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ABSTRACT

Covers for a set of functional dependencies (FDs) are fundamen-
tal for many areas of data management, such as integrity main-
tenance, query optimization, database design, and data cleaning.
When declaring integrity constraints, keys enjoy native support in
database systems while FDs need to be enforced by triggers or at
application level. Consequently, maximizing the use of keys will
provide the best support. We propose the new notion of mixed cover
for a set of FDs, comprising the set of minimal keys together with
a cover for the set of non-key FDs implied by the FD set. We estab-
lish sequential and parallel algorithms for computing mixed covers
from a given set of FDs, and illustrate that they complement each
other in terms of their performance. Even though FD covers are
typically smaller in number or size than their corresponding mixed
cover, the latter generate orders of magnitude lower overheads
during integrity maintenance. We also quantify how mixed covers
improve the performance of query, refresh and insert operations
on the TPC-H benchmark under di�erent constraint workloads.
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1 INTRODUCTION

Functional dependencies (FDs) can express many requirements
of applications, and RDBMSs provide means for maintaining the
integrity of data by enforcing such FDs. When an FD X → Y is
declared on a relation schema R, all records with values matching
on all the attributes in X must have values matching on all the
attributes in Y . Hence, updates on a given relation prompt the
RDBMS to validate a given set F of FDs. Intuitively, both the number
and size of FDs in F have a direct impact on the overhead required
for integrity maintenance. Here, |F | will denote the number of FDs
in F , and | |F | | the total number of attribute occurrences in F . David
Maier investigated two notions of covers for a set of FDs [23]. A
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cover for F is a set G of FDs that implies the same FDs as F . G is
minimal if there is no other cover for F with fewer FDs than G,
and G is optimal if there is no other cover for F with fewer total
attribute occurrences thanG. While minimal covers can be found
in polynomial time, the problem of deciding whether there is an
optimal cover of a given size is NP-complete [23].

Covers of FDs naturally facilitate fundamental tasks in data man-
agement. Intuitively, the covers constitute smaller representations
of a given set of FDs. Hence, the same bene�ts are realized with less
e�ort. Firstly, smaller FD covers cause less overheads for integrity
maintenance. In particular, FDs or attributes that are redundant in
an FD set cause overheads during integrity maintenance that are
redundant, too. This is true for normalized, narrow tables typical for
transactional workloads, but also for non-normalized, wider tables
typical for use in analytical tasks. In fact, modern data architectures
such as active data warehouses and cloud databases are expected
to process updates frequently to enable real-time decision making
based on current data. Secondly, smaller FD covers o�er opportu-
nities for further query optimization [9, 10, 17, 21]. For example,
query optimizers may identify redundant DISTINCT clauses or
GROUP BY attributes by validating whether a key or FD is implied
by the underlying FD set [17], and checking implication is faster
when smaller FD covers are used. Thirdly, smaller covers result in
outputs of normalization algorithms with fewer relation schemata
or fewer attributes during logical schema design [6, 20, 25, 39],
which facilitates more e�cient data management in the lifetime of
databases [24]. As a �nal example, smaller covers for the set of FDs
that are mined from database instances are easier to comprehend
for humans who need to identify FDs that are meaningful rather
than those that hold only accidentally [1, 36]. Intriguingly, FDs or
attributes that are mined redundantly slow down the progress of
FD discovery unnecessarily [14, 26–28, 32]. In addition, even if FDs
only hold accidentally on the relation they were mined from, they
may still bene�t query optimization [17]. These example areas of
impact greatly motivate the study of covers.

A natural question arising is howwewould use any set of FDs for
maintaining the integrity of data? Firstly, themost important special
case of FDs are keys. Given a relation schema R, an attribute subset
X is called a key whenever the FDX → R holds. Indeed, no relation
satisfying X → R can ever have di�erent records with matching
values on all the attributes in X . A main di�erence between keys
and non-key FDs is that the former enjoy native support in RDBMSs
while the latter need to be enforced by triggers or at application
level. Hence, for implementation purposes only, it makes sense to
rely on keys as much as possible. Secondly, every key declared on a
relation schema (primary key or UNIQUE constraint) will result in
a UNIQUE index, which means that integrity enforcement of keys
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becomes e�cient. Hence, for performance purposes, it makes sense
to rely on keys as much as possible. Thirdly, database normaliza-
tion aims at the transformation of any dependencies into keys [11].
In the context of FDs only, state-of-the-art computes dependency-
preserving decompositions in Third Normal Form (3NF), which
are in Boyce-Codd Normal Form (BCNF) whenever possible [6, 25].
Given we can only guarantee a dependency-preserving decomposi-
tion into 3NF, not all FDs can be expressed by keys. In summary, it
is therefore more natural and practical to investigate mixed notions
of covers for a set F of FDs, comprising the set of minimal keys
implied by F and a cover for the set of non-key FDs in F (FDs in F

not implied by the set of minimal keys). Mixed covers may even be
of smaller size than their FD cover, as illustrated next.

Example 1.1. Let the relation schema Traffic consist of the
following attributes CAR-SERIAL#, LICENSE#, OWNER, DATE,
TIME, TICKET#, and OFFENSE. The following is a minimal cover
of size 14 for the FDs associated with the schema:

• CAR-SERIAL#→ LICENSE#
• LICENSE#→ CAR-SERIAL#, OWNER
• TICKET#→ CAR-SERIAL#, OWNER, DATE, TIME
• CAR-SERIAL#, DATE, TIME→ TICKET#, OFFENSE .

The following is an optimal cover of size 13:

• CAR-SERIAL#→ LICENSE#
• LICENSE#→ CAR-SERIAL#, OWNER
• TICKET#→ CAR-SERIAL#, DATE, TIME
• CAR-SERIAL#, DATE, TIME→ TICKET#, OFFENSE .

However, the following optimal mixed cover has size 12:

• three keys {TICKET#}, {CAR-SERIAL#, DATE, TIME}, {LI-
CENSE#, DATE, TIME}
• CAR-SERIAL#→ LICENSE#
• LICENSE#→ CAR-SERIAL#, OWNER. □

Even though they are typically larger than their FD covers, mixed
covers are better for integrity maintenance since keys use UNIQUE
indexes, as illustrated by the next famous 3NF example [4].

Example 1.2. Consider the 3NF schema Mail with attributes
A(DDRESS), C(ITY), and Z(IP), and FDs: AC → Z and Z → C ,
which is its own optimal FD cover of size 5. The FD set implies two
minimal keys {A,C} and {A,Z }, plus the FD Z → C , so the size of
an optimal mixed cover is 6. Table 1a shows a synthetic relation
over Mail, which satis�es the optimal covers, and violates all FDs
not implied by the covers. Hence, the relation is a perfect sample
for the FD set given. To compare how FD and mixed covers handle
integrity maintenance, we have created relations of increasing sizes
by taking disjoint unions of copies of the sample. Figure 1b and
Figure 1c compare the times (in ms) for performing inserts for 10%
(respectively, 40%) of records from the given relations, based on
optimal FD and mixed covers (note the logarithmic scales). Not only
does the mixed cover perform 99% faster than the FD cover, but it
also shows robust scalability. This superior performance is natural
due to UNIQUE indices. On perfect samples the improvement is
also evident for Example 1.1, as illustrated in Figures 2a and 2b. □

The contributions of our paper are summarized as follows:
(1) For classical types of FD covers, such as non-redundant,

reduced, canonical, minimal, minimal-reduced, and optimal

ADDRESS CITY ZIP
0 0 0
1 0 1
0 1 2
2 0 0

(a) Perfect Sample (b) Insert 10% records (c) Insert 40% records

Figure 1: Update time optimal FD vs mixed cover onMail

cover [24], we analyze their computation on real and synthetic
data, their reduction in numbers and size of representing FDs, and
how much they reduce overheads during integrity management.

(2) For each notion of FD covers, we introduce a mixed variant,
comprising the set of minimal keys implied and a corresponding
cover for the set of FDs not implied by the minimal keys.

