
Refactoring Index Tuning Process with Benefit Estimation
Tao Yu

Harbin Institute of Technology
21B903056@stu.hit.edu.cn

Zhaonian Zou
Harbin Institute of Technology

znzou@hit.edu.cn

Weihua Sun
Harbin Institute of Technology
1190200228@stu.hit.edu.cn

Yu Yan
Harbin Institute of Technology

yuyan@hit.edu.cn

ABSTRACT
Index tuning is a challenging task aiming to improve query perfor-
mance by selecting the most effective indexes for a database and a
workload. Existing automatic index tuning methods typically rely
on “what-if tools” to evaluate the benefit of an index configuration,
which is costly and sometimes inaccurate. In this paper, we pro-
pose RIBE, a novel method that effectively eliminates redundant
queries from the workload and harnesses statistical information of
query plans to enable fast and accurate estimation of the benefit
of an index configuration. With RIBE, a considerable portion of
what-if calls can be skipped, thereby reducing index tuning time
and increasing estimation accuracy. At the heart of RIBE is a deep
learning model based on attention mechanism that predicts the
impact of indexes on queries. A practical advantage of RIBE is that
it achieves both improved accuracy of benefit estimation and time
savings without making any changes to DBMS implementation and
index configuration enumeration algorithms. Our evaluation shows
that RIBE can achieve competitive tuning results and 1–2 orders of
magnitude faster performance compared with the tuning method
based on the full workload, and RIBE also attains higher tuning
quality and comparable efficiency against the tuning methods based
on the state-of-the-art workload compression methods.

PVLDB Reference Format:
Tao Yu, Zhaonian Zou, Weihua Sun, and Yu Yan. Refactoring Index Tuning
Process with Benefit Estimation. PVLDB, 17(7): 1528 - 1541, 2024.
doi:10.14778/3654621.3654622

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/HIT-DB-Group/RIBE.

1 INTRODUCTION
Index tuning is the task of selecting the most effective indexes to
speed up query processing while minimizing storage overhead [39],
which is known to be NP-hard [3]. Unsuitable indexes may lead
to increased query execution time and reduced performance of
database systems [11]. Due to the vast amount of potential index

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097.
doi:10.14778/3654621.3654622

configurations (sets of indexes) and the complexity of query work-
loads, enormous time and resources are required to find the optimal
index configuration for a given workload [8].

Existing automatic index tuning methods typically list all pos-
sible indexes that can be built on the workload and continuously
enumerate index configurations using pre-defined strategies [2, 9]
or reinforcement learning [16, 25]. For each enumerated index con-
figuration, virtual indexes are generated using the what-if tools [4],
and the estimated costs of the queries in the workload given the
virtual indexes is computed by the query optimizer to determine
the next index configuration to be enumerated. The calls to the
what-if APIs take a majority of index tuning time [11, 27].

Traditionally, the studies on index tuning focus on improving
the effectiveness of index configuration enumeration [2, 5–7, 9, 22–
24, 26, 31]. Most studies treat the what-if tool as a block box and
overlook its overhead and accuracy. Recently, the researches start
to take the overheads and the accuracy of what-if calls into account.

One approach is reducing what-if calls by compressing the work-
load to keep only the “essential” queries. The optimal index config-
uration for the compressed workload is expected to be as effective
as the optimal one for the full workload. GSUM [10] formalizes
the representativity and the coverage of the compressed workload,
aiming to preserve the distribution of characteristics of the origi-
nal workload while including both common queries and outliers.
ISUM [28] formulates the benefit of queries for index tuning and
greedily selects the queries with the maximum benefit to form the
compressed workload. Although these algorithms can significantly
reduce the number of queries, they prefer to queries that can be
substantially optimized with indexes, so useful information in the
discarded queries is inevitably lost. As a result, these methods often
lead to sub-optimal tuning results especially when an adequate
budget is given on index tuning.

An alternative approach is reducing the number of potential
indexes as it determines the number of index configurations. DIS-
TILL [29] employs heuristic rules and machine learning models
to filter out indexes with low benefits. In addition, an individual
cost estimation model is trained online for each group of similar
queries in the workload. The what-if calls can be partially replaced
by applying these models. However, maintaining numerous indi-
vidual cost estimation models is complex and error-prone, but it is
challenging to learn a universal model with a good generalization
ability to unseen queries. Moreover, DISTILL is not compatible with
workload compression as eliminating duplicate queries makes it
less effective to learn the cost estimators in DISTILL.

Another approach is incorporating the overheads of what-if
calls into index configuration enumeration. Wu et al. [36] propose

1528

https://doi.org/10.14778/3654621.3654622
https://github.com/HIT-DB-Group/RIBE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3654621.3654622
https://www.acm.org/publications/policies/artifact-review-and-badging-current


budget-aware index tuning that enumerates index configurations
by Monte Carlo Tree Search within a given number of what-if calls.

In this paper, we propose RIBE, a new method to refactor index
tuning process with benefit estimation. This method is designed to
handle both redundant queries in the workload and frequent costly
what-if calls. Our key observation is that, for a considerable portion
of queries, creating indexes may not change the structure of a query
plan but just alter a few operators, e.g. replacing a sequential scan
with an index scan. The original and the altered plans therefore
share the same intermediate results on every pair of corresponding
operators. In this situation, it is unnecessary to compute the esti-
mated cost of the altered plan using the what-if tool and the query
optimizer. Instead, the estimated cost can be computed very fast and
accurately based on the actual statistics (cardinalities, costs, and so
on) of the operators in the original plan (section 4). By exploiting
the actual statistics, the estimated cost is more accurate than that
evaluated by the optimizer as the optimizer relies on estimated
statistics which are sometimes very inaccurate [21, 33–35].

In RIBE, the operator-level actual statistics of the query plans
are stored in a set of representations called workload matrices. The
workload matrices support not only the aforementioned evaluation
of estimated costs but also workload compression. The queries in
the workload are first clustered according to their operator-level
actual statistics in the workload matrices. Then, the workload is
compressed based on the cluster centers. Unlike the existing com-
pression methods, our compression method is based on the oper-
ational characteristics of query plans, not biased towards queries
that can be significantly optimized with indexes.

In addition, RIBE is easy to deploy as it needs not to modify the
implementation of the query optimizer and canworkwith any index
configuration enumeration algorithms [2, 5–7, 9, 22–24, 26, 31, 36].

The paper makes the following technical contributions:
(1) The traditional index tuning process is refactored by intro-

ducing workload matrices (section 3), operator-level workload rep-
resentations. The workload matrices support both workload redun-
dancy elimination andwhat-if call reductionwith a clustering-based
workload compression method and a fast and accurate method for
evaluating the estimated costs of query plans (section 4).

(2) A deep learning model called ChangeFormer is learned to
predict if an index configuration will have the structure of a query
plan changed (section 5). The prediction decides to compute the
estimated cost of a query plan by the query optimizer or our fast
and accurate method based on workload matrices. ChangeFormer
applies the self-attention mechanism to represent query plans, join
schemas and index configurations which is superior to the state-of-
the-art query representation schemes [18, 19, 38].

(3) An extensive evaluation is performed on RIBE. RIBE can
achieve competitive tuning results and 1–2 orders of magnitude
faster performance compared to the tuningmethod based on the full
workload. RIBE also leads to higher tuning quality and comparable
efficiency against the tuning methods based on the state-of-the-art
workload compression methods (section 6).

2 BACKGROUND
The component in a DBMS for index tuning is called index advisor.
The typical process of index tuning is illustrated in Figure 1.

Workload
Recommended 

IndexesEnumeration

queries + indexes

Compressed
Workload

costs

Query 
Optimizer

Figure 1: Traditional process of index tuning.

(1) A query workload𝑊 is collected during a certain period
under the current index configuration I0. An index configuration
refers to a set of indexes on a database. For each query 𝑞 ∈𝑊 , the
SQL statement and the execution plan of 𝑞 are acquired. According
to the size of𝑊 and the configuration of index tuning, workload
compression can be applied to reduce the number of queries in𝑊 ,
while keeping the original information in𝑊 as much as possible.

(2) A set of candidate indexes are enumerated according to the
database schema and the tables and the attributes involved in the
queries in𝑊 . Each candidate index 𝐼 is related to a base table 𝑇
that is involved in a query 𝑞 ∈𝑊 , and the index key of 𝐼 is made
up of an attribute or a list of attributes in 𝑇 that occur in 𝑞.

(3) Given a budget on the number of indexes or the storage space
occupied by the indexes to be created, the enumerator continually
produces index configurations within the budget constraint.

(4) For each new index configuration I produced by the enumer-
ator, we estimate the cost of sequentially executing all queries in𝑊
given that the indexes in I0 are replaced with the indexes in I by
calling a “what-if” API of the query optimizer that does not really
build the indexes in I. The enumerator’s behavior can be affected
by the estimated cost returned by the optimizer. The enumeration
stops once the termination condition of index tuning is met, e.g.,
the maximum enumeration time is reached.
Problem Formulation. Let 𝐷 be a database. For a query 𝑞 on 𝐷
and a set I of indexes created on 𝐷 , the cost of evaluating 𝑞 with
the support of I is denoted by 𝑐 (𝑞,I). Let I0 be the current set of
indexes created on 𝐷 . The benefit of changing I0 to I with respect
to 𝑞 is 𝐵(𝑞,I0,I) = 𝑐 (𝑞,I0) − 𝑐 (𝑞,I). Let𝑊 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} be a
workload on 𝐷 , where each query 𝑞𝑖 ∈𝑊 is weighted by 𝑤𝑖 ∈ R
according to the frequency and the importance of 𝑞𝑖 . Given I0,𝑊
and the maximum number 𝑘 of indexes that can be created on 𝐷 ,
the index tuning problem is to find an index configuration I that
has |I | ≤ 𝑘 and maximizes the total benefit

𝐵(𝑊,I0,I) =
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝐵(𝑞𝑖 ,I0,I) . (1)

Maximizing 𝐵(𝑊,I0,I) is equivalent to minimizing the total cost

𝑐 (𝑊,I) =
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑐 (𝑞𝑖 ,I) . (2)

Given an arbitrary deterministic algorithm 𝐴 that enumerates
an index configuration for an input workload, the workload com-
pression problem aims to find a subset𝑊𝑚 ⊆ 𝑊 with |𝑊𝑚 | ≤ 𝑚

such that the index configuration 𝐴(𝑊𝑚) returned by 𝐴 based on
𝑊𝑚 achieves the maximum total benefit 𝐵(𝑊,I0, 𝐴(𝑊𝑚)) on𝑊 . If
𝐴 is a randomized algorithm,𝑊𝑚 should maximize the expected
total benefit 𝐸 [𝐵(𝑊,I0, 𝐴(𝑊𝑚))].

