the new Microsoft data analytics offering that supports
Spark [32], deployed in all production Azure regions in Nov, 2023.

1619



Contribution. In sum, our contributions are:
• A simple linear programming formulation for solving the

optimal pool size that captures the trade-off between im-
proving performance and reducing COGS;

• An efficient hybrid ML algorithm combining deep learn-
ing and traditional ML for predicting future demand and
optimal pool size with extremely low latency;

• A robust strategy to account for demand uncertainty to
ensure high service level;

• Deployed in production, we achieved millions of dollars in
annual COGS compared to preexisting pooling.

The remaining sections are organized as follows: Section 2 pro-
vides background and motivates the problem. Section 3 presents the
overall design principles and architecture. Sections 4 and 5 describe
the optimization and ML modules, respectively. Section 7 goes over
how we evaluated the algorithm using production data. Section 8
discusses related work, and Section 9 concludes the paper.

2 BACKGROUND
One common issue related to Spark cluster initialization is a long
wait time [14]. Complexity in the underlying infrastructure intro-
duces a wide range of potential slowdowns that are difficult to
detect, diagnose and mitigate. Examples of this complexity include
hardware heterogeneity, unreliable network communication, and
inter-node service coordination which is compounded by the strict
multi-tenancy requirements in the cloud. Efforts are undergoing to
reduce the tail latency of cluster initialization time, including mak-
ing hedged requests [30] and using tied requests [15, 30]. However,
these approaches are not able to completely address the issue.

In May 2023, Microsoft announced Fabric, a new data analytics
that offers both data engineering and data science experiences, op-
erating as a multi-tenant managed Spark service, with a security
boundary scoped to individual users. On this platform, the typical
underlying process to initiate a Spark session consists of 60-120
seconds for the cluster creation and 30-40 seconds for the session
creation [2, 48]. When Generic Job Service requests a new clus-
ter, This prolonged process is primarily influenced by four main
processes: VM configuration, allocation, and boosting time; stitch-
ing VMs to form Spark clusters; configuring libraries; and creating
a Spark session—each taking 30-60 seconds, contributing to the
extended wait time.

Tominimize the latency experienced by the end-user, we propose
to proactively provision Spark clusters. In this work, we propose to
create a shared pool of actively-running clusters, which we call a
live pool. We categorize live pools into two buckets: session pools
and cluster pools, i.e. interactive and batch mode respectively. Both
consist of pooled clusters; the difference is that session pools also
have an actively-running Spark session in each cluster, which we
call a pooled session. Session pools are useful for notebook scenarios,
when a pre-created session can be used to run a notebook instanta-
neously. Pooled clusters, by contrast, are useful for running batch
jobs with pre-defined job definitions (e.g., a json file that describes a
.jar file location, Spark configurations, etc.) and Spark sessions that
require ad hoc customization. For the rest of the paper, we discuss
the methodology with respect to cluster pools, though the same
can be applied to session pools. Similar to the concept of inventory

Savings over Static 
Pool

Demand

N
um

be
r o

f c
lu

st
er

s Static Pool

Dynamic Pool

Savings 
over Static 

Pool

Time

Figure 1: Benefits of Intelligent Pooling
management in retailing [16], we maintain a constant number of
resources in a given pool, and upon receiving a client request, a
pre-provisioned resource can be used instantly. To maintain the
target number of resources in the pool, we send a new request,
referred to as a re-hydration request, to Generic Job Service to add
a new cluster or session back to the pool whenever a pooled re-
source is consumed or fails (due to exceeding a pre-defined lifespan
or unexpected system failures). For Fabric, two pools per region
(one for session and one for cluster) with a fixed cluster size, e.g.,
3-median nodes, are created.

The general idea of Intelligent Pooling is to dynamically deter-
mine the optimal number of resources in a pool and scale the pool
up or down as needed in real-time. A larger pool can lead to wasted
COGS in a low-demand scenario. On the other hand, a smaller
pool has a higher likelihood of being drained out in high-demand
scenarios, where numerous customers need clusters or sessions
at the same time and the system does not have enough time to
sufficiently replenish the pool. The client request in this situation
must go through the original protracted startup process (referred
to as “on-demand"). With dynamic pooling, by adjusting the pool
size according to (predicted) demand, we can achieve potentially
significant savings over the static pool (see Figure 1). Given that ML
algorithms are in general never perfect, with margins in prediction
errors, the optimal provisioning strategy remains a challenge.

3 INTELLIGENT POOLING OVERVIEW
In this section, we discuss the overall architecture of Intelligent
Pooling. Intelligent Pooling consists of two main modules (see
Figure 2):

• The Sample Average Approximation (SAA) Optimizer
formulates a simple linear programming problem to op-
timize the pool size based on input demand, which can
either be historic or predicted by the ML Predictor. The
optimized results are then saved as configuration files in
Cosmos DB [35] (Section 4).

• TheML Predictor makes real-time time-series predictions
by constantly fetching historic observations from the Kusto
store [31]. Using predicted demand as opposed to historic
demand helps to react more accurately to real-time changes
in the system, though it can potentially lead to longermodel-
training latencies (Section 5).

Intelligent Pooling leverages the existing infrastructure used by
live pools for its own execution and deployment. Specifically,

• Generic Job Service is responsible for orchestrating Spark
batch jobs and interactive sessions; providing APIs to per-
form CRUD operations on Spark jobs; and managing and
processing Spark job-related metadata.

• Cluster Service is responsible for requesting virtual ma-
chines (VMs) fromAzure and "stitching" them to form Spark

1620



Generic Job 
Service

Work Item 
Service

Kusto

ML Predictor SAA Optimizer

Pooling Size Optimization

Hyper-parameter Tuning

Create Create

Fetch 
Recommendation

Intelligent Pooling Worker
Pooling Worker

Target 
Pool Size

Live Pool

Cosmos DB
Create/Delete

Clusters Request

Cluster Service

Create/Delete
Clusters

Figure 2: Architecture
clusters; providing APIs to perform CRUD operations on
Spark clusters; and managing and processing Spark cluster-
related metadata.

