Efficient Differential Dependency Discovery

Shulei Kuang
School of Computer Science, Fudan University, China
21210240017 @m.fudan.edu.cn

Zijing Tan"
School of Computer Science, Fudan University, China
zjtan@fudan.edu.cn

ABSTRACT

Differential dependencies (DDs) are proposed to specify constraints
on the differences between values, where the semantics of difference
can be “similar”, “dissimilar” and beyond. DDs subsume functional
dependencies (FDs), and find valuable applications in tasks such as
violation detection, duplicate identification, and quantitative data
cleaning, among others. In this paper we present an efficient DD
discovery method for finding hidden DDs from data. We encode
differences between values in a novel structure called the “diff-
set”, and present a set of techniques for constructing the diff-set,
discovering valid DDs with set cover enumeration of the diff-set,
and eliminating non-minimal DDs. Our extensive experimental
evaluation verifies that our method outperforms the existing DD
discovery method up to orders of magnitude. Furthermore, our
method is adapted to discover an important subclass of DDs, known
as relaxed FDs (RFDs), and is also up to orders of magnitude faster
than the state-of-the-art RFD discovery method.

PVLDB Reference Format:

Shulei Kuang, Honghui Yang, Zijing Tan, and Shuai Ma. Efficient
Differential Dependency Discovery. PVLDB, 17(7): 1552 - 1564, 2024.
doi:10.14778/3654621.3654624

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/TristonK/FastDD.

1 INTRODUCTION

Data profiling techniques [1, 2] aim to find hidden meta-data from
datasets, and are actively studied in the literature due to their prac-
tical demands. Data dependencies are one of the most important
types of meta-data, and hence, methods for discovering dependen-
cies have drawn much attention in recent years.

In this paper, we tackle the problem of discovering differential
dependencies (DDs). DDs [44] are proposed to specify constraints on
the differences between values, a departure from dependencies that
only concern the equality of values, e.g., functional dependencies
(FDs). DDs subsume not only FDs but also some variants of FDs that

*Zijing Tan is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.
doi:10.14778/3654621.3654624

1552

Honghui Yang
School of Computer Science, Fudan University, China
22212010046(@m.fudan.edu.cn

Shuai Ma
SKLSDE Lab, Beihang University, China
mashuai@buaa.edu.cn

relax the equality to “similarity”, e.g., relaxed functional dependen-
cies (RFDs) [5] and metric functional dependencies (MFDs) [25].

The formal definition of DDs will be reviewed in Section 3. Below
we give an example to illustrate the form and usefulness of DDs.
Example 1: Relation instance r; in Table 1 shows house informa-
tion. Each tuple carries the address, type, numbers of bedrooms
and bathrooms, and area of a house. Due to an input error, there
is a typo in the attribute Type of tuple t4 (the typo is shown in red
after the right arrow). We showcase a few DDs holding on ry.

(1) @1 = [Address (< 0)] — [Type (< 1)]. This DD states that for
two houses with the same address, the difference between their
values in Type should be no more than 1. Without loss of generality,
we assume that the edit distance is used to measure the difference
between strings. This DD applies to tuples with the same value in
Address and very similar values in Type, which is necessary to deal
with the typo in tuple t4. Note the FD Address — Type, i.e., the DD
[Address (< 0)] — [Type (< 0)], does not hold.

(2) 2 = [Type (< 1)] A [Bedroom (< 1)] — [Area (< 25)]. This DD
states that for two houses of the same type (tolerating the typo), the
difference between theirs values in Area should be no more than 25,
if the difference between their values in Bedroom is no more than
1. We herein use absolute difference values for numerical attributes
Bedroom and Area. Note thresholds are inferred from the instance,
e.g., “25” is the difference between values of t5 and t in Area.

(3) ¢3 = [Type (< 1)] A [Bathroom (> 1)] — [Bedroom (> 2)].
This DD states a constraint on two houses of the same type: the
difference between their values in Bedroom should be larger than
2, if the difference between their values in Bathroom is larger than
1. Besides the semantics of “similar” expressed with operator “<”,
this DD exhibits the semantics of “dissimilar” with “>”.

DDs can be used in various data management tasks. By allowing
small variances in values, DDs can serve all use cases that RFDs
and MFDs can serve. For example, ¢ reveals a hidden determinant
relationship between Address and Type, which cannot be captured
by FDs. Moreover, as t3 and t4 share identical values in all attributes
except for Type, a duplicate detection method [26] can utilize this
DD to determine that ¢3 and #4 refer to the same entity and merge
them. DDs can state complex constraints on the difference between
values, and hence also lend themselves well to quantitative data
cleaning tasks [38]. Constraints concerning orders of attributes,
e.g., denial constraints (DCs) [9], can state that if a house ¢ has more
bedrooms than another house t’, then the area of ¢ should be larger
than t’. However, DCs cannot specify constraints on the difference
between areas of the two houses, making it difficult to find a value
suitable for cleaning an erroneous cell in area. Incorporating DDs

https://doi.org/10.14778/3654621.3654624
https://github.com/TristonK/FastDD
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3654621.3654624
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 1: House Information (relation instance r;)

Address House Type (Type) Bedroom Bathroom Area (m?)
t; Apt. 1603, No 16, 225 Handan Road Apartment 1 1 65
t; Apt. 901, No 11, 225 Handan Road Apartment 2 1 80
t3 Apt. 502, No 1, 225 Handan Road Apartment 4 2 155
ty Apt. 502, No 1, 225 Handan Road ~ Apartment— Aparment 4 2 155
ts Unit 3, 1850 Songhu Road Townhouse 4 3 275
te Unit 12, 833 Guohong Road Townhouse 3 2 250
t7 Unit 156, 899 Jiangwan Road Detached House 5 3 350
tg Unit 222, 1555 Zhongqing Road Detached House 8 5 630

into data cleaning processes with DCs [9, 10, 16, 17, 40] can improve
the accuracy, since considering constraints specified by DDs helps
provide proper attribute values. O
Manually designing DDs is necessarily tedious and error-prone,
even for experts. In fact, it is often impractical due to the large
number of relations and the presence of attribute names that lack
semantic meaning in database systems. With this comes the need
for DD discovery algorithms that can automatically find DDs from
data. However, DD discovery involves a much larger search space
than FD discovery, as it considers combinations of attributes and
thresholds, with multiple thresholds possible for each attribute. Ad-
ditionally, computing the difference between values is required in
DD discovery, rather than simply checking their equivalence in FD
discovery. These challenges make discovering DDs much more com-
plex than discovering FDs. Our experimental findings indicate that
existing DD discovery methods do not scale well on real-life datasets,
highlighting the need for a more efficient discovery method.

Contributions & Organizations. In this paper, we present a new
and efficient DD discovery method.

(1) We introduce our DD discovery algorithm, which is based on
an innovative framework (Section 4). Our approach introduces the
concept of “diff-set” and reformulates the DD discovery problem
for a given instance r as set cover enumeration of the diff-set of r,
along with minimality check operations for DDs. We lay out the
theoretical foundation of our approach.

(2) We provide efficient techniques to construct the diff-set (Sec-
tion 5). We give a condensed representation of the diff-set to encode
results of differential functions, and propose to compute the diff-set
in a column by column manner enhanced with auxiliary structures.
(3) We present a novel method that finds valid DDs with set cover
enumeration of the diff-set, and combines minimality checks to
identify minimal DDs (Section 6).

(4) We conduct an extensive experimental evaluation to verify our
approach (Section 7). Our DD discovery method significantly out-
performs existing ones [44] up to orders of magnitude. We also
adapt our method to the discovery of an important subclass of DDs,
known as RFDs. Our adapted version is far more efficient than the
state-of-the-art method for discovering RFDs [5].

2 RELATED WORK

Dependency discovery methods have been extensively studied in
the literature for many kinds of dependencies. See, e.g., some recent
works [3, 14, 22-24, 27, 31, 35-37, 39, 41-43, 51, 53-56, 58, 60, 61].
In this section, we investigate works close to ours.

1553

Foundation of DDs. The definition of DDs is proposed in [44],
together with related theoretical issues, such as the implication
problem and a sound and complete inference system for DDs. They
are used to define minimal and valid DDs, as the target of DD dis-
covery in [44] and this work.

The relationship between DDs and other dependencies. DDs
are different from constraints concerning orders of attribute values,
e.g., DCs [9] and order dependencies (ODs) [18, 19, 47-50]. DCs
and ODs are related to the order of values, e.g., t.A > s.A, but not
their difference, e.g., |t.A — s.A|. DDs also differ from sequential
dependencies (SDs) [20]. An SD in the form of X — Y states that
when tuples are sorted on X, the distance between the values in
Y of two successive tuples should be within a given threshold g.
Matching dependencies (MDs) [12, 13] also concern the similarity
(difference) of values, but are proposed for record matching across
possibly different relations: if some attributes of tuples match then
the tuples should have the same values in some other attributes,
where the match is defined in terms of similarity operators.

FDs concern equality of values, which is a special case of dif-
ference. There are many variants of FDs studied in the literature;
please refer to [6, 46] for surveys on the topic. In particular, relaxed
functional dependencies (RFDs) [5] generalize the equality of values
to the similarity of them. A RFD Ay — By, states that if tuples
have similar values in A w.r.t. a similarity function ¢, then their
values in B should also be similar w.r.t. a similarity function ¢,. RFDs
generalize metric functional dependencies (MFDs) [25], since MFDs
only permit variations in RHS attribute values. DDs use differential
functions for expressing the semantics of similarity, dissimilarity
and beyond, and hence subsume FDs, MFDs and RFDs.

Discovery of DDs. The first algorithm to discover DDs is presented
in [44], which is built upon a column-based framework originally
proposed for discovering FDs [21]. It traverses the search space of
candidate DDs according to a lattice, and presents rules to prune
invalid or non-minimal DDs. The DD discovery method given in
[28] assumes a user-defined threshold is used as the upper-bound of
distance intervals of the left-hand-side (LHS) differential functions.
Another method [29] relates the discovery of DDs to association
rules, and adopts a measure of interestingness to prune the search
space. [28, 29] do not aim for the complete set of minimal valid DDs,
and only find a subset of the DDs discovered by [44].