1529



(a) Tables and SQL statement

A

id

1

2

3

…

B

aid val cid

3 50 400

5 20 400

3 70 100

… … …

C

id

100

200

300

…

SELECT AVG(B.val) FROM A, B, C

WHERE A.id = B.aid AND B.cid = C.id

AND B.val < 65;

(b) No index (c) Index( B.val)

Seq Scan
Index Scan
B.val<65

Hash Join
A.id=B.aid

Seq Scan

Hash Join
B.cid=C.id

Aggregate

Hash
A.id

Hash
C.id

A B C

100 200 110

100

20000

110
170

100

7800 110

(d) Index( B.val, B.cid)

Seq Scan

Index Scan
B.val<65

Hash Join
B.cid=C.id

Seq Scan

Hash Join
A.id=B.aid

Aggregate

Hash
A.id

Hash
C.id

A B C

100 200 110

100

20000

170

110

110

8000100

Seq Scan

Hash
A.id

Seq Scan
B.val<65

Hash Join
A.id=B.aid

Seq Scan

Hash Join
B.cid=C.id

Aggregate

Hash
C.id

A B C

100 200 110

100

20000

110
170

100

7800 110

7
8

5

3

2

1

4

6

Node Type Attributes Selectivity Cost Benefit

1 Agg. {B.val} 1 20 0

2 HashJoin {B.cid, C.id} 0.02 15000 0

3 HashJoin {A.id, B.aid} 0.46 300 0

4 Hash {C.id} 1 0.1 0

5 Hash {A.id} 1 0.1 0

6 SeqScan Ø 1 900 0

7 SeqScan Ø 1 890 0

8 SeqScan {B.Val} 0.85 2000 300

(e) Statistics and Estimated Benefit

Figure 2: An example of how indexes affect query plans. (a) A database of size 1GB and an SQL query. Unrelated attributes are
omitted. (b) The plan of the query when no index has been created. The number beside each arrow indicates the cardinality
of transmitted tuples. (c) The plan of the query after creating an index on (B.val). (d) The plan of the query after creating a
composite index on (B.val, B.cid). (e) The actual statistics of all plan nodes in (b) and the estimated benefits of creating an index
on (B.val) to all plan nodes.

3 OVERVIEW OF OUR SOLUTION
Design Goal. In the traditional index tuning process depicted in
Figure 1, the index advisor executes a lot of calls to the what-if API
of the query optimizer. Suppose the index configuration enumerator
generates totally𝑚 index configurationsI1,I2, . . . ,I𝑚 . Let𝑅(𝑊,I𝑖 )
be the set of queries in𝑊 whose executionmay be affected by one or
more indexes in I𝑖 . For each query 𝑞 ∈ 𝑅(𝑊,I𝑖 ), the index advisor
invokes a what-if call to estimate the cost 𝑐 (𝑞,I𝑖 ). Therefore, the
total number of what-if calls is

∑𝑚
𝑖=1 |𝑅(𝑊,I𝑖 ) |. As tested in [36],

the time spent on what-if calls accounts for approximately 80% of
the total execution time of index tuning. We aims to decrease the
number of what-if calls in two ways while improving accuracy.
One way is to invoke what-if calls only for a fraction of queries
rather than all queries in 𝑅(𝑊,I𝑖 ). The other way is to decrease
the number of queries in𝑊 by workload compression.
Fundamental Idea. The fundamental idea of our index tuning
method RIBE is as follows: Note that there are two types of changes
in query plans after creating indexes. (1) The indexes do not change
any intermediate results generated by the query plan, i.e., the data
transmitted between query plan nodes, but only alter some data
access paths to improve read performance or make some operations
access data in a sorted manner. (2) The indexes alter the structure of
the query plan tree, e.g., changing the join order of tables, thereby
resulting in different intermediate results.

Consider the example in Figure 2. Figure 2(a) gives a database
and a query. When no index has been created, the plan of the query
is depicted in Figure 2(b). If an index is created on attribute B.val,
the plan is changed to the one shown in Figure 2(c), whose structure
is the same as the old plan in Figure 2(b), but the SeqScan operator
on table B is replaced by IndexScan. The index only affects node 8
that is responsible for data retrieval. Therefore, the intermediate
results generated by the new plan remain the same as the old plan,
and only the execution time of the nodes in the old plan is changed.
In this case, it is unnecessary to make a what-if call to the query
optimizer. Instead, as will be presented in subsection 4.2, a more
precise and efficient estimation of the benefit led to be the index can
be computed based on the statistics of the database and the sizes
of the intermediate results produced by the old plan. This method
helps avoid unnecessary what-if calls.

queries + indexes

Workload 
Matrices

Recommended 
IndexesEnumeration

queries + indexes
structure unchanged

queries + indexes
structure changedChangeFormerBenefit

Estimation
Query
Optimizer

Workload

Figure 3: New process of index tuning.

If a composite index is created on the attribute list (B.val, B.cid),
the plan in Figure 2(b) is changed to the one shown in Figure 2(d),
in which the join order is changed. Therefore, we have to estimate
the cost of the new plan via a what-if call.
NewArchitecture of Index Advisor. Based on the above idea, we
devise a novel index advisor which works as illustrated in Figure 3.
The new index tuning process is different from the traditional one
depicted in Figure 1 in the following aspects:

(1)Workload Matrices.We design an internal representation
of workload that represents the execution plans of all queries in a
workload using a compact data structure called “workload matrix”.
As depicted in Figure 3, after collecting a workload𝑊 , we represent
𝑊 by several workload matrices. The workload matrices play three
important roles in the new index tuning advisor.

First, given a query 𝑞 ∈𝑊 and an index configuration I enumer-
ated by the index enumerator, if the plan of 𝑞 will not be changed
by replacing the current indexes in I0 with the indexes in I, the
advisor can estimate the benefit 𝐵(𝑞,I0,I), i.e., the improvement
in the cost of 𝑞, based on the workload matrices. As will be evalu-
ated in subsection 6.4, this method is not only faster but also more
accurate than invoking a what-if call. In addition, this method can
be run in parallel with the query optimizer to estimate benefits
simultaneously, further increasing efficiency.

Second, the index advisor can utilize the workload matrices to
efficiently cluster queries with similar impacts on index tuning and
remove unnecessary queries, thereby reducing the size of𝑊 .

Third, unlike what-if calls that are unable to be executed in par-
allel, computations on a workload matrix can be easily parallelized.
Thus, the total benefit𝐵(𝑊 ′,I0,I) with respect to a subset𝑊 ′ ⊆𝑊
can be estimated based on the workload matrices in parallel rather
than being estimated by the query optimizer sequentially.

1530



(2) ChangeFormer. The introduction of workload matrices
brings up a key problem: should the benefit 𝐵(𝑞,I0,I) be estimated
based on the workload matrices or by the query optimizer? The
decision mainly depends on if the execution plan of 𝑞 will be signif-
icantly changed by replacing I0 with I. To make correct choices,
we design a deep learning model called ChangeFormer based on
the tree-structured transformer [38]. Given the workload𝑊 and a
set of enumerated index configurations, we use ChangeFormer to
predict in parallel if the plan structure of each query in𝑊 will be
changed by each given index configuration. ChangeFormer is very
efficient. Due to the parallel processing power of GPUs, Change-
Former can make predictions for thousands of pairs of query and
index configuration within a few milliseconds.

4 WORKLOAD MATRICES
In this section, we introduce workload matrix, a new representation
of workload, and propose a new benefit estimation method based
on workload matrices.

4.1 Foundations of Benefit Estimation
Let 𝑃𝑞 be the execution plan of a query 𝑞 under the current index
configuration I0. The structure of 𝑃𝑞 is a tree of plan nodes. Each
node is an operator in 𝑃𝑞 . For a node 𝑁 , let 𝑡𝑁 be the operator type
of 𝑁 , 𝐼𝑁 be the input of 𝑁 , and𝑂𝑁 be the output of 𝑁 . Let 𝑐 (𝑡𝑁 , 𝐼𝑁 )
denote the cost of executing 𝑁 on the input 𝐼𝑁 . Therefore, the cost
of 𝑃𝑞 is formulated by

𝑐 (𝑃𝑞) =
∑︁

𝑁 :𝑁 is a node in 𝑃𝑞

𝑐 (𝑡𝑁 , 𝐼𝑁 ). (3)

The formula of 𝑐 (𝑡𝑁 , 𝐼𝑁 ) is determined by 𝑡𝑁 and is formulated
based on two types of variables. One type of variables is the cost
parameters that estimate the costs of individual physical opera-
tions such as disk page fetches, tuple processing and index entry
processing, which are specified by the DBMS by default and can
be modified by users. The other type of variables are the numbers
of physical operations in each type performed during the execu-
tion of 𝑁 , which are determined by the statistics of 𝐼𝑁 and 𝑂𝑁 ,
e.g., the numbers of pages and tuples. For example, PostgreSQL
formulates the cost of a SeqScan operator without filter condi-
tions as seq_page_cost × relation_pages + cpu_tuple_cost ×
output_tuples, where seq_page_cost is the estimated cost of a
disk page fetch, cpu_tuple_cost is the estimated cost of process-
ing a tuple, relation_pages is the number of pages in the input,
and output_tuples is the number of output tuples.

Replacing the current index configuration I0 with a new index
configuration I may change the current plan 𝑃𝑞 to a new plan 𝑃 ′𝑞
with 𝑐 (𝑃 ′𝑞) < 𝑐 (𝑃𝑞). If 𝑃𝑞 and 𝑃 ′𝑞 have different plan structures,
it is inevitable to use the query optimizer to estimate the benefit
𝐵(𝑞,I0,I) = 𝑐 (𝑃𝑞) − 𝑐 (𝑃 ′𝑞). However, if 𝑃𝑞 and 𝑃 ′𝑞 have the same
plan structure, but some corresponding nodes are of different oper-
ator types, such as the plans shown in Figure 2(b) and Figure 2(c),
𝐵(𝑞,I0,I) can be estimated in a more efficient way. Let N be the
set of nodes in 𝑃𝑞 whose operator types are changed in 𝑃 ′𝑞 . For
𝑁 ∈ N , let 𝑡 ′

𝑁
be the operator type of 𝑁 in 𝑃 ′𝑞 . We have

𝐵(𝑞,I0,I) = 𝑐 (𝑃𝑞) − 𝑐 (𝑃 ′𝑞) =
∑︁
𝑁 ∈N

𝑐 (𝑡𝑁 , 𝐼𝑁 ) − 𝑐 (𝑡 ′𝑁 , 𝐼𝑁 ) . (4)

As 𝑃𝑞 and 𝑃 ′𝑞 have the same plan structure, every common node
𝑁 in 𝑃𝑞 and 𝑃 ′𝑞 has the same input 𝐼𝑁 and the same output 𝑂𝑁 .
Since the costs 𝑐 (𝑡𝑁 , 𝐼𝑁 ) of all nodes 𝑁 ∈ N have already been
known, estimating 𝐵(𝑞,I0,I) reduces to estimating 𝑐 (𝑡 ′

𝑁
, 𝐼𝑁 ) for

all 𝑁 ∈ N . Directly using the query optimizer to estimate 𝑐 (𝑡 ′
𝑁
, 𝐼𝑁 )

attains two main disadvantages:
(1) When estimating 𝑐 (𝑡 ′

𝑁
, 𝐼𝑁 ), the optimizer must fetch from

the catalog or estimate the statistics required by the formula of
𝑐 (𝑡 ′

𝑁
, 𝐼𝑁 ). However, the statistics estimators in a DBMS such as the

cardinality estimator are really inaccurate in some situations. For
example, the estimated cardinality of a query can be over 104 times
of its actual cardinality [33]. Moreover, when the plan tree is large,
the errors in the estimated statistics accumulate gradually and can
lead to inaccurate estimates that significantly deviate from their
actual values. In fact, in the scenario of index tuning, every query
𝑞 ∈𝑊 must have been executed under I0. Therefore, the plan 𝑃𝑞
of 𝑞 under I0 and the actual statistics of all nodes in 𝑃𝑞 can be kept
with𝑊 and reused when estimating 𝑐 (𝑡 ′

𝑁
, 𝐼𝑁 ).

