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ABSTRACT
Outlier detection is crucial for preventing financial fraud, network

intrusions, and device failures. Users often expect systems to au-

tomatically summarize and interpret outlier detection results to

reduce human effort and convert outliers into actionable insights.

However, existing methods fail to effectively assist users in identify-

ing the root causes of outliers, as they only pinpoint data attributes

without considering outliers in the same subspace may have differ-

ent causes.

To fill this gap, we propose STAIR, which learns concise and

human-understandable rules to summarize and explain outlier de-

tection results with finer granularity. These rules consider both

attributes and associated values. STAIR employs an interpretation-

aware optimization objective to generate a small number of rules

with minimal complexity for strong interpretability. The learning

algorithm of STAIR produces a rule set by iteratively splitting the

large rules and is optimal in maximizing this objective in each it-

eration. Moreover, to effectively handle high dimensional, highly

complex data sets that are hard to summarize with simple rules, we

propose a localized STAIR approach, called L-STAIR. Taking data

locality into consideration, it simultaneously partitions data and

learns a set of localized rules for each partition. Our experimental

study on many outlier benchmark datasets shows that STAIR signif-

icantly reduces the complexity of the rules required to summarize

the outlier detection results, thus more amenable for humans to

understand and evaluate.

PVLDB Reference Format:
Yuhao Deng, Yu Wang, Lei Cao, Lianpeng Qiao, Yuping Wang, Jingzhe Xu,

Yizhou Yan, and Samuel Madden. Outlier Summarization via Human

Interpretable Rules. PVLDB, 17(7): 1591 - 1604, 2024.

doi:10.14778/3654621.3654627

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/baodaBBji/anonymous-Tech-Report.

Lianpeng Qiao and Yuping Wang are the corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.

doi:10.14778/3654621.3654627

1 INTRODUCTION
Motivation. Outlier detection is critical in enterprises, with ap-

plications ranging from preventing financial fraud in finance and

defending network intrusions in cyber security, to detecting immi-

nent device failures in IoT.

To turn outliers into actionable insights, users often expect an

outlier detection system to produce human understandable infor-

mation to explain the detected outliers. Otherwise, these outliers

are just a set of isolated data objects without any indication of

their significance to users. It is thus hard for the users to quickly

diagnose the key factors that cause the outliers and fix the prob-

lems promptly. Further, outlier detection frequently returns a large

number of outlier candidates. This raises the problem of how to

best present results such that the users do not have to sift through

a huge number of results to assess the validity of the outliers one

by one.

If a system is able to summarize outlier detection results into

groups and explicitly explain why each group of objects is consid-

ered to be abnormal or normal, this will greatly reduce the effort of

users in evaluating outlier detection results.

State-of-the-Art. In the literature, some works target explain-

ing outliers. Scorpion [69] produces meaningful explanations for

anomalies in aggregation queries when the ‘cause’ of an outlier is

contained in its provenance. Similar to Scorpion, Cape [47] aims to

explain the outliers in aggregation queries, but using the objects

that counterbalance the outliers. Both works do not tackle the prob-

lem of summarizing outliers. Macrobase [17] explains outliers by

mining the association between the outliers and some external at-

tributes which are not used to detect anomalies such as the location

of the sensors, time of occurrence, software version, etc.

Similarly, LookOut [36] identifies some attribute pairs to explain

the detected outliers. These attribute pairs, if used to detect outliers,

will produce similar results to detecting outliers on all attributes,

thus potentially the key factors that make the outliers ‘abnormal’.

Intuitively, we could adapt LookOut to summarize the detected

outliers, for example, by grouping the outliers together if they can be

identified by the same set of attributes. However, summarizing and

explaining outliers at the attribute level is problematic. Even if some

outliers can be captured by analyzing the same set of attributes,

potentially they could be caused by totally different problems and

hence do not necessarily share similar properties. As an example,
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when using outlier detection techniques to detect spoofing in social

networks, although some anomalies can be detected by analyzing

the event location and time, it is unlikely that the anomalies that

occur at totally different locations or times are strongly correlated.

Therefore, explaining and summarizing outliers at this coarse-
grained, attribute level is not sufficient to help the users quickly

identify the key factors resulting in the detected outliers. In this

work, we thus propose a fine-grained methodology that takes the

value of the attributes into consideration. That is, in addition to a

set of attributes, it also reveals to the users the conditions that these
attributes should satisfy to make the outliers stand out.

Challenges. Summarizing and interpreting outliers at this fine-

granularity is challenging because taking the values of the data

objects into consideration will lead to a prohibitively large search

space, exponential to the number of attributes and their distinct

values. On the other hand, this summarization and interpretation

still has to be easily understandable for the human.

Proposed Approach. In this work, we propose STAIR, which

effectively produces a set of fine-grained human understandable

abstractions, each describing the common properties of a group of

detection results. This allows the users to efficiently verify a large

number of outlier detection results and diagnose the key factors

resulting in the potential outliers by only examining a small set of

interpretable abstractions.

Rule-based Outlier Summarization and Interpretation. STAIR

adapts the classical decision tree classification to learn a compact

set of human understandable rules to summarize and explain the

outlier detection results. Using the results produced by an outlier

detection method as training data, STAIR learns a decision tree to

accurately separate outliers and inliers in the training set. Each

branch of the decision tree is composed of a set of data attributes
with associated values that iteratively split the data. Therefore, it

can be thought of as a rule that represents a subset of data sharing
the same class (outlier or inlier) and that is easy to understand by

humans.

Outlier Summarization and Interpretation-aware Objective. How-

ever, decision tree algorithms target maximizing the classification

accuracy. Rules learned in this way do not necessarily have the

properties desired by outlier summarization and interpretation.

This is because when handling highly complex data sets, to

minimize classification errors, decision trees often have to be deep
trees withmany branches and hence produce a lot of complex rules

which are hard for humans to understand. Although some methods

like CART [20] have been proposed to prune a learned decision

tree in a post-processing step, they target avoiding overfitting and

thus lifting the classification accuracy. They do not guarantee the

simplicity of each rule.

To solve the above issues, we propose a new optimization ob-

jective customized to outlier summarization and interpretation. It

targets producing a minimal number of rules that are as simple as

possible, while still assuring the classification accuracy. However,

the simplicity requirement of outlier summarization and interpre-

tation conflicts with the accuracy requirement, while it is hard

for the users to manually set an appropriate regularization term

to balance the two requirements. STAIR thus introduces a learn-

able regularization parameter into the objective and relies on the

learning algorithm to automatically make the trade-off.

Rule Generation Algorithm. We then design an optimization algo-

rithm to generate the summarization and interpretation-aware rules.

Similar to the classic decision tree algorithms [29], STAIR produces

a rule set by iteratively splitting the decision node. In each iteration,

STAIR dynamically adjusts the regularization parameter to ensure

that it is always able to produce a valid split which increases the

objective. We prove that the regularization parameter and the rule

split that STAIR learns in each iteration as a combination is optimal
in maximizing the objective. Note like the classical decision tree

algorithms, STAIR is able to handle both numerical and categorical

values, thus applicable to various types of datasets.

Localized Outlier Summarization and Interpretation. To solve the

problem that one single decision tree with a small number of sim-

ple rules is not adequate to satisfy the accuracy requirement when

handling high dimensional, highly complex data sets, we propose a

localized STAIR approach, called L-STAIR. Taking data locality into

consideration, L-STAIR divides the whole data set into multiple

partitions and learns a localized tree for each partition. Rather than

first partitioning the data and then learning the localized tree in

two disjoint steps, L-STAIR jointly solves the two sub-problems.

In each iteration, it optimizes the data partitioning and rule gener-

ation objectives alternatively and is guaranteed to converge to a

partitioning that can be summarized with simple rules.

Contributions. The key contributions of this work include:

• To the best of our knowledge, STAIR is the first approach that

summarizes the outlier detection results with human interpretable

rules, and it is generally applicable for summarizing the prediction

results of any binary classification models.

• We define an outlier summarization and interpretation-aware

optimization objective which targets producing the minimal num-

ber of rules with the least complexity, while still guaranteeing the

classification accuracy.

• We design a rule generation method that is optimal in optimiz-

ing the STAIR objective in each iteration.