Our work discovers the same complete set of minimal valid DDs
as [44], and hence differs from [28, 29]. Compared to [44], our
method differs in the following. (1) Our approach can be regarded
as a highly non-trivial generalization of row-based approaches to FD

discovery [32, 33, 59]. Discovering DDs requires to consider multi-
ple differential functions on the same attribute, resulting in a much
larger search space than discovering FDs. Row-based approaches
usually outperform column-based ones in terms of the scalability
with the size of the search space [34]. These observations inspire the
design of our method. (2) We present a set of novel techniques un-
derlying our approach, including an encoding scheme, and efficient
methods for diff-set construction and for recasting DD discovery
as set cover enumeration of the diff-set plus minimality checks.
As noted earlier, RFDs are a subclass of DDs. To our best knowl-
edge, the state-of-the-art RFD discovery method is given in [5]. It
first compares all tuple pairs to compute results of similarity func-
tions, and then exploits the idea of dominance to infer RFDs. Our
DD discovery method can be easily modified to discover only RFDs.

3 PRELIMINARIES

In this section, we review notations of DDs [44]. We use R to denote
a relational schema (an attribute set), r to denote an instance of R,
t, s to denote tuples in r, and t4 to denote the value of t in A € R.

Distance measure. For A € R, dom(A) denotes the domain of A.
A distance measure ds can be defined on A: da(u,v) is a value
that measures the difference between u and v. The measure dy
should have four properties: (a) non-negativity, (b) identity, (c)
symmetry and (d) triangle inequality. There are many distance
measures studied in the literature [8, 11], e.g., the absolute difference
for numerical values and the edit distance for string values.

Differential function [44]. A (singleton) differential function ¢[A]
specifies a constraint on the difference between attribute values in
A, based on dgq. Specifically, ¢[A] is in the form of [A (op 6)], where
the operator op € { <,> } and 6 is a threshold. We say a tuple
pair (¢, s) satisfies ¢[A] = [A (op 0)] if da(ta,sa) op 6, written as
(t,s) < ¢[A]. Otherwise, we write (¢,s) * @[A]. Since d4 satisfies
symmetry, (s, t) < ¢[A] iff (¢, s) < $[A].

A differential function ¢[X] defined on a set of attributes X C R
is the conjunction of constraints on the difference between values
in A; € X; thatis, §[X] = Aa,ex ¢i[Ai]. A tuple pair (¢, s) satisfies
PIX] = Aa,ex $i[Ail, written as (¢,5) < $[X], if (2, 5) < ¢;[A;] for
every A;eX. We write (¢, s) % ¢[X],if (¢, s) % ¢i[A;] for any A; € X.
Example 2: Consider r; in Table 1. For ¢[Type] = [Type (< 1)]
where dype(u,v) is the edit distance between u and v, (t3,t4) =<
#[Type] but (3, t5) * ¢[Type]. For ¢[Type, Bedroom] = [Type (< 1)]
A [Bedroom (> 2)] where dpegroom (4, v) is the absolute difference
value between u and v, we have (17, tg) < #[Type, Bedroom]. O

Differential dependency [44]. A differential dependency (DD) is
in the form of ¢y [X] — ¢r[A], where X C R, A € R\ X, and ¢y [X]
and ¢Rr[A] are differential functions on X and A, respectively. A
tuple pair (t, s) satisfies ¢p [X] — ¢r[Al iff (¢,s) < ¢r[A] if (t,5)
= ¢ [X]. For an instance r of R, we say ¢ [X] — @r[A] holds (is
valid) on r, written as r = ¢ [X] — ¢r[A], iff every pair (¢,s) in
r? satisfies ¢1 [X] — ¢r[A]. A DD states that for any two tuples,
if the difference between their values in X satisfies the constraint
specified by ¢y [X], then the difference between their values in A
should also satisfy the constraint specified by ¢r[A].

Discovery methods typically aim for only minimal dependencies.
The minimality of DDs is based on the subsumption of differential

1554

functions [44]. Specifically, a differential function ¢[X] is said to
subsume another function ¢’ [Y], written as ¢[X] > ¢’[Y], if V (¢, 5),
we have (t,s) < ¢[X] if (¢,s) < ¢’[Y]. For example, [Type (< 2)]
subsumes (a) [Type (< 2)] A [Bedroom (> 1)], (b) [Type (< 1)]
and (c) [Type (< 0)] A [Bedroom (> 3)]. Note the subsumption
concerns not only set containment, but also operators and thresholds.
We write ¢[X] > ¢’ [Y], if p[X] > ¢’[Y] and ¢[X] # ¢’ [Y].

Minimal DD. On a given instance r, a DD y = ¢ [X] — ¢r[A;] is
minimal if there does not exist a distinct DD y” = ¢; [Y] — ¢p[A;]
holding on r, such that ¢7 [Y] > 4. [X] and ¢r[A;] = ¢plAi].

Intuitively, y” imposes a “weaker” constraint on the LHS and a
“stronger” constraint on the RHS than y. It is easy to prove that y
holds on r if y’ holds on r. Since the validity of y” always guarantees
that of y, only y’ is output by a DD discovery method.

Determining differential functions. To construct the search
space of DD discovery, differential functions must be determined.
The domain of an attribute usually suggests a distance measure
on the attribute, and proper thresholds are the key to meaningful
differential functions. Criteria to determine similarity thresholds
have been studied not only in the context of DDs [44, 45] but also
in those of RFDs and MDs [5, 42]. Below we briefly review them.
(1) Thresholds from data [5, 42]. Rather than ask users to provide
thresholds, thresholds can be inferred from the given instance.
Different thresholds can be used on the same attribute. For example,
[Bedroom(< 1)] and [Bedroom(< 3)] can denote different degrees
of similarity, while [Bedroom(< 0)] denotes equality.

(2) Support [5, 42, 44, 45]. The support of a differential function is the
proportion of tuple pairs satisfying the function. When the function
is used as the LHS of a DD, the support measures the proportion of
tuple pairs the DD applies to. A threshold is usually preferable if it
leads to functions with high support.

(3) Dependent quality [45]. An improper threshold can incur a
meaningless differential function. For example, if d4 (u, v) is always
smaller than 10 for any u, v in dom(A), then using [A (< 10)] as the
RHS of a DD is not interesting. This is because the DD always holds
no matter what LHS function is used, but it is not clear whether the
RHS indeed depends on the LHS.

With a given instance r, we assume a set ¥ of singleton differen-
tial functions, i.e., ¢[A], VAER, is determined in a pre-processing
step and taken as an input of our DD discovery. Our method does
not depend on any specific techniques to determine differential
functions, and can support arbitrary similarity measures and con-
figurable thresholds.

DD discovery. With a set ¥ of singleton differential functions, the
problem of DD discovery is to find the complete set of minimal valid
DDs on a given instance r.

4 FRAMEWORK OF OUR APPROACH

In this section, we present and justify the framework of our DD
discovery approach.

Overview. Consider our discovery framework shown in Figure 1.
As noted in Section 3, a set ¥ of singleton differential functions is
determined on a sample of the given instance r in a pre-processing
step. Taking ¥ and r as inputs, our discovery method finds the

- 4 Diff-set construction N
Instance 7 UD(z,,zz):...‘ —_— U{dn,,,,),... ‘
\[Encoding and generating]

Discover DDs with diff-set
[Set cover enumeration H Minimization]

2 A\ ¢5 — s,
Valid and
minimal DDs

1A b5 — de,
b2 A\ b5 — ¢,

-

Figure 1: Overview of our DD discovery method

complete set of minimal valid DDs, consisting of two phases. In
the first phase, a data structure called the “diff-set” is built, for
encoding results of differential functions with respect to tuple pairs
from r2. Based on a novel encoding scheme, we develop efficient
techniques for generating the diff-set, as detailed in Section 5. In
the second phase, we recast discovering valid DDs as enumerating
set covers of the diff-set and take additional operations to eliminate
non-minimal DDs, as detailed in Section 6.

In the rest of this section, we give the theoretical foundation of
our two-phase approach, starting with the definition of diff-set.

Diff-set w.r.t. differential functions. With a given set ¥ of sin-
gleton differential functions ¢[A], YA € R, (1) the diff-set of a tuple
pair (t,s) from r? is D(t,s) = { §[A] € ¥ | (t,5) * $[A] }, i.e., the
set of differential functions that (¢, s) does not satisfy. Note D(¢,s) =
D(s, t) since da(ta,sa) = da(sa,ta). (2) The diff-set of an instance
ris D, ={D(t,s) | t, s € r, D(t,s) # 0}, i.e., the set of non-empty
and distinct diff-sets of tuple pairs from r2.

Example 3: In Table 2, we give an example set ¥ of differential
functions for the instance r; in Example 1. It can be verified that
(@) D(t1,t7) ={ 1, P, b5, D6, Ps, o, P11, P12, P14, P15, P16 }; and
(b) D(t3,t3) = D(t1, 7).

Note D, is a set of sets, and each element of D, consists of
differential functions from ¥. Also note that the size |D,| of D, is
usually much smaller than |r|? (|r| is the number of tuples in r),
because different tuple pairs can produce the same diff-set.

Valid DD and diff-set. For a function ¢[A] € ¥, we use D, ($H[A])
to denote the set { U | U € D, A ¢[A] € U}, ie., the subset of
D, with only diff-sets that contain ¢[A]. Each U in D, (¢[A]) is a
diff-set produced by a tuple pair (or several tuple pairs with the
same diff-set) that does not satisfy ¢[A]. A key observation is that
if §[A] is used as the RHS of a DD, then at least another function in
U must be used in the LHS to make the tuple pair(s) satisfy the DD.
Example 4: (Example 3 continued.) Recall ¢1¢ € D(t1, t7); the pair
(t1, t7) does not satisfy ¢16. Consider the DD ¢, = [Type (< 1)] A
[Bedroom (< 1)] — [Area (< 25)], i.e, ¢5 A pg — P16, Which
has @16 on the RHS. It is satisfied by (t1, t7), since ¢s (and also ¢9)
belongs to D(#1,¢7) and is used on the LHS of ¢3. As a counter
example, (t1, t7) does not satisfy ¢190 — ¢16; P10 € D(t1, £7). o

Formally, we have the following result that establishes the con-
nection between valid DDs with ¢[A] on the RHS and D, (¢$[A]).
Proposition 1: Suppose ¢1[X] = A4,ex $ilAil. oL[X] — @[A]
(A ¢ X)is avalid DD on r, iff for each U € D, ($[A]), there exists
some ¢;[A;] in ¢y [X] such that ¢;[A;] € U.