• Work Item Service is a background service that supports
various workloads, including but not limited to Spark clus-
ter and session pooling, Spark job submissions, and the
Intelligent Pooling infrastructure. It is responsible for mon-
itoring available work items that represent these workloads
and spinning up worker processes that execute the work-
loads.

• The Intelligent Pooling Worker is responsible for peri-
odically running the ML pipeline that includes the afore-
mentioned SAA Optimizer and ML Predictor and persisting
the recommendation files in Cosmos DB [35].

• The Pooling Worker is responsible for maintaining a tar-
get pool size by invoking Generic Job Service to create and
delete resources and, if applicable, fetching the latest pool
size recommendation file emitted by an Intelligent Pooling
Worker.

The hyper-parameter tuning module is developed to constantly
fine-tune the hyper-parameters for the optimization algorithm to
avoid over- or under-allocating resources by setting the tuning
knobs to minimize the COGS while satisfying the SLA. It can be
executed at a lower frequency while the ML pipeline runs at a
higher frequency such that it captures the rapid change of the
environment and adapts faster to the demand. More details on the
hyper-parameter tuning process can be seen in Section 6.

4 SAMPLE AVERAGE APPROXIMATION
OPTIMIZER

In this section, we formulate the live pool mechanism as a queuing
system and propose linear programming to reach optimality.

4.1 The Live Pool Mechanism
We illustrate the live pool mechanism through a graph plotting a
set of cumulative values (see Figure 3). Specifically,

𝐷 (𝑡): the cumulative number of clusters requested by cus-
tomers (demand);

𝑁 (𝑡): the target pool size as a function of time that we want
to maintain;

𝐴(𝑡): the cumulative number of cluster re-hydration requests
made to add a cluster to the pool in order to keep it at
the target pool size of 𝑁 (𝑡);

𝜏 : the cluster initialization time, i.e., the time lag before a
cluster can be ready for use after the creation request
is sent;

𝐴′(𝑡): the cumulative number of clusters ready for use.

Time

# 
C

lu
st

er
s

D(t)

N(0)

A’(t)

A(t)

0

τ

t2 t3 t4 t5t1

Figure 3: Cumulative cluster creation number 𝐷 (𝑡), cumu-
lative re-hydration requests 𝐴(𝑡), number of clusters ready
𝐴′(𝑡) at time 𝑡 , and pool size at time 0, 𝑁 (0), the total wait
time (red area) for obtaining a running cluster and idle time
(grey area) for clusters in the pool.

For instance, at time 𝑡 = 0, a pool is created with 𝑁 (0) = 4
clusters, and whenever a user request for a new cluster is received,
(corresponding to an increase in 𝐷 (𝑡), e.g., at 𝑡1), a cluster will be
emitted from the pool to be used by the customer. At the same time,
the pooling worker will initiate a re-hydration request to Generic
Job Service to add a new cluster back to the pool (corresponding to
an increase in 𝐴(𝑡)). As a result, the curve of 𝐴(𝑡) can be seen as a
simple “shift-up" of the curve of 𝐷 (𝑡), and the gap between them
equals the target pool size 𝑁 (𝑡). Similarly, because cluster creation
takes time, the cumulative number of clusters that are ready to use,
𝐴′(𝑡), is a “shift-right" of the number of requests made, 𝐴(𝑡), by
the cluster creation latency, 𝜏 :

𝐴(𝑡) = 𝐷 (𝑡) + 𝑁 (𝑡), ∀𝑡 (1)
𝐴′(𝑡) = 𝐴(𝑡 − 𝜏), ∀𝑡 ≥ 𝜏 (2)
𝐴′(𝑡) = 𝑁 (0), ∀𝑡 < 𝜏 . (3)

Assuming a first-come-first-serve rule, the clusters in the pool
will be acquired by customers based on the user request arrival
time. For instance, in Figure 3, the first four clusters in the pool will
be used by the first four requests that are received (blue, yellow,
grey and orange respectively). The fifth created cluster is triggered
by the arrival of the blue request at 𝑡1, and is not ready until 𝑡3. It
will be used by the fifth request received at 𝑡2.

4.2 Optimal Pool Size
There are two factors to optimize for:

• The total idle time pooled clusters are alive and unused by
customers; and

• The total wait time for customers (when the pool is drained
out and the customer must wait for the full cluster startup
duration).

In Figure 3 we show the one-to-one mapping between a created
cluster and the request that will use the corresponding cluster based
on a first-come-first-serve (FCFS) rule. We observe that whenever
𝐴′(𝑡) > 𝐷 (𝑡), idle time occurs, and whenever 𝐴′(𝑡) < 𝐷 (𝑡), wait
time occurs. For example, at time 𝑡 = 0, four clusters have been
created, and they will be used by the first four requests that come in
(blue, yellow, grey and orange). For those clusters, their aggregate
idle time equals the area of the gap between the curves of 𝐴′(𝑡)
and 𝐷 (𝑡), highlighted in grey. However, the fifth cluster creation
request on curve𝐴(𝑡) (marked in blue) was not ready until 𝑡3 while

1621



the fifth customer request on curve 𝐷 (𝑡) occurs at 𝑡2. Therefore,
for the fifth request, the customer has to wait for 𝑡3 − 𝑡2, and the
wait time was highlighted in red (similar for the sixth, seventh and
eighth requests in yellow, grey, and orange respectively)1.