• We propose a localized STAIR approach which jointly partitions

the data and produces rules for each local partition, thus scaling

STAIR to high dimensional, highly complex data.

• Our extensive experimental study using 10 datasets demon-

strates that compared to 7 rule-based methods that explain outliers

and machine learning prediction, STAIR significantly reduces the

complexity and the number of rules required to summarize outlier

detection results.

2 PRELIMINARY: DECISION TREE
In this section, we overview the decision tree classification problem

and its classical learning algorithms.

Decision Tree Overview. Decision tree learning is a classical clas-

sification technique where the learned function can be represented

by a decision tree. It classifies instances by sorting them down the

tree from the root to the leaf node, which could predict the label of

this instance. Each node in the tree denotes the test of the specific

attribute, and the instance is classified by moving down the tree
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branch from this node according to the value of the attribute in the

given example.

Learning Algorithms.Most algorithms learn the decision trees

in a top-down, greedy search manner such as ID3 [54] and its

successor C4.5 [55]. The basic algorithm, ID3, will run a statistical
test on choosing the instance attribute to determine how well it

could classify the data points. From the root node, the algorithmwill

find the best attribute to form branches and then put all the training

examples into the corresponding child nodes. It then repeats this

entire process using the training data associated with the child

nodes to select the appropriate attribute and value for the current

node and form new branches from the child nodes.

InformationGain-based Statistical Test.There are several strate-
gies for the statistical test in each step. One of the most popular

tests is information gain, which measures how well a given attribute

could separate the training examples. Before giving the precise defi-

nition of information gain, we need to give the definition of entropy
first. Given a data collection 𝑆 , containing positive and negative

examples, the entropy of 𝑆 is:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) = −𝑝+ log2 𝑝+ − 𝑝− log2 𝑝− (1)

where 𝑝+ and 𝑝− are the proportion of positive and negative exam-

ples in 𝑆 , respectively.

Next, we give the formulation of the information gain of an

attribute 𝐴 with split value 𝑣 , relative to a collection of examples 𝑆 :

𝐺𝑎𝑖𝑛(𝑆,𝐴, 𝑣) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) −
∑︁

𝑏∈𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠

|𝑆𝑏 |
|𝑆 | 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑏 ) (2)

where Branches contains two branches, each of which has the train-

ing examples with attribute 𝐴 smaller or larger than the value 𝑣 ,

respectively. 𝑆𝑏 refers to the collection of examples from branch 𝑏.

The learning algorithm iteratively splits nodes and forms branches

by maximizing Eq. 2 at each step.

Learning the decision tree in this way is equivalent to maximiz-

ing the global objective:

max

∑︁
𝑙∈𝐿

𝑛𝑙 (1 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑙 )) (3)

where 𝑆𝑙 represents the collection of training examples in the

leaf node 𝑙 and 𝑛𝑙 represents the number of examples falling into

node 𝑙 .

3 RULE-BASED SUMMARIZATION AND
INTERPRETATION

In this section, we first give the definition of rule and then ex-

plain why rules are good at summarizing and interpreting outlier

detection results.

Definition 3.1. Given a data set D in a N-dimensional feature

space [x1, x2, · · · , xN ], a Rule 𝑅𝑖 is defined as Ri = (a1 ≤ xi
1 ≤ b1)

∧ (a2 ≤ xi
2 ≤ b2), · · · , ∧ (aj ≤ xi

j ≤ bj), · · · , ∧ (aL ≤ xi
L ≤ bL). ∀

clause (aj ≤ xi
j ≤ bj) of 𝑅𝑖 , 𝑥𝑖𝑗 corresponds to one attribute 𝑥 𝑗 ∈

{𝑥1, 𝑥2, · · · , 𝑥𝑁 }; 𝑎 𝑗 and 𝑏 𝑗 (𝑎 𝑗 < 𝑏 𝑗 ) fall in the domain range of

attribute 𝑥 𝑗 . 𝐿 indicates the number of attributes in rule 𝑅𝑖 , or the

length of 𝑅𝑖 .

(a) Rules

Yes

�

��

No

No Yes

(b) Decision Tree

Figure 1: Example of rules and decision tree. The blue par-
tition covered by 𝑅𝑢𝑙𝑒1 represents inliers, while the brown
partitions covered by 𝑅𝑢𝑙𝑒2 and 𝑅𝑢𝑙𝑒3 represent outliers.

By Def. 3.1, a rule 𝑅𝑖 corresponds to a conjunction of domain

value intervals, each with respect to some attribute 𝑥 𝑗 . Rule 𝑅𝑖
covers a data subset D𝑖 ⊆, where ∀ object 𝑑𝑖 ∈ D𝑖 , the attributes of
object 𝑑𝑖 fall into the corresponding interval.

In the decision tree model [61], each branch corresponds to

one rule. Fig. 1(a) shows a toy decision tree 𝑇𝑖 learned from a

2-dimensional data set D. 𝑇𝑖 classifies the objects in D into out-

liers and inliers. It has three branches, corresponding to 3 rules:

R1 = (−2 ≤ x1 ≤ 2), R2 = (x1 > 2), and R3 = (x1 < −2). All rules
only contain one attribute 𝑥1. Rules 𝑅2 and 𝑅3 are lower bounded

or upper bounded only. Thus the length of these rules is one.

Note the length of a rule is not equivalent to the depth of the

tree. The depth of the decision tree in Figure 1(b) is two, while the

lengths of the three rules are all one. Even if the decision tree gets

deeper, the lengths of the rules could still be small. This is because

a decision tree could use one attribute multiple times on one single

branch (rule).

These rules classify the whole data set into three different parti-

tions. Rule 𝑅1 covers all inliers inD, while both 𝑅2 and 𝑅3 represent
outliers.

Rules effectively summarize and interpret the outliers and inliers

in the data. The merit is twofold. First, each rule covers a set of

inliers or outliers. Therefore, rather than exhaustively evaluating

a large number of outliers or inliers one by one, the users now

only have to evaluate a small number of rules, thus saving a huge

amount of human effort. Second, the rules are human interpretable,

helping the users easily understand why an object is considered

as outlier or inlier and identify the root cause of the outliers. For

example, rules 𝑅2 and 𝑅3 intuitively tell users that some objects are

abnormal because their 𝑥1 values are too large or too small.

4 THE OPTIMIZATION OBJECTIVE OF RULES
GENERATION

4.1 The Insufficiency of Classic Decision Trees
Intuitively, to produce rules effectively summarizing and interpret-

ing the outlier detection results, we could directly apply the classical

decision tree algorithms such as ID3 [29]. That is, we use the output

of the outlier detection method as ground truth labels to train a

decision tree model and then extract rules from the learned decision

tree.
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However, decision tree algorithms target producing rules that

maximize classification accuracy. The rules learned in this way do

not necessarily have the desired properties when used in outlier

summarization and interpretation, for the following reasons:

First, they may produce rules that contain many attributes and

thus are too complicated for humans to evaluate. For example,

humans can easily understand and reason on a rule with a couple of

attributes such as the rules in Fig. 1, while it will be much harder for

humans to obtain any meaningful information from a complicated

rule with many attributes. For instance, the rule with 20 attributes

𝑎1 ≤ 𝑥1 ≤ 𝑏1, · · · , 𝑎20 ≤ 𝑥20 ≤ 𝑏20 will be almost impossible for

human to understand.

Second, to maximize the classification accuracy they may pro-

duce many rules. However, to reduce the human evaluation efforts,

ideally, we want to produce as few rules as possible.

The above situations could happen when handling highly com-

plex data sets which often require a deep tree with many branches.

4.2 Summarization and Interpretation-aware
Objective

To address the above concerns, we design an optimization objective

customized to outlier summarization and interpretation. It targets

producing a minimal number of rules that are as simple as possible,

while still guaranteeing the classification accuracy. The objective

is composed of two sub-objectives, namely length objective and
entropy objective.
Length Objective. To minimize the number of rules as well as

bounding the complexity of each rule, we first introduce an objec-

tive with respect to the lengths of the rules in the rule set R:

min

R
L(R), where L(R) =

∑︁
𝑟𝑖 ∈R

𝐿 (𝑟𝑖 ) (4)

s.t. 𝐿 (𝑟𝑖 ) ≤ 𝐿𝑚

In Eq. 4, R denotes a rule set. 𝐿(𝑟𝑖 ) denotes the length of a rule

𝑟𝑖 in R. 𝐿𝑚 is the predefined maximal length of each rule that the

users allow. Essentially, the total length of all rules represents the

complexity of the learned model. Minimizing it will effectively

reduce the number of rules, while at the same time simplifying

each rule.