1555

Table 2: Example Differential Functions

¢$1: Address(< 0)
$4: Type (< 0)

$7: Type(> 9)

¢$10: Bedroom(> 2)
¢13: Bathroom(> 1)
P16t Area(< 25)

¢Po: Address(> 0)
¢s: Type(< 1)

¢s: Bedroom(< 0)
¢$11: Bathroom(< 0)
¢14: Bathroom(> 3)
P17: Area(> 90)

¢3: Address(> 4)
$e: Type(< 9)

¢9: Bedroom(< 1)
¢12: Bathroom(< 1)
P15t Area(< 0)

¢P18: Area(> 210)

Proof: By definition, we prove every tuple pair from r? satisfies
o[X] — ¢[A] iff for each U € D, ($[A]), there exists some @; [A;]
in ¢7 [X] such that ¢;[A;] € U.

(1) We prove every tuple pair satisfies ¢r[X] — ¢[A], if each U
in Dy (¢[A]) contains some ¢;[A;]. Every pair whose diff-set does
not belong to D,(¢[A]) obviously satisfies ¢ [X] — ¢[A]. For
a pair (¢, s) whose diff-set belongs to D, (¢[A]), there must exist
some ¢;[A;] € D(t,s) according to the assumption. We know (¢, s)
satisfies ¢r [X] — ¢[A], because (t,s) * ¢r [X] if (t,5) * pi[Ai].
(2) We prove each U in D,(¢$[A]) must contain some ¢;[A;], if
every tuple pair satisfies ¢r [X] — @[A]. Dy (¢[A]) is empty if all
pairs satisfy ¢[A]. Otherwise, for U in D, (§[A]), without loss of
generality, let U = D(t,s). We know (t, s) satisfies ¢ [X] — ¢[A]
according to the assumption. The pair (¢, s) cannot satisfy ¢ [X]
since (t,s) * ¢[A]. Therefore, (¢, s) must dissatisfy some ¢;[A;] in
¢r [X], which implies that ¢;[A;] € D(t,s) = U. O

DD discovery with set cover enumeration. If we take ¢ [X] as
a subset and D, (¢[A]) as a subset family, both defined on ¥, then
Proposition 1 tells us that if ¢§[A] is used as the RHS of a valid DD,
then the LHS of the DD, i.e., ¢1 [X], intersects with every element
of Dy (¢[A]). Such ¢ [X] is referred to as a set cover, a.k.a. hitting
set, of Dy (¢[A]) in the literature. Discovering all valid DDs with
¢[A] on the RHS is related to finding all set covers of D, ($[A]), i.e.,
the problem of set cover enumeration [15, 30].

Please note that ¢y [X] is a set cover of D, (¢p[A]), but the reverse
is not always true. This is because there may be multiple differential
functions on the same attribute, while a DD can use at most one
differential function for each attribute by definition. A special treat-
ment is needed when finding valid DDs with set cover enumeration.
A more intricate issue concerns the minimality. A set cover is mini-
mal if no subset of it is also a set cover. We may aim for minimal
DDs directly from minimal set covers. However, a minimal cover
does not always imply a minimal DD. This is because the minimality
of set covers is built upon set containment, while the minimality of
DDs concerns the subsumption of differential functions.

Example 5: It can be verified that {[Type (< 0)], [Bedroom (< 0)]}
is a minimal set cover of D,([Area(< 25)]). However, [Type (< 0)]
A [Bedroom (< 0)] — [Area (< 25)] is not a minimal DD. This is
because {[Type (< 1)], [Bedroom (< 1)]} is also a minimal set cover
and [Type (< 0)] A [Bedroom (< 0)] — [Area (< 25)] is not minimal
if [Type (< 1)] A [Bedroom (< 1)] — [Area (< 25)] is valid. O

Hence, additional minimality checks are needed for identifying

minimal DDs from DDs discovered with set cover enumeration.

Remarks. Our approach can be regarded as a highly non-trivial
extension of row-based techniques for FD discovery [32, 33, 59,
61]. We highlight the differences as follows. (1) FDs only concern
the equality of values, making FD discovery a special case of DD

discovery; ¥ contains only functions of the form ¢[A] = [A(L 0)].
The consideration of multiple differential functions on one attribute
and the computation of functions beyond equality significantly
complicate the construction of the diff-set, as detailed in Section 5.
(2) There is a one-to-one relationship between a minimal valid
FD and a minimal set cover [59, 61]. In contrast, finding minimal
valid DDs requires special treatment in set cover enumeration and
additional minimality check operations, as noted earlier. We will
present novel techniques to address the issues in Section 6.

5 DIFF-SET CONSTRUCTION

In this section we present techniques for diff-set construction. We
provide a novel scheme to encode every diff-set of tuple pair with
a condensed representation, present a method to build the diff-set
of r in a column-by-column fashion, and partition data for dealing
with large datasets and building diff-set with parallelism.

Encoding of diff-set. Recall the diff-set D(t,s) is the set of dif-
ferential functions that (¢, s) does not satisfy. During the stage of
diff-set construction, we adopt a novel encoding scheme to save
D(t,s) as an integer. This condensed representation reduces the
memory usage, which in turn improves the efficiency of diff-set
construction. In the sequel we assume R ={ A1, Ay, ..., A|R‘ }, where
|R| is the number of attributes of R.

With the given set ¥ of singleton differential functions, thresh-
olds used in functions on an attribute A; are known (suppose we
use 0 in [A; (< 0)] for every Aj;, to express the semantics of “equality”
on A;). We sort these thresholds in ascending order, and save them
in a list denoted by T;. We use |T;| to denote the number of elements
in Tj, and T;[k] to denote the k-th element of T; (0 < k < |T;| — 1).
The thresholds are employed to generate |T;| + 1 intervals, i.e., [0, 0],
(T;[0]=0, T;[1]], . . ., (Ti[|T;] — 1], o0). For each interval, we assign
an interval sequence number (ISN) to it, which is in the range of [0,
|T;|]. Every distance value belongs to exactly one interval. We use
#4, (dist) to denote the ISN on attribute A; for a distance value dist,
which is formally defined in Equation 1.

0 dist =0
#4,(dist) =1k Ti[k - 1] < dist < T;[k] 1)
ITi| dist > T;[|Ti| - 1]

For a tuple pair (¢, s), #4, (da,(ta;» 54;)) determines whether each
differential function on A; is satisfied by the pair or not. Taken
together, the set of ISNs for attributes of R determines D(¢,s).
Proposition 2: Two tuple pairs (¢, s) and (¢, s”) have the same ISN
for every A; € R, iff D(¢,s) = D(¢,5”).

We further encode all ISNs of (¢, s) into an integer, as a condensed
representation of D(¢, s). The computation of the encoding is given
in the following Equations. We also use D(t, s) to denote the code
of D(t,s), when it is clear from the context. To simplify the presen-
tation, we denote by a; the ISN on A;, ie., a; = #4,(da,(ta;, s4,))-

Si=[]Unl+n (<i<IRI-1))

k=1
D(t,s) = a1 +az X S1 + ... + ag| X S|g|-1

®)

1556

Except for aj, each g; is associated with a weight S;—; computed
with Equation (2), and the weighted sum of all a; is used as the code
of D(t,s) (Equation 3). The rationale is that a; can be computed
from the code reversely, as shown below. In the equation, mod and
div denote remainder and integer division, respectively.

D(t,s) mod S; i=1
ai =4 (D(t,s) mod S;) div Si—1 1<i<|R| (4)
D(t,s) div S|R|-1 i=|R|

Example 6: For the set ¥ of differential functions shown in Ta-
ble 2, let R = {A; = Address, A2 = Type, A3 = Bedroom, A4 = Bath-
room, As = Area}. We have Ty = [0,4], T> = [0,1,9], T = [0, 1, 2],
Ty = [0,1,3],and T5 = [0, 25,90, 210]. As an example, Ts is used to
generate 5 intervals, i.e., [0,0], (0,25], (25, 90], (90, 210], (210, co).
According to Equation (2),51 =3,S2=3X4=12,S3=3X4x4=
48,and Sy =3 X 4 X 4 X 4=192.

Now consider a pair (t1, 7). Let dist; = da, (t1[A;], t7[A;]) and a;
= #4, (dist;). We have a5 = 4, since dists5 = 350 — 65 = 285 and dists
€ (210, 0o0). Similarly, a1 = 2, az = 3, a3 = 3 and a4 = 2. According
to Equation (3), D(t1,t7) =2 +3 X3 +3X 12 +2 X 48 + 4 X 192
=911. We can recall g; (i € [1,5]) from the code of D(ty, t7) with
Equation (4). Specifically, as = 911 div 192 = 4, a4 = (911 mod 192)
div 48 = 2, a3 = (911 mod 48) div 12 = 3, a3 = (911 mod 12) div 3 = 3,
and a1 = 911 mod 3 = 2.]

Remarks. We highlight benefits of our encoding scheme. (i) Sav-
ing ISNs is usually more memory-efficient than saving distance
values, and encoding all ISNs into one integer further reduces mem-
ory footprint. (ii) The diff-set D, of r consists of distinct diff-sets
of tuple pair. Based on Proposition 2, duplicate diff-sets can be
efficiently identified by checking the equivalence of their codes
(integers). (iii) Since every S; in Equation (2) can be pre-computed,
the computation of Equation (3) is very efficient. Besides, according
to Equation (3) the code of D(t,s) can be incrementally computed,
each time for an g;. This enables us to compute diff-sets of tuple
pair in a column-by-column fashion, as illustrated below.

Computing diff-set column by column. It is more efficient to
build the diff-set column by column, which puts computations con-
cerning the same attribute together. Additionally, auxiliary struc-
tures can be created to speed up the computations. To make our
solution as general as possible, we do not leverage indexing tech-
niques designed for specific metrics [8]. Instead, we employ two
simple yet effective optimizations that apply to most attribute types.

(1) For an attribute A; € R, our first optimization is the clustering
method that puts all tuples with the same value in A; in the same
cluster. Tuples in the same cluster have no difference between their
values in A;, and all tuple pairs across the same two clusters have
the same difference. Computing distance measures for cluster pairs
is usually much more efficient than tuple pairs, because the number
of clusters is typically much smaller than the number of tuples and
the cost of clustering is linear in the number of tuples.

(2) Our second optimization applies to ordered attributes, e.g., nu-
merical attributes, time and date. For distance measures on these
attributes, a common property is that if ¢ is before t” and t’ is be-
fore t’’ after sorting by an ordered attribute A;, then the distance

between values of t and ¢’ in A; is no greater than that of ¢ and "/
in A;. We can exploit this property to reduce computations.