In sum, the total wait time of customers is the red area where
𝐴′(𝑡) < 𝐷 (𝑡), and the total idle time of clusters in the pool is the
grey area where 𝐴′(𝑡) > 𝐷 (𝑡). With this, we can estimate the
optimal pool size where both the total wait time and the idle time
are minimized. Specifically, we can leverage linear programming
with minimization as the objective to calculate the areas:

Δ+ (𝑡) ≥ 𝐴′(𝑡) − 𝐷 (𝑡), ∀𝑡 (4)

Δ+ (𝑡) ≥ 0 ,∀𝑡 (5)
Δ− (𝑡) ≥ 𝐷 (𝑡) −𝐴′(𝑡), ∀𝑡 (6)
Δ− (𝑡) ≥ 0, ∀𝑡 . (7)

If the objective function involves minimizing Δ+ (𝑡) and Δ− (𝑡),
one can prove that in the optimal solution, if𝐴′(𝑡) ≥ 𝐷 (𝑡), Δ+ (𝑡) =
𝐴′(𝑡) −𝐷 (𝑡) and Δ− (𝑡) = 0. If 𝐴′(𝑡) ≤ 𝐷 (𝑡), Δ− (𝑡) = 𝐷 (𝑡) −𝐴′(𝑡)
and Δ+ (𝑡) = 0. And the sum of Δ+ and Δ− calculates the total
area of grey (idle time) and red (wait time) respectively. And the
constraints are all linear.

Sample Average Approximation (SAA) Optimizer. Based on
the above discussion, we can formulate the optimization program
with the objective tominimize the total cost (considered as aweighted
sum of the wait time and idle time). We use the sample average
approximation (SAA) method [26] based on the input demand data
to minimize the expected total cost over the whole observed period.
Denote 𝛼 and 𝛽 the hyper-parameters representing the penalty of
having long idle time versus wait time, a larger 𝛼 will result in an
optimal solution trying to minimize the idle time more than wait
time, and vice versa. By changing the hyper-parameter values, one
can achieve the full Pareto curve [18, 46] of the trade-off between
idle time and wait time. The detailed formulation is as follows:

min𝛼 ·
∑︂
𝑡

Δ+ (𝑡) + 𝛽 ·
∑︂
𝑡

Δ− (𝑡) (8)

s.t., (1) − (7).

With this minimization formulation, for the optimal solution,
Δ+ (𝑡) equals the number of idle clusters at time 𝑡 , and Δ− the
queued demand. All the constraints are linear. For the maximum
number of requests made, one can add a constraint with the maxi-
mum number of requests per time interval, MAX NEW REQUEST:

𝑁 (𝑡) − 𝑁 (𝑡 − 1) ≤ MAX NEW REQUEST ∀𝑡 ≥ 1. (9)

For the analyzed system, we also added the following constraints:

MIN POOL SIZE ≤ 𝑁 (𝑡) ≤ MAX POOL SIZE ∀𝑡 ≥ 1, (10)
𝑁 (𝑡) = 𝑁 (⌊𝑡/STABLENESS⌉ ∗ STABLENESS) ∀𝑡 ≥ 1. (11)

where Constraint (10) sets the minimum and maximum pool size
(i.e., MIN POOL SIZE and MAX POOL SIZE), and Constraints (11)
ensures that the pool size is stable for Δ𝑡 = STABLENESS intervals.

1Note that currently, when a pool is drained out, “on-demand” cluster creation requests
will be sent to accommodate the cluster requests, and their wait time becomes 𝜏 . The
clusters being ready at 𝑡3 and onwards will be served to later requests. In this case,
the FCFS rule is violated as the order of using the clusters is modified. In this work,
we still assume FCFS for simplicity as an approximation of this mechanism.

In production, the MIN POOL SIZE and MAX POOL SIZE are set
according to regional capacity.

For a simplified intelligent pooling policy, one can also add con-
straints to ensure that the pool size for the same day of week or time
of day is the same as for a more static controlling policy. Note that
all the constraints are still linear and can be solved by commercial
solvers with low latency (in a few seconds).

5 ML PREDICTOR
In this section, we detail the prediction model and pipeline that we
chose. Specifically, Section 5.1 discusses initial model exploration
and Section 5.2 discusses the limitations. Section 5.3 proposes a
hybrid model that combines a traditional machine learning algo-
rithm with deep models. Section 5.4 proposes an alternative way to
combine the SSA optimizer with the ML predictor.

5.1 Cost-Performance Trade-offs
We evaluate the following four different models, each representing
a different category/approach: (1) Singular Spectrum Analysis (SSA)
[19] implemented by ML.NET [1]; (2) Inception Time [24]; (3) TST
[50]; and (4) mWDN [45]. These models are chosen since each
represents a different category—SSA is a traditional ML model,
TST is a transformer-based deep learning approach, mWDN is
wavelet decomposition-based approach and Inception Time is a 1D
convolution model.

To train the models, we use an 80-20 train-test split. Specifically,
for the deep learning models, the training set is further split into a
90-10 train-validation set. For DNN models, we use the validation
set to ensure we do not overfit to the training set and to trigger an
early stop. To directly embed the estimation of the wait-idle time
trade-off into the training process, we use a modified loss function
similar to the estimation of Δ+ and Δ− as in Equations 4-7, which
is a proxy of the true wait and idle time to capture the trade-offs
between cost and performance. We define the loss function L as:

L = 𝛼 ′ · 𝛿+ + (1 − 𝛼 ′) · 𝛿− (12)
𝛿 = 𝑦 − �̂� (13)

𝛿+ = 𝛿 : 𝛿 > 0 (14)
𝛿− = −𝛿 : 𝛿 < 0 (15)

where 𝑦 is the ground truth time series, �̂� is the predicted output
and 𝛼 ′ is the hyper-parameter that controls the relative importance
of idle time and wait time during optimization and training. We
observe that the modified loss function in Equation (12) allows
for the models to perform better at the extremes of the wait time
and idle time constraints. It also allows the model to estimate the
demand at a higher/lower percentile, tailored to our business needs.