Entropy Objective. To maximize the classification accuracy of the

derived model, we adopt the entropy-based optimization objective

from the classical decision tree algorithms [29], i.e. ID3 and C4.5,

as illustrated in Sec. 2.

max

R
S(R), where S(R) =

∑︁
𝑟𝑖 ∈R

𝑛𝑟𝑖𝐸 (𝑟𝑖 ) (5)

In Equation 5, 𝐸 (𝑟𝑖 ) corresponds to 1 − Entropy(r). Maximizing

Eq. 5 effectively maximizes the classification accuracy.

Combing Eq. 5) and Eq. 4), our summarization and interpretation-

aware objective (Eq. 7) maximizes the classification accuracy, while

at the same time minimizing the total length of the rules.

max

R
S(R) =

∑
𝑟𝑖 ∈R 𝑛𝑟𝑖𝐸 (𝑟𝑖 )∑
𝑟𝑖 ∈R 𝐿 (𝑟𝑖 )

(6)

s.t. 𝐿 (𝑟𝑖 ) ≤ 𝐿𝑚, 𝐹1(R) > 𝐹1𝑚

where 𝐿𝑚 corresponds to the maximal length of a rule that the

users allow, while 𝐹1𝑚 is a predefined requirement on classifica-

tion accuracy which is measured by F1 score in the case of outlier

detection.

Optimization Issue. However, in practice we observed that this

objective caused issues in the optimization process. Maximizing

the entropy objective typically will lead to more complex rules and

in turn the increase of the length objective. However, the length

objective often increases faster than the entropy objective. There-

fore, the overall objective (Eq. 6) tends to stop increasing in a few

iterations.

Final Objective: Introducing a Stabilizer. To solve this prob-

lem, we introduce a stabilizer 𝑀 into the length objective – the

denominator of Eq. 6:

max

R,𝑀
S(R,M) =

∑
𝑟𝑖 ∈R 𝑛𝑟𝑖𝐸 (𝑟𝑖 )∑
𝑟𝑖 ∈R 𝐿 (𝑟𝑖 ) +𝑀

(7)

s.t. 𝐿 (𝑟𝑖 ) ≤ 𝐿𝑚, 𝐹1(R) > 𝐹1𝑚

The stabilizer 𝑀 mitigates the impact of the quickly increas-

ing length objective. It ensures that the length objective does not

dominate our summarization and interpretation-aware objective.

Intuitively, in the extreme case of setting𝑀 to an infinitely large

value, the increase of the total rule length is negligible to the objec-

tive. Now maximizing Eq. 7 in fact is equivalent to the traditional

entropy-based decision tree.

Auto-learning Stabilizer M. An appropriate value of𝑀 is critical

to the quality of the learned rules. However, relying on the users to

manually tune it is difficult. First,𝑀 can be any positive value and

thus has an infinite number of options. Second, ideally,𝑀 should

dynamically change to best fit the evolving rule set produced in the

iterative learning process. Therefore, rather than make it a hyper-

parameter, 𝑀 is a learnable parameter in our objective function

Eq. 7.

5 STAIR: RULE GENERATION METHOD
This section introduces our SummarizaTion And Interpretation-

aware Rule generation method (STAIR). Similar to the classic deci-

sion tree algorithms [29], STAIR produces a rule set by iteratively

splitting the decision node. We prove that in each iteration STAIR

is optimal in maximizing our objective in Eq. 7.

Below we first give the overall process of STAIR:

(1) Initialize the stabilizer𝑀 in Eq. 7 to zero;

(2) Increase the value of𝑀 ;

(3) Find a node to split that could increase the objective in Eq. 7;

go to step 2.

In short, STAIR iteratively increases the value of 𝑀 and splits

the nodes. Next, we first show that the value of𝑀 is critical to the

performance of STAIR and then introduce a method to calculate

the optimal value of𝑀 at each iteration.

5.1 The Value of M Matters
Given a set of rules R, dividing a node 𝑛 is tantamount to parti-

tioning a rule 𝑟 in R into two separate rules 𝑟1 and 𝑟2, where 𝑟1
and 𝑟2 correspondingly conclude at the two child nodes of node

𝑛. For a given 𝑀 and a set of rules R, we define a split sp(R,M)
to be valid if S(R\{r} ∪ {r1, r2},M) > S(R,M). That is, a valid

1594



split will increase the objective defined in Eq. 7. For the ease of

presentation, we use S(R′,M) to denote S(R\{r} ∪ {r1, r2},M)
Next, we show the smallest𝑀 that could produce a valid split is

optimal in maximizing Eq. 7.

Theorem 5.1. Monotonicity Theorem. Given a rule set R, if𝑀𝑎

> 𝑀𝑏 , then S(R′a,Ma) is guaranteed to be smaller than S(R′b,Mb),
where R′a, R′𝑏 denotes the rule set produced by a valid split on R that
maximizes the objective given𝑀𝑎 or𝑀𝑏 .

Proof. Because𝑀𝑎 > 𝑀𝑏 , we have:

𝑆 (R′𝑎, 𝑀𝑎 ) =
∑

𝑟 ∈R′𝑎 𝑛𝑟𝐸 (𝑟 )∑
𝑟 ∈R′𝑎 𝐿 (𝑟 ) +𝑀𝑎

<

∑
𝑟 ∈R′𝑎 𝑛𝑟𝐸 (𝑟 )∑

𝑟 ∈R′𝑎 𝐿 (𝑟 ) +𝑀𝑏

= 𝑆 (R′𝑎, 𝑀𝑏 ) (8)

Because R′
𝑏
corresponds to the best split given𝑀𝑏 , we obtain:

𝑆 (R′𝑎, 𝑀𝑏 ) ≤ 𝑆 (R′
𝑏
, 𝑀𝑏 ) (9)

From Eq. 8 and Eq. 9, we have:

S(R′𝑎, 𝑀𝑎 ) < S(R′𝑏 , 𝑀𝑏 ) (10)

This concludes our proof. □

5.2 Calculating the Optimal𝑀
By Theorem 5.1, to maximize the objective at each iteration, it is

necessary to search for the smallest value of𝑀 that could produce

a valid split. Intuitively we could find the optimal𝑀 by gradually

increasing the value of𝑀 at a fixed step size. However, this is neither

effective nor efficient, because it is hard to set an appropriate step

size. If it is too large, STAIR might miss the optimal 𝑀 . On the

other hand, if the step size is too small, STAIR risks incurring many

unnecessary iterations not producing any valid splits.

To solve the above problem, we introduce a method that uses

the concept of boundary stabilizer to directly calculate the optimal

𝑀 . Moreover, the best splitting is discovered as the by-product of

this step.

We use𝑀𝑜 to denote the optimal𝑀 . Because𝑀𝑜 is the smallest

𝑀 that could produce a valid split, then ∀𝑟0 and ∀𝑟1, 𝑟2, where 𝑟1
and 𝑟2 represent the rules produced by splitting rule 𝑟0, Eq. 11 holds:

S(R, 𝑀 ) > S(R\{𝑟0} ∪ {𝑟1, 𝑟2}, 𝑀 ), ∀𝑀 < 𝑀𝑜 (11)

Boundary Stabilizer M. To compute𝑀𝑜 , we first define a bound-

ary𝑀 denoted as𝑀𝑏 which makes Equation 12 hold:

S(R, 𝑀𝑏 ) = S(R\{𝑟0} ∪ {𝑟1, 𝑟2}, 𝑀𝑏 ) (12)

By Eq. 12, setting the 𝑀 to 𝑀𝑏 will produce a split that does not

change the objective. That is, under𝑀𝑏 no valid split will increase

the objective. However, there exists a split that does not decrease

the objective. So𝑀𝑏 is called the boundary𝑀 ,

We then expand Eq. 12 as follows:∑
𝑟 ∈R\{𝑟0} 𝑛𝑟𝐸 (𝑟 ) + 𝑛𝑟0𝐸 (𝑟0 )∑
𝑟 ∈R\{𝑟0} 𝐿 (𝑟 ) + 𝐿 (𝑟0 ) +𝑀𝑏