Auxiliary structures. Before giving details of our algorithm, we
present auxiliary structures used in it. We use position list index
(Pli) [21, 27, 35] to save clusters. We denote the Pli on attribute A;
by 7a,, which is a set of clusters. Each cluster is a pair (k, [), where
k is a value in dom(A;) and [is the set of tuples with the same value
k in A;. Only tuple identifiers (ids) are saved in [to reduce memory
footprint. For ordered attributes, we further sort clusters in 74, by
k in descending order, resulting in a list of clusters.

Example 7: For the instance r; in Table 1, 7gedroom = (8, {f3})>
(5. {t7}), (4 {13, 14, 15}), (3, {t6}), (2. {£2}). (L, {t1})] is a list of clus-
ters, while 7rype is a set of clusters. o

Algorithm. BuildDiff (Algorithm 1) takes as input the instance r,
and outputs the encoding of diff-set D Storing D(t;, ;) for j < k
suffices since D(t}, tx) = D(t, t;). Initially we set all D(tj,t) = 0
(line 1). D(tj, ty) = 0 iff ¢}, ; have the same values in all attributes
(the interval sequence number (ISN) on every attribute is 0). Hence,
D(tj, t) needs to be updated for an attribute A;, if ¢}, 5 have dif-
ferent values in A;. Attributes of R are processed one by one, and a
Pli structure is built for each of them (lines 3 and 9).

We first consider non-ordered attributes, e.g., textual attributes.
For an attribute A; and two clusters ¢y, ¢, in 7m4;, the ISN for
da, (cm.k, cn.k) is first computed (line 6), and Procedure Update
is then called to update diff-sets of all tuple pairs across c,; and
cn (line 7, lines 23-26). Our encoding scheme naturally supports
incremental updates. With the ISN seqNumber, D(t}, t;) is updated
by adding the product of segNumber and S;_; to it (lines 22 and 26).

We then consider ordered attributes, e.g., numerical attributes,
time and date. For each cluster ¢, and each threshold T;[j], we find
cluster c,pq that is the first cluster after cstqr: such that da, (ceng-k,
cm-k) > T;[j] (lines 10-13). All tuple pairs across ¢, and a cluster
between ciqrt and c,p,q satisfy the same set of differential functions
on A; (lines 14-15), so do tuple pairs across ¢, and a cluster that is
either the final ¢4 w.r.t. ¢y, or after the final c,,4 (lines 17-18). Note
the required ISNs on A; are directly obtained with positions in T;
(lines 15 and 18). Since clusters in 74, are sorted, there are additional
optimizations. The technique of binary search is employed to find
Cend (line 13), and after processing T; [j], the treatment for T;[j + 1]
starts from the cluster where the previous search stops (line 16).
Example 8: (Example 6 continued.) For attribute Az (Type), 74, = {
c1: (Apartment, {1, t2, 13}), c2: (Aparment, {4}), c3: (Townhouse,
{ts,t6}), ca: (Detached House, {17, 3}) }. We have da, (c1 .k, c2.k) =
1, and hence #4,(da, (c1.k,c2.k)) = 1. The Procedure Update is
called to update D(t1, t4), D(#2, t4) and D(#3, t4) accordingly.

For attribute A4 (Bathroom), 4, = [c1: (5, {t3}), c2: (3, {ts, t7}),
c3: (2, {t3, ta, t6 }), ca: (1, {t1, t2})]. No updates are caused by c; and
T4[0] = 0, or by ¢q and T4[1] = 1. For ¢1 and T4[2] = 3, cluster c4 is
found since dg, (c4.k, c1.k) > 3. All tuple pairs across ¢y and ¢z or
across ¢ and c3 are processed by calling Update with seqNumber =
2. There are no more thresholds on A4. Hence, all tuple pairs across
c1 and ¢4 are processed by calling Update with segNumber = 3. O

Complexity. Operations in BuildDiff mainly consist of three parts.
(1) Building clusters with hashing takes O(|r|), and sorting clusters
for an ordered attribute A; additionally takes O(|r4,|log(|,1)),

1557

Algorithm 1: Build the diff-set D, of r (BuildDiff)
Input: the relational instance r
Output: the encoding of diff-set D, of r
1 D, « an array of |r|(|r| — 1) /2 elements where all elements are 0
2 foreach non-ordered attribute A; € R do
3 build 74, for A;

foreach cluster ¢y, € ma,; do
foreach cluster c,, € 7a;\ ¢ do
seqNumber < #4, (da; (cm-k, cp.k))
7 Update(segNumber, A;, ¢, ¢n, D)
s foreach ordered attribute A; € R do
build TTA; for Ai
foreach cluster ¢y, € ma; do
Cstart <~ Cm
foreach threshold T;[j] € T; do
Cend < the first cluster after cyqyr such that da;(ceng.k,
foreach cluster c,, between cgygyr and copg do
// excluding csiarr and cepg
‘ Update(j, A, ¢, cn, Dy)
Cstart <~ Cend
foreach cluster ¢, such that c,, = ceng Or ¢y is after cong do
‘ Update(lTi |, Ai, ¢m, cn, Dy)
D, « distinct diff-sets of tuple pair in D,

4
5
6

9
10
11
12
13

14

Procedure Update(seqNumber, A;, c1, c2, D)
Adiff « seqNumber X S;_1
foreach tuple t; € c;.l do
foreach tuple ty € c;.1 do
if A; is a non-ordered attribute and j < k then
‘ D(tj, tr) < D(¢j, tr) + Adiff
if A; is an ordered attribute then
if j < k then D(tj, ty) < D(t;, tx) + adiff
else D(ty, tj) < D(tx, t;) + adiff

where |74, | is the number of clusters in 74, . (2) Computing distance
measures for cluster pairs (instead of tuple pairs) takes |74, |2 for
an unordered attribute A;. In the worst case, it also takes |7, |2 if
Aj is an ordered attribute, but in practice some comparisons across
clusters can be avoided with binary search (line 13). (3) The code
of D(tj, t;) is updated for an attribute A; iff ¢;, t; have different
values in A;. Each update requires one addition operation, while the
multiplication operation is shared by all tuple pairs across the same
two clusters (line 22). We experimentally find the total number of
updates for an attribute is much smaller than |r|?
every update incurs a very small cost.

in most cases and

Dealing with large datasets. BuildDiff employs an array whose
size is quadratic in |r| to save intermediate results. In practice we
may fail to afford the array in memory if |r| is relatively large. To
address the limitation, we adopt a partition technique similar in
spirit to [60]. We partition r into blocks ry, ..., rg, and each time
run BuildDiff with one block or two blocks (instead of the whole
set of tuples of r); each time we deal with tuple pairs either from
rm? (m € [1,k]) or from rp, X 1y (m # n). For the case of two blocks,
BuildDiff is slightly modified to build a Pli structure on each block
and process clusters from different blocks. Finally, partial diff-sets

from different runs of BuildDiff are merged to form D,, by removing
duplicate diff-sets of tuple pair.

Parallelism. Partitioning r not only enables the support for large
datasets, but also parallelism. Besides the baseline method that
serializes computations on different blocks and block pairs, we
develop a parallel version that utilizes multi-threaded parallelism, a
feature readily supported by modern multi-core CPUs. The parallel
version employs multiple threads to compute partial diff-sets in
parallel, and uses concurrent queues to resolve potential read-write
and write-write conflicts when merging partial results.

Generating D,. As a complementary step, we restore every integer
code in D, to its normal form, i.e., a set of differential functions, after
the processing of BuildDiff. This is done by decoding the integer
into ISNs (Equation 4) and finding unsatisfied differential functions
according to ISNs. The total cost is linear in |D,| but irrelevant of
|r|; it is usually trivial compared with the cost of BuildDiff.

6 DISCOVERING DDS WITH SET COVER
ENUMERATION

In this section, we present a novel method to discover DDs, which
combines set cover enumeration techniques with specialized mini-
mality check operations for DDs.

Algorithm. GenDD (Algorithm 2) takes as inputs the diff-set D,
and the set ¥ of differential functions, and outputs the complete
set of minimal valid DDs on r. To simplify the presentation, a LHS
differential function ¢[X] is considered as a subset of ¥, so is every
diff-set of tuple pair U in D, (¢ [A;]) for a RHS function ¢[A;].

Each time GenDD takes a differential function from ¥, and finds
DDs with the function as the RHS. Functions in ¥ are sorted in a
partial order such that ¢’[A;] is before ¢p[A;] if p[A;i] > ¢'[A;]
(line 2). The rationale is that the minimality of a DD with ¢’[A;]
on the RHS is always irrelevant of any DD with ¢[A;] on the RHS.
For example, the minimality of ¢1 [X] — [Type (< 1)] is irrelevant
of ¢; [X'] — [Type (< 2)] no matter what ¢ [X] and ¢; [X'] are.
As will be seen shortly, sorting ¥ in the order helps improve the
efficiency of minimality check.

With a function, say ¢[A;], GenDD finds the set I' of LHS func-
tions for valid DDs with ¢[A;] as the RHS, by calling Function Cover
with the set of available functions and the set of diff-sets of tuple
pair containing ¢[A;] (line 5); note all other functions on A; cannot
be used on the LHS (line 4). GenDD then performs minimality check
on T by calling Function Minimize; Minimize also considers the set
> of DDs that have already been discovered (line 6). Finally, newly
discovered minimal valid DDs are added into X (lines 7-8).

Function Cover performs set cover enumeration of D, (@ [A;]). It
first generates a candidate LHS function for each element in ¥’ (line
11), and then employs every diff-set of tuple pair from D, (¢[A;])
to refine candidates until every candidate intersects with every diff-
set, i.e., every candidate forms a set cover of D, (#[A;]). Specifically,
if a candidate, say y, does not intersect with a diff-set of tuple pair,
say U, then a new candidate y U {$¢’[A;]} is generated for each
¢’[Aj] € U\{¢[A;]}, if it is minimal in terms of set containment
and y does not already contain a function on A; (lines 12-20). In
this way, Cover enumerates all possible ways to refine y wr.t. U.