(3) Previous work has not properly justi�ed that di�erent notions
of FD covers are actually di�erent. In particular, for all schemata in
BCNF, all notions of FD covers and mixed variants collapse into the
set of minimal keys. However, we will show that the relationships
between FD covers known from previous work [24] already apply
to schemata on 3NF. Since this is the only case in practice where
frequent integrity maintenance should happen, our result does
justify the di�erent notions of FD covers. We also show that the
same relationships transcend to mixed variants.

(4) We propose sequential and parallel algorithms for computing
mixed covers of a target type for an FD set. Experiments illustrate
that they complement one another, as the sequential algorithm
performs well when the parallel algorithm does not and vice versa.

(5) We extend our experiments from FD covers to mixed variants.
Firstly, we analyze the performance of our sequential and parallel
algorithms in computing mixed covers, illustrating when one out-
performs the other and therefore bene�ting from both algorithms.
We demonstrate on a variety of schemata and data how mixed cov-
ers provide high performance support for integrity maintenance,
for both non-normalized schemata typical for analytical tasks and
normalized schemata used for transactional tasks. Finally, we show
that using mixed over FD covers improves query performance sig-
ni�cantly and is essential for refresh and insert operations of the
TPC-H benchmark across di�erent constraint workloads.

In summary, mixed covers transform the classical notion of FD
covers from database theory into best practice for minimizing over-
heads during update maintenance over both normalized and non-
normalized schemata. We highlight the impact on application areas
of FD covers from before. Firstly, utilizing the setK of minimal keys
saves orders of magnitude during integrity maintenance, as we
will show here. This actually clari�es that even larger-sized covers
(namely mixed covers) can perform much better than FD covers
of smaller size. Secondly, knowing K enables us to specify keys
and utilize their UNIQUE indices for data management, including
query optimization. This applies even when minimal keys or FDs
are used that only hold accidentally [10, 17]. Thirdly, the bene�t of
utilizing minimal keys during logical database design has recently
been illustrated by parameterizing BCNF by the number of mini-
mal keys [39]. For data pro�ling [1], our ideas suggest separating
FD mining into the discovery of minimal keys and non-key FDs,
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(a) Insert 10% new records (b) Insert 40% new records

Figure 2: Update time optimal FD vsmixed cover onTraffic

respectively. This calls for a dedicated line of future work which is
beyond the scope of this paper. In fact, our focus is the impact on
integrity maintenance.

Organization. We repeat fundamental concepts about FDs in
Section 2. We introduce the notion of mixed covers in Section 3,
where we also establish that relationships, known to hold between
di�erent types of FD covers, also hold between the corresponding
types of their mixed variants, and that these relationships already
hold on 3NF schemata. Our sequential and parallel algorithms for
computing mixed covers of a target type t are proposed and an-
alyzed in Section 4. Section 5 is dedicated to experiments, before
concluding and commenting on future work in Section 6. The full
paper, including proofs, can be found at the URL of our Artifact.

2 FUNCTIONAL DEPENDENCIES

We will provide the necessary background on functional dependen-
cies, including their de�nition within the relational model of data,
solutions to their implication problem, and their notion of a cover.

Relation Schemata and Relations.Wemay use attribute sym-
bols, such asA, B,C , for column names of a table. For each attribute
A, dom(A) denotes the set of values that may occur in column
A of any table. A relation schema is a �nite set R of attributes.
Intuitively, R comprises all properties that every entity over R
needs to be described by. A tuple or record over R is a function
t : R →

⋃
A∈R dom(A) that maps every attribute of R to a value

t(A) ∈ dom(A) from its domain. A relation over R is a �nite set
of tuples over R. Example 1.2 features relation schema Mail and
Table 1a shows a relation over Mail with synthetic values.

SQL uniformly uses the null marker null to handle all interpre-
tations of incomplete values. For convenience we include null in
every domain, so null ∈ dom(A). Every occurrence of null means
no information is currently available [3, 15, 38].

Syntax and Semantics. A functional dependency (FD) over re-
lation schema R is an expression X → Y with attribute subsets
X ,Y ¦ R. A relation r over R is said to satisfy the FD X → Y over
R whenever every pair of tuples t , t ′ ∈ r with matching values on
all the attributes in X has also matching values on all the attributes
in Y , that is, if t(X ) = t ′(X ) implies t(Y ) = t ′(Y ). An FD X → Y is
trivial if Y ¦ X . As example, while the relation in Table 1a satis�es
the FD AC → Z , it does not satisfy the FD CZ → A. We interpret
every occurrence of null by either null <> null or null = null.
As results do not di�er much, we only report the former interpreta-
tion. Comprehensive treatments of nulls, see [5, 35] for examples,
are not the subject of this study but interesting future work.

A key over relation schema R is an expression X ¦ R. A relation
r over R is said to satisfy the key X over R whenever there are no
two di�erent tuples in r with matching values on all the attributes
in X , that is, if t(X ) = t ′(X ) holds for any t , t ′ ∈ r , then t = t ′. It is
easy to see that a relation over R satis�es the key X over R if and
only if the relation satis�es the FD X → R over R. The relation in
Table 1a satis�es the keys {A,C} and {A,Z }, but not the key {C,Z }.

FDs form an important class of integrity constraints, which re-
strict the set of relations to those considered meaningful for the
underlying application. Whenever the set F holds the integrity con-
straints for an application domain, then every relation ought to
satisfy all constraints in F , particularly after the relation is updated.
That is, we need to maintain the integrity of data under updates.

Implication Problem. Constraints interact with one another.
For a set F ∪{X → Y } of FDs we say that F implies X → Y , denoted
by F |= X → Y , whenever every relation that satis�es every FD
in F also satis�es X → Y . This notion is fundamental for integrity
management: If a relation satis�es all FDs in F , then we do not need
to check whether the relation also satis�es any other FD implied by
F . However, if F does not imply X → Y , then there is some relation
that satis�es all FDs in F but does not satisfy X → Y . Hence, if
X → Y is also a meaningful FD, we still need to check if a relation
satis�es X → Y even after we know it satis�es all FDs in F .

Due to this importance, the implication problem has been inves-
tigated deeply. For a class of constraints, the problem is to decide
whether for a relation schema R, and a set Σ ∪ {φ} of constraints
over R from that class, Σ |= φ. For a given FD set F , we denote by
F+ = {X → Y | F |= X → Y } the set of FDs implied by F . Similarly,
for an attribute subset X ¦ R and an FD set F over R, we denote
by X+

F
= {A ∈ R | F |= X → A} the attribute set closure of X given

F , that is, the set of attributes functionally determined by X given
F . The implication problem for FDs is PTIME-complete, and can be
solved e�ciently by using the result that X → Y ∈ F+ if and only
if Y ¦ X+

F
. In words, F implies X → Y if and only if every attribute

in Y is contained in the attribute set closure of X given F . Since
computing the attribute set closure can be implemented in time
linear in the input (X , F ), the implication problem for FDs can be
decided in time linear in the input (F ,X → Y ) time, too [19].

For example, given the set F of FDs from Example 1.1, we can
deduce that {CAR-SERIAL#, DATE} is not a key implied by F . In-
deed, {CAR-SERIAL#,DATE}+

F
consists of CAR-SERIAL#, DATE,

LICENSE#, OWNER, which does not include TICKET#, TIME, OF-
FENSE. Hence, Traffic is not a subset of {CAR-SERIAL#,DATE}+

F
,

and thus {CAR-SERIAL#,DATE} → Traffic is not implied by F .
Given an FD set F , a key X implied by F isminimal if and only if

every proper subset Y ¦ X is not a key implied by F . For example,
the key {CAR-SERIAL#, DATE, TIME} from Example 1.1 is minimal.

Covers. E�orts have been made to represent sets of FDs suc-
cinctly. For example, any FD implied by F0 = {Emp→ Dep,Dep→

Mgr, Emp→ Mgr, {Emp,Dep} → Mgr, Emp→ {Dep,Mgr}} is also
implied by the set G0 = {Emp→ Dep,Dep→ Mgr}.