=

∑
𝑟 ∈R\{𝑟0} 𝑛𝑟𝐸 (𝑟 ) + 𝑛𝑟1𝐸 (𝑟1 ) + 𝑛𝑟2𝐸 (𝑟2 )∑
𝑟 ∈R\{𝑟0} 𝐿 (𝑟 ) + 𝐿 (𝑟1 ) + 𝐿 (𝑟2 ) +𝑀𝑏

(13)

We define𝐴 =
∑
𝑟 ∈R\{𝑟0 } 𝑛𝑟𝐸 (𝑟 ), 𝐵 =

∑
𝑟 ∈R\{𝑟0 } 𝐿(𝑟 ), and𝐴0 =∑

𝑟 ∈R 𝑛𝑟𝐸 (𝑟 ), 𝐵0 =
∑
𝑟 ∈R 𝐿(𝑟 ), then Eq. 13 could be rewritten as:

𝐴 + 𝑛𝑟0𝐸 (𝑟0 )
𝐵 + 𝐿 (𝑟0 ) +𝑀𝑏

=
𝐴 + 𝑛𝑟1𝐸 (𝑟1 ) + 𝑛𝑟2𝐸 (𝑟2 )
𝐵 + 𝐿 (𝑟1 ) + 𝐿 (𝑟2 ) +𝑀𝑏

(14)

Then after some mathematical transformation, we obtain:

𝑀𝑏 (𝑛𝑟1𝐸 (𝑟1 ) + 𝑛𝑟2𝐸 (𝑟2 ) − 𝑛𝑟0𝐸 (𝑟0 ) )
= 𝑛𝑟0𝐸 (𝑟0 ) (𝐿 (𝑟1 ) + 𝐿 (𝑟2 ) ) +𝐴(𝐿 (𝑟1 ) + 𝐿 (𝑟2 ) − 𝐿 (𝑟0 ) )
− 𝐵 (𝑛𝑟1𝐸 (𝑟1 ) + 𝑛𝑟2𝐸 (𝑟2 ) − 𝑛𝑟0𝐸 (𝑟0 ) )
− (𝑛𝑟1𝐸 (𝑟1 ) + 𝑛𝑟2𝐸 (𝑟2 ) )𝐿 (𝑟0 ) (15)

Denoting ∆L = L(r1) + L(r2) − L(r0) and

∆E = nr1 E(r1) + nr2 E(r2) − nr0 E(r0), we simplify Eq. 15 to:

𝑀𝑏Δ𝐸 = 𝑛𝑟0𝐸 (𝑟0 ) (𝐿 (𝑟1 ) + 𝐿 (𝑟2 ) ) +𝐴Δ𝐿 − 𝐵Δ𝐸

− (𝑛𝑟1𝐸 (𝑟1 ) + 𝑛𝑟2𝐸 (𝑟2 ) )𝐿 (𝑟0 )
= 𝐴Δ𝐿 − 𝐵Δ𝐸 + 𝑛𝑟0𝐸 (𝑟0 )Δ𝐿 − 𝐿 (𝑟0 )Δ𝐸
= (𝐴 + 𝑛𝑟0𝐸 (𝑟0 ) )Δ𝐿 − (𝐵 + 𝐿 (𝑟0 ) )Δ𝐸 (16)

𝑀𝑏 = 𝐴0

Δ𝐿

Δ𝐸
− 𝐵0, ∀𝑟0 ∈ R, ∀𝑟1, 𝑟2 (17)

∀𝑀 > 𝑀𝑏 , with the same 𝑟0 and 𝑟1, 𝑟2 in Eq. 12, Eq. 15 becomes:

𝑀 (𝑛𝑟1𝐸 (𝑟1 ) + 𝑛𝑟2𝐸 (𝑟2 ) − 𝑛𝑟0𝐸 (𝑟0 ) )
> 𝑛𝑟0𝐸 (𝑟0 ) (𝐿 (𝑟1 ) + 𝐿 (𝑟2 ) ) +𝐴(𝐿 (𝑟1 ) + 𝐿 (𝑟2 ) − 𝐿 (𝑟0 ) )
− 𝐵 (𝑛𝑟1𝐸 (𝑟1 ) + 𝑛𝑟2𝐸 (𝑟2 ) − 𝑛𝑟0𝐸 (𝑟0 ) )
− (𝑛𝑟1𝐸 (𝑟1 ) + 𝑛𝑟2𝐸 (𝑟2 ) )𝐿 (𝑟0 ) (18)

Note that with expanding 𝑟0 to 𝑟1, 𝑟2, the entropy of the rules must

be lower, which means 𝑛𝑟1𝐸 (𝑟1) + 𝑛𝑟2𝐸 (𝑟2) − 𝑛𝑟0𝐸 (𝑟0) > 0.

Then from Eq. 15 to Eq. 12, we easily obtain Eq. 19 from Eq. 18:

S(R, 𝑀 ) < S(R\{𝑟0} ∪ {𝑟1, 𝑟2}, 𝑀 ), ∀𝑀 > 𝑀𝑏 (19)

That is, an 𝑀 larger than 𝑀𝑏 is guaranteed to produce a valid

split – splitting rule 𝑟0 to 𝑟1 and 𝑟2.

Calculating Optimal M. According to the Monotonicity theorem

(Theorem 5.1), a smallest𝑀 is the best in maximizing the objective.

Therefore, STAIR can directly calculate𝑀𝑜 using Eq. 20:

𝑀𝑜 > min

Δ𝐿/Δ𝐸
𝐴0

Δ𝐿

Δ𝐸
− 𝐵0, ∀𝑟0 ∈ R, ∀𝑟1, 𝑟2 (20)

That is, STAIR first finds a rule 𝑟0 from R that after split into two

rules, produces the smallest 𝐴0

Δ𝐿
Δ𝐸 . STAIR then sets𝑀𝑜 as a value

larger than
Δ𝐿
Δ𝐸 - 𝐵0. In this way, STAIR successfully calculates the

optimal𝑀 and finds the best split in one step, making its learning

process effective yet efficient.

5.3 STAIR Learning Algorithm
Algorithm 1 shows the learning process of STAIR. It starts with

initializing𝑀 as 0 (Line 1) and uses a min heap structure 𝐻 to keep

all nodes. Similar to the decision tree algorithms, it initializes 𝐻

to contain only the root node (Line 2). It then sets the rule set R
to contain only one rule 𝑟0 corresponding to the root node (Line

3). By default, rule 𝑟0 classifies all training samples as inliers. Then

based on Eq. 20, STAIR iteratively extracts a rule 𝑟0, calculates ( Δ𝐿Δ𝐸 ),
updates M, and splits 𝑟0 into two rules 𝑟1 and 𝑟2. After each split,

it calculates ( Δ𝐿Δ𝐸 ) with respect to 𝑟1/𝑟2, refreshes the rule set R
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Algorithm 1: Learning Algorithm of STAIR

Input: Training data 𝑋 , 𝐹1 score threshold 𝐹1𝑚
Output: The target rule set.

1 Initialize𝑀 to be zero;

2 Initialize the min heap 𝐻 to contain only the root node;

3 Set the rule set R = {𝑟0};
4 𝐴0 = 𝑛𝐸 (𝑟0), 𝐵0 = 0;

5 while True do
6 extract from 𝐻 a rule 𝑟0 which has the minimal

Δ𝐿
Δ𝐸 ;

7 Set𝑀 = 𝐴0 ( Δ𝐿Δ𝐸 )𝑟0 − 𝐵0;
8 while the minimal ( Δ𝐿Δ𝐸 )𝑟0 from 𝐻 ≤ 𝑀+𝐵0

𝐴0

do
9 Extract rule 𝑟0 with the minimal ( Δ𝐿Δ𝐸 )𝑟0 from 𝐻 ;

10 Split 𝑟0 into 𝑟1, 𝑟2 ;

11 Insert 𝑟1, 𝑟2 into R and 𝐻 ; Maintain the heap 𝐻

according to ( Δ𝐿Δ𝐸 )𝑟1 and (
Δ𝐿
Δ𝐸 )𝑟2 ;

12 𝐴0 ← 𝐴0 + 𝐸 (𝑟1) + 𝐸 (𝑟2) − 𝐸 (𝑟 );
13 𝐵0 ← 𝐵0 + 𝐿(𝑟1) + 𝐿(𝑟2) − 𝐿(𝑟 );
14 end
15 Calculate the 𝐹1-score of the current rule set as 𝐹1(R);
16 if 𝐹1(R) > 𝐹1𝑚 then
17 Break;

18 end

and min heap 𝐻 , and updates 𝐴0 and 𝐵0 accordingly. The learning

process will terminate when the following conditions hold: (1) the

accuracy reaches the requirement specified by users; and (2) the

S(R,M) does not increase in a few iterations.