5.2 Limitations
From our experiments, we found that the rate at which we update
the model has a big impact on the idle time (i.e., cost savings). Thus,
it was critical to identify and deploy models that were fast to update.
We found that deep models (mWDN, TST and Inception Time) were
significantly slower to train compared to SSA (see Figure 6 on data
scaling) though they offer flexibility with customized loss functions,
allowing tailoring to different performance and cost preferences for

1622



demand prediction—whether conservative or aggressive. Lacking
such flexibility, SSA failed to achieve sufficiently low wait times
(refer to Figure 5). To address these two limitations, we propose a
new hybrid model which combines the best of both.

5.3 Hybrid Model: SSA+
To address the above-mentioned limitation, in this paper, we pro-
pose the hybrid model to achieve low training latency and relatively
good trade-off performance. We address the issues with SSA and
the deep models by combining certain parts of each. The reason
SSA fails to achieve low wait times is because there is no way to
specify and control how much the predicted request rate must over-
shoot the ground truth (see Section 7.3). If the predicted usage/pool
size is larger than ground truth, this will result in a larger pool
size, lowering the average wait time. With deep models, the over-
shoot is controlled using the loss function defined by Equation (12).
However, the issue with deep models is that the models are too
computation-intensive for the task at hand and need lots of data
and computational resources to train the over-parameterized model.
Thus, the proposed hybrid model consists of an SSA forecaster fol-
lowed by a shallow two-layer neural net (≈ 30 parameters, with
ReLU activation for non-linearity) which acts as an error predictor.
This error predictor can be trained using the loss from Equation
(12) to learn the overshoot or undershoot needed to achieve the
target wait time. The improved trade-off performance of the hybrid
model can be seen in Figure 5.

5.4 End-to-end Recommendation Engines
While modern ML approaches can achieve high performance, they
are not immune to errors. Thus, any processing that is performed
post-ML prediction must not introduce more errors by propagation.
This is similar to the game of telephone, where the MLmodel makes
a prediction and subsequent processing introduces enough uncer-
tainty to make the prediction useless. With the goal of minimizing
the potential for errors, we explored two end-to-end recommenda-
tion pipelines:

• 2-step pipeline where the ML model is trained on the input
cluster request rate data. The ML model predicts cluster
request data, which is then fed to the SAA optimizer which
outputs the predicted optimal pool size.

• End-to-End (E2E) pipeline where we apply the SAA opti-
mizer on the historic data, providing a ground truth optimal
pool size for the past. The historic optimal pool size is then
used to train the ML model, which predicts the optimal
pool size for the future.

From our experiments, we found 2-step pipelines have a better
Pareto curve when targeting low wait times (Section 7).

6 AUTO TUNING PARAMETERS
Constantly adapting the hyper-parameters to meet business needs
is a challenge and adds to the cost of maintaining the service. Par-
ticularly, in production we want to achieve our service-level agree-
ment on the performance (wait time) while minimizing the idle
versus wait time penalty. Thus, we propose using a self-adaptive
hyper-parameter tuning mechanism to close the feedback loop. We
constantly monitor the system behavior (pool hit and pool misses)

06 : 00
07 : 00

08 : 00
09 : 00

10 : 00
11 : 00

12 : 00

Time of Day

500

1000

1500

O
pt

im
al

P
o

ol
S

iz
e

Figure 4: Pool size increases advance demand.

and adjust for the parameters accordingly such that we can always
maintain the optimal balance as desired.

To achieve this, we eliminate the 𝛽 hyper-parameter from Equa-
tion 8 and rewrite the objective function as:

min𝛼 ′ ·
∑︂
𝑡

Δ+ (𝑡) + (1 − 𝛼 ′) ·
∑︂
𝑡

Δ− (𝑡), (16)

where 0 ≤ 𝛼 ′ ≤ 1. It is easy to show that the formulation is
equivalent to Equation (8).

Thus we have only one hyper-parameter to tune, which reduces
our search space. We can model the relation between the business
requirement (customer wait time) 𝑡wait and the hyper-parameter 𝛼 ′.
We approximate the relation 𝛼 ′ = 𝑓 (𝑡wait) to be piece-wise linear.
With this approximation, we try to fit the best line based on the
previous 10 data points and update the value iteratively.

7 EXPERIMENT
In this section, we present the results of applying SAA on historic
data (Section 7.1), compare the performance of various ML models
(Section 7.2) and compare the performance of the two end-to-end
pipelines integrated with the optimizer by displaying their wait-idle
time trade-off curves (Section 7.3). We discuss the model efficiency
in Section 7.4 and deployment results in Section 7.5.

In all assessments, we consolidate the input time series data
into 30-second intervals, where the data signifies the number of
cluster requests per interval. We maintain a constant pool size
for 5 minutes to prevent abrupt changes in size recommendations.
Various combinations of penalty values, such as 𝛼 , 𝛽 , and 𝛼 ′, were
examined to achieve diverse trade-offs between perf and cost. The
evaluation was conducted on a node with 6 vCores and 64 GB RAM.

7.1 Sample Average Approximation (SAA)
optimizer

We extracted production Azure Synapse data in the East US region
from July 01 to July 15 in 2022 with hundreds of thousands of cluster
requests. We estimated the optimal pool size by time of day and
type of day (weekday versus weekend) using historic data. Several
interesting findings emerged:

The pool size is correlated with the number of requests. In Figure
4, we find that the pool size increases 5 minutes before the start
of every hour that is, 5:55, 6:55, 7:55, etc. This is due to the fact
that many jobs are scheduled at 6AM, 7AM, etc. The optimization
proactively prepares for this surge by increasing the pool size to
cope with this demand.

There is a trade-off between longer wait time and longer idle time.
As discussed previously, a larger pool size generally results in longer
idle times and a decrease in the likelihood of the pool being drained
out. We can tune the value of the cost penalty in the objective
function to tune the pool size and obtain a Pareto curve.