Representation of FD sets are known as covers. Formally, two FD
sets F and G over relation schema R are equivalent, written F ≡ G,
if F+ = G+, that is, when they both imply the same set of FDs. If
F ≡ G, then we say that F is a cover of G. For example, the FD sets
F0 and G0 above are covers of one another. Indeed, F0 ≡ G0 since
G0 ¦ F0 and every FD in F0 is implied by G0.
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3 MIXED COVERS OF KEYS AND FDS

We will introduce the main concept of our work, mixed covers,
before discussing mixed variants for various types of FD covers,
establishing important relationships between them, and showing
that these already hold on schemata in Third Normal Form (3NF).

Previous work has brought forward di�erent types of FD cov-
ers, such as non-redundant, reduced, canonical, minimal, minimal-
reduced, and optimal. Before discussing these notions below, we
will now introduce the notion of a mixed cover for every type t .

De�nition 3.1. For a set F of FDs, the set (K ,G) is a mixed cover

of type t if and only if K denotes the set of minimal keys implied
by F , and G is an FD cover of type t for the set F ′ of FDs in F not
implied by K , that is, G ≡ F ′ = { f ∈ F | K ̸ |= f }. □

Integritymaintenance in practice naturally leads to our de�nition
of mixed covers. Indeed, when updates occur frequently, integrity
should be enforced on normalized database schemata. State-of-the-
art methods can normalize any given schema into a dependency-
preserving 3NF decomposition, which will be in BCNF whenever
possible [25]. If a schema is in dependency-preserving BCNF, all
FDs can be enforced by minimal keys. Otherwise, integrity can
be maintained by the set of minimal keys and some non-key FDs
whose attributes on the right side are prime (that is, belong to some
minimal key), which is the de�nition of 3NF [7, 8]. For that reason,
it is somewhat surprising that mixed notions of covers have not
been studied before. Previous work has not even investigated FD
covers over normalized schemata.

Let us consider relation schemata R that are in BCNF for a given
FD set F . That is, for every non-trivial FD X → Y ∈ F it holds that
X → R ∈ F+. Consequently, the set of minimal keys implied by F

is su�cient and necessary to maintain the integrity on a schema
R that is in BCNF for F . Interestingly, all notions of an FD cover
collapse into the set of minimal keys.Hence, for schemata in BCNF,
there is only one choice for a cover, namely the set of minimal keys.
In particular, R is in BCNF for F i� the setG in a mixed cover (K ,G)
for F is empty.

Given the situation for BCNF, it is natural to ask what notions of
covers need to be considered when schemata are in 3NF. Here, for
every non-trivial FDX → Y ∈ F it holds thatX → R ∈ F+ or every
attribute in Y must be prime (that is, belong to some minimal key
for F ). Note that a dependency-preserving decomposition into 3NF
can always be achieved, where dependency-preservation means
that the original set F of FDs is implied by the union of FD sets
that hold on elements of the decomposition. Hence, it is sensible to
investigate di�erent notions of FD covers on schemata in 3NF.

We will now discuss types of FD covers, their mixed variants,
and relationships between these types. Algorithms for computing
types of FD covers can be found in the literature [24]. We will
demonstrate that 1) all known relationships between FD covers
already apply to schemata in 3NF, and are therefore all relevant,
and 2) the same is true for our notions of mixed covers. In particular,
1) o�ers the �rst actual justi�cation for using the di�erent notions
of FD covers for maintaining integrity, and 2) extends this to the
actual use of mixed covers in practice, by maximizing the use of
minimal keys and their UNIQUE indexes. The strict relationships
are summarized in Figure 3. A direct edge with no line on it means
that every cover with the type of its origin is also a cover with the

Figure 3: Strict Relationships between Types of FD (Mixed)

Covers that already hold on Schemata in 3NF

type of its destination, while the reversed edge has a line through
it, indicating that the opposite direction does not hold. For instance,
every optimal cover is reduced-minimal, but there are reduced-
minimal covers that are not minimal.

Non-redundant covers eliminate FDs that are implied by oth-
ers. An FD set F is non-redundant if there is no proper subset F ′

of F where F ′ ≡ F . If such an F ′ exists, F is redundant. G is a
non-redundant cover for FD set F , if G ≡ F and G is non-redundant.

An FD X → Y ∈ F is called redundant in F if F − {X → Y } |=

X → Y . Hence, we can compute a non-redundant cover G of F by
starting with G := F and removing an FD from F whenever it is
redundant in F . This can be done in time O(||F | |2).

The �rst example shows that redundant (mixed) covers for
schemata in 3NF exist.

Example 3.2. Consider schema R = ABCD with FD set F =
{ABC → D,CD → B,D → B}. The set K of minimal keys is ABC
andACD, so every attribute is prime, and (R, F ) is in 3NF. The FD set
G = {ABC → D,D → B} is a non-redundant cover of F . Similarly,
for the set G ′ = {D → B}, (K ,G ′) is a mixed non-redundant cover
for the mixed cover (K , F ′) where F ′ = {CD → B,D → B}.

Reduced covers. Since non-redundant covers of F carry no
redundant FDs, removal of any further FDs would result in an FD
set not equivalent to F . However, one may still reduce the size of a
non-redundant cover for F by removing attributes from FDs in F .

Intuitively, we can remove extraneous attributes from the left or
right side of an FD in F whenever this does not a�ect the closure
of F . More precisely, let F denote an FD set over relation schema R,
and X → Y an FD in F . An attribute A in R is extraneous in X → Y

with respect to F if

(1) X = AZ , X , Z , and (F − {X → Y }) ∪ {Z → Y } ≡ F , or
(2) Y = AW , Y ,W , and (F − {X → Y }) ∪ {X →W } ≡ F .

The FD X → Y ∈ F is left-reduced if X contains no attribute
A extraneous in X → Y , X → Y is right-reduced if Y contains no
attribute A extraneous in X → Y , and X → Y is reduced if it is
left-reduced, right-reduced and Y , ∅. Similarly, an FD set F is left-
reduced (right-reduced, reduced) if every FD in F is left-reduced
(respectively, right-reduced, reduced).

Computing a reduced cover follows step (1) which computes a
left-reduced cover, step (2) that returns a right-reduced cover for
the output of step (1), and step (3) which eliminates any FDsX → ∅
from the output of step (2). Steps (1) and (2) must not be switched,
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and step (3) is necessary. Every reduced cover is non-redundant as
every attribute on the right side of any redundant FD is extraneous.
Hence, a reduced cover of F is found in time O(||F | |2).

The next example shows there are (mixed) covers that are non-
redundant but not reduced for schemata in 3NF.

Example 3.3. Consider schema R = ABCD with FD set F =
{ABC → D,CD → B,D → C}. The set K of minimal keys is ABC
and AD, so every attribute is prime, so (R, F ) is in 3NF. F is non-
redundant, but not reduced. FD set G = {ABC → D,D → B,D →

C} is a reduced cover of F . For G ′ = {D → B,D → C}, (K ,G ′) is
a mixed reduced cover for the mixed non-redundant cover (K , F ′)
where F ′ = {CD → B,D → C} is not reduced.

Canonical covers. An FD set F is canonical if every FD in F

is of the form X → A and F is left-reduced and non-redundant.
Canonical covers are reduced since every FD must be right-reduced
due to having only single attributes on the right. We can compute a
canonical cover of input F in time O(||F | |2) by computing a reduced
cover and splitting every FD with multiple attributes on the right
side into separate FDs with the same left side and a single attribute
on the right side. We compute reduced from canonical covers by
combining FDs with equal left sides into a single FD.

The next example shows that there are (mixed) covers that are
reduced but not canonical for schemata in 3NF.

Example 3.4. Consider schema R = ABCD with FD set F =
{ABC → D,D → BC}. As K = {ABC,AD} every attribute is
prime and (R, F ) is in 3NF. F is reduced, but not canonical. FD set
G = {ABC → D,D → B,D → C} is a canonical cover of F . For
G ′ = {D → B,D → C}, (K ,G ′) is a mixed canonical cover for
mixed reduced cover (K , F ′) but F ′ = {D → BC} is not canonical.

Minimal covers. Reduced covers of an FD set F do not neces-
sarily have as few FDs as any cover for F . Hence, Maier de�ned an
FD set G as minimal if G has as few FDs as any equivalent set of
FDs [23].