(2) In the typical design and implementation of query optimizers,
what-if calls are handled sequentially. Therefore, the optimizer can
only estimate the costs 𝑐 (𝑡 ′

𝑁
, 𝐼𝑁 ) of all nodes 𝑁 in 𝑃 ′𝑞 sequentially

rather than in parallel.
In addition, a lot of index configurations are enumerated dur-

ing index tuning. Even if an index configuration is unlikely to
change the structure of the current plan 𝑃𝑞 , the optimizer still has
to re-estimate the cardinalities of intermediate results to generate
alternative plans of 𝑞 and select the plan 𝑃 ′𝑞 with the minimum
estimated cost. If 𝑃 ′𝑞 has the same plan structure as 𝑃𝑞 , the entire
work performed by the optimizer is wasted because the benefit
𝐵(𝑞,I0,I) = 𝑐 (𝑃𝑞) − 𝑐 (𝑃 ′𝑞) can be easily estimated by Eq. (4).

Consequently, our new index advisor calls for new methods to
undertake the following tasks:

(1) Determining if the plan structure of 𝑃𝑞 can be changed by a
new index configuration I without using the optimizer.

(2) Estimating the benefit 𝐵(𝑞,I0,I) = 𝑐 (𝑃𝑞) − 𝑐 (𝑃 ′𝑞) without
using the optimizer when 𝑃𝑞 and 𝑃 ′𝑞 have the same plan structure.

(3) Parallelizing the execution of the two tasks above.

4.2 Workload-Matrix-based Benefit Estimation
Let 𝑃𝑞 and 𝑃 ′𝑞 be the plans of a query 𝑞 under the current index
configuration I0 and a new index configuration I, respectively.
Suppose 𝑃𝑞 and 𝑃 ′𝑞 have the same plan structure. In this subsection,
we propose a novel method to fast estimate the benefit 𝐵(𝑞,I0,I) =
𝑐 (𝑃𝑞) − 𝑐 (𝑃 ′𝑞) without using the query optimizer.
Straightforward Method. Recall the formula of 𝐵(𝑞,I0,I) given
in Eq. (4). In the scenario of index tuning, 𝑃𝑞 must have been exe-
cuted underI0. Therefore, for each node𝑁 ∈ N in Eq. (4), the actual
statistics of the input 𝐼𝑁 and the output𝑂𝑁 of 𝑁 have already been
known and can be reused to estimate 𝑐 (𝑡 ′

𝑁
, 𝐼𝑁 ) because 𝑁 has the

same input 𝐼𝑁 and the same output𝑂𝑁 in 𝑃 ′𝑞 . This straightforward
approach ensures the accuracy of 𝑐 (𝑡 ′

𝑁
, 𝐼𝑁 ) by incorporating the

actual statistics instead of their estimated values. However, this
method has two intrinsic drawbacks:

(1) This method has a very high space overhead because it must
store all actual statistics for all nodes 𝑁 ∈ N .

1531



(2) This method is faced with a compatibility issue. It must ensure
that the formula of 𝑐 (𝑡 ′

𝑁
, 𝐼𝑁 ) is the same as the one used by the

optimizer for the operator type 𝑡 ′
𝑁
. However, such formulas may

vary across various database engines or hardware configurations.
ApproximateMethod. To overcome the drawbacks of the straight-
forward method, our new index advisor adopts a fast approximate
method to compute an estimate of 𝑐 (𝑡 ′

𝑁
, 𝐼𝑁 ), which does not rely on

all actual statistics and is independent of the cost formulas specified
by the DBMS. Basically, if the execution of 𝑁 can be accelerated by
some enumerated indexes, the improvement 𝑐 (𝑡𝑁 , 𝐼𝑁 ) − 𝑐 (𝑡 ′

𝑁
, 𝐼𝑁 )

can be estimated by 𝛼 · 𝑐 (𝑡𝑁 , 𝐼𝑁 ), where 0 ≤ 𝛼 ≤ 1 is a multiplica-
tive factor. According to the previous work [29] and our empirical
evaluation, 𝛼 is linear to the selectivity of 𝑁 . Let 𝑁 be an 𝑛-ary
operator on 𝑛 input relations or intermediate results 𝑅1, 𝑅2, . . . , 𝑅𝑛 .
The selectivity of 𝑁 is 𝜃 (𝑁 ) = |𝑂𝑁 |/∏𝑛

𝑖=1 |𝑅𝑖 |. If 𝑅𝑖 is a base table,
|𝑅𝑖 | can be fetched from the catalog. If 𝑅𝑖 is an intermediate result
output by a child node 𝑁𝑖 of 𝑁 in 𝑃𝑞 , we have |𝑅𝑖 | = |𝑂𝑁𝑖

|, which
can been stored for reuse later.

Siddiqui et al. [29] simply formulate the multiplicative factor
𝛼 as 1 − 𝜃 (𝑁 ). However, this formulation is independent of the
operator type of 𝑁 and the extent to which 𝑁 is supported by I, as
well as the hardware and the DBMS configuration that affect the
performance of query execution. Instead, we consider the impacts
of these practical factors on 𝛼 and formulate 𝛼 as

𝛼 = 𝑟𝑁 · (1 − 𝜃 (𝑁,I)) + 𝑏𝑁 , (5)

where 𝑟𝑁 ∈ R and 𝑏𝑁 ∈ R depend on the operator type of 𝑁 , the
hardware and the DBMS configuration. The coefficients 𝑟𝑁 and 𝑏𝑁
can be set using the method described in subsection 5.6 based on the
performance information of historical queries. The term 𝜃 (𝑁,I)
generalizes the selectivity 𝜃 (𝑁 ) by considering the impacts of I on
𝜃 (𝑁 ) when the index keys in I only cover a portion of attributes
accessed by 𝑁 . In this case, the execution of 𝑁 can be regarded to
be composed of two phases. In the first phase, a set of intermediate
results, denoted as 𝑂I

𝑁
, is retrieved based on the indexes such that

𝑂𝑁 ⊆ 𝑂I
𝑁
. In the second phase, the tuples in 𝑂I

𝑁
are filtered to

obtain the output 𝑂𝑁 of 𝑁 . Indexes are only useful for the first
phase. Hence, 𝜃 (𝑁 ) is generalized to 𝜃 (𝑁,I) as

𝜃 (𝑁,I) =
|𝑂I

𝑁
|∏𝑛

𝑖=1 |𝑅𝑖 |
= 𝜃 (𝑁 ) ·

|𝑂I
𝑁
|

|𝑂𝑁 | . (6)

When all the attributes filtered by 𝑁 are covered by the index keys
in I, we have 𝜃 (𝑁,I) = 𝜃 (𝑁 ). The term |𝑂I

𝑁
| is estimated by

sampling in our implementation. Therefore, Eq. (5) is independent
of the cost formulas specified by the DBMS, thereby addressing the
compatibility issue of the straightforward method.

To accurately and efficiently compute 𝜃 (𝑁,I), we store |𝑂𝑁 |,
the number of tuples actually returned by 𝑁 , for all nodes 𝑁 in 𝑃𝑞
after 𝑃𝑞 is actually executed under the current index configuration
I0. Besides, we store 𝑐 (𝑡𝑁 , 𝐼𝑁 ), the actual cost of 𝑁 in 𝑃𝑞 , obtained
after 𝑃𝑞 is actually executed under I0. Therefore, our method only
stores a fraction of actual statistics, thereby overcoming the high
space overhead of the straightforward method.

Our experimental evaluation in subsection 6.4 verifies that the
accuracy of our approximate method (even for 𝑟𝑁 = 1 and 𝑏𝑁 = 0,
that is, 𝛼 = 1−𝜃 (𝑁,I)) is comparable to that of the query optimizer
when 𝑃𝑞 and 𝑃 ′𝑞 have the same plan structure.

Workload Matrices. To support parallel benefit estimation for
a lot of plan nodes, we store the actual statistics required by the
approximate benefit estimation method in matrices called workload
matrices. For all plan nodes 𝑁 in all queries in the input workload
𝑊 , the actual cost 𝑐 (𝑡𝑁 , 𝐼𝑁 ) is stored in the workload matrix C,
and the selectivity 𝜃 (𝑁 ) of 𝑁 is pre-computed and stored in the
workload matrix S. Both C and S are 3-dimensional sparse matrices.
Each plan node 𝑁 is uniquely identified by 3 features: the ID of
the query, the operator type of 𝑁 and the attributes filtered by
𝑁 . These 3 features are uniquely mapped to indexes on 3 dimen-
sions of the workload matrices. For example, in the query plan
shown in Figure 2(b), node 7 is a sequential scan, so its type is
SeqScan. Since this table scan has no filter, the attribute set filtered
by this operator is ∅, and it cannot be accelerated by any indexes.
Thus, the elements of the workload matrices C and S for node 7
are C[𝑞, SeqScan, ∅] = 890 and S[𝑞, SeqScan, ∅] = 1, respectively.
Node 3 is a join on the condition A.id = B.id, and its type is HashJoin.
The attributes filtered by this node are (A.id, B.id). Thus, the ele-
ments of C and S for node 3 are C[𝑞, HashJoin, (A.id, B.id)] = 890
and S[𝑞, HashJoin, (A.id, B.id)] = 0.46, respectively. Figure 2(e)
lists the actual statistics related with all plan nodes in Figure 2(b).

The workload matrices are constructed simultaneously as the
queries in𝑊 are executed under the current index configuration I0.
The matrices are of bounded size. The size of the first dimension
(query ID) is |𝑊 |. The size of the second dimension (operator type)
is at most the total number of operator types (typically less than 32).
The size of the third dimension (filtered attributes) does not exceed
the number of all possible indexes. Due to the bounded size and the
simplicity of the workload matrices, constructing the matrices is
3 orders of magnitude faster than the entire index tuning process.
Updating the matrices can also be done very efficiently. When a
query is added to𝑊 , a new slice corresponding to the query is
appended to each matrix; when a query is deleted from𝑊 , the
slice corresponding to the query is removed from each matrix. In
addition, the construction process can be easily parallelized.
Parallel Benefit Estimation based on Workload Matrices. For
an index configuration I enumerated by the advisor, let 𝑈 ⊆ 𝑊
be the subset of queries whose plan structures are not altered by
replacing the current indexes in I0 with the indexes in I. The
benefit 𝐵(𝑈 ,I0,I) of replacing I0 with I with respect to 𝑈 can
estimated based on the workload matrices C and S in parallel.

Let x be the indexes in the first dimension of the workload
matrices corresponding to all nodes in the plans 𝑃𝑞 of all queries
𝑞 ∈ 𝑈 , and let z be the indexes in the third dimension of the
workload matrices corresponding to the attribute lists that can be
accelerated byI. Based on x and z, we can identify the nodes whose
filter attributes are fully or partially covered by I. For each of these
nodes 𝑁 , we estimate the cardinality of 𝑂I

𝑁
, calculate 𝜃 (𝑁,I) by

Eq. (6) and set the element of the matrix S corresponding to 𝑁 to
𝜃 (𝑁,I). Then, the benefits 𝐵(𝑞,I0,I) for all queries 𝑞 ∈ 𝑈 can be
approximated in parallel by the following equation:

B = C[x, :, z] ◦ ((1 − S[x, :, z]) ◦ r[x, :, z] + b[x, :, z]), (7)

where ◦ is the Hardamard product, i.e., the element-wise product,
1 is the matrix of 1’s with the same shape as S[x, :, z], and r and b
are the matrices of the coefficients 𝑟𝑁 and 𝑏𝑁 for all plan nodes
𝑁 of all queries in𝑊 . Finally, the total benefit 𝐵(𝑈 ,I0,I) can be

1532



computed as the weighted sum of all elements of B because∑︁
𝑖

𝑤𝑖 · B𝑖 =
∑︁
𝑞∈𝑈

𝑤𝑞 · ©­«
∑︁

𝑁 :𝑁 is a node in 𝑃𝑞

𝑐 (𝑡𝑁 , 𝐼𝑁 ) − 𝑐 (𝑡 ′𝑁 , 𝐼𝑁 ))ª®¬
= 𝐵(𝑈 ,I0,I) .