1623



High frequency in which the pool size is updated can improve
both COGS and performance. We observed that by decreasing the
𝑆𝑇𝐴𝐵𝐿𝐸𝑁𝐸𝑆𝑆 as in Equation (11) the Pareto curve shifts towards
the lower left, indicating better perf-cost trade-offs. However, in pro-
duction, we are not able to update the pool size too frequently and
potentially decreasing the pool size will also result in cancellation
of re-hydration requests.

7.2 ML Model Comparison

Table 1: Performance comparison using a 2-step pipeline.

Region Node Size MAE ↓
SSA+ SSA[19] mWDN[45] TST[50] IncpT[24]

West US 2 Small 9.54 14.13 10.28 10.86 10.00
East US 2 Small 7.78 8.02 7.23 7.13 7.64
West US 2 Medium 5.54 4.82 3.77 4.28 4.01
East US 2 Medium 1.42 1.60 1.26 1.33 1.33
West US 2 Large 3.28 3.67 3.21 3.23 3.40
East US 2 Large 1.89 2.42 1.79 1.90 1.98

Average 4.91 5.78 4.59 4.79 4.73

To identify the best ML model, we compared the performance
of Singular Spectrum Analysis (SSA) [19], Inception Time [24],
TST [50] and mWDN [45] models with our proposed hybrid model
(SSA+) using 14 day’s historic data. And each algorithm will pre-
dict 1200 steps ahead. The algorithm-specific hyperparameters are
fined-tuned to achieve the best accuracy and latency on the train-
ing set. Table 1 presents the performance of each of the models on
various datasets (each row is a different dataset from one region).
We configured the hyperparameters as follows: window size 150,
15 epochs, batch size 768, horizon 1200, learning rate 0.001, and
series length 1800. We present the performance in terms of two
metrics: Root Mean Squared Error (RMSE) andMean Absolute Error
(MAE) between the prediction and the ground truth. From Table
1 we clearly see that mWDN [45] outperforms other models on
average. The mWDN demonstrates strong performance, particu-
larly in regions with larger and stable patterns, such as West US2.
The TST model, requiring a longer period of input data due to their
increased parameters, performs well, however, its latency is the
longest among all (see Figure 6). In contrast, the IncepT model with
a 1D-convolution layer may not be sufficiently powerful to capture
the diverse patterns.

7.3 End-to-end Pipeline
In this section, we evaluate the Pareto curve for the 2-step approach
(predict future demand, and then apply SAA optimizer to the predic-
tion) and the E2E pipeline (apply SAA optimizer to historic demand
for historic optimal pool size, and then use ML to forecast).

Figure 5 shows the trade-off between idle time and wait time for
various ML models using both the 2-step and E2E approach. “SSA+”
denotes the results for the hybrid model. We use a no-intelligence
model as baseline. A no-intelligence model’s output is defined as:

�̂� = 𝛾 · max(𝑦train) (17)

where𝑚𝑎𝑥 (𝑦train) is peak request rate of the training data, 𝛾 is a
fixed constant and �̂� is the predicted cluster/session request rate.

Figure 5 reveals some interesting results: (1) The difference in
COGS (idle time) of baseline and other ML models increases as we

(a) 2-step approach (b) E2E approach

Figure 5: Wait time vs idle time for mWDN, SSA and baseline
models trained with production data.

Table 2: Estimated annual cost savings with intelligent pool-
ing for US (7 regions).

Target Wait (Hit rate) Static Pool SSA+ Savings SSA+ Savings mWDN
0.5s (∼99.9%) $>20M $>15M $>5M $>5M
1s (∼99%) $>15M $>10M $>5M $>5M
5s (∼95%) $>5M $>5M $>2M $>2M

target lower wait times. However, this is up to a certain point, after
which the difference in COGS reduces as the wait time approaches
zero; (2) SSA-based models fail to achieve very low wait times (e.g.,
<5) for both the 2-step (in Figure 5a) and the E2E approach (Fig-
ure 5b). However, for the mWDN model, by tuning the custom loss
function (Equation 12), we can further increase the penalty for long
wait times; (3) While we observe that an end-to-end pipeline has
better prediction performance to predict optimal pool size directly,
the trade-off curve suggests 2-step performs better (see Figure 5a
compared to Figure 5b).

Targeting 99% pool hit rate (the percentage of cluster requests
experiencing 0 wait time), the system achieves up to 43% reduction
in idle time compared to static pooling. The COGS savings given
different SLAs for customer wait time are shown in Table 2. With
Intelligent Pooling, compared to the simple heuristics of static
pooling, we are able to achieve large monetary savings.

7.4 Data Scaling
We evaluated the training time of the ML models using different
data sizes (see Figure 6). The hybrid model built on top of SSA has
a slightly increased training time compared to SSA, but it is still
extremely fast (200x faster) compared to the pure deep learningmod-
els (mWDN, TST or InceptionTime). In production, we deployed
the SSA+ model and trained it in an infinite loop, as it reaches
similar performance as mWDN with significantly reduced latency.
Compared with most ML pipelines where models are trained at a
lower frequency and preserved into model files to be fetched at the
inference time, such design significantly reduces the complexity
of maintenance and development. The latency of the optimization
module remains unchanged as the input data size equals the length
of the predicted time frame (which is set to 1 hour for the production
pipeline).

7.5 Production Deployment
Wedeployed Intelligent Pooling across all production regionswithin
Fabric in Nov 2023, with results showing great promise in signifi-
cantly reducing COGS (>60% for some production regions) and no
impact on other workers co-hosted. This pipeline is scheduled to
run in a continuous loop and generate pool size recommendations

1624



10 20 30 40
Input Data Duration (d)

0

2000

4000

6000

8000

10000

Tr
ai

ni
ng

 T
im

e 
(s

) 10061

54985110

2614

TST
IncpT
mWDN
SSA+
SSA

Figure 6: Training time vs input data size.