Two attribute sets X and Y are equivalent under an FD set F ,
written X ´ Y , if X+

F
= Y+

F
. Let EF (X ) be the set of FDs in F with

left sides equivalent to X . Note that EF (X ) is empty when no left
side of any FD in F is equivalent to X . Then the set EF = {EF (X ) |
X ¦ R and EF (X ) , ∅} is always a partition of F .

We can compute a minimal cover for input F in time O(||F | | · |F |)
as follows: We start with a non-redundant cover G of input F , and
then check if there is any EG (X ) for whichY → U ,Z → V ∈ EG (X )

exist such that G − EG (X ) |= Y → Z . In that case, the two FDs
Y → U and Z → V can be replaced inG by the single FD Z → UV ,
resulting in fewer FDs.

The next example shows there are (mixed) covers that are re-
duced but not minimal for schemata in 3NF. As every reduced cover
is also non-redundant, the example shows there are (mixed) covers
that are non-redundant but not minimal for schema in 3NF.

Example 3.5. Consider schema R = ABCD with FD set F =
{ABC → D,D → B,D → C}. K contains ABC and AD, so ev-
ery attribute is prime and (R, F ) is in 3NF. F is reduced and non-
redundant, but not minimal. FD set G = {ABC → D,D → BC}

is a minimal cover of F . For G ′ = {D → BC}, (K ,G ′) is a mixed
minimal cover for the mixed reduced and non-redundant cover
(K , F ′) where F ′ = {D → B,D → C} is not minimal.

The next example shows that there are (mixed) covers that are
minimal but not reduced for schemata in 3NF.

Example 3.6. Let R = ABCDE with F = {ABC → DE,CDE →

AC,D → C}. K contains ABC , ABD, and BDE, so every attribute
is prime and (R, F ) is in 3NF. F is minimal, but neither left- nor
right-reduced. G = {ABC → DE,DE → A,D → C} is a minimal-
reduced cover of F . ForG ′ = {DE → A,D → C}, (K ,G ′) is a mixed
minimal-reduced cover for the mixed minimal cover (K , F ′) where
F ′ = {CDE → BC,D → C} is neither left- nor right-reduced.

Minimal-reduced covers. Minimal covers may feature extra-
neous attributes. We can compute a minimal-reduced cover for
input FD set F in time O(||F | |2) by computing a reduced cover for
a minimal cover of F .

Optimal covers. An FD set F is optimal if there is no equivalent
set of FDs with fewer attribute symbols than F . Maier showed that
it is NP-complete to decide if a given FD set is optimal [23]. It is
thus unlikely a polynomial-time algorithm in the input exists.

Optimal covers can be computed as minimal covers of so-called
mini covers [30]. An FD set F is mini if the right side of every
FD in F is a single attribute, F has the fewest FDs and, within that
constraint, the fewest attributes [30]. A mini cover can be computed
by (1) transforming the input into a Boolean formula, (2) using a
standard method to minimize the formula, and (3) transforming the
minimized formula back into an FD set which will be mini.

The �rst Delobel-Casey transform [30] of an FD {A1, . . .Am } →
{B1, . . . ,Br } is the Boolean expression (A1 ' · · · ' Am ' ¬B1) (

· · ·( (A1' · · ·'Am '¬Br ). For an FD set F , the �rst Delobel-Casey
transform of F is a Boolean expression which is the conjunction of
the �rst Delobel-Casey transform for each member.

The transformations between FD sets and their Boolean formulae
preserve equivalence, which means the steps (1)-(3) above will
indeed result in a mini cover. Optimal covers can be computed as
minimal covers of mini covers for input FD set F , and run in time
worst-case exponential in | |F | | [30].

Correctness and time complexity result from any standard tech-
nique for minimizing Boolean formulae [16], and the insight above.

The �nal real-world example shows there are (mixed) covers
that are minimal-reduced but not optimal for schemata in 3NF.

Example 3.7. Suppose users are assigned di�erent IDs for each
server, soR consists of Fi(rstname), L(astname), I(D), E(mail), S(erver).
F = {FiL → E,E → FiL,ES → I , I → FiL} is minimal-reduced,
and (R, F ) is in 3NF since K contains FiLS , ES , and IS . FD set G =
{FiL → E,E → FiL,ES → I , I → E} is equivalent to F and
has fewer attributes. Indeed, G is an optimal cover of F . For G ′ =
{FiL → E,E → FiL, I → E}, (K ,G ′) is a mixed optimal cover
for the mixed minimal-reduced cover (K , F ′) where F ′ = {FiL→
E,E → FiL, I → E, I → FiL} is minimal-reduced but not optimal.

4 COMPUTATION OF MIXED COVERS

We will now devise algorithms for computing mixed covers, one
sequential and one parallel. We will also analyze their worst-case
computational complexity, and that of closely related problems.
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Algorithm 1Mixed_Seq(F )

Require: Set F of FDs, Type t of cover
Ensure: A mixed cover (K ,G) for F of type t
1: G ′ ← cover for F of type t using FD cover algorithm
2: K ← the set of minimal keys implied by G ′ [22]
3: G ← {Y → Z ∈ G ′ | ∀X ∈ K(X ª Y )}

4: return (K ,G)

Algorithm 2Mixed_Parallel(F )

Require: Set F of FDs, Type t of cover
Ensure: A mixed cover (K ,G) for F of type t
1: Compute G ′ and K in parallel:
G ′ ← cover of F of type t using FD cover algorithm
K ← the set of minimal keys implied by F [22]

2: G ← {Y → Z ∈ G ′ | ∀X ∈ K(X ª Y )}

3: return (K ,G)

4.1 Sequential Algorithm

We want to compute a mixed cover (K ,G) of a given type t for a
given set F of FDs. We do not assume input F is of target type t .

Algorithm 1 is sequential and works as follows. Firstly, we com-
pute a type-t FD coverG ′ of input F . Then we compute the set K of
minimal keys from G ′. Finally, we obtain G by keeping those FDs
of G ′ that are not keys. Since G ′ is a cover of F , K is indeed the
set of minimal keys for F . The next result shows why the last step
produces a type-t cover G for the set of non-key FDs for F .

Theorem 4.1. LetG ′ be an FD cover of type t ,K the set of minimal

keys implied by G ′, and G = {σ ∈ G ′ | K ̸ |= σ } the set of FDs from

G ′ not implied byK . Then (K ,G) is a mixed cover forG ′ of type t . □

Correctness of Algorithm 1 follows by showing that FDs not
implied by K are those whose LHS do not contain any key from K .

Lemma 4.2. Let Y → Z denote a non-trivial FD over relation

schema R, and let K denote a set of minimal keys for R. Then K |=

Y → Z if and only if there is some X ∈ K such that X ¦ Y . □

4.2 Parallel Algorithm

Algorithm 1 computes the set K of minimal keys after computing
G ′, which is a type-t FD cover of F . It makes sense to useG ′ since it
is typically smaller than F . However, we can also compute K from
the original FD set F . In this case, we do not need to wait until G ′

has been computed. That is, we could computeG ′ and K in parallel.
This results in Algorithm 2.

Note that Algorithms 1 and 2 are guaranteed to return the same
result since the set K ′ of minimal keys implied byG ′ and the set K
of minimal keys implied byG coincide. Indeed,G ′ andG are covers
of one another, so they determine the same set of minimal keys.

Illustrated by Figure 4, Algorithm 2 runs faster than Algorithm 1
if and only if the computation of K from F is faster than the total of
�rst computing G ′ from F and computing K from G ′ subsequently.
As we will witness in the experiments, the two algorithms can
have signi�cantly di�erent run times. Given su�cient resources,
both algorithms may be run in parallel to ensure that maximum
advantage is taken in terms of getting the result as fast as possible.