For all queries 𝑞 ∈𝑊 \𝑈 , the benefit 𝐵(𝑞,I0,I) has to be esti-
mated by the query optimizer via what-if calls.

4.3 Workload-Matrix-based Query Clustering
The workload matrices contain underlying information about the
workload𝑊 , which can not only be used for index benefit estima-
tion but also in many other tasks. In many practical applications,
queries are formulated based on templates, and thus, many queries
in𝑊 are similar or even redundant. By clustering similar queries
in𝑊 and compressing them, the size of𝑊 can be substantially
reduced, and a significant decrease in index tuning time can be
achieved. Specifically, for each query 𝑞 ∈𝑊 , we use the cost matrix
C[𝑞, :, :] as the feature of 𝑞. Then, all queries in𝑊 are clustered
according to their features. For each cluster 𝐶 , only the clustroid
𝑞 of 𝐶 is selected into the compressed workload for index tuning,
and the weight of 𝑞 is computed as:

𝑤 (𝑞) =
∑
𝑞𝑖 ∈𝐶 𝑤𝑖 · 𝑐 (𝑞𝑖 ,I0)

𝑐 (𝑊,I0)
, (8)

where 𝑤𝑖 is the weight of the query 𝑞𝑖 given in𝑊 . It is worth
noting that queries𝑞 from the same template may have significantly
different cost distributions in C[𝑞, :, :] due to various parameter
settings. As a result, a number of representative queries from the
same template can be retained in different clusters.

5 DETECTION OF CHANGES IN PLAN
STRUCTURES

Given the current execution plan 𝑃𝑞 of a query 𝑞 ∈𝑊 and an index
configuration I, the structure of the plan 𝑃𝑞 may be changed by
some indexes in I. Due to the complicated relationships between
indexes and query plans, it is impossible to pre-define a set of rules
to determine if an index will cause a change in the structure of a
plan. In RIBE, we do not use the “heavyweight” query optimizer
to detect such changes because the optimizer has to enumerate a
large number of alternative query plans. Instead, we formulate the
problem of predicting if the structure of 𝑃𝑞 will be changed by some
indexes in I as a binary classification problem in machine learning
and build a “lightweight” classification model called ChangeFormer
to make predictions. In this section, we introduce the design of
ChangeFormer.

5.1 Challenges
A classification model to predict whether the structure of 𝑃𝑞 will
be changed under the given index configuration I requires the
information about 𝑃𝑞 , I and the database schema as input. Mean-
while, the model needs to have a reasonable structure to ensure
that it can be trained to acquire useful knowledge. Here, we assume
that all indexes in I are relevant to 𝑞 because irrelevant indexes
cannot affect the plan of 𝑞, and therefore, can be removed from I.

On the contrary, keeping irrelevant indexes in I may decrease the
accuracy of the classification model.

In recent years, there have been many studies in the field of
AI4DB [18–20, 38] that focus on encoding query plan information.
These studies utilize a vector as the representation of the query
plan 𝑃𝑞 and have developed various approaches according to the
characteristics of the tree structures of query plans. These methods
are capable of capturing parent-child information of nodes and
preventing information loss caused by long paths in 𝑃𝑞 . However,
there is still room for improvement in these methods, and they need
to be integrated into our model in a reasonable manner. Overall,
our model design faces the following challenges:
Challenge 1. If 𝑞 is a join query, the plan 𝑃𝑞 only specifies one way
to join the tables involved in 𝑞. In fact, there are many alternative
ways to join these tables. Creating indexes may change the join
order. Following the terminology in [37], a possible way to join
tables is called a join schema. The existing query plan encoding
methods only represent the join schema specified by 𝑃𝑞 . However, to
build an accurate classification model, it is not enough to only give
the join schema specified in 𝑃𝑞 as input because all join schemas
except this one are unknown to the model.
Challenge 2. The complicated relationships between the operators
in 𝑃𝑞 , the indexes inI and the join schemas determine the structure
of 𝑃𝑞 . The join schemas characterize all potential join orders for 𝑞,
and various indexes in I selectively influence the costs of the nodes
in 𝑃𝑞 . They jointly determine the structure of 𝑃𝑞 . On the one hand,
the same operator with different costs may cause different plans to
use different join orders. On the other hand, even if the join order
is fixed, changes in the positions of non-join nodes in the plan can
still occur, affecting the structure of 𝑃𝑞 . Therefore, the design of
the model architecture should take into account the complicated
interactions between the operators in 𝑃𝑞 , the indexes in I and the
join schemas.
Challenge 3. A binary classifier can produce both false positives
and false negatives. A false positive refers to that the structure of 𝑃𝑞
actually cannot be changed by I but is predicted to be changed. It
implies that the cost improvement of 𝑞 will be estimated using the
optimizer instead of using our method proposed in subsection 4.2,
which will increase the time of index tuning. A false negative refers
to that the structure of 𝑃𝑞 will actually be changed by I but is
predicted to be unchanged. It implies that the cost improvement of
𝑞 will be estimated using our method proposed in subsection 4.2
instead of using the optimizer, which may be inaccurate and will
degrade the quality of index tuning. Therefore, we prefer to decrease
the false negative rate of the classifier.

5.2 Model Architecture
To solve the prediction problem, we design a tree-structured clas-
sification model called ChangeFormer based on the Transformer
framework [32, 38]. Figure 4 depicts the architecture of Change-
Former. The input of ChangeFormer includes three parts:

(1) The plan tree 𝑃𝑞 . The plan tree 𝑃𝑞 represents the execution
process of 𝑞 under the current index configuration I0. 𝑃𝑞 is com-
posed of nodes, where each node contains partial information about
the execution process such as the actual statistics of the node.

1533



Query Plan (Figure 2(b))

7

5

8

3

6

2

1

4

A B C

Join Schema

A

B

C

Plan Node Encoder

Join Schema Encoder

EN
1

EN
8

EN
2

Node Encoding Vectors

Join Schema 
Encoding Vectors

…

EJ
1

EJ
3

EJ
2

Combiner

Select

Node Vector

Related
Join Vector

R
eL

u 
(L

in
ea

r)

Tree of Representation Vectors

X7

X5

X8

X3

X6

X2

X1

X4

Tree Structure Transformer

MLP

E(A)

E(C)

E(B)

EN
3

Label
Input

Q

K

Join-Bias

Attention
Score

V

Index Combination Index Encoder Index Encoding 
Vectors

EI
3

EI
2

E (B.val)

E (B.aid)

Index (C.id)

Index (B.val, B.aid)

Index (A.id)

X

Representation of Index Configuration

+

X

M
LP RPRI

Representation of Query Plan and Join Schema

N
od

e 
In

fo
rm

at
io

n 
E

xt
ra

ct
io

n
In

de
x 

In
fo

rm
at

io
n 

E
xt

ra
ct

io
n

EI
1

Eo

Ep

Es

Et

⊕⊕
⊕

⊕

⊕

⊕

⊕

⊕

Figure 4: The architecture of ChangeFormer.

(2) The index configuration I. Each index in I is represented by
the table on which the index is built and the index key.

(3) All join schemas of the joinable tables in 𝑞. A join schema is
represented as a graph, where the vertices represent the tables, and
each edge connects two tables directly joined in 𝑃𝑞 .

We adopt the following process to encode and integrate these
three parts of input and pass them to ChangeFormer:

Step 1: The plan node encoder encodes each node 𝑁𝑖 in 𝑃𝑞 as
a vector 𝐸𝑁

𝑖
. The index encoder encodes each index 𝐼 𝑗 ∈ I as a

vector 𝐸𝐼
𝑗
. The join schema encoder encodes each join schema 𝐽𝑘 as

a vector 𝐸 𝐽
𝑘
. These encoding procedures will be described in details

in subsections 5.3–5.5.
Step 2: These encoding vectors are combined. There are various

ways to combine them.We do not simply concatenate them because
it overlooks the tree structure of 𝑃𝑞 and the relationships among
plan nodes, indexes and join schemas. Instead, our approach first
augment the representation of each join node in 𝑃𝑞 with its related
join schemas. Specifically, for each join node 𝑁𝑖 in 𝑃𝑞 , we identify
the join schemas 𝐽𝑘 that are related to 𝑁𝑖 (see §5.4) and compute
the augmented representation vector 𝑋𝑖 of 𝑁𝑖 by applying a single-
layer perceptron to the vector obtained by concatenating the plan
node vector 𝐸𝑁

𝑖
with the related join schema vectors 𝐸 𝐽

𝑘
, that is,

𝑋𝑖 = ReLu
©­«Linear ©­«𝐸𝑁𝑖 ⊕ ©­«

⊕
𝐽𝑘

𝐸
𝐽

𝑘

ª®¬ª®¬ª®¬ , (9)

where ⊕ is the concatenation operation of vectors, and ReLu and
Linear form a single-layer perceptron. To ensure that the aug-
mented representation vectors of all nodes in 𝑃𝑞 have the same
length, for each non-join node 𝑁𝑖 in 𝑃𝑞 , its encoding vector 𝐸𝑁𝑖 is
padded with 0’s to form the augmented representation 𝑋𝑖 of 𝑁𝑖 .
Now, we obtain a tree of augmented representation vectors 𝑋𝑖 of
all plan nodes 𝑁𝑖 in 𝑃𝑞 , which has the same tree structure as 𝑃𝑞 .
Then, the tree is given as input to the tree-structured transformer,
and the transformer returns a vector 𝑅𝑃 representing 𝑃𝑞 and the
join schemas.

Step 3:We concatenate the encoding vectors 𝐸𝐼
𝑗
of all indexes

𝐼 𝑗 ∈ I and input them into a multi-layer perceptron (MLP) to

obtain the representation vector 𝑅𝐼 of the index configuration I,
as detailed in subsection 5.5.

Step 4: Our decoder, which is also an MLP, takes the concate-
nated vector of 𝑅𝐼 and 𝑅𝑃 as input and returns a label in {0, 1}.
Label 1 indicates that the plan structure of 𝑃𝑞 will be changed by
some indexes in I, and label 0 implies that the plan structure of 𝑃𝑞
will not be changed.

In Steps 1 and 2, all join schemas are encoded, thus addressing
Challenge 1 presented in subsection 5.1. In Steps 2 and 4, the in-
terlinks among plan nodes, join schemas and indexes are properly
represented, thereby addressing Challenge 2. Challenge 3 will be
handled by designing the loss function of ChangeFormer formu-
lated in subsection 5.6.

5.3 Plan Node Encoding
Features. The plan node encoder encodes each node in 𝑃𝑞 as a
fixed-length vector. A variety of schemes [1, 27, 30, 38] have been
designed to encode plan nodes. Similar to these encoding schemes,
we encode a plan node 𝑁 based on the following features to satisfy
the requirements of index tuning.

(1) The type of the operator 𝑁 , which is represented as a number
in {1, 2, . . . , 𝑛𝑜 }, where 𝑛𝑜 is the number of distinct operators that
constitute query plans.

