
Efficient Dynamic Weighted Set Sampling and Its Extension
Fangyuan Zhang

fzhang@se.cuhk.edu.hk

The Chinese University of Hong Kong

Hong Kong SAR

Mengxu Jiang

mxjiang@se.cuhk.edu.hk

The Chinese University of Hong Kong

Hong Kong SAR

Sibo Wang
∗

swang@se.cuhk.edu.hk

The Chinese University of Hong Kong

Hong Kong SAR

ABSTRACT
Given a weighted set 𝑆 of 𝑛 elements, weighted set sampling (WSS)
samples an element in 𝑆 so that each element 𝑎𝑖 is sampled with

a probability proportional to its weight 𝑤 (𝑎𝑖). The classic alias

method pre-processes an index in 𝑂 (𝑛) time with 𝑂 (𝑛) space and
handles WSS with𝑂 (1) time. Yet, the alias method does not support

dynamic updates. By minor modifications of existing dynamic WSS

schemes, it is possible to achieve an expected 𝑂 (1) update time

and draw 𝑡 independent samples in expected 𝑂 (𝑡) time with linear

space, which is theoretically optimal. But such a method is im-

practical and even slower than a binary search tree-based solution.

How to support both efficient sampling and updates in practice

is still challenging. Motivated by this, we design BUS, an efficient

scheme that handles an update in𝑂 (1) amortized time and draws 𝑡

independent samples in 𝑂 (log𝑛 + 𝑡) time with linear space.

A natural extension of WSS is the weighted independent range
sampling (WIRS), where each element in 𝑆 is a data point from R.
Given an arbitrary range 𝑄 = [ℓ, 𝑟] at query time, WIRS aims to do

weighted set sampling on the set 𝑆𝑄 of data points falling into range

𝑄 . We show that by integrating the theoretically optimal dynamic

WSS scheme mentioned above, it can handle an update in 𝑂 (log𝑛)
time and can draw 𝑡 independent samples for WIRS in 𝑂 (log𝑛 + 𝑡)
time, the same as the state-of-the-art static algorithm. Again, such

a solution by integrating the optimal dynamic WSS scheme is still

impractical to handle WIRS queries. We further propose WIRS-BUS

to integrate BUS to handleWIRS queries, which handles each update

in 𝑂 (log𝑛) time and draws 𝑡 independent samples in 𝑂 (log2 𝑛 + 𝑡)
time with linear space. Extensive experiments show that our BUS

and WIRS-BUS are efficient for both sampling and updates.

PVLDB Reference Format:
Fangyuan Zhang, Mengxu Jiang, and Sibo Wang. Efficient Dynamic

Weighted Set Sampling and Its Extension . PVLDB, 17(1): 15-27, 2023.

doi:10.14778/3617838.3617840

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/CUHK-DBGroup/WSS-WIRS.

1 INTRODUCTION
Let 𝑆 be a set of 𝑛 elements, where each element 𝑎𝑖 is associated

with a positive real weight𝑤 (𝑎𝑖) ∈ R+ (1 ≤ 𝑖 ≤ 𝑛) . The weighted

∗
Sibo Wang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 1 ISSN 2150-8097.

doi:10.14778/3617838.3617840

set sampling (WSS) samples element 𝑎𝑖 from 𝑆 with probability

𝑤 (𝑎𝑖)/
∑𝑛

𝑗=1𝑤 (𝑎 𝑗). WSS has been widely used in real applications.

For instance, it is shown in existing studies on query processing,

e.g., [16, 18, 49], that weighted set sampling, rather than uniform

sampling, is essential for dealing with join sampling for better

effectiveness; In social networks, personalized PageRank (PPR) [38,

44–47] is widely used for social recommendation by IT companies

like Twitter [23] and Tencent [30]. They simulate random walks to

estimate PPRs, and at each step, the walk randomly chooses an out-

neighbor of the current node 𝑣 according to their weights [30]; In

online advertisement [29], an advertising system maintains a large

set of ads provided by advertisers. The probability of each ad being

displayed is determined by a weight assigned to this ad through the

advertising system. Apart from above examples, WSS is widely

used in database [28, 34, 48], computer graphics [32], network

analysis [12, 13], computational chemistry [20], bio-informatics

[19], recommendation system [40], and so on. A classic solution

for WSS is the alias method [42], which pre-processes set 𝑆 in𝑂 (𝑛)
time and𝑂 (𝑛) space and draws 𝑡 independent samples in𝑂 (𝑡) time.

A natural extension of the WSS problem is the weighted inde-
pendent range sampling (WIRS). Over the weighted set 𝑆 , given a

range 𝑄 at query time, the goal of WIRS is to do a WSS on the

subset 𝑆𝑄 of elements in 𝑆 belonging to𝑄 . WIRS has many applica-

tions. For example, in query processing, reporting the query results

falling into a range can be expensive if the number of records in

the answer set is huge, e.g. tens of millions of records. In such

scenarios, returning a sample set from the query results becomes a

better solution and has received significant attention [8, 17, 26, 41].

Besides, WIRS naturally has applications when we want to sample

elements from a specific range, e.g., within a specific price range.