Figure 4: Main parts of Computing Mixed Covers

Algorithm 3 Mixed(G ′)

Require: Set G ′ of FDs of type t
Ensure: A mixed cover (K ,G) for G ′ of type t
1: K ← the set of minimal keys implied by G ′ [22]
2: G ← {Y → Z ∈ G ′ | ∀X ∈ K(X ª Y )}

3: return (K ,G)

4.3 Computational Complexity

Before we discuss the worst-case complexity of Algorithms 1 and 2,
it is important to recall the complexity of computing the set K of
minimal keys from a set F of FDs. Indeed, the problem of deciding
whether or not there is a minimal key of cardinality not greater
than a given positive integer is NP-complete [22]. Nevertheless,
Osborne and Luccesi have devised an algorithm [22] for computing
K that is polynomial in R, F and K . While |K | can be exponential in
|F |, this only occurs rarely in practice, so K can often be computed
e�ciently. This will be con�rmed by our experiments later.

Knowing K is of utmost importance to providing e�cient access
to data, both during update maintenance and query evaluation.
Algorithms 1 and 2 compute a mixed cover of a target type t for a
given FD set F , which are often e�cient in practice.

Theorem 4.3. Given FD set F , target type t over relation schema

R, Algorithm 1 computes a mixed cover (K ,G) for F of type t in time

in O(|G ′ | · |K | · |R | · (|K | + |R |) + Ct (F )) where Ct (F ) denotes the

function describing the complexity of computing an FD cover G ′ for

F of type t . Similarly, Algorithm 2 computes a mixed cover (K ,G) for

F of type t in time in O(|F | · |K | · |R | · (|K | + |R |) +Ct (F )). □

For example, we have Cminimal-reduced(F ) = |F |
2 and Coptimal(F ) =

2
|F | based on the worst-case complexity of FD cover computations.

4.4 Closely Related Computations

In case the given FD set G ′ is already of type t , computing a mixed
cover of the same type reduces essentially to computing the set of
minimal keys, due to Lemma 4.2. Algorithm 3 summarizes the two
simple steps for this computation. Here, the worst-case complexity
remains the same as that for computing K .

Corollary 4.4. Given an FD cover G ′ of type t over relation

schema R, Algorithm 3 computes a mixed cover (K ,G) for F of type t

in time that is in O(|G ′ | · |K | · |R | · (|K | + |R |)). □

In case the target type is the same as the input type, and the set
K of minimal keys is already given, the computation of a mixed
cover is linear in G ′ and K .

Corollary 4.5. Given FD cover G ′ of type t and the set K of

minimal keys implied by G ′ over relation schema R, we can compute

a mixed type-t cover (K ,G) for G ′ in time O(|G ′ | · |K |). □
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5 EXPERIMENTS

We will now test the e�cacy of algorithms for computing (mixed)
covers.Wewill state our research questions, summarize the datasets,
and then answer each research question before we conclude.

5.1 Research Questions

The main purpose of covers are savings on overheads required
to maintain data integrity during updates. With this focus, it is
interesting to ask the following research questions.

Q1: What savings do notions of FD and mixed covers o�er?
Q2: What time does it take to compute these covers?
Q3: What performance improvement do mixed covers achieve

over FD covers on de-normalized and normalized databases?
Q4: What impact does the use of mixed over FD covers have on

industrial workloads?

The �rst question asks how large the savings in terms of num-
bers and size are that the di�erent notions of FD and mixed covers
achieve. While previous work on FD covers has established hierar-
chies between notions of FD covers, there has not been any experi-
mental evaluation on that matter. We will provide such experiments
and extend them to our notions of mixed covers. However, it should
be clear that mixed covers will typically increase the size compared
to their FD cover. The second question investigates the time it takes
to compute di�erent covers. Naturally, we expect that better cov-
ers (those of smaller cardinality or size) take longer to compute.
Given an FD set and target type t , we will use Algorithms 1 and 2
to compute a mixed cover of type t , and will also compare their
performance. Ultimately, however, what counts the most is how
much overhead for integrity maintenance can be saved by a cover.
Hence, the third research question asks how much time is spent on
integrity maintenance by using di�erent notions of covers. Here,
it will turn out that mixed covers, despite their larger numbers or
sizes, typically lead to dramatic savings on integrity maintenance.
This justi�es the one-time e�ort to compute them, in analytical set-
tings such as active data warehouses where tables are denormalized,
and transactional settings where tables are normalized. This will
be quanti�ed by showing which performance improvement mixed
variants achieve over their FD covers on non-normalized schemata
and their decompositions into 3NF. The �nal research question
will provide insight what performance improvements mixed covers
achieve over FD covers on the TPC-H benchmark. For that purpose,
we will report the performance of queries, refresh and insert opera-
tions under di�erent workloads of constraints. In particular, mixed
covers also have a signi�cant bene�t on query evaluation time.

5.2 Set up and datasets

Set up. Our algorithms were implemented in Java, Version 17.0.7,
and run on a 12th Gen Intel(R) Core(TM) i7-12700, 2.10GHz, with
128GB RAM, 1TB SSD, and Windows 10. We used the community
edition of MySQL 8.0.29.

Data.We choose one synthetic and 16 real-world datasets that
have been used as benchmarks for discovering database constraints
from data, including FDs [26, 27, 36]. We use the results of discovery
algorithms as inputs for computing FD covers and their mixed
variants.

Table 1: Statistics of Datasets Used for Experiments

dataset #r #c #fd fd-size #norm %bcnf
abalone 4,177 9 54 371 20 75%
adult 48,842 14 68 451 46 100%
fd-red 250,000 30 3,573 100,272 1341 100%
lineitem 6,001,215 16 901 8,755 562 95%
breast <> 699 11 43 207 39 95%
bridges <> 108 13 67 379 44 84%
diabetic <> 101,766 30 97,341 1,080,319 26703 91%
echo <> 132 13 91 613 72 90%
hepatitis <> 155 20 2,995 21,215 1123 73%
ncvoter <> 1,000 19 271 2,166 162 87%
pdbx <> 17,305,799 13 37 226 18 72%
uniprot <> 512,000 30 5,794 49,574 1946 79%
weather <> 262,920 18 2,955 26,763 1154 66%
claims<> 97,031 13 17 104 22 100%
dblp<> 10,000 34 708 3,688 294 82%
routes<> 67,663 9 15 67 6 83%
hospital<> 114,919 15 42 195 19 100%

Given the variety of covers we are investigating, it is an interest-
ing question in what format we present the FD set that is input to
the algorithms. Clearly, we would like to avoid presentation in the
form of any cover we want to investigate, yet the format should be
standardized. As a simple solution, we present the input as set of
FDs X → Y that hold on the underlying dataset and where X is a
minimal attribute set for all the attributes in Y , and where left sides
are unique (that is, no two di�erent FDs with the same left side
occur in the input FD set). That is, if X ′ results from X by removing
some attribute, then none of the FDs X ′ → Awith anyA ∈ Y holds
on the underlying dataset. This format permits redundant FDs (and
this is the case for all our datasets we consider), which means that
each of the di�erent notions of covers have an impact. All input FD
sets and their output covers are available as part of our artifact.

Table 1 shows for each dataset, its numbers of rows (#r), columns
(#c), number of valid FDs (#fd), their size (fd-size), the number of
schemata in a lossless, depdendency-preserving decomposition
into 3NF that is in BCNF if possible (#norm), and the percentage of
schemata in BCNF (%bcnf). When nulls occur in the dataset, we
append <> to names of datasets to indicate FDs hold when we use
the interpretation null<>null.