09
-01

 00

09
-01

 03

09
-01

 06

09
-01

 09

09
-01

 12

09
-01

 15

09
-01

 18

09
-01

 21

09
-02

 00
0

5

10

15

Jo
b 

Co
un

t

raw
filtered

Figure 7: Raw versus filtered demand.

for the next hour. Nevertheless, in one specific region, the ML pre-
dictions exhibit lower accuracy due to sporadic spikes occurring
approximately every 3 hours (albeit not precisely timed), posing
challenges for precise demand and spike arrival forecasting. To
bolster ML robustness and enhance pool hit rates, we implemented
the following strategies: (1) prior to ML training, we applied a max
filter to smooth the time-series data based on a SMOOTHING FAC-
TOR (SF), resulting in “fatter” spikes (see Figure 7) by replacing the
demand 𝐷 in Equation (1) with �̄� as in Equation (18); (2) for the
linear optimizer, we extended the STABILITY period to 10 minutes,
forcing Intelligent Pooling to recommend advanced pool size adjust-
ments to accommodate spikes; (3) we applied a max filter (similar to
Equation (18)) for the recommended pool size based using 𝑆𝐹 = 𝜏

to ensure that the pool size was increased for a sufficiently long
period of time for spiky demand. Utilizing all the strategies, In-
telligent Pooling effectively addresses demand spikes, and even
if they occur irregularly, the pool size is always sufficient. These
enhancements for model robustness were deployed in production,
leading to a further increase in COGS savings from 18% to 64% by
significantly reducing the pool size when demand is close to zero
while maintaining the hit rate to 100%.

�̄� (𝑡 ) =
{︃
max{𝐷 (𝑡 − ⌊SF/2⌉), ..., 𝐷 (𝑡 + ⌊SF/2⌉)) }, ∀𝑡 ≥ ⌊SF/2⌉
max{𝐷 (0), ..., 𝐷 (𝑡 + ⌊SF/2⌉) }, ∀𝑡 < ⌊SF/2⌉ (18)

Note that in production we: (1) run the the pipeline in a continu-
ous loop to update the pool size with high frequency, that requires
low the end-to-end latency of the algorithm (see Section 7); (2)
set up a guardrail to validate the ML model’s prediction accuracy
before running the downstream optimization; (3) set up an alerting
system for pipeline failures as well as a monitoring system such
that we can be informed and investigate any potential issues. And
we track the Intelligent Pooling status (succeeded, failed), metrics
of average idle time, recommended pool size, demand request rate,
pool miss/hit count/percentage, COGS saved, hydration status such
as number of clusters in provisioning/ready/targeted in real-time.
This comprehensive monitoring system is an essential part of the
Intelligent Pooling.

7.6 Fault Tolerance
Potential system failures arise from two main sources: (1) inference
pipeline failure and (2) other pooling worker issues. In terms of

algorithm failure, we ensure fault tolerance by generating recom-
mendations for the next hour for each run, while executing the
algorithm at more frequent intervals, e.g., 30 min. This safeguards
against a single run failure, as the system retains the previous rec-
ommendation output, albeit slightly outdated. Additionally, in the
case of consecutive system failures, leading to missing recommen-
dations, the inferencing reverts to default configurable values. A
health check is maintained that tracks a pooling worker’s assign-
ment status (locked or available). This involves periodic checks
to confirm consistent assignment to healthy workers, overseen by
the Arbitrator service. Each pooling task is leased to a worker and
undergoes refreshment upon lease expiration with periodic health
checks, ensuring regular health checks for all workers involved,
with prompt replacement of unhealthy ones.

8 RELATEDWORK
Performance modeling has been used to support proactive auto-
scaling of resources to meet specific service-level agreements (SLAs)
or Quality of Service (QoS) requirements [11–13, 25, 42, 43]. With
the advent of ML algorithms, research has been done in workload-
forecasting methods, specifically time-series analysis, to facilitate
resource management. [23] proposes a workload classifier based
on statistics such as maximum, coefficient of variation, etc., and
enumerates over a set of time-series forecasting algorithms, select-
ing the most appropriate one. [41] claims that 77% of the database
usage on Azure SQL Database Serverless is predictable and lever-
ages ML predictions to proactively pause and resume databases. To
automate the scheduling of backups for PostgreSQL and MySQL
servers, Seagull [40] tests different ML models (including Nim-
busML [37], GluonTS [7], and Prophet [17]) to forecast user load
for each specific server. The system identifies low-load windows
with 99% accuracy using a simple heuristic, and this solution has
been deployed across all Azure regions. However, there has been
limited research focusing on proactive resource provisioning to
reduce the cluster initialization latency for Spark applications.

CloudNet [47] introduced the dynamic pooling of VMs bymigrat-
ing networks, disks, and memory. However, in Fabric, VM pooling
is unpractical due to security and authentication issues as they need
to be transfered across pooled network. In this work, we focus on
cluster/session pooling.

9 CONCLUSION
In this work, we propose “pooling” (proactively provisioning) Spark
clusters and sessions to eliminate the initial startup latencies. In-
telligent Pooling involves predicting customer demand through
an innovative hybrid machine learning model and dynamically
adjusting the pool size to meet customer demand while reducing
extraneous COGS using linear programming with low latency and
high robustness. Evaluated using Fabric data, the system achieves
up to a 43% reduction in idle time compared to static pooling while
maintaining a 99% pool hit rate. Deployed in production, the sys-
tem is running robustly for several regions with significant COGS
savings by capturing the spiky demand patterns with dynamic pool
sizes. Future works involve the operation of multiple pools with
different configurations (cluster size, etc.).

1625



REFERENCES
[1] Zeeshan Ahmed, Saeed Amizadeh, Mikhail Bilenko, Rogan Carr, Wei-Sheng

Chin, Yael Dekel, Xavier Dupre, Vadim Eksarevskiy, Senja Filipi, Tom Finley, et al.
2019. Machine learning at Microsoft with ML. NET. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
2448–2458.

[2] A Aleksiyants, O Borisenko, D Turdakov, A Sher, and S Kuznetsov. 2015. Im-
plementing Apache Spark jobs execution and Apache Spark cluster creation for
Openstack Sahara. 27, 5 (2015), 35–48.