Complexity Analysis. Compared to the classical decision tree

algorithms, the additional overhead that STAIR introduces is negli-

gible. In each iteration, STAIR extracts the rule 𝑟0 from min heap 𝐻

and inserts into 𝐻 the new rules. Assume there are 𝑛 nodes in the

tree. Because the complexity of the min heap’s retrieve and insert

operations is 𝑂 (log𝑛), the additional complexity is 𝑂 (𝑛 log𝑛).

6 LOCALIZED STAIR: DATA PARTITIONING &
RULE GENERATION
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Figure 2: The Localized STAIR

As shown in our experiments (Sec. 7), although in general STAIR

performs much better than the classical decision tree algorithms

in producing summarization and interpretation friendly rules, its

performance degrades quickly on high dimensional, highly com-

plex data sets, for example on the SpamBase data set which has 57

attributes. This is because a single decision tree with a small num-

ber of simple rules is not powerful enough to model the complex

distribution properties underlying these data sets.

To solve this problem, we propose a localized STAIR approach,

so called L-STAIR. L-STAIR divides the whole data set into multiple

partitions and learns a tree model for each partition. Taking the

data locality into consideration, L-STAIR produces data partitions

where the data in each partition share similar statistical properties,

while different partitions show distinct properties. L-STAIR thus is

able to produce localized, simple rules that effectively summarize

and explain each data partition.

Next, we first introduce the objective of L-STAIR in Sec. 6.1 and

then give the learning algorithm in Sec. 6.2.

6.1 Joint Optimization of Data Partitioning and
Rule Generalization

Intuitively, L-STAIR could produce the localized rules in two disjoint

steps: (1) partitioning data using the existing clustering algorithms

such as k-means [37] or density-based clustering [30]; (2) directly

applying STAIR on each data partition one by one. However, this

two-step solution is sub-optimal in satisfying our objective, namely

producing a minimal number of interpretable rules that are as

simple as possible to summarize the outlier detection results. This

is because the problems of data partitioning and rule generation

are highly dependent on each other. Clearly, rule generation relies

on data partitioning. To generate localized rules, the data has to

be partitioned first. However, on the other hand, without taking

the objective of rule generation into consideration, the clustering

algorithm does not necessarily yield data partitions that are easy

to summarize with simple thus interpretable rules. Therefore, L-

STAIR solves the two sub-problems of data partitioning and rule

generation jointly.

To achieve this goal, in addition to the summarization and

interpretation-aware objective (Eq. 6) defined in Sec. 4.2, L-STAIR

introduces a partitioning objective composed of error objective and
locality objective.
Error Objective. We denote the partitions of a dataset as C =

{𝐶𝑖 }𝑛𝑖=1, where 𝑛 is the number of partitions and 𝐶𝑖 represents

the 𝑖th partition. 𝐷𝑇𝑖 denotes the decision tree learned for a data

partition 𝐶𝑖 . Decision tree 𝐷𝑇𝑖 produces a prediction with respect

to each object 𝑥 in data partition 𝐶𝑖 , denoted as DTi (x).
Next, in Eq. 21 we define an error metric to measure how good a

decision tree DTi fits the data in 𝐶𝑖 :∑︁
𝑥 ∈𝐶𝑖

| |𝐷𝑇𝑖 (𝑥 ) − 𝑦𝑖 | |22 (21)

To ensure the classification accuracy, L-STAIR targets minimiz-

ing this error metric with respect to all data partitions, which yields

the error objective:

min

C

∑︁
𝐶𝑖 ∈C

∑︁
𝑥 ∈𝐶𝑖

| |𝐷𝑇𝑖 (𝑥 ) − 𝑦 | |2
2

(22)

where 𝑦 indicates the ground truth label of object 𝑥 .

Locality Objective. Although using the above error objective to

learn the data partitioning and the corresponding decision trees will

effectively minimize the overall classification with respect to the
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Figure 3: The intuition of locality: The black points are inliers
and the red ones are outliers. The backgrounds with different
colors refer to three clusters, while the straight lines in each
cluster represent the rules.

whole dataset, the data partitions produced in this way do not pre-

serve the locality of each data partition. Potentially one rule could

cover a set of data objects that are scattered across the whole data

space, thus is not amenable for humans to understand. As shown in

Figure 3, when the locality is preserved, the rules are constrained

within each cluster. This means there is no overlapping between

the rules. Then the generated rules will be easier to understand.

Therefore, to ensure the data locality of each partition, we intro-

duce the locality objective:

min

C

∑︁
𝐶𝑖 ∈C

| |𝑥 − 𝑐𝑒𝑛𝑡𝑒𝑟 (𝐶𝑖 ) | |22 (23)

Optimizing on the locality objective enforces the objects within

each partition to be close to each other, similar to the objective of

clustering such as k-means.

The Final L-STAIR Objective. Combining Eq. 23 and Eq. 22 to-

gether leads to the final partitioning objective:

min

C
L𝐿−𝑆𝑇𝐴𝐼𝑅 (C) =

∑︁
𝐶𝑖 ∈C

∑︁
𝑥 ∈𝐶𝑖

| |𝐷𝑇𝑖 (𝑥 ) − 𝑦 | |2
2
+ 𝜆 | |𝑥 − 𝑐𝑒𝑛𝑡𝑒𝑟 (𝐶𝑖 ) | |22

(24)

Eq. 24 uses 𝜆 (0 < 𝜆 < 1) to balance these two objectives. Setting
the 𝜆 to a small value will give error objective higher priority.

6.2 L-STAIR Learning Algorithm
L-STAIR generates interpretable and localized decision trees within

distinct clusters. As shown in Algorithm 2, initially, the training

data is divided into a predefined number of clusters using K-means

clustering (line 1). The algorithm iteratively refines the clusters and

builds decision trees for each cluster using the STAIR algorithm

(Section 5.3) (line 3-9). The objective function (Eq. 24) guides the

update of the clusters, preserving data locality within each parti-

tion (line 4). To enhance the interpretability, empty clusters are

removed (line 5), and the overall model performance is assessed

using the 𝐹1 score(line 6). If the 𝐹1 score surpasses a predefined

threshold 𝐹1𝑚 , it terminates immediately (line 8). Otherwise, clus-

ters with insufficient 𝐹1 scores undergo further refinement. That is,

L-STAIR splits them into new clusters using the K-means algorithm

(line 9). This iterative process continues until satisfying the desired

interpretability threshold.

Algorithm 2: L-STAIR learning algorithm

Input: Training data 𝑋 , cluster number 𝑛 for initialization, 𝐹1 score

threshold 𝐹1𝑚
Output: Clusters C and decision tree for each cluster𝐷𝑇𝑖 , 𝑖 ∈ {1, · · · , | C | }

1 Initialize 𝑛 clusters using K-means;

2 while True do
3 Build 𝑛 new decision trees 𝐷𝑇𝑖 , 𝑖 = {1, · · · , 𝑛} using the algorithm

introduced in Section 5.3 for 𝑛 clusters;

4 Update the clusters C according to the objective Eq.(24);

5 Remove empty clusters;

6 Calculate the 𝐹1 score of the predictions made by the MDTs(the rules),

and denote it as 𝑓1 ;

7 if 𝑓1 > 𝐹1𝑚 then
8 break;

9 Check the 𝐹1 score within each cluster, split each of the clusters with too

small 𝐹1 scores to 𝑛 new clusters using K-means algorithm.