1558

Algorithm 2: DD discovery based on D, (GenDD)

Input: the diff-set D, of r, and the set ¥ of singleton differential
functions ¢ [A;], YA; € R

Output: the set ¥ of minimal and valid DDs on r

12«0

2 sort ¥ based on a partial order, such that V¢’ [A;], ¢[A;] € ¥,

¢’ [A;] is before ¢p[A;] if p[A;] > ¢'[A;]

3 foreach ¢[A;] € ¥ do

Vo~ {¢'[Aj] eV |i#j}

5 T « Cover(¥’, D, (¢[A;i]))

T « Minimize(Z, T, ¢[A;])

7 foreach ¢ [X] €T do

| DUl gLlX] - ¢lA]}

10 Function Cover(¥’, D, ($[A;]))
I {{¢} eV}
foreach U € D, (¢[A;]) do
I"—{yel|ynU=0}// no intersection with U
[«T\["
foreach y eI do
foreach ¢'[A;] € U\{¢[A;]} do
if 39" [A;] € y then
‘ continue // already a function on A;
if By’ € T such thaty’ C (y U{ ¢’[A;]}) then
| T—Tu{yu{¢[A;]}}

11
12
13
14
15
16
17

19

20
21 return I’
22
23 Function Minimize(Z, T, ¢[A;])
T —{$L[X] | pL[X]-¢'[Ai] € Z A §[Ai] > ¢'[Ai] }
sort I' based on a partial order, such that V¢ [X], ¢; [X'] €T,
#7 [X'] is before ¢ [X] if ¢] [X'] > ¢r.[X]
Tnew < 0
foreach ¢ [X] €T do
if Ap] [X'] € Tpuy such that ¢} [X'] = ¢ [X] then

T < T Y ¢ [X]

Thew < Tnew U ¢ [X]
return I},

24

25

26
27
28
29
30

31

Every LHS function returned by Cover is a minimal set cover, but
is not necessarily minimal in terms of subsumption of differential
functions. Moreover, minimality of DDs also concerns DDs with
different RHS functions. Hence, the calling of Minimize is necessary.
Minimize first identifies all LHS functions that may affect the mini-
mality of DDs with ¢[A;] on the RHS (line 24). It then sorts I' based
on a partial order (line 25), similar in spirit to the sorting in line 2.
Taken together, the sort operations enable us to perform minimality
check with a linear scan of the new LHS functions and existing ones
(lines 27-28). A LHS function ¢y [X] passing the minimality check
is employed to check the minimality of functions after it (line 29),
and collected in the output (line 30).

Example 9: We illustrate the running of Function Cover in Figure 2.
There are four differential functions {¢1, ¢2, ¢3, ¢4} and the set
D, (¢1), as shown in the figure. Suppose Cover is called for DDs with
¢1 on the RHS. Initially, we have the set I" of candidate LHS functions.
The LHS of a valid DD should intersect with every element of D, (¢1).
To achieve this goal, Cover employs diff-sets from D, (¢;) to refine
candidates from T'. Suppose Cover processes diff-sets in the order
of ¢1¢3, P1d2¢p3 and P1¢2¢4. (1) For U = ¢1¢3, the set T~ contains

¢1: Ai1(<0)
Dy(¢1) = {#163, b1626, dr6264} 2Asy
L= {62, ¢3 du} LpeAly
U=¢1¢3 U =¢1¢2¢3 U=¢1¢2¢4
T ={¢2, ¢a} r =0 T~ ={¢s}
T = {¢s} T = {¢s} r=9
T=¢2 V=4 Y=4¢s
T = {¢s} ‘ ‘ T = {¢s} ‘ ‘ T = {¢2¢3} ‘ T = {¢2¢3, d344}

Figure 2: Example 9 for Function Cover

diff-sets that do not intersect with U. Cover removes I'™ from I, and
refines candidates in I'” by including more differential functions.
The only candidate ¢2¢3 generated from y = ¢ is not minimal w.r.t.
T'. Similarly for y = ¢4. (2) Every candidate in I already intersects
with U = ¢1¢2¢3. (3) For U = P1¢2¢4, two new candidates ¢o¢3
and ¢3¢4 are generated from ¢3, and are added into I since they
pass the minimality check. O

Further optimizations. We present a novel structure to maintain
LHS functions of discovered DDs, which helps effectively skip ir-
relevant ones when checking the minimality of a DD (used in line
28 of GenDD). To simplify the presentation, and without loss of
generality, we illustrate our technique with an example.
Example 10: The example is shown in Figure 3. For the set I' of
LHS functions of newly discovered DDs with the same RHS, we
aim to check their minimality in terms of DDs discovered before.
According to the subsumption of RHS differential functions, the set
Z g is identified (line 24 of GenDD). X7, is organized as a prefix
tree, where the parent-child relationship is established by following
the order of attributes, i.e., Aj, Ag, ... ,A|R|. Each node denotes a
combination of an attribute and one of the two operators, and every
LHS function in %z is saved in a leaf node by following the path.
LHS functions in I' are sorted by considering their subsumption
relationships (line 25), and processed in the order. For example,
¢2¢5 must be processed before ¢1¢5. (1) To check the minimality
of ¢3: [A1 (> 1)], the node labeled with “A;, >” is visited. Since
¢3 is already saved in the node, ¢3 fails in the minimality check.
(2) To check the minimality of ¢4: [A2 (< 0)], the node labeled
with “Ag, <” should be visited. Since this node does not exist yet, ¢4
passes the check. In addition, the node is inserted into the tree, for
checking remaining functions in I'. (3) To check the minimality of
$2h5: [A1 (£ 1)] A [Az (£ 1)], both the node with “Aq, <” and the
node with “Ay, <” (the new node) are visited. The visit to the node
with “Aj, <” terminates at its child leaf node. Since @25 passes
the minimality check, it is inserted into the leaf node. (4) ¢1¢s is
processed similarly as ¢2¢s5, but it is not minimal because ¢2¢s

already exists in the tree. O

Proposition 3: Algorithm GenDD finds the complete set of mini-
mal and valid DDs.

Proof: Validity. Every DD generated by GenDD has at most one
differential function for each attribute (lines 4 and 17-18), complying
with the definition of DDs. Function Cover is an approach to set

1559

T = {#3, ¢4, $265, p1¢5}

) X fun Before Insert
.)
| $1:A(<0 !
Node | A;, < Node | Ap,> i Po: A1(<1 |
¢3: Ar(>1 [
Come‘ri Content| @3 | b1 Ax(<0 |
AL 1
Node | Aj, < | g5 (D)
N ~
Content| ¢1¢4 ST T =
Root
...................... i Ty gLy
Node | A1, < Node | Ap,> Node | A, <
Content Content| ¢3 Content| ¢4
/v ------ » check ¢3: pruned by ¢3
Node | Aj, < —> check ¢4: a new node for ¢4
Content ﬁlﬁ;&, -------- » check ¢2¢5: inserted into an existing node
295

- > check ¢1¢5: pruned by ¢ads

Figure 3: Example 10 for Minimality Check

cover enumeration of D, (¢[A;]). For every ¢r.[X] generated by
Cover, the validity of ¢y [X] — ¢[A;] follows from Proposition 1.

Minimality. The function Cover only returns minimal set covers.
Considering elements already in I suffices to determine the mini-
mality of a new element in terms of set containment (line 19), since
the size (the number of differential functions) of every element in
I’ monotonically increases (line 20). Based on the output of Cover,
Minimize considers the subsumption of differential functions to
further eliminate non-minimal DDs. The sort operation on ¥ (line
2) and that on I (line 25) ensure that the minimality check can be
performed in a single pass (line 28).

Completeness. The completeness is guaranteed, since (a) Cover re-
turns all minimal set covers of D,($[A;]), and (b) Minimize re-
moves only non-minimal DDs. O

Complexity. The worst-case complexity of GenDD is exponential
in the size |¥| of ¥; the size |Z| of ¥ may grow exponentially with
|¥|. The worst-case complexity of the minimality check is || but
much smaller in practice; usually only a very small proportion of ¥
is visited for checking the minimality of a DD with our optimization.
Note the complexity of GenDD is by nature irrelevant of |r|.

7 EXPERIMENTAL EVALUATIONS

In this section, we conduct an experimental evaluation to verify
the effectiveness and efficiency of our DD discovery approach, and
to analyze our methods and optimizations in detail.

7.1 Experimental settings

Datasets. We used a host of datasets [5, 36, 60] in our experimental
evaluation. Their properties are given in Table 3, with the number
|r| of tuples and the number |R| of attributes (textual attributes +
numerical attributes). We also give the number |¥| of differential
functions considered on each dataset.

Table 3: Datasets and Execution Statistics for DD Discovery
Algorithms (TL denotes more than 24 hours, and ML denotes
running out of Java heap space of 100GB)

Dataset Properties Results Running Time (seconds)
Dataset Irl |IR| |¥|| |Dy| 2] BF TD-PO IE-Hybrid FastDD
Iris 150 1+4 19 443 102 0.428 0.293 0.299 0.168
Balance 625 1+4 10 132 6 0.184 0.188 0.184 0.183
Restaurant 864 5+1 26 4,473 423 13.85 4.36 3.33 1.8
Car 1,728 7+0 21 4,641 50 1454 242 1.9 0.594
Cora 1,879 17+0 61 | 110,155 1,881,718 ML ML ML 1,457
Abalone 4,177 1+8 31| 18,523 14,964 [60,159 3,448 1,477 4.7
Pcm 9,342 10+2 42 | 191,931 72,252 TL TL TL 109
Tax 12k 9+6 52 (2,253,295 1,295,130 TL TL ML 836
Vocab 21k 1+4 20 500 29 81.06 79.12 74.2 27.3
Adult 32k 9+6 435,528,919 1,011,677 TL TL TL 1,458
Claim 112k 8+3 43 [1,063,798 119,939 TL TL TL 7,278
Atom 147k 6+7 53| 42,025 5,139 ML ML ML 1,248
Flight 150k 8+5 49 | 85,068 25,384 TL TL TL 2,932
Struct 169k 1+5 29 1,177 162 4,750 4,711 4,361 2,466

Algorithms. All the algorithms are implemented in Java.

(1) Our DD discovery method FastDD is compared to existing
ones [44]. We implemented three different versions presented in
[44]. BF is a brute-force approach that validates all candidate DDs.
TD-PO leverages subsumption orders to prune the search space in
a top-down fashion, while IE-Hybrid can switch between top-down
and bottom-up pruning modes. All the algorithms adopt the same
settings: (a) the edit distance (resp. absolute difference) for textual
(resp. numerical) attributes; and (b) the same set ¥ of differential
functions. Thresholds on a dataset are derived from differences
between attribute values of 200 sampled tuples (or all the tuples
if |r| < 200), and an upper (resp. lower) bound is specified for “<”
(resp. “>”) to avoid meaningless results. On each attribute, 2 or
3 functions are used for each operator, and the support of every
function is larger than a predefined minimal one.