(2) If 𝑁 is a scan operator, e.g. SeqScan, the table scanned by
𝑁 is an essential feature of 𝑁 , which is represented as a number
in {1, 2, . . . , 𝑛𝑡 }, where 𝑛𝑡 is the number of tables in the database.
Other types of plan nodes that do not directly process tables, but
intermediate results, do not have this feature. Their table-related
information is not explicitly encoded but is implicitly captured by
the tree-structured transformer that understands the relationships
between the non-scan nodes and the scan nodes in 𝑃𝑞 . In particular,
for join nodes, their table-related information has a more significant
impact on 𝑃𝑞 , so we encode such information separately as will be
described in subsection 5.4.

(3) The statistics of the input and the output of 𝑁 . The statistics
commonly used by the existing plan node encoding schemes include
the estimated cost of 𝑁 , the estimated number of tuples returned by
𝑁 , and histograms and samples of the input of 𝑁 , where histograms
and samples are used to make more accurate estimation on the cost
and the cardinality of the output.

Notably, index tuning is different from the problems that are
faced by the existing plan node encoding methods such as cardinal-
ity estimation [13, 41]. During index tuning, the queries in the input
workload are really executed under the current index configuration
I0, so the actual cost of 𝑁 and the number of tuples returned by 𝑁
can be known. Therefore, histograms and samples of 𝑁 are useless
to our plan node encoding, and we only require the actual cost and
the actual output cardinality of 𝑁 which are represented as two
real numbers in [0, 1] normalized within the ranges of costs and
cardinalities of all plan nodes in 𝑃𝑞 .

(4) If 𝑁 has a predicate such as the condition of a selection oper-
ator, the predicate is also an essential feature of 𝑁 . In the existing
plan node encoding methods, a simple predicate “attr op val”
is usually represented as a triple (attr, op, val), where attr is an
attribute, op is an operation in {<, <=,=, >=, >, <>}, and val is
a constant. Normally, attr and op are represented as categorical

1534



values, and val is range-normalized to a real number in [0, 1]. For
the existing methods, val is used to estimate the statistics of 𝑁 .
However, as the actual statistics of 𝑁 are known in our work, it is
unnecessary to keep val, that is, our method just represents this
simple predicate as (attr, op). Obviously, our method has another
advantage. The existing plan node encoding methods cannot handle
string predicates like “city LIKE 'San %'” because the pattern
'San %' is not an exact value and cannot be mapped to a real
number. Our method just represents it as (city, LIKE) and avoids
encoding the pattern 'San %'.

A compound predicate is composed of several simple predicates
connected by logical operators AND, OR or NOT. Encoding compound
predicates is a complicated issue which is often over-simplified by
the existing methods. For example, in the state-of-the-art query
plan encoding methodQueryFormer [38] that inspires our work,
only the simple predicates in a compound predicate are encoded,
whereas the logical operations are totally ignored. However, the
logical operations are very important for the semantics of the com-
pound predicate because different logical expressions of the simple
predicates may result in totally different query plans. To address
this issue, we represent a compound predicate as an expression
tree, where leaf nodes are simple predicates, and non-leaf nodes are
logical operators. Then, the expression tree is traversed in pre-order
to form a sequence of simple predicates and logical operators. Here
the logical operators are encoded as categorical variables.
Embedding. Finally, the atomic features of a plan node 𝑁 (the
operator type of 𝑁 , the table scanned by 𝑁 , the actual cost of 𝑁 , the
actual output cardinality of 𝑁 , the attribute in a simple predicate,
the operation in a simple predicate, and logical operations) are
embedded as fixed-size vectors in the embedding space. Any feature
that is not applicable to 𝑁 is encoded as a vector of zeros. These
embedding vectors are then concatenated to form the encoding
vector of 𝑁 . To cope with variable-length compound predicates,
we require a compound predicate to be encoded as a sequence of 𝐿
fixed-size embedding vectors (unused embedding vectors are set to
zero vectors).

5.4 Join Schema Encoding
The join schema of the query 𝑞 represents how the tables involved
in 𝑞 can be joined, which is represented as a graph. The type of an
edge indicates the type of the join such as inner join or (left, right or
full) outer join. A left (right) outer join is represented as a directed
edge. Figure 5 depicts a join schema. All possible join orders can
be derived from the join schema. Particularly, any spanning tree
of the join schema contains an unordered set of joins that must be
done in a query plan of 𝑞. After specifying an execution order on
these joins, we obtain a specific join order.

Join schemas are essential for increasing prediction accuracy.
Although our join schema encoding method is inspired byQuery-
Former, they are quite different in their basic thought. To represent
the join-related information of a query plan, QueryFormer only
encodes the join order specified in this plan. Notably, this join order
corresponds to a spanning tree of the join schema. The process of
encoding the join order by QueryFormer is as follows: First, the
joins (edges) in the join order (spanning tree) are mapped to cate-
gorical values independently. Then, the embedding vectors of these

(a) Join Schema

A

B

CInner Join

D
Left Outer JoinE

(b) Join Order of Plan 

⟕

A E B C

D

⟗

(c) Spanning Tree
A

B

C

D
Left Outer JoinE

Figure 5: An example of join schema and join order. (a) The
join schema of a query. (b) The plan of the query. (c) The
spanning tree of the join schema corresponding to the plan.

values are concatenated with the encoding of the plan nodes. As
QueryFormer focuses on encoding joins (edges), we call it an edge-
oriented encoding method. However, it has several disadvantages:

(1) According to join conditions, there are two kinds of joins.
One kind of joins is based on the relationships between foreign
keys and primary keys, which can be figured out from the database
schema. Of course, these joins can be mapped to categorical values
in advance. The other kind of joins are specified by users according
to query semantics and cannot be known in advance if these joins
do not appear in the workload. For unseen user-specified joins,
there are no corresponding categorical values, making them unable
to be properly understood by the model trained on the workload
that does not contain these unseen joins.

(2) For a query plan,QueryFormer only encodes the join order in
this plan. The join orders that can be derived from other spanning
trees of the join schema are all excluded, so they are missed by the
model. Although encoding only one join order is sufficient for some
tasks such as cardinality estimation, it is not enough for detecting
changes in query plans because the model is unaware of all possible
join orders except the encoded one.

To address the above issues, we propose a vertex-oriented encod-
ing method to encode the whole join schema instead of one of its
spanning trees. In this method, the information of the join schema
is encoded into the embeddings of vertices instead of edges. Our
method is designed based on the attention mechanism [32] with
information flow control. It works as follows:

First, each vertex (table) 𝑇𝑖 in the join schema is mapped to a
categorical value and is then encoded as a fixed-length vector 𝐸 (𝑇𝑖 ).
Then, the encoding of the tables 𝐸 (𝑇𝑖 ) are input into the attention
module, and the attention module fuse 𝐸 (𝑇𝑖 ) with 𝐸 (𝑇𝑗 ) of all tables
𝑇𝑗 that are joinable with𝑇𝑖 (𝑇𝑗 is a neighbor of𝑇𝑖 in the join schema).
We refer to the output corresponding to table 𝑇𝑖 as the table fusion
embedding of𝑇𝑖 , denoted by 𝐸 𝐽𝑖 . In this way, the information of the
join schema is encoded into the table fusion embedding of all its
vertices (tables).

As depicted in Figure 4, our attention module adopts a new
structure. An introduction to the attention mechanism can be found
in [32]. As with the standard attention module, the matrices 𝑄 and
𝐾 are used to compute the attention values𝐴𝑖 𝑗 between any pairs of
tables 𝑇𝑖 and 𝑇𝑗 in the join schema, which represents the influence
of 𝑇𝑗 on 𝑇𝑖 . However, the influence of a table on another table is
not arbitrary but is restricted by the edges (the join relationships
between the tables) in the join schema. To restrict such influence,
we create the join-bias matrix 𝐽 , where each element 𝐽𝑖 𝑗 represents
whether there is an edge between two tables 𝑇𝑖 and 𝑇𝑗 in the join
schema, that is, whether 𝑇𝑖 and 𝑇𝑗 are joinable. We have 𝐽𝑖 𝑗 = 0

1535



if 𝑇𝑖 and 𝑇𝑗 are not joinable, so the influence between 𝑇𝑖 and 𝑇𝑗
is masked. We have 𝑇𝑖 𝑗 = 𝑗1, 𝑗2, 𝑗3, 𝑗4 if 𝑇𝑖 and 𝑇𝑗 are joined by an
inner join, a left outer join, a right outer join, or a full outer join,
respectively, where 𝑗1, 𝑗2, 𝑗3 and 𝑗4 are learnable scalars. Finally,
we add the join-bias matrix 𝐽 to the attention score matrix 𝐴.

Because our join schema encoding method is vertex-oriented,
we associate the query plan 𝑃𝑞 with the join schema by associating
the encoding of the vertices (tables) in the join schema with the
encoding of the related plan nodes in 𝑃𝑞 . In particular, if a plan
node 𝑁 is a join on two input tables or intermediate results 𝐿 and
𝑅, the table fusion embedding of 𝐿 and 𝑅 are concatenated with
the encoding of 𝑁 . If 𝐿 (or 𝑅) is a table 𝑇𝑖 , the embedding of 𝐿 (or
𝑅) is certainly the table fusion embedding 𝐸 𝐽

𝑖
of 𝑇𝑖 . If 𝐿 (or 𝑅) is an

intermediate relation, the embedding of 𝐿 (or 𝑅) is 0.

5.5 Index Encoding
The index encoder encodes each index as a fixed-length vector. Let
𝐸 (𝑎) denote the embedding vector of an attribute 𝑎 obtained as
described in subsection 5.3 and let 𝑘max be the maximum number
of attributes composing an index key. An index 𝐸𝐼

𝑗
with index key

(𝑎1, 𝑎2, . . . , 𝑎𝑘 ) is encoded by

𝐸𝐼𝑗 =

(
𝑘⊕
𝑖=1

𝐸 (𝑎𝑖 )
)
⊕ ©­«

𝑘max⊕
𝑖=𝑘+1

0ª®¬ , (10)

where 0 is a vector of zeros having the same length as 𝐸 (𝑎𝑖 ).
There are several methods to integrate the information of the

index configurationI into the model, e.g., encoding it together with
each node of the query plan 𝑃𝑞 similar to join schema encoding.
However, through experimentation, we chose the simplest but the
most effective approach: encoding I independent of 𝑃𝑞 .

Let 𝑙max be the maximum number of indexes that the model can
handle and suppose the index configuration I contains |I | ≤ 𝑙max
indexes encoded as 𝐸𝐼1, 𝐸

𝐼
2, . . . , 𝐸

𝐼
| I | , respectively. We concatenate

the encoding vectors of all these indexes and input them into an
MLP to obtain the representation vector 𝑅𝐼 of I, that is,

𝑅𝐼 = MLP
©­«©­«

| I |⊕
𝑖=1

𝐸𝐼𝑖
ª®¬ ⊕ ©­«

𝑙max⊕
𝑖= | I |+1

0ª®¬ª®¬ . (11)

Recall that I only contain the enumerated indexes that are relevant
to 𝑞. Thus, it is not necessary to set 𝑙max to a very large number.

5.6 Model Training
Training Dataset. To train ChangeFormer, we first prepare a
dataset 𝐷 = {(𝑃𝑞𝑖 ,I𝑖 , 𝑃 ′𝑞𝑖 ) |𝑖 = 1, 2, . . . , 𝑛}, where 𝑃𝑞𝑖 is the execu-
tion plan of a query 𝑞𝑖 under the current index configuration I0,
I𝑖 is an index configuration, and 𝑃 ′𝑞𝑖 is the execution plan of 𝑞𝑖
after replacing I0 with I𝑖 . To get 𝐷 , we acquire a set 𝑄 of queries
and a collection I of index configurations during the latest index
tuning process, where 𝑄 consists of all or a fraction of historical
queries, and I consists of all or a fraction of enumerated index con-
figurations. For each 𝑞 ∈ 𝑄 and each I ∈ I, we obtain 𝑞’s execution
plans 𝑃𝑞 and 𝑃 ′𝑞 under I0 and I, respectively, and compose a triple
(𝑃𝑞,I, 𝑃 ′𝑞) in 𝐷 .