10 end

6.3 Dynamically Adjusting the Number of
Partitions

As shown in Algorithm 2, L-STAIR uses the hyperparameter 𝑛 to

specify the number of partitions and initialize each data partition

accordingly. It is well known that in many clustering algorithms

such as k-means the number of clusters is a critical hyper-parameter

that determines the quality of data partitioning, and it is hard to

tune in many cases [31]. L-STAIR does not rely on an appropriate 𝑛

to achieve good performance, because L-STAIR allows the users to

set a small 𝑛 initially and then dynamically adjusts it in the learning

process.

Producing New Partitions. L-STAIR will produce new partitions

by splitting some partitions that are too complicated to summarize

and explain with simple rules. The partition is said to be too com-

plicated when the obtained 𝐹1-score on it is not good enough, more

specifically lower than 𝐹1𝑚 . This indicates that simple rules could

not fully explain this partition. After identifying a complicated par-

tition, L-STAIR uses k-means again to split it into two partitions,

and then build one decision tree for each new partition.

Removing Partitions. L-STAIR identifies the redundant partitions

as those bearing large similarity to others such that merging them

into other partitions does not degrade the partitioning objective.

After identifying redundant partitions, L-STAIR will discard them

and reassign their data points to other partitions.

Our experiments (Table 3, Sec. 7.5) on 10 datasets show that

starting with a small 𝑛 L-STAIR is always able to produce good

results.

Table 1: Statistics of the 10 Datasets.

Dataset # Instances Outlier Fract. # of Dims

PageBlock[3] 5473 10% 10

Pendigits[7] 6870 2.3% 16

Shuttle[6] 49097 7% 9

Pima[8] 768 35% 8

Mammography[1] 11873 2.3% 6

Satimage-2[2] 5803 1.2% 36

Satellite[9] 6435 32% 36

SpamBase[5] 4601 40% 57

Cover[4] 286048 0.9% 10

Thursday-01-03[10] 33110 28% 68
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7 EXPERIMENTS
Our experimental study aims to answer the following questions:

• Q1: How do STAIR and L-STAIR compare against othermethods

in the total rule lengths given a 𝐹1 threshold?

• Q2: How do STAIR and L-STAIR compare against othermethods

in 𝐹1 score when producing rules with the similar complexity?

• Q3: How do the parameters 𝐿𝑚 and 𝐹1𝑚 affect the performance

of STAIR?

• Q4: How does the number of partition 𝑛 affect the performance

of L-STAIR?

• Q5: How good is L-STAIR at preserving the locality of the data?

• Q6: How does STAIR dynamically adjust the value of stabi-

lizer M introduced in our summarization and interpretation-aware

optimization objective?

• Q7: How does STAIR perform in multi-class classification?

• Q8: Are the rules indeed interpretable?

7.1 Experimental Settings
Datasets. We evaluate the effectiveness of STAIR and L-STAIR on

ten benchmark outlier detection datasets. Table 1 summarizes their

key statistics.

Hardware Settings. We implement our algorithm with Python

3.7. We use the decision tree algorithms in scikit-learn and im-

plement STAIR with numpy. We train all models on AMD Ryzen

Threadripper 3960X 24-Core Processor with 136GB RAM.

Baselines.We compare against seven rule-based methods:

• ID3 [54]: The classic decision tree algorithm. To find the sim-

plest decision tree that satisfies the accuracy threshold 𝐹1𝑚 , we

start with a small tree (depth 3) and iteratively increase its depth

until the obtained tree could yield a 𝐹1 score larger than 𝐹1𝑚 .

• CART [18]: CART uses post-processing to prune a learned

decision tree. The goal is to minimize the complexity of the decision

tree, while still preserving the accuracy. We first use ID3 to build a

decision tree that is as accurate as possible and then continue to

prune it until it is right above the F-1 score threshold.

• RIPPERk [24]: RIPPERk adopts a depth-first search to generate

one rule from the dataset at each iteration. It greedily adds rule

antecedents by comparing the information gain of each attribute

and using the pruning technique to avoid overfitting. We continue

running the algorithm until the obtained rules achieve an 𝐹1 score

larger than 𝐹1𝑚 .

• CORELS [13]: CORELS is an iterative method that takes a

training dataset as input and produces a set of rules as output,

which can be used to interpret the instances. We calculate the 𝐹1

score at each iteration until the 𝐹1 score is larger than the accuracy

requirement 𝐹1𝑚 .

• FRL [68]: FRL also takes a training dataset as input and learns

a binary classification model consisting of a set of if-then-elseif rule

lists. To be specific, in each rule, the “then” clauses corresponding

to “elseif” clauses specify the probabilities of the outcome ("1"),

which exhibit a monotonically decreasing trend. In this way, more

important clauses are shown first. Similarly, we calculate the 𝐹1

score at each iteration until the 𝐹1 score exceeds 𝐹1𝑚 .

• Explanation Table [34]: Explanation Table takes the original

dataset as input and outputs an explanation table with the same

attributes, where each row can be regarded as a rule to explain

Table 2: Total rule length under similar 𝐹1 score (Q1).

Dataset ID3 CART FRL RIPPERk CORELS

Explanation

Table
HiCS STAIR L-STAIR

PageBlock 97 88 88 89 67 91 105 50 25
Pendigits 290 328 303 270 257 330 390 187 60
Shuttle 1520 863 848 845 745 967 1800 697 125
Pima 20 12 15 18 14 16 38 12 10

Mammography 79 65 66 84 70 79 93 66 24
Satimage-2 151 117 125 128 110 132 163 93 38
Satellite 1263 471 545 897 461 980 1333 442 70
SpamBase 1546 1043 1086 1100 1088 1343 1616 1017 150
Cover 6616 4869 5124 5357 4689 5018 6787 4657 402

Thursday-01-03 4032 1393 2454 3864 2400 3135 4612 957 440
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Figure 4: 𝐹1 score with varying total rule lengths (Q2).

a binary attribute. To be specific, the rule contains the values of

different attributes, and the value can be “∗”, indicating the cor-

responding attribute can take any values. We also calculate the

𝐹1 score at each iteration until the 𝐹1 score is larger than 𝐹1𝑚.

The number of non-“∗” values in the obtained explanation table

represents the total rule length.

• HiCS [39]: HiCS focuses on computing the contrasts of subsets

of attributes, and the subset with the highest contrast is regarded

as contributing the most to identifying the outliers. Unlike our

work, HiCS does not produce rules to interpret and summarize the

outliers. To be comparable to our work, we apply a decision tree

algorithm (ID3) on the identified set of attributes to produce a tree

that achieves a 𝐹1 score larger than 𝐹1𝑚 .

OutlierDetectionAlgorithm. In the experimentswe use LOF [21],

a typical density-based method, as the outlier detection method.

7.2 Comparison Against Baselines (Q1): Total
Rule Length

Wemeasure the total length of the rules produced by each algorithm

when they achieve a similar 𝐹1 score. We set the maximal length of

the rules 𝐿𝑚 to 10 and the 𝐹1 score threshold 𝐹1𝑚 to 0.8. For the

baselines that do not use the 𝐹1 score threshold in their algorithms,

we tune their hyper-parameters to produce the simplest tree with

a 𝐹1 score slightly higher than 0.8. This ensures that all algorithms

have the similar 𝐹1 score. L-STAIR automatically determines the

number of data partitions with the initial partition number picked

from {2, 4, 8}. We set the maximal iteration to 10.

Based on the results shown in Table 2, we draw the following

conclusions: (1) In comparison to all the baselines, STAIR produces
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Figure 5: The effects of the maximal length 𝐿𝑚 on the total rule length (Q3).

(a) PageBlock (b) Pendigits (c) Shuttle (d) Pima (e) Mammography

(f) Satimage-2 (g) Satellite (h) SpamBase (i) cover (j) Thursday-01-03

Figure 6: The effect of the threshold 𝐹1𝑚 on all methods (Q3).

much simpler rules that are amenable for humans to evaluate, reduc-

ing the total length of the rules by up to 79.3% (the Thursday-01-03
dataset). This is because the summarization and interpretation-

aware optimization objective (Eq. 7) of STAIR simultaneously mini-

mizes the complexity of the tree and maximizes the classification

accuracy; (2) The performance of STAIR on the SpamBase dataset is

not satisfying potentially due to its large dimensionality. SpamBase

has 57 attributes. It thus might be too complex to use a single small

tree to summarize the whole dataset; (3) L-STAIR which partitions

the data and produces one tree for each data partition solves the

problem mentioned in (2) and outperforms the basic STAIR by up

to 91.37% on the dataset Cover.