Integrity constraints, such as keys and FDs, encode rules that
data ought to obey within the domain of application. The FDsmined
from a given dataset include such rules but also FDs that only hold
accidentally and for which integrity maintenance is unnecessary.
Ideally, we would conduct experiments on real-world data over real-
world schemata with real-world FDs. Unfortunately, these are hard
to come by, but also not really necessary to gain the insight we want.
The introduction has already looked at real-world schemata and
FDs with synthetic data that satisfy precisely the FDs speci�ed. Our
research questions investigate overall trends for computing covers,
such as the growth of runtime and output size in the input, and the
update performance on non-normalized and normalized schemata
of varying sizes with a variety of integrity constraints. Some of the
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Table 2: Numbers and Size for Di�erent Types of FD Covers on Datasets

cover input non-redundant reduced minimal minimal-reduced optimal

dataset no size no size no size no size no size no size

abalone 54 371 40 269 41 271 40 269 40 210 40 210
adult 68 451 42 269 42 267 42 269 42 267 42 267
fd-red 3,573 100,272 1,550 46,042 1,550 6,203 1,550 46,042 1,550 6,203
lineitem 901 8,755 677 6,284 679 4,241 720 6,284 677 4,229 677 4,211
breast 43 207 40 192 40 189 40 192 40 189 40 189
bridges 67 379 50 278 52 239 50 278 50 230 50 228
diabetic 97,341 1,080,319 62,249 656,454 62,381 653,339 62,249 656,454 62,249 652,166
echo 91 613 71 463 71 286 71 463 71 286 71 278
hepatitis 2,995 21,215 1,439 9,689 1,450 9,404 1,439 9,689 1,439 9,349
ncvoter 271 2,166 159 1,069 169 744 159 1,069 159 704
pdbx 37 226 21 113 22 92 21 113 21 90 21 88
uniprot 5,794 49,574 2,140 14,855 2,184 12,523 2,140 14,855 2,140 12,320
weather 2,955 26,763 1,558 12,874 1,575 11,882 1,558 12,874 1,558 11,750 1,558 11, 642
claims 17 104 14 85 14 83 14 85 14 83 14 83
dblp 708 3,688 310 1,615 313 1,286 310 1,615 310 1,277
routes 15 67 6 22 6 20 6 22 6 20 6 20
hospital 42 195 17 80 18 67 17 80 17 64 17 62

Table 3: Numbers and Size for Di�erent Types of Mixed Covers on Datasets

cover non-redundant reduced minimal minimal-reduced optimal

dataset no size no size no size no size no size

abalone (29,25) (129,136) (29,25) (129,130) (29,25) (129,136) (29,25) (129,130) (29,25) (129,130)
adult (2,42) (20,269) (2,42) (20,267) (2,42) (20,269) (2,42) (20,267) (2,42) (20,267)
fd-red (3564,9) (10692,32) (3564,9) (10692,21) (3564,9) (10692,32) (3564,9) (10692,21)
lineitem (390,432) (2135,2718) (390,433) (2135,2659) (390,432) (2135,2718) (390,432) (2135,2653) (390,432) (2135,2650)
breast (2,40) (10,192) (2,40) (10,189) (2,40) (10,192) (2,40) (10,189) (2,40) (10,189)
bridges (3,47) (5,241) (3,49) (5,229) (3,47) (5,241) (3,47) (5,220) (3,47) (5,219)
diabetic (6530,62234) (64378, 656124) (6530,62365) (64378, 653219) (6530,62234) (64378, 656124) (6530,62234) (64378, 652059)
echo (39,45) (111,191) (39,45) (111,180) (39,45) (111,191) (39,45) (111,180) (39,45) (111,180)
hepatitis (104,1433) (499,9626) (104,1443) (499,9367) (104,1433) (499,9626) (104,1433) (499,9316)
ncvoter (113,129) (399,650) (113,135) (399,596) (113,129) (399,650) (113,129) (399,573)
pdbx (11,17) (39,70) (11,17) (39,68) (11,17) (39,70) (11,17) (39,68) (11,17) (39,68)
uniprot (850, 2093) (3992,13627) (850, 2135) (3992,12291) (850, 2093) (3992,13627) (850, 2093) (3992,12098)
weather (523,1471) (3814,11471) (523,1481) (3814,11109) (523,1471) (3814,11471) (523,1471) (3814,11036) (523,1471) (3814,10944)
claims (1,13) (1,72) (1,13) (1,72) (1,13) (1,72) (1,13) (1,72) (1,13) (1,72)
dblp (28,310) (72,1615) (28,313) (72,1286) (28,310) (72,1615) (28,310) (72,1277)
routes (2,5) (7,16) (2,5) (7,16) (2,5) (7,16) (2,5) (7,16) (2,5) (7,16)
hospital (12,16) (35,75) (12,17) (35,62) (12,16) (35,75) (12,16) (35,59) (12,16) (35,59)

datasets, such as routes, hospital, or bridges have fewer FDs and
they all appear to be sensible. We believe that our datasets and FD
sets do provide a good range of real-world schemata, real-world
data, and real-world-like FDs.

When we measure runtime, we always report the average over
hundred independent runs. This includes the experiments where
we perform integrity checking using FDs (and keys) after insert-
ing varying numbers of previously removed records into the given
dataset. For experiments concerning schemata in 3NF, we used
the state-of-the-art algorithm that returns a lossless, dependency-
preserving 3NF decomposition that is in BCNF whenever possi-
ble [25], and used the sub-schemata which were in 3NF but not in
BCNF together with the projection of the original database on the
sub-schemata, for our experiments.

Table 4: Percentage of Savings for Di�erent Covers

dataset all optimal terminated

measure number size number size

cover FD mix FD mix FD mix FD mix

non-redundant 39.8 25.3 42.7 45.7 33.7 21.9 36.4 39.2
reduced 38.8 24.8 52.8 47.6 32.8 21.4 45.8 40.8
canonical 29.6 20.3 49.9 45.7 20.9 16.7 42.1 39.6
minimal 39.8 25.3 42.7 45.7 33.7 21.9 36.4 39.2
minimal-reduced 39.8 25.3 53.4 48.0 33.7 21.9 46.5 41.2
optimal 33.7 21.9 46.9 41.3
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Table 5: Runtime (in ms) required to compute FD covers and mixed covers

cover non-redundant reduced minimal minimal-reduced optimal

dataset FD mix-seq mix-par FD mix-seq mix-par FD mix-seq mix-par FD mix-seq mix-par FD mix-seq mix-par

abalone 0.27 1.26 1.3 1.81 2.88 2.04 0.96 2.08 1.3 2.08 3.25 2.11 5.6 6.56 5.64
adult 0.43 0.68 0.43 2.45 2.73 2.46 1.04 1.3 1.04 2 2.24 2 12,051 12,051.24 12,051
fd-red 4,426 103,343 315,090 152,891 222,541 315,926 8,033 77,205 315,319 38,037 112,009 315,450
lineitem 89.4 973.8 2,188.5 1,625 2,579.2 2,187.4 435.7 1,617.1 2,187.8 1,315.7 2,290.8 2,191 603,110 604,208 603,141
breast 0.18 0.28 0.18 0.77 0.87 0.77 0.54 0.64 0.54 0.99 1.09 0.99 26.8 26.89 26.78
bridges 0.36 0.54 0.37 3.24 3.48 3.25 1.77 2.01 1.78 3.71 3.97 3.72 4,098.2 4,098.72 4,098.2
diabetic 2998498 8788805 10849996 26190534 32287042 26204724 11231958 17350185 11245740 20454337 26563510 20468352
echo 0.69 2.74 2.25 5.52 7.57 5.57 2.08 4.12 2.25 5.42 7.45 5.47 2,941 2,943.03 2,941.05
hepatitis 727.2 1,101.2 1,033.2 6,427.4 7,030.2 6,434.4 2,264.8 2,857 2,271.4 3,231 3,822.4 3,236.6
ncvoter 13.5 56.22 79.44 125.38 179.69 126.2 30.48 85.56 79.64 38.12 75.91 79.28
pdbx 0.14 0.37 0.58 1.46 1.81 1.47 0.42 0.73 0.58 0.88 1.24 0.89 4,056 4,056.36 4,056.01
uniprot 3,902 17,000.5 28,503 63,383 78,243 63,426 4,199 12,204 28,465 6,415 14,463.5 28,462
weather 1,355.1 5,359.4 7,237.35 6,762.85 10,436.85 7,228.6 1,743 4,970.6 7,278.2 3,058.8 6,230.4 7,273 4,365,018 4,368,772 4,365,606
claims 0.03 0.06 0.05 0.2 0.25 0.2 0.14 0.19 0.14 0.33 0.38 0.33 2,945 2,945.05 2,945
dblp 50.78 65.01 50.92 380.02 401.71 380.52 117.3 136.58 117.37 184.23 203.43 184.46
routes 0.03 0.05 0.03 0.1 0.12 0.1 0.04 0.06 0.04 0.05 0.07 0.05 7.9 7.92 7.9
hospital 0.2 0.46 0.74 1.17 1.52 1.18 0.41 0.73 0.74 0.65 0.98 0.74 98,851 98,851.31 98,851.01

5.3 Savings

For our �rst research question we are interested in the savings that
FD covers and our mixed variants accomplish, in both numbers and
sizes. This was the original motivation for FD covers [23].