The training set of ChangeFormer can be easily derived from
on 𝐷 . For each triple (𝑃𝑞𝑖 ,I𝑖 , 𝑃 ′𝑞𝑖 ) ∈ 𝐷 , we create a training record

(𝑃𝑞𝑖 ,I𝑖 , 𝑦𝑖 ), where 𝑦𝑖 ∈ {0, 1} is the class label. Particularly, 𝑦𝑖 = 1
if 𝑃𝑞𝑖 and 𝑃 ′𝑞𝑖 have different tree structures, and 𝑦𝑖 = 0 otherwise.

In addition, 𝐷 can be used to train the linear model formulated
by Eq. (5), particularly, the coefficients 𝑟𝑁 and 𝑏𝑁 . For a specific
operator type 𝑡 such as SeqScan, we observe that the hardware (or
the DBMS configuration) affects various plan nodes of type 𝑡 in
various queries almost to the same extent. It implies that all plan
nodes 𝑁 of type 𝑡 can have the same coefficients 𝑟𝑁 and 𝑏𝑁 . Hence,
we denote them by 𝑟𝑡 and 𝑏𝑡 , respectively. To train 𝑟𝑡 and 𝑏𝑡 , we
prepare a training set as follows: For each triple (𝑃𝑞𝑖 ,I𝑖 , 𝑃 ′𝑞𝑖 ) ∈ 𝐷 ,
we find a node 𝑁 in 𝑃𝑞𝑖 with 𝑡𝑁 = 𝑡 and a node 𝑁 ′ in 𝑃 ′𝑞𝑖 with
𝐼𝑁 ′ = 𝐼𝑁 , 𝑂𝑁 ′ = 𝑂𝑁 and 𝑡𝑁 ′ ≠ 𝑡 . In other words, 𝑁 is speed up by
some indexes in I. Then, we compute the selectivity 𝜃 (𝑁 ) of 𝑁 and
the multiplicative factor 𝛼 = (𝑐 (𝑡𝑁 , 𝐼𝑁 )−𝑐 (𝑡𝑁 ′ , 𝐼𝑁 ′ ))/𝑐 (𝑡𝑁 , 𝐼𝑁 ) and
create a training record (𝜃 (𝑁 ), 𝛼). Finally, based on the training
set, we use the least squares method to find the best coefficients 𝑟𝑡
and 𝑏𝑡 for operator type 𝑡 .
Training Loss. To train a binary classification model, the binary
cross-entropy loss is often adopted. In our problem, false positives
and false negatives of ChangeFormer affect the time and the quality
of index tuning, respectively. In general, we prefer to the quality.
Therefore, we adopt the weighted binary cross-entropy loss:

𝐿 = − 1
𝑁

𝑁∑︁
𝑖=1

(𝛼 · 𝑦𝑖 log𝑝𝑖 + 𝛽 · (1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 )), (12)

where 𝛼 and 𝛽 are the scaling factors of the false negative cost and
the false positive cost, respectively. To reduce false negatives, we
can set 𝛼 = 2 and 𝛽 = 1, which work well in many situations.

6 EVALUATION
6.1 Experiment Setup
Databases & Workloads. The evaluation was conducted on three
famous database benchmarks: TPC-H, TPC-DS and JOB [17]. The
databases for TPC-H and TPC-DS were generated with the scale
factor (SF) of 10. The workloads were generated as follows.

TPC-H: In this workload, we generated 30 queries at random
based on each template in TPC-H excluding templates 2, 17 and 20.
As with Leis et al. [15], templates 2, 17 and 20 were excluded because
queries in these templates attain several orders of magnitude longer
execution time than queries in other templates. If not excluded, the
queries in these templates will dominate the cost of the entire
workload, thereby creating an index to decrease the costs of the
queries in one of these templates would always be better than
creating indexes for other queries.

TPC-DS: In this workload, we randomly generated 30 queries
based on each template in TPC-DS excluding templates 4, 6, 9, 10,
11, 32, 35, 41, and 95 due to the same reason given above.

JOB: This workload contains 30 queries randomly generated
based on each template in JOB.

To increase the complexity of index tuning, we added some
synthetic queries to these workloads as the complexity of index
tuning depends on the number of possible index configurations, the
number of queries in the workload and the correlations between
index configurations. Synthetic queries may not comply with any
known templates, so they can increase the number of possible
index configurations. Synthetic queries were generated according

1536



Table 1: Summary of databases and workloads.

Benchmark DB SF/Size # Queries # Templates # Synthetic Queries Avg. # Plan Nodes

TPC-H SF = 10 570 19 0 14
TPC-DS SF = 1 2700 90 0 29
JOB 13GB 3390 113 0 24

TPC-H+ SF = 10 950 19 380 10
TPC-DS+ SF = 1 4500 90 1800 19
JOB+ 13GB 5650 113 2260 16

to the context-free grammar of SQL that supports most advanced
SQL syntax including joins and nested queries. The constants in
a synthetic query were randomly chosen from the values of their
corresponding attributes to ensure nonempty query results. The
obtained workloads are denoted as TPC-H+, TPC-DS+ and JOB+,
respectively. Table 1 summarizes the databases and the workloads.
Hardware & Software. The experiments were carried out on a
Ubuntu server with two Intel Xeon 4210R CPUs (10 cores, 2.40GHz),
256GB of main memory, and one NVIDIA GeForce RTX 3060 GPU.
The DBMS is PostgreSQL 12.13.
Implementation. Leis et al. [15] shows that no index configuration
enumeration algorithm can achieve the best performance in all
situations. In the experiments, we used AutoAdmin [6] as it is
usually effective for larger index configuration search spaces. RIBE
also works well with other enumeration algorithms, e.g. DTA [5].

6.2 End-to-End Evaluation of RIBE
6.2.1 Baselines. RIBE was compared with five baseline algorithms
that follow the traditional index tuning framework described in
section 2. For the sake of fairness, these baselines also use Au-
toAdmin [6] to enumerate candidate index configurations. These
baselines are different in how they compress the input workload.

Full: Workload compression is disabled.
GSUM: It uses GSUM [10] to compress the workload.
ISUM: It uses ISUM [28] to compress the workload.
ISUM-S: A variant of ISUM is used to compress the workload,

which avoids pairwise comparisons between queries. It often com-
presses a workload faster with a minor decline in performance.

Sample: The workload is compressed by randomly sampling a
specified number of queries from the workload.

Let 𝑛 be the number of queries in the workload. Similar to the
evaluation in [28], the compressed workload contains

√
𝑛/2 queries.

DISTILL [29] is a new index tuning method. However, it is not
open-sourced. Due to various possible ways to implement DISTILL
and various heuristic rules adopted by DISTILL, it is not easy to
reproduce the implementation in the original paper. Therefore, we
did not compare RIBE with DISTILL in the experiments.

6.2.2 Evaluation Metrics. We use the following metrics to evaluate
the performance of index tuning.

Cost Improvement. Given a workload𝑊 , let I0 be the initial
set of indexes and I be the set of selected indexes. The quality of
replacing I0 with I is measured by the relative improvement in
the cost of the workload𝑊 which is defined as

max
(
0,
𝐵(𝑊,I0,I)
𝑐 (𝑊,I0)

)
= max

(
0, 1 − 𝑐 (𝑊,I)

𝑐 (𝑊,I0)

)
. (13)

In some occasions, the selected indexes in I may inversely increase
the cost and must be discarded, so the cost improvement is 0.

8 10 12 14 16
Number of index configurations

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Im
pr

ov
em

en
t

(a) TPC-H

Full ISUM ISUM-S GSUM Sample RIBE

8 10 12 14 16
Number of index configurations

0.65

0.70

0.75

0.80

0.85

(b) TPC-DS

8 10 12 14 16
Number of index configurations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) JOB

8 10 12 14 16
Number of index configurations

0.050

0.075

0.100

0.125

0.150

0.175

Im
pr

ov
em

en
t

(d) TPC-H+

8 10 12 14 16
Number of index configurations

0.65

0.70

0.75

0.80

0.85

(e) TPC-DS+

8 10 12 14 16
Number of index configurations

0.35

0.40

0.45

0.50

(f) JOB+

Figure 6: Cost improvements achieved by different index
tuning methods.

Table 2: Rankings of cost improvements achieved by different
index tuning methods.

Method # 1st Place # 2nd Place # 3rd Place # Worst

RIBE 16 17 10 1
Full 27 14 6 0
ISUM 6 11 23 3
ISUM-S 2 4 5 16
GSUM 4 3 2 12
Sample 4 5 4 22

Index Tuning Time. The efficiency of index tuning is measured
by the wall clock time from the acceptance of the workload to the
time when the “optimal” index configurations are returned. The in-
dex tuning timemainly includes the time for workload compression,
model loading and index configuration enumeration.

6.2.3 Experimental Results. In this experiment, we vary the budget
on the number of selected indexes from 8 to 16 because the number
of selected indexes affects the quality and the efficiency of index
tuning. We obtain the following experimental results.

Quality of Index Tuning. The cost improvements achieved by
the tested index tuning methods are depicted in Figure 6, and the
detailed statistics of cost improvements are shown in Table 2. We
have the following observations:

(1) The index tuning quality of these methods follows the order:
Full > RIBE > ISUM > GSUM ≥ ISUM-S > Sample. However, no
single method outperforms the others on all workloads.

(2) The indexes selected by RIBE often lead to higher cost im-
provements on various database benchmarks especially when more
indexes are selected. As shown in Table 2, out of 54 tests across
6 benchmarks and 9 budgets (8–16) on the number of selected in-
dexes, RIBE gets the first place in cost improvement in 16 tests
(29.6%), the second place in 17 tests (31.5%) and the third place in 10
tests (18.5%). It performs the worst in only one test. RIBE achieves
index tuning quality closest to Full.

This observation can be explained as follows: GSUM, ISUM,
ISUM-S, and Sample retain a subset of queries in the workload
with high costs after workload compression, which allows us to

1537



8 10 12 14 16
Number of index configurations

101

102

Ti
m

e 
(s

)

(a) TPC-H

Full ISUM ISUM-S GSUM Sample RIBE

8 10 12 14 16
Number of index configurations

102

103

104

(b) TPC-DS

8 10 12 14 16
Number of index configurations

102

103

104

(c) JOB

8 10 12 14 16
Number of index configurations

101

102

Ti
m

e 
(s

)

(d) TPC-H+

8 10 12 14 16
Number of index configurations

102

103

104

(e) TPC-DS+

8 10 12 14 16
Number of index configurations

102

103

104

(f) JOB+

Figure 7: Running time of different index tuning methods.

select the most beneficial indexes when the desired number of
indexes is small. However, as the number of indexes increases, the
discarded queries affect index tuning more significantly, leading to
a decrease in cost improvement after building the selected indexes.
Unlike the baselines, RIBE only removes redundant queries from
the workload, which enables us to find more appropriate indexes.

(3) The cost improvement led to by every index tuning method is
not monotonically increasing with the number of selected indexes.
Similar to the observations in [28], creating more indexes may even
slow down the execution of some queries. This is mainly caused by
the intrinsic errors in the query optimizer’s cost estimator and the
fact that the index configuration enumeration algorithms are often
greedy and cannot find the optimal solution.