7.3 Comparison Against Baselines (Q2): 𝐹1 Score
In this section, we evaluate the 𝐹1 score of each algorithm when

they produce a rule set with a similar total length. For each dataset,

we vary the total rule length by selecting 10 numbers within a

Table 3: The number of partitions 𝑛 in L-STAIR (Q4).

L-STAIR (𝑛=2) L-STAIR (𝑛=4) L-STAIR (𝑛=8)

Dataset Length # of R # of C Length # of R # of C Length # of R # of C

PageBlock 31 26 9 25 20 8 67 31 8

Pendigits 60 20 2 86 37 4 68 39 8

Shuttle 125 52 9 309 112 10 357 108 9

Pima 10 6 2 17 12 4 27 20 8

Mammography 31 20 6 24 15 5 29 21 8

Satimage-2 62 27 4 38 19 4 49 31 8

Satellite 70 18 2 78 28 4 209 74 8

SpamBase 150 51 8 218 73 10 278 72 9

Cover 402 117 5 470 136 4 621 195 8

Thursday-01-03 477 183 11 479 182 11 440 169 11

range from 0 to the total rule length result with respect to the ID3

algorithm in Table 2. For instance, in Table 2 the total rule length

of ID3 on the dataset Pendigits is 290. We thus select ten numbers:

29, 58, · · · , 290 as the candidate total lengths.
Subject to the constraint of total length 𝑙 , we run the baselines

and our methods in the following way to obtain the 𝐹1 score: (1)
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Figure 7: Visualization of L-STAIR (Q5).

For ID3, we gradually increase the depth of the tree until it gen-

erates a rule set with a total length slightly higher than 𝑙 ; (2) For

CART, we first build a decision tree that is as accurate as possible

and then prune it until it has a length close to 𝑙 ; (3) For RIPPERk,

CORELS, FRL, Explanation Table and HiCS, we run these algo-

rithms continuously until the length of the rule sets generated by

these algorithms reached 𝑙 ; (4) For STAIR/ L-STAIR, we update the

breaking condition of Algorithm 1 / 2 such that it will terminate

after reaching the length 𝑙 . We run this experiment on the Pendigits

and Thursday-01-03 datasets. As shown in Figure 4, STAIR is more

accurate than other methods when they produce a rule set with a

similar total length, indicating that given the same budget on the

total rule length, STAIR produces rules with higher accuracy.

7.4 Effect of Hyper-parameters 𝐿𝑚 and 𝐹1𝑚 (Q3)
In this set of experiments, we first study how the maximal length

𝐿𝑚 affects STAIR and L-STAIR. We fix the F1 score threshold 𝐹1𝑚
as 80% and then vary 𝐿𝑚 from 2 to 12 and measure how the total

rule length changes. Note in some cases when 𝐿𝑚 is too small, e.g.

2, the learned tree cannot meet the F1 score requirement. As shown

in Figure 5, as 𝐿𝑚 gets larger, the total rule length will get smaller.

This is because with a looser constraint, STAIR gets a larger search

space and hence a better chance to find a simple tree. When STAIR

gets better, L-STAIR will also get better. Besides, we observe that

L-STAIR could reach the minimal total rule length with smaller 𝐿𝑚 .

This shows the power and benefits of localization.

Next, we investigate how the F1 score threshold 𝐹1𝑚 affects

STAIR and L-STAIR. We fix 𝐿𝑚 to 10 and vary 𝐹1𝑚 from 0.70 to

0.95. As shown in Figure 6, in most of the cases STAIR outperforms

ID3 and CART, while L-STAIR consistently outperforms all other

methods in all scenarios by up to 94.0% as shown in the results on

the Cover dataset when the threshold is set as 0.95. The larger the

𝐹1𝑚 threshold is, the more L-STAIR outperforms other baselines.

This is because partitioning allows L-STAIR to get a set of localized

trees, each of which produces high accurate classification results

on the corresponding data subset.

Table 4: Multi-class classification: total rule length.

Dataset ID3 CART STAIR L-STAIR

Wine Quality 5133 3217 2251 1538

7.5 Number of partitions in L-STAIR (Q4)
We study how the initial number of the partitions 𝑛 affects L-STAIR.

In this set of experiments, 𝑛 is selected from {2, 4, 8}. In addition to

the total rule length, we also report the number of rules in the final

ruleset. From the results shown in Table 3, we have the following

observations: (1) Compared to the results in Table 2, no matter what

𝑛 L-STAIR starts with, it consistently outperforms other methods;

(2) L-STAIR always performs well when starting with a small 𝑛

compared to other initial 𝑛 values, indicating that 𝑛 is not a hyper-

parameter that requires careful tuning.

Table 5: Multi-class classification: #-partitions 𝑛 in L-STAIR

L-STAIR (𝑛=2) L-STAIR (𝑛=4) L-STAIR (𝑛=8)

Dataset Length # of R # of C Length # of R # of C Length # of R # of C

Wine Quality 1642 614 11 1692 620 13 1538 635 17

7.6 L-STAIR: Locality-Preserving (Q5)
We evaluate if the partitioning of L-STAIR is able to preserve the

locality of the data. We show this by visualizing its data partitioning.

Before visualization, We apply T-SNE to embed the data into 2D.

We plot different partitions in different colors. Due to space limits,

we only plot the partitioning of 6 datasets. As shown in Figure 7,

on all datasets the partitioning of L-STAIR preserves the locality.

This thus guarantees the interpretability of each localized tree.

7.7 Dynamically Adjusting the Value of M (Q6)
In this set of experiment, we show how STAIR automatically adjusts

the value of stabilizer 𝑀 introduced in our summarization and

interpretation-aware optimization objective (Sec. 4.2). To better

understand the influence of a dynamically adjusting𝑀 , we use the

number of rules produced in the training process as the reference

variable, corresponding to the x-axis. From Figure 8, we observe: (1)

The value of𝑀 continuously increases during the training process

to split nodes and thus produce valid rules; (2) The values of𝑀 are

different across different datasets, indicating that it is hard to get

an appropriate𝑀 by manual tuning.

7.8 Multi-class classification Problems (Q7)
We use this set of experiments to show that STAIR and L-STAIR

are generally applicable to the more complicated multi-class clas-

sification problems. We use one of the most popular classification

datasets Wine Quality2 [25], which contains 4898 instances and

12 attributes. We regard the attribute “score” as the target which

corresponds to integers within the range from 0 to 10 and run a

classification task on it. Our STAIR and L-STAIR could be easily

2
https://archive.ics.uci.edu/ml/datasets/wine+quality
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Figure 8: The dynamic𝑀 during training (Q6).
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(c) Cluster Visualization (d) Increasing of M

Figure 9: Multi-class datasetWine Quality: ablation study

extended to multi-class settings by replacing the F1 score with the

classification accuracy.
As shown in Table 4, we report the total rule length, the same

as the outlier detection scenario. We observe from the results: (1)

L-STAIR and STAIR significantly outperform ID3 and Cart by up

to 70.0%; (2) As shown in Table 5, the initial number 𝑛 of the par-

titions make little difference to the resulted lengths, indicating

L-STAIR is not sensitive to the hyper-parameter 𝑛; (3) As illustrated

in Figure 9(a) and Figure 9(b), STAIR and L-STAIR always outper-

form the baselines no matter how the accuracy threshold and the

maximal rule length threshold vary; (4) Figure 9(c) visualizes the

partitions produced by L-STAIR. The locality of the data partitions

is well-preserved; (5) As shown in Figure 9(d), the dynamic update

of the value of stabilizer𝑀 is important in splitting the nodes and

producing valid rules, similar to the case of outlier detection.