(2) FastDD and IE-Hybrid are adapted to discover a subclass of
DDs, namely RFDs. The adaptations, referred to as FastDD* and
IE-Hybrid*, are compared with the state-of-the-art RFD discovery
method Domino [5]!. Domino uses the same distance measures
as our method, but considers only the operator “<” and has built-
in criteria to determine thresholds. FastDD* and IE-Hybrid* are
modified to consider the same operator and thresholds as Domino,

for the same output.

(3) We adapt FastDD* to compare with another RFD discovery
method Dime [7]2. Dime can find approximate RFDs holding on
data with some exceptions, according to a predefined error rate €.
We set € = 0 in Dime so as to find (exact) RFDs. Dime allows only
one user-defined threshold on each attribute. FastDD* is modified
to use the same setting, ensuring the same output as Dime.

As stated in Section 5, FastDD (FastDD*) partitions a large
dataset into blocks to facilitate the diff-set construction. In our
implementation, each block contains 10k tuples. Unless otherwise
stated, FastDD (FastDD*) does not exploit parallelism.

Running environment. All the experiments are run on a machine
with an Intel Xeon Bronze 3204 1.90G CPU (6 physical cores), 128GB

! The implementation of Domino is obtained from https://dast-unisa.github.io/Domino-
SW/ (last accessed 2024/3/12).

2The implementation of Dime is obtained from https://dastlab.github.io/dime/ (last
accessed 2024/3/12).

1560

of memory and CentOS Linux. The average of 3 runs is reported as
the experimental results.

7.2 Experimental results

Exp-1: DD discovery methods. We report the running time of all
the methods in Table 3. The result is denoted by TL (resp. ML) if
a method fails to terminate within 24 hours (resp. runs out of the
heap space of 100 GB). We also show the size |D,| of the diff-set of
r and the number |X| of discovered DDs. These two factors usually
have large impacts on the efficiency of DD discovery.

We see the following. (1) FastDD consistently beats all the meth-
ods from [44] on all the tested datasets, up to orders of magnitude
faster. FastDD can efficiently handle datasets that vary significantly
in |r| and |R| (|¥|), and performs well even if |D,| and |2| are very
large. Note |r| and |¥| affects the efficiency of the diff-set construc-
tion, |D,| and |¥| determines the complexity of discovering DDs
with diff-set, and |3| is the size of the output of DD discovery.

(2) Although IE-Hybrid usually performs the best among the three
methods from [44], it still fails to process some datasets within
the time limit. IE-Hybrid follows the column-based strategy, which
enumerates candidate DDs and prunes the search space based on DD
validation results. Its efficiency is mainly controlled by the pruning
power, which heavily depends on data distributions. Recall |D;|
is the number of distinct diff-sets of tuple pair, and a large |D;|
usually implies complex data distributions. The performance of
IE-Hybrid usually degrades dramatically for a relatively large |D,|.
In contrast, the row-based strategy adopted by FastDD separates
diff-set construction from DD discovery with diff-set, and only
the complexity of the latter concerns |D;|. The results show that
FastDD can better deal with various data distributions.

(3) FastDD outperforms other methods in terms of memory usage.
We experimentally find that FastDD suffices to deal with all tested
datasets using less than 10 GB of heap space.

Exp-2: RFD discovery methods.

(1) We compare FastDD*, IE-Hybrid* and Domino in Table 4. Note
the results cannot be compared to those in Table 3. FastDD* and
IE-Hybrid* discover RFDs by using the same differential functions
as Domino (¥ in Table 4 differs from that in Table 3); on average 2
to 4 differential functions with the operator “<” are used on each
attribute. Due to the inherent difficulties of enumeration algorithms,
changes to ¥ can greatly alter the search space and discovery result,
leading to a dramatic impact on efficiency. For example on Cora, |Z|
varies dramatically from Table 3 to Table 4, so does the time.

We see the following. (a) FastDD* significantly outperforms

the state-of-the-art RFD discovery method Domino. Compared to
Domino, FastDD* is at least 5.4 and up to 4,969 times faster; the
median is 22.1 times. IE-Hybrid* usually beats Domino on small
datasets, but Domino can handle all the tested datasets. (b) FastDD*
and Domino are more memory-efficient than IE-Hybrid*. They can
process all tested datasets using less than 10 GB of memory.
(2) Using the same setting as Dime, the comparison results of
FastDD* and Dime are given in Figure 4, for datasets that Dime
can process within time and memory limits. FastDD* is at least 3.4
and up to 2,988 times faster than Dime; the median is 78 times.

https://dast-unisa.github.io/Domino-SW/
https://dast-unisa.github.io/Domino-SW/
https://dastlab.github.io/dime/

Table 4: Execution Statistics for RFD Discovery Algorithms

Dataset Properties Results Running Time (seconds)
Dataset 7| |Dy| |2| | IE-Hybrid* Domino FastDD*
Iris 22 1,278 24 0.311 8.4 0.181
Balance 10 30 21 0.192 24 0.172
Restaurant 25 1,561 43 2.2 37.1 1.9
Car 18 1,466 14 0.619 15.1 0.597
Cora 70 1,561 43 ML 18,799 5.7
Abalone 37 23,545 669 332 92.2 4.1
Pcm 49 8,787 1,630 TL 1,707 88.9
Tax 61 |217,016 48,908 ML 765,333 154
Vocab 6 24 4 94.1 192 24.7
Adult 50 |546,525 986 TL 44,093 149
Claim 29 26,596 123 TL 36,767 6,759
Atom 62 51,368 610 ML 30,551 1,179
Flight 61 33,465 1,216 TL 50,645 2,796
Struct 25 1,098 44 6,577 14,772 2,502
100000 - Dime
10000
g 1000
o 100
£
g 10
H

Figure 4: Comparison of Dime and FastDD*

Exp-3: Time decomposition. We study FastDD in detail by de-
composing its running time, using the same setting as Exp-1.

(1) We show the time of different stages of FastDD in Figure 5a,
consisting of the time for (a) determining differential functions,
(b) computing the diff-set with Algorithm BuildDiff (Section 5)
and (c) discovering DDs with Algorithm GenDD (Section 6). The
time for determining differential functions is always very short and
negligible on most datasets; it is notable only when the total time is
very short. This is because thresholds are determined with sampling
in our implementation. BuildDiff usually takes a large proportion,
and may even take almost all of the time on datasets with a large
|r], as expected. In contrast, GenDD governs the overall time on
Cora, Tax and Adult. As shown in Table 3, a very large number of
DDs are discovered on these datasets, and this inherent difficulty
necessarily leads to more time for GenDD.

(2) By following the complexity analysis (Section 5), we decompose
the time of BuildDiff into that for (a) building Plis, (b) computing
distance measures, and (c) computing the diff-set. The results are
shown in Figure 5b. Building Plis usually takes a small proportion
due to its low computational complexity, while the ratio of the time
for computing distance measures to the time for computing the
diff-set differs considerably on datasets. The time for computing
distances on an attribute mainly depends on the number of distinct
values, especially long strings, since distance measures are com-
puted for cluster pairs rather than tuple pairs in BuildDiff and it is
very expensive to compute the edit distance of long strings.

(3) In Figure 5¢, we decompose the time of GenDD into that for (a)
function Cover and (b) function Minimize (Section 6). We find the

1561

=] Determining differential functions BuildDiff (Algorithm 1) [EEE] GenDD (Algorithm 2)

100%

v

£ 80%

£

& oo%

=

=

2 40%

P

=l

< 0%
0%
100%

Y

£ 80%

£

=

£ 60%

=

=

2 a0%

fio

=]

< 0%
0%

(b) Different stages of BuildDiff (Algorithm 1)
[E55] Cover [EEEE Minimize

100%

£

£ 80%

£

o0

£ 60%

=

=

2 40%

o

=]

N 20% :
0%

(c) Different stages of GenDD (Algorithm 2)

Figure 5: Time decomposition

efficiency of Cover is always the dominating factor. Our minimal-
ity check technique is verified to be very efficient even when the
number of discovered DDs is huge.

Exp-4: Scalability of FastDD. We study the scalability of FastDD
by varying |r| or |R|. The results are reported in Figure 6.

(1) We first study the impact of |r| with datasets Tax and Flight.
FastDD scales well with |r|. The time increases from 229 seconds
to 836 seconds as |r| increases from 2k to 12k on Tax, and from 16
seconds to 28 seconds as |r| increases from 6k to 10k on Flight. The
effects of |r| on different parts of FastDD indeed significantly differ.
Specifically, (a) differential functions are determined on a random
sample of r, with a time irrelevant of |r|. (b) The time for building
Plis almost grows linearly with |r|. (c) The time used to compute
differential functions does not depend on |r|, but depends on the
number of distinct values. As |r| increases, the time of this step
increases significantly on Tax since many new values are introduced
by new tuples, while it only slightly increases on Flight. Note the
addition of new values can be partly seen from |D,|; |D,| increases
by more than 4 times on Tax. (d) The time for computing the diff-set
increases, but the trend is better than the quadratic growth with |r|.

Tax (R |15 Flight (R |=13)

@ 800 25
z z
Y Y
20
E o E
o ools
o0 o0
£ == £
£ 400 £
E £1
£ £
2 200 g
0 0

4k 6k 8k 10k 12k 10k

°
3
H

Iy
2

- Determining differential functions

BuildDiff: [[7] Building Plis [| Computing differences [Computing diff-set

GenDD:

[JCover

[] Minimize

Figure 6: Scalability of FastDD with |r| or |R|

This is because the diff-set of a tuple pair is updated for an attribute
iff the two tuples have different values in the attribute, and some
computations are shared by tuple pairs across the same two clusters.
(e) The running time of GenDD depends on |D;| but not |r|. This
explains why the time of GenDD dramatically increases on Tax, but
only slightly increases on Flight.