For each dataset, Table 2 lists the number and size of the FD
covers, while Table 3 lists the number and size of the mixed vari-
ants. We terminate the computation of optimal covers if it is not
completed after 4hrs.

Our main observations are: (1) the numbers and sizes quantify
the relationships we expect to hold among FD covers, and between
mixed variants. In particular, minimal covers achieve the lowest
cardinality possible, reduced covers remove extraneous attributes,
while optimal covers guarantee the smallest possible size; (2) for
mixed covers, the number and size of minimal keys can be high,
which means many FDs are implied by minimal keys; (3) the total
in numbers and sizes are typically larger for mixed variants than
they are for their FD covers.

Averaging over all datasets, Table 4 lists the average percentage
of savings across di�erent covers over the input set, for both FD and
mixed covers, respectively. In particular, the savings in numbers
for mixed variants are always smaller than those of the correspond-
ing FD covers. This is the same in terms of sizes, but with a few
exceptions (non-redundant and minimal covers).

In summary, FD covers typically achieve larger savings in num-
bers and sizes compared to their mixed variants.

5.4 Performance

Most applications are based on the set of FDs that have been identi-
�ed as business rules for the underlying domain of application. This
typically means that this set is quite stable, however, business rules
may change over time. Whenever that happens, corresponding
covers may require re-computation. It is therefore also an impor-
tant criteria at which cost the savings of di�erent covers can be
accomplished. Here, we predominantly identify cost with the time
required for computing covers.

Table 5 shows the time (in ms) required to compute the di�er-
ent notions of FD covers (FD), based on our implementations of
algorithms from [24], and their mixed variants using Algorithms 1
(mix-seq) and 2 (mix-par), respectively. Our main observations are:

(1) The computation times quantify the relationships between
original notions of FD covers and those of our mixed variants,
respectively. In particular, savings by minimizing numbers and sizes
require additional times to obtain them. The cost of guaranteeing
optimal sizes by optimal covers is worst-case exponential and that
is visible in our results for larger inputs.

(2) The computation of mixed from their corresponding FD cov-
ers also comes at a signi�cant cost. This, however, is expected since
the problem of deciding whether a given attribute set is a mini-
mal key for a given FD set is NP-complete. Emphasizing this point
further, Table 6 shows the average percentage of additional time
required to compute the mixed variant from the FD variant, across
all datasets. Among the covers that can be computed in input-
polynomial time (all but optimal covers), computing the mixed
variant has a signi�cant overhead over the time for computing the
corresponding FD cover. This, however, is intuitive since the prob-
lem of computing the set of all minimal keys from a given set of
FDs is likely to have no polynomial time algorithm (unless P=NP).
Since the problem of computing an optimal FD cover is also likely
exponential, the overhead for computing a mixed variant of the
optimal cover is less signi�cant. We observe that the computation of
mixed covers require signi�cant overheads compared to FD covers.

(3) Sequential and parallel algorithms can exhibit signi�cantly
di�erent runtimes. The former works well when the input FD set
F is key-heavy, that is, the di�erence in computing K from F over
computing K from FD coverG ′ is larger than computingG ′ from F ;
while the latter works well in the other case when the input FD set
is key-light. This shows in Figure 5, which compares the runtime
of the sequential relative to the parallel algorithm, in percent. Bars
below 100% mean the sequential algorithm performed faster.
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Figure 5: Runtime comparison between sequential and parallel algorithms (sequential faster when percentage below 100)

Table 6: Overhead for Computing Mixed Variant in Percent

of Time to Compute FD Covers

overhead all optimal terminated

dataset/cover seq par seq par

non-redundant 337.22 734.44 233.93 367.58
reduced 28.86 9.71 30.91 5.22
canonical 30.05 8.95 33.06 4.13
minimal 135.01 320.43 87.79 80.22
minimal-reduced 54.42 82.54 40.68 20.17
optimal 1.64 0.06

In summary, the computation of mixed variants requires signif-
icant overheads compared to their corresponding FD covers, and
results in sizes that are typically larger. Our algorithms can reduce
these overheads when the input FD sets are heavy or light on keys.
Given su�cient resources, both algorithms can run in parallel to
obtain the result as quickly as possible. We will see in the next
sections that mixed variants have a tremendous bene�t over FD
covers when it comes to integrity maintenance under updates.

5.5 Maintenance over Original Schemata

We will now address our third research question and show what
time savings mixed variants achieve over their corresponding FD
covers when integrity constraints are maintained. In this section,
we will look at the original schemata which are not normalized.
This may represent scenarios for analytical tasks.

Figure 6 shows the times (in ms) for inserting records over the
non-normalized schemata of our datasets. These are averaged across
all FD covers, and all mixed covers, respectively. Note that the
times are shown on a logarithmic scale. There were four update
operations, which di�er in the number of records inserted: For
i = 1, . . . , 4, ui inserted i × 10% of records (after removing them
�rst from the given dataset). In the �gure, avg-FD refers to the
average times taken across all FD covers, while avg-mix refers to
the average times taken across all mixed covers.

The following main observations can be made. (1) For both FD
covers and their mixed variants individually, times increase propor-
tionally to the number of records inserted. (2) For each dataset and
for each update operation, the time savings of the mixed variant is
around one order of magnitude over their corresponding FD cover.

Table 7: Non-normalized Schemata: Average Boost ofUpdate

Performance by Mixed Over FD Covers

measure average FD average mixed avg update boost (%)

dataset no size no size u1 u2 u3 u4

abalone 42.4 252.3 (29,25) (129, 132.6) 97.5 97.8 97.9 98.0
adult 46.3 296.4 (2,42.6) (20, 270.4) 66.7 66.3 63.8 66.4
echo 76.6 388.3 (39, 46.6) (111, 188.1) 92.9 95.7 96.8 97.4
bridges 53.6 268.4 (3, 47.9) (5, 232.1) 39.7 40.2 40.5 43.0
breast 40.6 192.9 (2, 40.1) (10,190.7) 71.2 72.1 71.4 71.4
ncvoter 178.7 1033.1 (113, 138.4) (399, 629.6) 90.6 90.4 90.5 90.6
claims 15.7 87.9 (1,13.4) (1,74.7) 11.9 11.9 11.9 11.9
routes 7.4 27.7 (2,6.3) (7,22.1) 66.6 66.7 66.7 66.6
hospital 21.9 89.3 (12,19.3) (35,77.6) 73.5 73.7 73.8 73.9

Analyzing point (2) further, Table 7 details the improvement of
update performance by mixed variants over FD covers, in percent.
The improvements are signi�cant but can vary by quite a margin,
that is, between approximately 12% and 98%. This is expected as the
schema is not normalized. Indeed, there may still be many non-key
FDs whose left-hand sides are not contained in any minimal key
and whose right-hand side is not prime. Such FDs may not enjoy
any speed up by the UNIQUE indices introduced by minimal keys.

However, the time savings are signi�cant, and it should be
stressed that these savings occur whenever updates are made. Due
to demands from organizations to make real-time decisions, using
active data warehouses or cloud architectures, updates also occur
more frequently in analytical settings. Hence, computing more ad-
vanced notions of covers pays o�, in particular as business rules
change very rarely compared to the frequency of updates.

5.6 Maintenance after Normalization

We will now address scenarios where integrity is maintained on
schemata resulting from decomposition into lossless, dependency-
preserving 3NF, such as transactional workloads. For that purpose,
we have computed lossless, dependency-preserving decompositions
into 3NF [25], which are in BCNF whenever a lossless, dependency-
preserving decomposition into BCNF exists.