7.9 Case studies (Q8)
We conduct case studies to show the rules produced by STAIR are

indeed interpretable. Table 6 shows the rules produced on Pima [8]

and Cover [4]. Due to space constraints, we only show 6 rules

with concise explanations. Please see our technical report [11] for

more rules. In Pima, a patient with diabetes is considered as an

outlier. The outlier algorithm is expected to capture these outliers

based on some diagnostic measurements. Based on some medical

common senses, the most important indications of diabetes are

(1) fasting blood glucose; and (2) insulin levels. The example rules

in Table 6 correctly reflect these common senses and thus well

summarize the outliers. For example, Rule 1 represents the early

Type-2 diabetes, which typically shows elevated fasting glucose,

high insulin levels, and an increased BMI. Rule 2 corresponds to

advanced Type-2 diabetes, showing elevated fasting glucose and

low insulin concentrations.

The Cover [4] dataset classifies forest cover types in Northern

Colorado’s wilderness areas. Cache la Poudre’s unique conditions

make it an ideal habitat for four tree types: Ponderosa pine, cot-

tonwood, willow, and Douglas-fir, labeled as outliers. The outlier

algorithm, focused on cartographic variables, is expected to iden-

tify such outliers. Rules generated by STAIR effectively summarize

outliers. For instance, Rule 4 correctly identifies cottonwood and

willow as outliers due to their preference for low elevation and

abundant water sources, while Rule 5 and Rule 6 distinguish ar-

eas suitable for Ponderosa pine, Douglas-fir, and willow based on

distinct elevation and water source characteristics.

8 RELATEDWORK
Outlier Summarization and Interpretation. To the best of our

knowledge, the problem of summarizing and interpreting outlier

detection results using human understandable rules has not been

well exploited. Focused on a special type of outliers, Scorpion [69]

targets a specific type of outliers in aggregation queries, explaining

the outliers based on provenance. Objects that, when removed,

significantly reduce the abnormality of an outlier are considered its
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Table 6: Example rules.

ID Example Rules of Pima Dataset [8] Explanation
1 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 > 150 ∧ 𝐼𝑛𝑠𝑢𝑙𝑖𝑛 > 120 ∧ 𝐵𝑀𝐼 > 40.2 Early Type-2 diabetes

2 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 > 150 ∧ 𝐼𝑛𝑠𝑢𝑙𝑖𝑛 ≤ 10 ∧ 𝐵𝑀𝐼 > 40.2 Advanced Type-2 diabetes

3 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 > 150 ∧ 𝐼𝑛𝑠𝑢𝑙𝑖𝑛 ≤ 10 ∧ 𝐵𝑀𝐼 ≤ 22.6 ∧ 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠𝑃𝑒𝑑𝑖𝑔𝑟𝑒𝑒 > 0.875 ∧ 𝑃𝑟𝑒𝑔𝑛𝑎𝑛𝑐𝑖𝑒𝑠 > 2 Type-1 diabetes

ID Example Rules of Cover Dataset [4] Explanation
4 𝐷𝑖𝑠𝑡_𝐻𝑦𝑑𝑟𝑜𝑙𝑜𝑔𝑦 ≤ 42 ∧ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 ≤ 2231 ∧ 𝐷𝑖𝑠𝑡_𝑅𝑜𝑎𝑑𝑤𝑎𝑦𝑠 > 73 ∧𝐴𝑠𝑝𝑒𝑐𝑡 ≤ 119.0 Cottonwood, Willow

5 60 < 𝐷𝑖𝑠𝑡_𝐻𝑦𝑑𝑟𝑜𝑙𝑜𝑔𝑦 ≤ 390 ∧ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 ≤ 2231 ∧ 𝐷𝑖𝑠𝑡_𝑅𝑜𝑎𝑑𝑤𝑎𝑦𝑠 > 73 ∧𝐴𝑠𝑝𝑒𝑐𝑡 > 180.0 Ponderosa pine, Douglas-fir

6 42 < 𝐷𝑖𝑠𝑡_𝐻𝑦𝑑𝑟𝑜𝑙𝑜𝑔𝑦 ≤ 60 ∧ 2231 < 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 ≤ 2526 ∧ 𝐻𝑖𝑙𝑙𝑠ℎ𝑎𝑑𝑒_9𝑎𝑚 > 206 Willow

cause. Similarly, Cape [47] explains outliers in aggregation queries,

using objects that counterbalance outliers as explanations. However,

both Scorpion and Cape do not target summarizing outliers.

Macrobase [17] uses association rule mining to correlate outliers

with external attributes, such as sensor location or occurrence time.

However, this method relies on the presence of external attributes

and only identifies potential outlier-causing attributes. In contrast,

our STAIR produces rules that specify both the attributes and the

conditions they must satisfy. Myrtakis et al.[49] evaluate outlier

explanation methods like BEAM[50] and RefOut [40], which focus

on explaining individual outliers rather than summarizing outliers.

LookOut [36] identifies attribute pairs contributing most to de-

tected outliers, while HiCS [39] detects outliers in high-dimensional

data by computing contrast for each subspace. However, these meth-

ods provide coarse-grained explanations, insufficient for users to

quickly identify key factors behind detected outliers.

Interpretable AI. Some works [28, 53, 60] target on interpret-

ing the machine learning models, such as LIME [57], Anchor [58],

LORE [35], which provide explanations for individual predictions

by learning local linear models around each prediction. However,

the computational cost of generating explanations for each individ-

ual object limits the scalability of methods like LIME, particularly

on large datasets. Some other methods [15, 35, 44, 58, 62] explain

classification results in the similar fashion. Taking the explanations

w.r.t all testing objects as input, Pedreschi et al. select a subset of

the explanations to constitute a global explanation [52]. However,

this work, yet to go through the peer review process, is not scalable

to big dataset because it requires constructing the explanations for

all testing objects. In addition, some techniques, including gradient-

based [63, 66] and attention based [16] methods, focus on particular

types of deep learning models, thus hard to be used in the outlier

summarization scenario. Lakkaraju et al [42] proposed to build

a prediction model that is more interpretable than deep learning

models. Methods [48, 51, 67] have worked on augmenting the data

to produce models with better interpretability. Instead of invent-

ing new prediction models, our work focuses on explaining and

summarizing the results produced by any outlier detection method.

There also exist works explaining data management tasks using

rules. For example, Singh et al. [64, 65] focus on utilizing general

boolean formulas to automatically generate interpretable and con-

cise entity matching rules. AIME [32, 33] focus on extracting rules

from knowledge graphs considering the structural information.

Outlier Detection. Due to the importance of outlier detection,

many unsupervised outlier detection methods have been proposed

including the density based method LOF [21], the statistical-based

Mahalanobis method [12], the distance-based methods [14, 41, 56],

and Isolation Forest [43], which do not use any human-labeled data.

As a crowdsourcing-based method, HOD [22] proposed to leverage

human to improve the outlier detection performance in text data. It

produces some questions which once answered by humans, could

help verify the status of multiple outlier candidates returned by the

unsupervised methods. However, the question-generation process

of HOD is still time-consuming. In addition, instead of focusing on

text data, STAIR is generally applicable to different types of data

including numerical, categorical, and text data.

Decision Tree Algorithms. CART [20] proposed post-processing

pruning for decision trees to prevent overfitting and improve gener-

alization. However, unlike STAIR, which prioritizes simplicity and

interpretability, CART’s approach is less effective in minimizing

rule complexity. Similarly, other decision tree algorithms [19, 38, 59]

mostly prioritize classification accuracy over rule simplicity.

Error Summarization for Data Cleaning. In data cleaning, there

exist various methods that use deep learning to clean the data.

For example, Deng et al. [26, 27] present an innovative approach

to iteratively detect mislabeled data instances by leveraging early

loss signals, which achieves state-of-the-art performance on accu-

racy. Chai et al. [23] clean the data over a small coreset that can

lead to competitive model performance over the full train data,

which achieves a data-efficient training process and cost-effective

cleaning efforts. Miao et al. pioneer the development of accuracy-

controlled imputation acceleration mechanisms [45, 46, 70] which

have the excellent ability to well deal with large-scale missing data.

Although the above methods can achieve good results, but may lack

interpretability, which can be regarded as a future work of STAIR.

9 CONCLUSION
This work targets reducing the human effort in evaluating outlier

detection results by introducing STAIR, which employs an optimiza-

tion objective for outlier summarization and utilizes an efficient

learning algorithm. Experimental results demonstrate that STAIR

effectively generates concise and interpretable rules, surpassing the

complexity of rules produced by alternative rule-based methods.
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