[3] Amazon. 2022. Amazon AWS. Retrieved July 2, 2022 from https://aws.amazon.
com

[4] Apache. 2022. Apache Flink. Retrieved July 2, 2022 from https://flink.apache.org
[5] Apache. 2022. Apache Storm. Retrieved July 2, 2022 from https://storm.apache.org
[6] AWS. 2022. Azure Synapse. Retrieved July 2, 2022 from https://aws.amazon.com/

emr/features/spark/
[7] Amazon AWS. 2022. GluonTS-Probabilistic Time Series Modeling in Python. Re-

trieved July 2, 2022 from https://ts.gluon.ai/stable/
[8] Francisco J Baldan, Sergio Ramirez-Gallego, Christoph Bergmeir, Francisco Her-

rera, and Jose M Benitez. 2016. A forecasting methodology for workload fore-
casting in cloud systems. IEEE Transactions on Cloud Computing 6, 4 (2016),
929–941.

[9] Luciano Baresi and Giovanni Quattrocchi. 2018. Towards vertically scalable spark
applications. In European Conference on Parallel Processing. Springer, 106–118.

[10] JV Bibal Benifa and DDejey. 2019. Rlpas: Reinforcement learning-based proactive
auto-scaler for resource provisioning in cloud environment. Mobile Networks
and Applications 24, 4 (2019), 1348–1363.

[11] Anshuman Biswas, Shikharesh Majumdar, Biswajit Nandy, and Ali El-Haraki.
2014. Automatic resource provisioning: a machine learning based proactive ap-
proach. In 2014 IEEE 6th International Conference on Cloud Computing Technology
and Science. IEEE, 168–173.

[12] Raouia Bouabdallah, Soufiene Lajmi, and Khaled Ghedira. 2016. Use of reactive
and proactive elasticity to adjust resources provisioning in the cloud provider.
In 2016 IEEE 18th International Conference on High Performance Computing and
Communications; IEEE 14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 1155–1162.

[13] Yuxing Chen, Jiaheng Lu, Chen Chen, Mohammad Hoque, and Sasu Tarkoma.
2019. Cost-effective resource provisioning for Spark workloads. In Proceed-
ings of the 28th ACM International Conference on Information and Knowledge
Management. 2477–2480.

[14] DataBricks. 2022. Best practices: pools for Databricks. Retrieved July 2, 2022 from
https://docs.databricks.com/clusters/instance-pools/pool-best-practices.html

[15] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[16] Nicole DeHoratius, Adam J Mersereau, and Linus Schrage. 2008. Retail inventory
management when records are inaccurate. Manufacturing & Service Operations
Management 10, 2 (2008), 257–277.

[17] Facebook. 2022. Prophet: Forecasting at scale. Retrieved July 2, 2022 from
https://facebook.github.io/prophet/

[18] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-
masamy. 2017. Dhalion: self-regulating stream processing in heron. Proceedings
of the VLDB Endowment 10, 12 (2017), 1825–1836.

[19] Nina Golyandina and Anton Korobeynikov. 2014. Basic singular spectrum
analysis and forecasting with R. Computational Statistics & Data Analysis 71
(2014), 934–954.

[20] Google. 2022. Google Cloud Platform. Retrieved July 2, 2022 from https://cloud.
google.com

[21] Google. 2022. Serverless Spark. Retrieved July 2, 2022 from https://cloud.google.
com/dataproc-serverless/docs

[22] Google. 2022. Spark through Vertex AI. Retrieved July 2, 2022 from https:
//cloud.google.com/vertex-ai-workbench

[23] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich Amrehn.
2013. Self-adaptive workload classification and forecasting for proactive resource
provisioning. In Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering. 187–198.

[24] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,
Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-
Alain Muller, and François Petitjean. 2020. Inceptiontime: Finding alexnet for
time series classification. Data Mining and Knowledge Discovery 34, 6 (2020),
1936–1962.

[25] Reihaneh Khorsand, Mostafa Ghobaei-Arani, and Mohammadreza Ramezanpour.
2019. A self-learning fuzzy approach for proactive resource provisioning in cloud
environment. Software: Practice and Experience 49, 11 (2019), 1618–1642.

[26] Anton J Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. 2002. The
sample average approximation method for stochastic discrete optimization. SIAM
Journal on Optimization 12, 2 (2002), 479–502.

[27] Yi-Hsuan Lee, Kuo-Chan Huang, Cheng-Hsien Wu, Yen-Hsuan Kuo, and Kuan-
Chou Lai. 2017. A Framework for Proactive Resource Provisioning in IaaS Clouds.

Applied Sciences 7, 8 (2017), 777.
[28] Jinzhao Liu, Yaoxue Zhang, Yuezhi Zhou, Di Zhang, and Hao Liu. 2014. Aggres-

sive resource provisioning for ensuring QoS in virtualized environments. IEEE
transactions on cloud computing 3, 2 (2014), 119–131.

[29] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A review of
auto-scaling techniques for elastic applications in cloud environments. Journal
of grid computing 12, 4 (2014), 559–592.

[30] Qinghua Lu, Liming Zhu, Xiwei Xu, Len Bass, Shanshan Li, Weishan Zhang,
and Ning Wang. 2014. Mechanisms and architectures for tail-tolerant system
operations in cloud. In 6th {USENIX}Workshop on Hot Topics in Cloud Computing
(HotCloud 14).