Efficiency of Index Tuning. The index tuning time of the tested
methods is shown in Figure 7. Their efficiency follows the order:
Sample > ISUM-S ≥ RIBE ≈ GSUM > ISUM ≫ Full.

Although Full has the best index tuning quality, it is the slowest
because it handles the full workload. All the othermethods are faster
than Full because their index tuning is performed on compressed
workloads. RIBE achieves index tuning quality very close to Full
and is 1–2 orders of magnitude faster than Full.

Among the methods based on workload compression, ISUM
is the slowest because it requires comparing all pairs of queries,
resulting in amuch higher time complexity of𝑂 (𝑘𝑛2) than the other
compression methods. Sample is the fastest as it randomly selects
a subset of queries from the workload without complex processing.
However, its tuning quality is the worst. RIBE is superior to ISUM
in both tuning quality and efficiency. The tuning efficiency of RIBE
is close to GSUM but sometimes lower than ISUM-S.

6.3 Evaluation of ChangeFormer
Here, we evaluate the accuracy and efficiency of ChangeFormer.

6.3.1 Baselines. ChangeFormer represents a query plan as a vector
which is essential for predicting if the plan will be changed after
building an index. In this evaluation, we compare ChangeFormer
with three models adapted from ChangeFormer by substituting its
query representation component with the following ones.

QueryFormer: QueryFormer is a transformer-based query rep-
resentation model [38]. We adopt the processing methods described
in the original paper, that is, using sampling and histograms to en-
code the statistical information in a query plan and employing an
edge-oriented scheme to encode join schemas.

Tree-CNN: This model is used in the learning-based query opti-
mizers BAO [18] and NEO [19]. It is designed based on convolution
neural networks (CNN) and utilizes triangular-shaped filters to
handle the tree structures of query plans.

GCN: A query is represented using a graph neural network [12,
40]. Based on the query’s tree representation obtained in subsec-
tion 5.3 (viewed as an undirected graph here), 4–16 layers of graph
convolutional networks (GCNs) [14] are applied, and a mean pool-
ing is finally used to obtain the representation of the plan.

6.3.2 Experimental Results. The evaluation on the classification
performance and the efficiency of ChangeFormer is as follows.
Classification Performance. The classification performance of
ChangeFormer is evaluated by its accuracy and the F2-score. We
use F2-score because of the higher misclassification costs caused by
false negatives in query plan change prediction. We used 10-fold
cross-validation to evaluate the accuracy and the F2-score.

As shown in Table 3, ChangeFormer attains higher classification
performance than all the other models in most cases. The design
of ChangeFormer is inspired by QueryFormer, so they have many
common points in design. However, ChangeFormer always out-
performs QueryFormer due to two distinct design decisions. First,
ChangeFormer adopts the vertex-oriented encoding of join schemas
which results in a better generalization ability. Second, using actual
statistics in ChangeFormer leads to better classification accuracy
than using sampling and histograms inQueryFormer.

GCN generally achieves better performance than the other mod-
els except ChangeFormer. It is attributed to the stacking of multiple
GCN layers that can learn high-order information of a graph.

QueryFormer generally outperforms Tree-CNN, especially in
more complex workloads that include synthetic queries. Its supe-
rior performance is due to the self-attention mechanism which
captures more useful information and effectively tackles the issue
of information loss resulting from long paths in query plans.
Time Efficiency. We evaluated the efficiency of the models by the
training time per epoch and the inference time per batch (consisting
of 1024 queries). Since the hyperparameters can significantly affect
the efficiency of the models, we tested the per-epoch training time
and the per-batch inference time averaged over 20 diverse sets of
hyperparameters. As shown in Table 4, the efficiency of Change-
Former is comparable to that of QueryFormer. These two models
are somewhat less efficient than Tree-CNN because they encode
more query-related information than Tree-CNN.

GCN is 2–7× slower than the other models in all circumstances.
This is because the eigendecomposition of an 𝑁 × 𝑁 matrix within
GCN entails a time complexity of 𝑂 (𝑁 3). Moreover, to accomplish
superior accuracy, GCN must be composed of more neurons than
the other models, thereby further degrading to the efficiency.

6.4 Accuracy of Cost Estimation
In this subsection, we compare the accuracy of our proposed cost
estimation method with the query optimizer’s cost estimator.

1538



Table 3: Classification performance of different query plan change prediction models. Green color highlights the highest
evaluation metric values, and red color highlights the second highest evaluation metric values.

Model TPC-H TPC-DS JOB TPC-H+ TPC-DS+ JOB+
Accuracy F2-Score Accuracy F2-Score Accuracy F2-Score Accuracy F2-Score Accuracy F2-Score Accuracy F2-Score

ChangeFormer 0.963 0.954 0.950 0.972 0.963 0.984 0.981 0.972 0.941 0.951 0.972 0.987
QueryFormer 0.941 0.945 0.932 0.952 0.929 0.968 0.949 0.929 0.883 0.951 0.937 0.960
Tree-CNN 0.950 0.909 0.960 0.972 0.952 0.975 0.837 0.766 0.873 0.878 0.877 0.909

GCN 0.955 0.936 0.955 0.972 0.956 0.967 0.957 0.951 0.957 0.962 0.952 0.964

Table 4: Training time and inference time of different query plan change prediction models.

TPC-H TPC-DS JOB TPC-H+ TPC-DS+ JOB+

Model Training
Time (s)

Inference
Time (ms)

Training
Time (s)

Inference
Time (ms)

Training
Time (s)

Inference
Time (ms)

Training
Time (s)

Inference
Time (ms)

Training
Time (s)

Inference
Time (ms)

Training
Time (s)

Inference
Time (ms)

ChangeFormer 76.7 6.92 872.1 7.43 219.5 6.15 153.8 6.28 1012.6 6.08 472.9 5.17
QueryFormer 69.2 6.71 716.3 8.45 321.5 6.47 182.7 4.03 749.9 6.82 767.15 4.11
Tree-CNN 21.2 4.56 291.6 3.15 219.3 3.88 82.5 2.89 746.6 2.82 757.3 2.39

GCN 146.1 13.79 1520.3 15.20 862.1 17.85 309.2 15.20 2117.2 12.57 1046.8 13.78

Table 5: Cost estimation errors of different cost estimation methods.

Estimator TPC-H TPC-DS JOB TPC-H+ TPC-DS+ JOB+
50th 95th 99th 50th 95th 99th 50th 95th 99th 50th 95th 99th 50th 95th 99th 50th 95th 99th

Optimizer 0.077 0.287 0.959 0.018 0.529 3.087 0.109 0.543 0.836 0.070 0.324 0.959 0.019 0.567 1.538 0.076 0.533 0.998
Matrix-D 0.076 0.288 0.959 0.020 0.292 3.121 0.107 0.539 0.783 0.071 0.379 0.959 0.021 0.500 1.615 0.077 0.534 0.998
Matrix-R 0.077 0.308 0.557 0.021 0.292 3.015 0.155 0.438 0.649 0.088 0.323 0.608 0.022 0.500 1.515 0.089 0.441 0.673

6.4.1 Experiment Design. The experiment is designed as follows:
First, we collect the queries in the workload whose plan tree struc-
tures are not changed by the enumerated index configurations.
Then, we compute the estimated costs of these queries after build-
ing the selected indexes using three methods.

Optimizer:We create hypothetical indexes and use PostgreSQL’s
optimizer to compute the estimated costs of the query plans.

Matrix-D: The method proposed in subsection 4.2 is used to
compute the estimated costs of the query plans. For all plan nodes
𝑁 , the parameters 𝑟𝑁 and 𝑏𝑁 are set to 1 and 0, respectively.

Matrix-R: The method is the same asMatrix-D except that 𝑟𝑁
and 𝑏𝑁 are adjusted with regard to the hardware and the software.

For each collected query 𝑞, we evaluate the accuracy of the esti-
mated cost of𝑞 after building a set of indexesI by the absolute error
between the actual benefit and the estimated benefit of building I
with respect to 𝑞, that is,����𝑐 (𝑞,I) − 𝑐 (𝑞,I0)𝑐 (𝑞,I0)

− 𝑐 (𝑞,I) − 𝑐 (𝑞,I0)
𝑐 (𝑞,I0)

���� = ����𝑐 (𝑞,I) − 𝑐 (𝑞,I)𝑐 (𝑞,I0)

���� ,
where I0 is the initial set of indexes created on the database.

6.4.2 Experimental Results. Table 5 shows the 50th, 95th and 99th
percentiles of the errors in the estimated costs of the collected
queries. The minimum error in each column is highlighted in green.
We have the following observations:

(1) On all benchmarks, Matrix-D achieves cost estimation ac-
curacy comparable to that of Optimizer. This is because the cost
estimation formula used by Matrix-D effectively simulates the cost
calculation process of the query optimizer’s cost estimator. Ad-
ditionally, in some cases, Matrix-D achieves significant improve-
ments in accuracy, such as the 95th percentile of errors on TPC-DS.
These improvements are because the estimated statistics used by

Optimizer significantly deviate from the actual statistics in some
situations, while Matrix-D can always make accurate estimation
based on the actual statistics stored in the workload matrices.

(2) Matrix-R adjusts the parameters 𝑟𝑁 and 𝑏𝑁 based on the
historical data. It leads to a substantial reduction in the tail distri-
bution of errors on all benchmarks, up to 40% compared with both
Matrix-D and Optimizer.

(3) In some occasions, cost estimation errors can exceed 1. This
is because index creation increases query execution time. Both the
query optimizer and our method are unable to handle such extreme
situations. We will address this issue in our future work.

7 CONCLUSION
RIBE tackles both workload redundancy and frequent costly what-if
calls that make the traditional index tuning framework sub-optimal
in terms of both tuning efficiency and quality. For the former issue,
the queries in theworkload are clustered according to their operator-
level actual statistical features stored in the workload matrices.
This clustering-based workload compression reduces workload
redundancy more effectively than the existing methods. For the
latter issue, the estimated benefit of creating indexes with respect
to a query is computed based on the actual statistics stored in the
workload matrices if the query’s plan structure will not be changed
by the indexes to be created. It is faster and more accurate than
using the what-if tool. With the encoding schemes for query plans,
indexes and join schemas, ChangeFormer can accurately predict if
the structure of a plan will be changed by the enumerated indexes.

ACKNOWLEDGMENTS
This work was partially supported by the National Natural Science
Foundation of China (No. 62072138).

1539



REFERENCES
[1] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik.

2012. Learning-based Query Performance Modeling and Prediction. In IEEE 28th
International Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, Anastasios Kementsietsidis and Marcos
Antonio Vaz Salles (Eds.). IEEE Computer Society, 390–401. https://doi.org/10.
1109/ICDE.2012.64

[2] Nicolas Bruno and Surajit Chaudhuri. 2005. Automatic Physical Database Tuning:
A Relaxation-based Approach. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005,
Fatma Özcan (Ed.). ACM, 227–238. https://doi.org/10.1145/1066157.1066184

[3] S. Chaudhuri, M. Datar, and V. Narasayya. 2004. Index selection for databases:
a hardness study and a principled heuristic solution. IEEE Transactions on
Knowledge and Data Engineering 16, 11 (2004), 1313–1323. https://doi.org/10.
1109/TKDE.2004.75

[4] Surajit Chaudhuri and Vivek Narasayya. 1998. AutoAdmin “What-If” Index
Analysis Utility. SIGMOD Rec. 27, 2 (jun 1998), 367–378. https://doi.org/10.1145/
276305.276337

[5] Surajit Chaudhuri and Vivek Narasayya. 2020. Anytime Algorithm
of Database Tuning Advisor for Microsoft SQL Server. (June 2020).
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-
database-tuning-advisor-for-microsoft-sql-server/

[6] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. In VLDB’97, Proceedings of 23rd Interna-
tional Conference on Very Large Data Bases, August 25-29, 1997, Athens, Greece,
Matthias Jarke, Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Peri-
cles Loucopoulos, and Manfred A. Jeusfeld (Eds.). Morgan Kaufmann, 146–155.