(2) We then study the impact of |R| with datasets Tax and Pcm. When
|R| is varied, we vary |¥| by deleting (resp. adding) functions on
discarded (resp. new) attributes. We see the following. (a) Since oper-
ations for different attributes are entirely independent of each other,
BuildDiff consistently takes more time as |R| increases. However,
the extent to which the increase in |R| impacts the performance
depends on whether new attributes introduce a substantial number
of distinct values, particularly long string values. The increase in
the time of BuildDiff is not very evident on Pcm, while the time
almost triples as |R| varies from 3 to 15 on Tax. Note the proportion
of time used by BuildDiff decreases significantly on Tax, as the time
of GenDD sharply increases. (b) |D,| always increases as |R| in-
creases, so does |¥|. Taken together, the time of GenDD is usually
very sensitive to |R|, revealing inherent challenges associated with
DD discovery. Since both |D,| and |2| significantly increase on Tax
and Pcm, the time of GenDD greatly goes up on the two datasets.
The difference is that BuildDiff still governs the overall time on
Pcm, while GenDD takes precedence on Tax as |R| grows larger.
Within the two main parts of FastDD, we conclude that BuildDiff
is more sensitive to |r|, while GenDD is more sensitive to |R| and
does not directly depend on |r|. Hence, the row-based strategy
adopted by FastDD effectively separates the impact of |r| from that
of |R|, making FastDD a robust solution even for datasets that vary
significantly in |r|, |R| and underlying internal data distributions.

Exp-5: Comparison of methods to build diff-set. We compare
BuildDiff against another two methods for diff-set construction. (a)
Naive, which is a baseline method that compares all tuple pairs to
determine the satisfaction of differential functions. (b) Bitset, which
differs from BuildDiff only in its encoding scheme. Recall there are
|T;| + 1 intervals on attribute A; (Section 5). Bitset uses |T;| + 1 bits
for each tuple pair to save the result on A;; for a pair (¢, s), all bits
are initially set to be “0”, and efficient bit operation is employed to
set abit to “17if da, (ta;, s4,) belongs to the corresponding interval.

1562

Tax (|r |=12k) Pcem (|ri|=4k)
~750 —
< Z 10
2 600 @
g § 0 /
by -
o0 450 B
£ £ 60
= 300 =
g £
= 2 30
0 S — o
? ¢ 4 12 15 4 6 8 10 12
1000000
100000 E I Naive Bitset B Encoding

10000
1000
100

running time (s)

(a) Comparison of different methods for diff-set construction

2 threads 3 threads [4 threads 5 threads [l 6 threads

speedup ratio

&

N
Q »

<«

(b) Speed-up ratio of BuildDiff*

>
\°@ &

N &
< » S s

&
S
(@ o S

Figure 7: Experimental results of Exp-5 and Exp-6

For R = {Ay, ..., A|g|}, total Zl!ﬂ(ﬂﬂ + 1) bits are used for each
tuple pair, and exactly |R| bits are finally set to be “1”.

The comparison results are shown in Figure 7a. BuildDiff consis-
tently beats the other methods. Specifically, BuildDiff is on average
6.3 and up to 13 times faster than Naive; this comparison demon-
strates the comprehensive strength of our solution. The advantage
of BuildDiff becomes more evident on datasets with large |r|, as
expected. The comparison of BuildDiff and Bitset in particular ver-
ifies the effectiveness of our encoding scheme. We see BuildDiff is
on average 2 and up to 3.8 times faster than Bitset.

Exp-6: Speed-up ratio with parallelism. We also implement a
parallel version of BuildDiff exploiting multi-threaded parallelism,
called BuildDiff*. The ratio of the time of BuildDiff* running with 1
thread to that of BuildDiff* with K threads is reported as the speed-
up ratio of K threads. We vary the number of threads from 1 to 6,

Table 5: Ranking DDs

Dataset Top-5 Precision | Top-10 Precision | Top-20 Precision
Abalone 0.8 0.8 0.85
Adult 1 0.8 0.8
Restaurant 0.6 0.7 0.55

which is readily supported by our machine. We test BuildDiff* on
datasets with relatively large |r|. The results shown in Figure 7b tell
us that BuildDiff* can well leverage the available threads; the speed-
up ratio consistently increases as the number of threads increases.
Specifically, the speed-up ratio with 2 threads is on average 1.91
and up to 1.98 on the tested datasets, and the ratio with 6 threads
is on average 4.71 and up to 5.66.

Exp-7: Ranking DDs. We show ranking measures can help identify
meaningful DDs from the discovery result. For DDs in the form of
#L[X] — ¢r[A], we rank them first by the support of ¢ [X], i.e.,
the proportion of tuple pairs satisfying ¢ [X], and then by the
succinctness of ¢ [X], i.e, the number |X| of differential functions.

We perform DD discovery on Abalone, Adult and Restaurant, iden-
tify top-k DDs from the result based on the ranking, and manually
label their meaningfulness. We define precision as the number of
(labeled) meaningful DDs divided by k. The results are reported in
Table 5 for k = 5, 10, 20. Relatively high precision values can be
obtained, indicating the ability to efficiently identify meaningful
DDs from the entire result using simple ranking methods.

DDs on Restaurant can effectively accommodate variant spellings
and abbreviations used in values. [name(< 0)] A [addr(< 13)] —
[phone(< 8)] is an example of a discovered DD. Although this DD
is easily understood, manually designing it is challenging, partic-
ularly in specifying the appropriate thresholds. We contend that
requesting users to identify meaningful DDs from the top DDs dis-
covered on a dataset is often more practical than asking them to
provide DDs, especially when considering thresholds.

DDs discovered from Abalone are complex, involving differences
in physical measurements and differences in the ages of abalones.
Similarly, DDs on Adult are also intricate, explaining the reasons for
different salary classes, For space limitation, we provide top-20 DDs
and semantic descriptions of attributes online® for reference.

Exp-8: DDs for duplicate identification. Using dataset Restaurant
as a testbed, we demonstrate the utility of DDs in duplicate identifica-
tion [42, 44]. Due to values with variant spellings and abbreviations,
different tuples in this dataset may refer to the same restaurant.
The dataset is labeled, with tuples pertaining to the same restaurant
sharing identical values in their “class” attribute. We perform DD
discovery on Restaurant after removing this attribute.

We use DDs to classify tuples as either referring to the same
restaurant or not. Tuples that satisfy all the LHS functions of a DD
are considered to denote the same restaurant. The classification
result is then verified based on the known labels in the “class”
attribute. By utilizing DDs labeled as meaningful in the top-5 (or top-
10) discovered DDs, the precision and recall of the classification task
are 0.8 and 0.69 (or 0.75 and 0.85). Adding more DDs can enhance
recall but may have a negative impact on precision, as expected.

3https://github.com/TristonK/FastDD-Exp/tree/main/Exp-7

1563

ESop ZZrep FD

0.0

]

b=

Z 06

RN CEE

tnl@ B W I U
éééééérrf
= {8 B 1 T a0 6) T
iR F R R R R

0=10% 20% 30%

g
N
2
N

20% 30%

g
N
2
N

20% 30%

Car

g
S

Iris Restaurant

Figure 8: Comparison of DDs, RFDs and FDs

Overall, our preliminary experiment shows that DDs demonstrate
good performance in identifying duplicates.

Exp-9: DDs for detecting inconsistencies. We verify the capa-
bilities of DDs in detecting and resolving conflicts, compared with
RFDs and FDs. We conduct dependency discovery on a dataset, and
then introduce noise to it by randomly selecting 8% of the tuples
and modifying a randomly chosen attribute for each selected tuple.
We change the value of the selected attribute to a different value
within the active domain. Using dependencies discovered on the
original dataset, we first find all tuple pairs that violate at least one
dependency, i.e., performing violation detection on the dataset with
added noise. Following the minimal change principle [4, 9], we then
heuristically determine a minimum set V of tuples that guarantees
each violating tuple pair has at least one tuple belonging to V, i.e., V
is a minimum cover of the hypergraph comprised of all conflicting
tuple pairs. Note all data conflicts can be resolved by modifying only
the tuples in V. We define precision p as the proportion of tuples in
V that indeed contain noise, recall r as the proportion of all tuples
containing noise that belong to V, and f-measure=(2xp xr)/(p +
r). The results for different settings considering DDs, RFDs and FDs
are reported in Figure 8, as 0 varies. We see employing DDs always
leads to the best f~measure, mainly because DDs can better capture
data conflicts compared to FDs and RFDs, resulting in significantly
higher recall values, while its precision values remain stable. The
results confirm the advantage of DDs compared to FDs and RFDs.

8 CONCLUSION

We have presented an efficient solution to DD discovery based
on a new framework, by introducing the concept of diff-set and
recasting DD discovery as set cover enumeration of the diff-set plus
minimality checks. We have presented a novel scheme to encode
the diff-set, and efficient methods for building the diff-set and
discovering DDs from the diff-set. Our experimental evaluation has
verified the efficiency and effectiveness of our approach.
Discovering DDs and using DDs in data management tasks can
be integrated to form an end-to-end solution, in an iterative process
with user interactions to further improve precision and recall. We
intend to develop such systems, similar in spirit to [52, 57].

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of
China 62172102, 61925203 and U22B2021. We are really grateful to
anonymous reviewers for their valuable comments and suggestions.

https://github.com/TristonK/FastDD-Exp/tree/main/Exp-7

REFERENCES [32] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. 2000. Efficient Discovery of

[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2017. Data Profiling: A Ful'ncti'onal D.ependencieis and Ar{n}stﬂrong Relationls. In EDBT. 350,_364' .
Tutorial. In SIGMOD 2017, 1747-1751. [33] Heikki Mannila and Kari-Jouko Réih4. 1994. Algorithms for Inferring Functional

[2] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock. Dependencies from Relations. Data Knowl. Eng. 12, 1 (1994), 83-99.

2018. Data Profiling. Morgan & Claypool Publishers. [34] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
[3] Tobias Bleifu3, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial R_UdOIPh’ Martin Schﬁnberg, Jakob Zwl.ener, and Fehx. Naumann. 2015. F unc-
Constraint Discovery with Hydra. PVLDB 11, 3 (2017), 311-323. tional Dependency Discovery: An Experimental Evaluation of Seven Algorithms.
[4] Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Rastogi. 2005. A PVLDB 8, 10 (2015), 1082_10?3' . .
Cost-Based Model and Effective Heuristic for Repairing Constraints by Value [35] Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to Functional
Modification. In SIGMOD. 143-154. Dependency Discovery. In SIGMOD. 821-833.
[36] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2019.