[31] Microsoft. 2022. Azure Data Explorer - Kusto. Retrieved July 2, 2022 from
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/

[32] Microsoft. 2022. Azure Fabric. Retrieved July 24, 2023 from https://learn.microsoft.
com/en-us/fabric/data-engineering/spark-compute

[33] Microsoft. 2022. Azure HDInsight. Retrieved July 2, 2022 from https://docs.
microsoft.com/en-us/azure/hdinsight/spark/apache-spark-overview

[34] Microsoft. 2022. Azure Synapse. Retrieved July 2, 2022 fromhttps://docs.microsoft.
com/en-us/azure/synapse-analytics/spark/apache-spark-overview

[35] Microsoft. 2022. Introduction to Cosmos DB. Retrieved July 2, 2022 from https:
//docs.microsoft.com/en-us/azure/cosmos-db/introduction

[36] Microsoft. 2022. Microsoft Azure. Retrieved July 2, 2022 from https://azure.
microsoft.com

[37] Microsoft. 2022. NimbusMLbu. Retrieved July 2, 2022 from https://docs.microsoft.
com/en-us/nimbusml/overview

[38] Peter P Nghiem and Silvia M Figueira. 2016. Towards efficient resource provi-
sioning in MapReduce. J. Parallel and Distrib. Comput. 95 (2016), 29–41.

[39] Yoori Oh, Jieun Choi, Eunjung Song, Moonji Kim, and Yoonhee Kim. 2016. A
SLA-based Spark cluster scaling method in cloud environment. In 2016 18th
Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE,
1–4.

[40] Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green, Manon
Knoertzer, Ehi Nosakhare, Karthik Rajendran, Deepak Shankargouda, Meina
Wang, Alan Au, Carlo Curino, Qun Guo, Alekh Jindal, Ajay Kalhan, Morgan
Oslake, Sonia Parchani, Vijay Ramani, Raj Sellappan, Saikat Sen, Sheetal Shrotri,
Soundararajan Srinivasan, Ping Xia, Shize Xu, Alicia Yang, and Yiwen Zhu.
2020. Seagull: An Infrastructure for Load Prediction and Optimized Resource
Allocation. In PVLDB. VLDB Endowment, 154–162.

[41] Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu, and
Ajay Kalhan. 2022. Moneyball: proactive auto-scaling in Microsoft Azure SQL
database serverless. PVLDB 15, 6 (2022), 1279–1287.

[42] Sabidur Rahman, Tanjila Ahmed, Minh Huynh, Massimo Tornatore, and
Biswanath Mukherjee. 2018. Auto-scaling VNFs using machine learning to
improve QoS and reduce cost. In 2018 IEEE International Conference on Commu-
nications (ICC). IEEE, 1–6.

[43] Jianfei Ruan, Qinghua Zheng, and Bo Dong. 2015. Optimal resource provision-
ing approach based on cost modeling for spark applications in public clouds.
In Proceedings of the Doctoral Symposium of the 16th International Middleware
Conference. 1–4.

[44] Kundjanasith Thonglek, Kohei Ichikawa, Chatchawal Sangkeettrakarn, and Api-
vadee Piyatumrong. 2021. Auto-scaling system in apache spark cluster using
model-based deep reinforcement learning. In Heuristics for Optimization and
Learning. Springer, 347–360.

[45] Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. 2018. Multilevel wavelet
decomposition network for interpretable time series analysis. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2437–2446.

[46] Wikipedia. 2023. Pareto front. https://en.wikipedia.org/wiki/Pareto_front.
[47] TimothyWood, KK Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe.

2011. CloudNet: dynamic pooling of cloud resources by live WAN migration of
virtual machines. ACM Sigplan Notices 46, 7 (2011), 121–132.

[48] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster computing with working sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 10).

[49] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. 2016. Apache spark: a unified engine for big data processing.
Commun. ACM 59, 11 (2016), 56–65.

[50] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty,
and Carsten Eickhoff. 2021. A transformer-based framework for multivariate
time series representation learning. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 2114–2124.

[51] Xiaoxi Zhang, Chuan Wu, Zongpeng Li, and Francis CM Lau. 2017. Proactive
VNF provisioning with multi-timescale cloud resources: Fusing online learning
and online optimization. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 1–9.

[52] Yiwen Zhu, Subru Krishnan, Konstantinos Karanasos, Isha Tarte, Conor Power,
Abhishek Modi, Manoj Kumar, Deli Zhang, Kartheek Muthyala, Nick Jurgens,

1626

https://aws.amazon.com
https://aws.amazon.com
https://flink.apache.org
https://storm.apache.org
https://aws.amazon.com/emr/features/spark/
https://aws.amazon.com/emr/features/spark/
https://ts.gluon.ai/stable/
https://docs.databricks.com/clusters/instance-pools/pool-best-practices.html
https://facebook.github.io/prophet/
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com/dataproc-serverless/docs
https://cloud.google.com/dataproc-serverless/docs
https://cloud.google.com/vertex-ai-workbench
https://cloud.google.com/vertex-ai-workbench
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://learn.microsoft.com/en-us/fabric/data-engineering/spark-compute
https://learn.microsoft.com/en-us/fabric/data-engineering/spark-compute
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-overview
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-overview
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://azure.microsoft.com
https://azure.microsoft.com
https://docs.microsoft.com/en-us/nimbusml/overview
https://docs.microsoft.com/en-us/nimbusml/overview
https://en.wikipedia.org/wiki/Pareto_front


et al. 2021. KEA: Tuning an Exabyte-Scale Data Infrastructure. In Proceedings of the 2021 International Conference on Management of Data. 2667–2680.

1627


	Abstract
	1 Introduction
	2 Background
	3 Intelligent Pooling Overview
	4 Sample Average Approximation Optimizer
	4.1 The Live Pool Mechanism
	4.2 Optimal Pool Size

	5 ML Predictor
	5.1 Cost-Performance Trade-offs
	5.2 Limitations
	5.3 blackHybrid Model: SSA+
	5.4 End-to-end Recommendation Engines

	6 Auto Tuning Parameters
	7 Experiment
	7.1 Sample Average Approximation (SAA) optimizer
	7.2 ML Model Comparison
	7.3 End-to-end Pipeline
	7.4 Data Scaling
	7.5 Production Deployment
	7.6 Fault Tolerance

	8 Related Work
	9 Conclusion
	References