[7] Sunil Choenni, Henk M. Blanken, and Thiel Chang. 1993. Index Selection in
Relational Databases. In Computing and Information - ICCI’93, Fifth International
Conference on Computing and Information, Sudbury, Ontario, Canada, May 27-
29, 1993, Proceedings, Osman Abou-Rabia, Carl K. Chang, and Waldemar W.
Koczkodaj (Eds.). IEEE Computer Society, 491–496.

[8] Douglas Comer. 1978. The Difficulty of Optimum Index Selection. ACM Trans.
Database Syst. 3, 4 (1978), 440–445. https://doi.org/10.1145/320289.320296

[9] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A
Scalable, Portable, and Interactive Index Advisor for Large Workloads. Proc.
VLDB Endow. 4, 6 (2011), 362–372. https://doi.org/10.14778/1978665.1978668

[10] Shaleen Deep, Anja Gruenheid, Paraschos Koutris, Jeffrey Naughton, and Stratis
Viglas. 2020. Comprehensive and Efficient Workload Compression. Proc. VLDB
Endow. 14, 3 (2020), 418–430. https://doi.org/10.14778/3430915.3430931

[11] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In Proceedings of the 2019 International Conference on
Management of Data (New York, NY, USA, 2019-06-25) (SIGMOD ’19). Association
for Computing Machinery, 1241–1258. https://doi.org/10.1145/3299869.3324957

[12] Jianling Gao, Nan Zhao, Ning Wang, Shuang Hao, and Haoyan Wu. 2022. Au-
tomatic index selection with learned cost estimator. Information Sciences 612
(2022), 706–723. https://doi.org/10.1016/j.ins.2022.08.051

[13] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, Not from
Queries! Proc. VLDB Endow. 13, 7 (mar 2020), 992–1005. https://doi.org/10.14778/
3384345.3384349

[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 10. https://openreview.net/forum?id=SJU4ayYgl

[15] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic
Mirror in My Hand, Which Is the Best in the Land?: An Experimental Evaluation
of Index Selection Algorithms. Proc. VLDB Endow. 13, 12 (2020), 2382–2395.
https://doi.org/10.14778/3407790.3407832

[16] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep
Reinforcement Learning. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management (New York, NY, USA, 2020-10-19)
(CIKM ’20). Association for Computing Machinery, 2105–2108. https://doi.org/
10.1145/3340531.3412106

[17] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[18] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and TimKraska. 2021. Bao:Making LearnedQuery Optimization Practical.
In Proceedings of the 2021 International Conference on Management of Data (Vir-
tual Event China, 2021-06-09). ACM, 1275–1288. https://doi.org/10.1145/3448016.
3452838

[19] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718. https://doi.org/
10.14778/3342263.3342644

[20] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural Net-
work Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11 (2019),
1733–1746. https://doi.org/10.14778/3342263.3342646 arXiv:1902.00132 [cs]

[21] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam
Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven
Cardinality Estimation under Changing Workloads. Proc. VLDB Endow. 16, 6
(2023), 1520–1533. https://doi.org/10.14778/3583140.3583164

[22] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata
Borovica-Gajic. 2021. DBA Bandits: Self-Driving Index Tuning under Ad-Hoc,
Analytical Workloads with Safety Guarantees. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE) (Chania, Greece, 2021-04). IEEE, 600–611.
https://doi.org/10.1109/ICDE51399.2021.00058

[23] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata
Borovica-Gajic. 2022. HMAB: Self-Driving Hierarchy of Bandits for Integrated
Physical Database Design Tuning. Proc. VLDB Endow. 16, 2 (2022), 216–229.
https://www.vldb.org/pvldb/vol16/p216-perera.pdf

[24] Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable
Multi-Attribute Index Selection Using Recursive Strategies. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE) (Macao, Macao, 2019-04).
IEEE, 1238–1249. https://doi.org/10.1109/ICDE.2019.00113

[25] Vishal Sharma and Curtis Dyreson. 2022. Indexer++: Workload-Aware Online
Index Tuning with Transformers and Reinforcement Learning. In Proceedings
of the 37th ACM/SIGAPP Symposium on Applied Computing (New York, NY,
USA, 2022-04-25) (SAC ’22). Association for Computing Machinery, 372–380.
https://doi.org/10.1145/3477314.3507691

[26] Vishal Sharma, Curtis Dyreson, and Nicholas Flann. 2021. MANTIS: Multiple
Type and Attribute Index Selection Using Deep Reinforcement Learning. In
Proceedings of the 25th International Database Engineering & Applications Sympo-
sium (New York, NY, USA, 2021-09-07) (IDEAS ’21). Association for Computing
Machinery, 56–64. https://doi.org/10.1145/3472163.3472176

[27] Jiachen Shi, Gao Cong, and Xiaoli Li. 2022. Learned Index Benefits: Machine
Learning Based Index Performance Estimation. Proc. VLDB Endow. 15, 13 (2022),
3950–3962. https://www.vldb.org/pvldb/vol15/p3950-shi.pdf

[28] Tarique Siddiqui, Saehan Jo,WentaoWu, ChiWang, Vivek Narasayya, and Surajit
Chaudhuri. 2022. ISUM: Efficiently Compressing Large and Complex Workloads
for Scalable Index Tuning. In Proceedings of the 2022 International Conference on
Management of Data (New York, NY, USA, 2022-06-10) (SIGMOD ’22). Association
for Computing Machinery, 660–673. https://doi.org/10.1145/3514221.3526152

[29] Tarique Siddiqui, Wentao Wu, Vivek Narasayya, and Surajit Chaudhuri. 2022.
DISTILL: Low-Overhead Data-Driven Techniques for Filtering and Costing In-
dexes for Scalable Index Tuning. Proc. VLDB Endow. 15, 10 (2022), 2019–2031.
https://doi.org/10.14778/3547305.3547309

[30] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-Based Cost Estimator. Proc.
VLDB Endow. 13, 3 (2019), 307–319. https://doi.org/10.14778/3368289.3368296

[31] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan
Skelley. 2000. DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own
Indexes. In Proceedings of the 16th International Conference on Data Engineering,
San Diego, California, USA, February 28 - March 3, 2000, David B. Lomet and
Gerhard Weikum (Eds.). IEEE Computer Society, 101–110. https://doi.org/10.
1109/ICDE.2000.839397

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems (Red Hook, NY, USA, 2017-12-04) (NIPS’17). Curran
Associates Inc., 6000–6010.

[33] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation? Proc. VLDB Endow. 14,
9 (2021), 1640–1654. https://doi.org/10.14778/3461535.3461552 arXiv:2012.06743

[34] Zilong Wang, Qixiong Zeng, Ning Wang, Haowen Lu, and Yue Zhang. 2023.
CEDA: Learned Cardinality Estimation with Domain Adaptation. Proc. VLDB
Endow. 16, 12 (2023), 3934–3937. https://doi.org/10.14778/3611540.3611589

[35] Sai Wu, Ying Li, Haoqi Zhu, Junbo Zhao, and Gang Chen. 2022. Dynamic Index
Construction with Deep Reinforcement Learning. Data Sci. Eng. 7, 2 (2022),
87–101. https://doi.org/10.1007/S41019-022-00186-4

[36] WentaoWu, ChiWang, Tarique Siddiqui, JunxiongWang, Vivek Narasayya, Sura-
jit Chaudhuri, and Philip A. Bernstein. 2022. Budget-Aware Index Tuning with
Reinforcement Learning. In Proceedings of the 2022 International Conference on
Management of Data (New York, NY, USA, 2022-06-10) (SIGMOD ’22). Association
for Computing Machinery, 1528–1541. https://doi.org/10.1145/3514221.3526128

[37] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.3421432

[38] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow. 15,
8 (2022), 1658–1670. https://doi.org/10.14778/3529337.3529349

[39] Xuanhe Zhou, Luyang Liu, Wenbo Li, Lianyuan Jin, Shifu Li, Tianqing Wang,
and Jianhua Feng. 2022. AutoIndex: An Incremental Index Management System
for Dynamic Workloads. In 2022 IEEE 38th International Conference on Data

1540

https://doi.org/10.1109/ICDE.2012.64
https://doi.org/10.1109/ICDE.2012.64
https://doi.org/10.1145/1066157.1066184
https://doi.org/10.1109/TKDE.2004.75
https://doi.org/10.1109/TKDE.2004.75
https://doi.org/10.1145/276305.276337
https://doi.org/10.1145/276305.276337
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server/
https://www.microsoft.com/en-us/research/publication/anytime-algorithm-of-database-tuning-advisor-for-microsoft-sql-server/
https://doi.org/10.1145/320289.320296
https://doi.org/10.14778/1978665.1978668
https://doi.org/10.14778/3430915.3430931
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1016/j.ins.2022.08.051
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.14778/3407790.3407832
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342646
https://arxiv.org/abs/1902.00132
https://doi.org/10.14778/3583140.3583164
https://doi.org/10.1109/ICDE51399.2021.00058
https://www.vldb.org/pvldb/vol16/p216-perera.pdf
https://doi.org/10.1109/ICDE.2019.00113
https://doi.org/10.1145/3477314.3507691
https://doi.org/10.1145/3472163.3472176
https://www.vldb.org/pvldb/vol15/p3950-shi.pdf
https://doi.org/10.1145/3514221.3526152
https://doi.org/10.14778/3547305.3547309
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.1109/ICDE.2000.839397
https://doi.org/10.14778/3461535.3461552
https://arxiv.org/abs/2012.06743
https://doi.org/10.14778/3611540.3611589
https://doi.org/10.1007/S41019-022-00186-4
https://doi.org/10.1145/3514221.3526128
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3529337.3529349


Engineering (ICDE) (Kuala Lumpur, Malaysia, 2022-05). IEEE, 2196–2208. https:
//doi.org/10.1109/ICDE53745.2022.00210

[40] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query Performance
Prediction for Concurrent Queries Using Graph Embedding. Proc. VLDB Endow.

13, 9 (may 2020), 1416–1428. https://doi.org/10.14778/3397230.3397238
[41] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,

Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502.

1541

https://doi.org/10.1109/ICDE53745.2022.00210
https://doi.org/10.1109/ICDE53745.2022.00210
https://doi.org/10.14778/3397230.3397238

	Abstract
	1 Introduction
	2 Background
	3 Overview of Our Solution
	4 Workload Matrices
	4.1 Foundations of Benefit Estimation
	4.2 Workload-Matrix-based Benefit Estimation
	4.3 Workload-Matrix-based Query Clustering

	5 Detection of Changes in Plan Structures
	5.1 Challenges
	5.2 Model Architecture
	5.3 Plan Node Encoding
	5.4 Join Schema Encoding
	5.5 Index Encoding
	5.6 Model Training

	6 Evaluation
	6.1 Experiment Setup
	6.2 End-to-End Evaluation of RIBE
	6.3 Evaluation of ChangeFormer
	6.4 Accuracy of Cost Estimation

	7 Conclusion
	Acknowledgments
	References