[5] Loredana Caruccio, Vincenzo Deufemia, Felix Naumann, and Giuseppe Polese. - a h '
2021. Discovering Relaxed Functional Dependencies Based on Multi-Attribute Discovery of Approximate (and Exact) Denial Constraints. PVLDB 13, 3 (2019),

Dominance. IEEE Trans. Knowl. Data Eng. 33, 9 (2021), 3212-3228. 266-278. . . .
[6] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2016, Relaxed [37] Eduardo H. M. Pena, Fabio Porto, and Felix Naumann. 2022. Fast Algorithms for

Functional Dependencies - A Survey of Approaches. IEEE Trans. Knowl. Data Denigl Constraint Discovery. PVL_DB 16, 4 _(202_2)’ 684769,6‘ . .
Eng. 28, 1(2016), 147-165. [38] Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J. Miller, and Divesh

[7] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2020. Mining Srivastava. 2015. Combining Quantitative and Logical Data Cleaning. Proc. VLDB
relaxed functional dependencies from data. Data Min. Knowl. Discov. 34, 2 (2020), Endow. 9, 4 (2015), 300-311.

443-477. [39] Abdulhakim Ali Qahtan, Nan Tang, Mourad Ouzzani, Yang Cao, and Michael
[8] Lu Chen, Yunjun Gao, Xuan Song, Zheng Li, Yifan Zhu, Xiaoye Miao, and Chris- Stonebraker. 2020. Pattern Functional Dependencies for Data Cleaning. Proc.
tian S. Jensen. 2023. Indexing Metric Spaces for Exact Similarity Search. ACM VLDB Endow. 13, 3 (2020), 684-697. .)
Comput. Surv. 55, 6 (2023), 128:1-128:39. [40] Thef)df)ros Rekatsmas,)l(u Chu, Ih?l? F Ilyas, and Christopher Ré. 2017. HoloClean:
[9] Xu Chu, Thab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10, 11 (2017),
violations into context. In ICDE. 458-469. 1190-1201. o
[10] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Thab F. [41] Hemant Saxena, Lukasz Golab, and Thab F. Ilyas. 2019. Distributed Implementa-

tions of Dependency Discovery Algorithms. PVLDB 12, 11 (2019), 1624-1636.
Philipp Schirmer, Thorsten Papenbrock, Ioannis K. Koumarelas, and Felix Nau-
mann. 2020. Efficient Discovery of Matching Dependencies. ACM Trans. Database
Syst. 45, 3 (2020), 13:1-13:33.

Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a commodity data cleaning
system. In SIGMOD. 541-552.

[11] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.
Duplicate Record Detection: A Survey. IEEE Trans. Knowl. Data Eng. 19, 1 (2007),

=
)

1-16. [43] Nuhad Shaabani and Christoph Meinel. 2019. Incrementally updating unary

[12] Wenfei Fan. 2008. Dependencies revisited for improving data quality. In PODS. inclusion dependencies in dynamic data. Distributed Parallel Databases 37, 1
159-170. (2019), 133-176.

[13] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. 2011. Dynamic [44] Shaoxu Song and Lei Chen. 2011. Differential dependencies: Reasoning and
constraints for record matching. VLDB 7. 20, 4 (2011), 495-520. discovery. ACM T’”"S- Database Syst. 36, 3 (2011), 16?1*1_6241 o

[14] Wenfei Fan, Ziyan Han, Yaoshu Wang, and Min Xie. 2023. Discovering Top-k [45] Sl?aoxu Song, Lei Chen, %md Ho'ng Cheng. 20'14~ Efficient Determination of
Rules using Subjective and Objective Criteria. Proc. ACM Manag. Data 1, 1 (2023), Distance Thresholds for Differential Dependencies. IEEE Trans. Knowl. Data Eng.
70:1-70:29. 26, 9 (2014), 2179-2192.

[15] Andrew Gainer-Dewar and Paola Vera-Licona. 2017. The Minimal Hitting Set [46] Shao?(u Song, Fei Gao, Ru{hong Huang, gnd Chaokl}n Wang. 2022. Data Depen-
Generation Problem: Algorithms and Computation. SIAM 7. Discret. Math. 31, 1 dencies Extended for Variety and Veracity: A Family Tree. IEEE Trans. Knowl.
(2017), 63-100. Data Eng. 34, 10 (2022), 4717-4736.

[16] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2020. [47] Jaroslaw Szlichta, Par'ke Godfrey, Lukasz Qolab, Mehdi Kargar, and D1V§Sh Sl'“l'
Cleaning data with Llunatic. VLDB J. 29, 4 (2020), 867-892. vastava. 2017. Effective and Complete Discovery of Order Dependencies via

Set-based Axiomatization. PVLDB 10, 7 (2017), 721-732.
Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh Srivas-
tava. 2018. Effective and complete discovery of bidirectional order dependencies

[17] Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.

Cleaning Denial Constraint Violations through Relaxation. In SIGMOD. 805-815. [48

[18] Seymour Ginsburg and Richard Hull. 1983. Order Dependency in the Relational ! A
Model. Theor. Comput. Sci. 26 (1983), 149-195. via set—base@ axioms. VLDB . 27, 4 (2018), 573-591.

[19] Seymour Ginsburg and Richard Hull. 1986. Sort sets in the relational model. J. [49] Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. 2012. Fundamentals of Order
ACM 33, 3 (1986), 465-488. Dependencies. PVLDB 5, 11 (2012), 1220-1231.

[20] Lukasz Golab, Howard J. Karloff, Flip Korn, Avishek Saha, and Divesh Srivastava. [50] Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. 2013. Expres-
2009. Sequential Dependencies. PVLDB 2, 1 (2009), 574-585. siveness and Complexity of Order Dependencies. PVLDB 6, 14 (2013), 1858-1869.

[21] Yki Huhtala, Juha Kirkkiinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE: (51] Zijing Tan, Ai Ran, Shuai Ma, gnd Sheng Qin. 2020. Fast Incremental Discovery
An Efficient Algorithm for Discovering Functional and Approximate Dependen- of Pointwise Qrder Dependencies. PVLDB 13_’ 1,0 (2_020)’ 1669-1681. .
cies. Comput. §. 42, 2 (1999), 100-111. [52] Saravanan Thirumuruganathan, Laure Berti-Equille, Mourad Ouzzani, Jorge-

[22] Yifeng Jin, Zijing Tan, Jixuan Chen, and Shuai Ma. 2023. Discovery of Approxi- Arnulfo Quiané-Ruiz, and Nan Tang. 2017. UGuide: User-Guided Discovery of
mate Lexicographical Order Dependencies. IEEE Trans. Knowl. Data Eng. 35, 4 FD-Detectable Errors. In SIGMOD. 1385-1397.

(2023), 3684-3698. [53] Fabian Tschirschnitz, Thorsten Papenbrock, and Felix Naumann. 2017. Detecting

[23] Yifeng Jin, Lin Zhu, and Zijing Tan. 2020. Efficient Bidirectional Order Depen- Inclusion Dependencies on Very Many Tables. ACM Trans. Database Syst. 42, 3
dency Discovery. In ICDE. 61-72. (2'017)’ 18:1-18:29. .

[24] Youri Kaminsky, Eduardo H. M. Pena, and Felix Naumann. 2023. Discovering (54] Y{han Wang, Shaf:);u Song, Le? Chen, Jeffrey Xu Yu, and Hong Cheng. 2017.
Similarity Inclusion Dependencies. Proc. ACM Manag. Data 1, 1 (2023), 75:1- D}scoverlng Conditional Matching Rules. TKDD 11, 4 (2017), 46:1746:38.

75:24. [55] Ziheng Wei, Sven Hartmann, and Sebastian Link. 2021. Algorithms for the

[25] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian. discovery of embedded functional dependencies. VLDB J. 30, 6 (2021), 1069~
2009. Metric Functional Dependencies. In ICDE. 1275-1278. 1993'

[26] Ioannis K. Koumarelas, Thorsten Papenbrock, and Felix Naumann. 2020. MDedup: [56] Ziheng Wei, Uwe Leck, and S?baStla“ Link. 2019. Discovery and Ranking of
Duplicate Detection with Matching Dependencies. Proc. VLDB Endow. 13, 5 (2020), E1:nbedded Uniqueness Constraints. Proc. VLDB Endow. 12,13 (20?9)’ 2339-2352.
712-725. [57] Ziheng Wei and Sebastian Link. 2018. DataProf: Semantic Profiling for Iterative

[27] Sebastian Kruse and Felix Naumann. 2018. Efficient Discovery of Approximate D?ta Cleangng and Bus'messzule Acqullexon. In SIGMOD. 1793-1796.
Dependencies. PVLDB 11, 7 (2018), 759-772. [58] Ziheng Wei and Sebastian Link. 2019. Discovery and Ranking of Functional

[28] Selasi Kwashie, Jixue Liu, Jiuyong Li, and Feiyue Ye. 2014. Mining Differential De- Dependencies. In ICDE. 1526-1537.

pendencies: A Subspace Clustering Approach. In ADC (Lecture Notes in Computer [59 Cathém}e M.‘Wyss, Chris Qiannella, f'md Edwaré L Robertsgn. 2001. FastFDsE A
Science), Vol. 8506. 50-61. Heuristic-Driven, Depth-First Algorithm for Mining Functional Dependencies
[29] Selasi Kwashie, Jixue Liu, Jiuyong Li, and Feiyue Ye. 2015. Efficient Discovery of frOYr'l'Reli'itlon I'?Stances. In D'a'WaK, ' '
Differential Dependencies Through Association Rules Mining. In ADC (Lecture [60 Ren}}le Xiao, Z‘!‘“g Tan, Haojin Wang, and Shuai Ma. 2022. Fast Approximate
Notes in Computer Science), Vol. 9093. 3-15. Denial Constraint Discovery. Proc. VLDB Endow. 16, 2 (2022), 269-281.
) [61

[30] LiLin and Yunfei Jiang. 2003. The computation of hitting sets: Review and new Renjig Xiao, Yong'an Yuan, AZijing Tan,l Shuai Ma, fmd Wﬂ Wang. 2022. D}{namic
algorithms. Inf. Process. Lett. 86, 4 (2003), 177-184. Functional Dependency Discovery with Dynamic Hitting Set Enumeration. In
[31] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approx- ICDE. 286-298.

imate Denial Constraints. PVLDB 13, 10 (2020), 1682-1695.

1564

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Framework of Our Approach
	5 Diff-set Construction
	6 Discovering DDs with Set Cover Enumeration
	7 Experimental Evaluations
	7.1 Experimental settings
	7.2 Experimental results

	8 Conclusion
	Acknowledgments
	References