Table 1 lists how many relation schemata each 3NF decompo-
sition returned and the percentage of those in BCNF. Only 4 out
of 17 datasets have a decomposition into BCNF, but only a small
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Figure 6: Non-normalized Schemata: Average time in ms for integrity maintenance across FD and across mixed covers

Figure 7: Normalized Schemata: Average time in ms for integrity maintenance across FD and across mixed covers

percentage of relation schemata is not in BCNF. However, these
schemata constitute the bottleneck for integrity maintenance.

Figure 7 shows the average time in ms for maintaining integrity
under insertions of records across FD and mixed covers on 3NF
decompositions of schemata for our datasets. As some of the de-
compositions have many schemata, we limited our experiments to
at most 10 sub-schemata, which we selected randomly. The update
operations u1, . . . ,u4 are de�ned as before, but are now executed
on the records projected to sub-schemata of the decomposition.
Times are shown on a logarithmic scale.

Our main observations are similar to the case of non-normalized
schemata. However, due to the normalization e�ort we are able
to actually process updates on some of the larger datasets in the
experiments (such as weather and lineitem). The improvement of
time savings ranges from 3-5 orders of magnitude in these cases.

Table 8 details the improvement of update performance by mixed
variants over FD covers, in percent. For each dataset, we list the
number #sch of schemata in 3NF (but not in BCNF) analyzed and
their average number #records of records, average numbers and
sizes for FD and mixed covers on the sub-schemata as before. It
should be stressed that 3NF decompositions are purposefully shift-
ing as much of the semantics of FDs into keys, simply because
non-key FDs cause data redundancy and keys prohibit them. As a
consequence, a signi�cant proportion of the original FDs can be
enforced by minimal keys, which results in tremendous improve-
ments for update e�ciency. It is evident that normalization into 3NF
leads to robust and signi�cant speed ups for integrity maintenance,

Table 8: Normalized Schemata: Average Boost of Update Per-

formance by Mixed Over FD Covers

measure average size average FD average mixed avg upd boost (%)

dataset #sch #records no size no size u1 u2 u3 u4

abalone 4 4176 5 26.5 (3.5,2) (16,9.8) 96.3 96.9 97.3 97.5
echo 7 126 2 8.17 (2, 7.2) (1, 3.5) 84.3 91.4 93.9 95.4
lineitem 2 6,001,214 3.5 21.7 (3,1) (16.5,5.5) 99.9 99.9 99.9 99.9
bridges 7 97 2.29 11.29 (2.1, 9.3) (1, 4.1) 81.9 90.3 93.4 95.1
breast 2 688 2 9 (2,8) (1,4) 94.1 96.2 97.2 97.8
ncvoter 10 991 3.1 13.6 (2.3,9.1) (1.4,5) 92.3 93.6 94.1 94.6
hepatitis 10 144 2.7 17.7 (2.1,13) (1.6,9.8) 88.9 93.4 94.9 95.7
weather 2 262,684 4.5 33.5 (3,21) (2.5,16.5) 99.9 99.9 99.9 99.9
routes 1 67599 2 7 (2,1) (8,2) 99.7 99.8 99.8 99.9

ranging between 81% and 99.99% here. Note that the validation of
many non-key FDs can still bene�t from UNIQUE indices as the
left-hand sides of these FDs may be pre�xes of these indices [18].

In conclusion, mixed covers and normalization work well to-
gether: Mixed covers speed up integrity maintenance and this is
done robustly at orders of magnitude when schemata are in 3NF.
Vice versa, 3NF schemata require mixed covers to bene�t from
UNIQUE indices resulting from minimal keys.

5.7 Impact on TPC-H Benchmark

On each table of the TPC-H benchmark, wemined the set of FDs that
hold on it. Their union F ′ comprises 1038 FDs of size 9291. Its mixed
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Figure 8: Performance Improvement of Optimal Mixed over Optimal FD Cover Under Di�erent Constraint Workloads

Table 9: Numbers and Sizes of Integrity Workloads for TPC-

H Experiments

cover optimal FD F mixed optimal (K ,G)
workload | |F | | |F | (| |K | |, | |G | |) (|K |, |G |)

25% 177 46 (109,53) (43,14)
50% 205 52 (129,72) (48,18)
75% 268 67 (165,97) (58,25)
100% 281 70 (175,105) (60,27)

optimal cover consists of 422 non-key FDs of size 631, and 2166
minimal keys of size 4088. We removed non-sensible FDs manually,
such as FDs including column comments on their LHS, and then
ordered the remaining FDs starting with those we perceived most
sensible (those that constitute primary key dependencies) to those
least sensible. The resulting FD sets represent 100% of the constraint
workload. We then took 25%, 50%, and 75% of those workloads,
starting from the most sensible ones. Subsequently, we computed
an optimal FD cover and a mixed optimal cover for each of the sets.
Numbers and sizes of the covers are summarized in Table 9.

FDs were implemented by triggers, and keys were implemented
as UNIQUE constraints. For each workload, and each cover, we ran
the entire TPC-H benchmark in a single thread, executing 22 query,
7 refresh, and 3 insert operations sequentially. The numbers of
records were customer : 150k; lineitem: 4,423,659; nation: 25; orders:
1,500k; part: 200k; partsupp: 800k; region: 5; supplier : 10k.

Figure 8 illustrates the performance improvement for each op-
eration resulting from the use of mixed optimal covers in place of
optimal FD covers, under each workload. About half the queries
bene�t signi�cantly, while the use of mixed covers is essential for
e�cient integrity maintenance during refresh and insert operations.
This is rather consistent for all workloads considered.

Table 10 quanti�es these observations in more detail. Table 10a
shows the average performance improvement in percent over all
22 queries, over all seven refresh operations, and over all insert
operations, under each of the four workloads considered, when
optimal mixed covers are used instead of optimal FD covers. In
addition, Table 10b breaks down the absolute times saved in ms.

Across all constraint workloads, we saved at least 25% of query
time, and 99% of refresh and insertion time by using mixed instead
of FD covers. Averaged over all workloads, we save more than 53
seconds for queries, 31 minutes for refresh operations, and more
than 2 hours and 58 minutes for inserts.

Table 10: Average Performance Improvement of Query, Re-

fresh and Insert Opertations for Optimal Mixed over Opti-

mal FD Covers under Di�erent Constraint Workloads F

(a) Relative in percent

F query refresh insert
25% 25.01% 99.96% 99.95%
50% 25.31% 99.32% 99.03%
75% 28.66% 99.32% 99.04%
100% 29.52% 99.32% 99.04%

(b) Absolute in ms

F query refresh insert
25% 52,981 226,586 643,554
50% 54,238 2,414,183 13,902,559
75% 54,074 2,412,048 14,078,463
100% 53,655 2,416,338 14,184,594

6 CONCLUSION AND FUTUREWORK

Starting from a simple question how FD covers can be used for
integrity maintenance, we proposed our notion of mixed variants.
Surprisingly, this simple extension bridges classical work on FD cov-
ers with that in database normalization and integrity maintenance.
Our results show that mixed variants provide the right notion for
maintaining data integrity on 3NF schemata and elsewhere. We
showed that their relationships known from previous work already
hold on schemata in 3NF, and the same relationships apply to their
mixed variants. We further illustrated that - while the numbers
and sizes typically exceed that of their FD covers - mixed variants
achieve orders of magnitude better update performance, on both
normalized schemata in transactional settings and non-normalized
schemata common in analytical settings. Our sequential and par-
allel algorithms o�er valuable alternatives in reducing the time to
compute mixed covers. Finally, we quanti�ed the signi�cant reduc-
tion of query evaluation time, and the necessity of using mixed
covers for refresh and insert operations on the TPC-H benchmark.
The paper shows how simple changes of classical database notions
can transform concepts from database theory into best practice.

Future work should look at appropriate notions of covers for
more expressive constraints, such as variants of FDs [12, 31], denial
constraints [29], order [34] or join dependencies [2]. While FDs
have been extended from relational to most other data models, such
as Web [37] or graph models [13, 33], covers have not been studied
yet. Naturally, our results lend themselves for extensions to more
expressive data models, too. Practical work would introduce native
support for specifying and maintaining FDs by relational database
systems. This is required for schemata that are in 3NF but not BCNF.
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