Consider the application of the advertising systemmentioned above

for WSS. The advertising system may want to display the ads based

on the historical purchase behavior of the targeted users. It may

only display ads whose prices fall in the range that the targeted

users might be interested in. For WIRS, as set 𝑆𝑄 depends on 𝑄 at

query time, we cannot directly apply the alias method to solve the

WIRS problem as many choices of the range 𝑄 may exist. Tao [41]

proposes combining a binary search tree (BST) structure with the

alias method, where the BST is used to efficiently identify the points

falling into the query range 𝑄 . The solution takes linear space and

can draw 𝑡 independent samples with 𝑂 (log𝑛 + 𝑡) running cost.

1.1 Limitations of existing solutions
Nowadays, real-world data are changing rapidly. For example, in

query processing, the database gets frequently updated with newly

inserted/deleted elements. In social network analysis, social net-

works are dynamically changing [23, 25, 30], e.g., the following list

of users changes over time. When estimating PPRs in this context,

the sampling structure needs to be updated. Similarly, in online

15

https://doi.org/10.14778/3617838.3617840
https://github.com/CUHK-DBGroup/WSS-WIRS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3617838.3617840
https://www.acm.org/publications/policies/artifact-review-and-badging-current

advertisement, the set of ads maintained by the advertising sys-

tem will also change as advertisers want to promote new ads or

withdraw old ones. However, existing solutions for WSS and WIRS

either cannot outperform simple baselines or focus on static data.

Limitations of existing WSS schemes. For the WSS problem,

since the alias structure does not support dynamic addition and

removal of elements, we need to rebuild the structure when the

weighted set changes. This incurs 𝑂 (𝑛) update time for each inser-

tion/deletion. Such a cost is too prohibitive when the set is large.

Another widely adopted solution is to use a balanced binary search

tree (BST). By recording the sum of the weights of the nodes in each

sub-tree, we can sample an element in 𝑂 (log𝑛) time. It naturally

supports inserting/removing an element in 𝑂 (log𝑛) time. Existing

state-of-the-art dynamic solutions for WSS [24, 31] focus on the

case when the number of elements is fixed, and only the weights

change. The solution in [24] limits the weights to be integers, while

the solution in [31] can allow arbitrary positive real weights. By

minor modifications to the solution in [31], it is possible to achieve

an amortized 𝑂 (1) update time and draw 𝑡 independent samples in

expected𝑂 (𝑡) time with linear space, which is theoretically optimal.

We denote such a solution as OPT and the backbone of OPT

is bucketing, which divides the weights into disjoint ranges, e.g.,

[2𝑖 , 2𝑖+1), where 𝑖 is an integer. Then, the bucket 𝐼𝑖 includes the

elements whose weight fall into [2𝑖 , 2𝑖+1). When sampling from a

bucket, it first samples an element 𝑒 uniformly at random, and then

either (i) accept this record with𝑤 (𝑒)/2𝑖+1 probability, or (ii) reject
this record and repeat this sampling process until a sample is ac-

cepted. We may divide the ranges with other bases, e.g., [10𝑖 , 10𝑖+1),
yet this will cause a higher sampling cost due to the increased

probability of rejection. Hence, typically the base is set to 2 [24, 31].

With the bucketing idea alone, gaining the optimal time complexity

is still difficult. To achieve the optimal complexity, they first present

a lookup table solution that supports 𝑂 (1) update time when the

weight of an element changes (no insertion or deletion supported)

and 𝑂 (1) sampling at the sacrifice of space consumption. In partic-

ular, given 𝑥 elements whose weight fall into the range [1,𝑚], they
design a lookup table solution that achieves 𝑂 (1) time per weight

update and𝑂 (1) time per sampling with𝑂 (𝑥 ·𝑚𝑥+1) space. To make

full use of the lookup table, OPT combines buckets into different

groups and normalizes the values so that each non-empty group

has a problem of size ⌈log
2
𝑛⌉ and the values fall into the range

[1, 𝑛2]. They further reduce the problem size using the group idea

with one more level, making the problem size be 𝑥 = ⌈log
2
⌈log

2
𝑛⌉⌉

and the values fall into the range [1,𝑚 = ⌈log
2
𝑛⌉2]. The space cost

𝑂 (𝑥 ·𝑚𝑥+1) can be bounded by𝑂 (𝑛), which helps achieve the final

time and space complexity. Yet, OPT is even slower than the BST-

based method mentioned above for both sampling and updates in

practice. Besides, maintaining the lookup table with the current

design will take a prohibitive space cost. It is possible to reduce

the table size (more details in Sec. 2.2) but comes at the degraded

sampling and update performance, making the disadvantage more

pronounced. How to gain high practical efficiency for both sampling
and updates for the WSS problem is still challenging.

Limitations of existing WIRS schemes. Hu et al. [26] pro-

posed a dynamic solution for a special case of the WIRS query

when all weights are equal. When the weights might differ, Tao

[41] proposes combining the binary search tree (BST) and the alias

method, where each node 𝑣 in the BST maintains an alias structure

for all data points falling in the subtree rooted at 𝑣 . Given a range

𝑄 , it first identifies a set of 𝑂 (log𝑛) nodes, called canonical nodes,
such that the data points falling into the subtrees rooted at these

canonical nodes are disjoint and their union is precisely the set 𝑆𝑄
of data points falling into 𝑄 . Thus, we can first sample a canonical

node 𝑣𝑐 according to the total weight of the elements falling into the

subtree rooted at 𝑣𝑐 . Then, we sample a data point falling into the

subtree rooted at 𝑣𝑐 via an alias structure. With such an augmented

BST structure, it is difficult to deal with dynamic updates. How to
effectively solve the WIRS problem in dynamic settings is still open.

1.2 Our contribution
In this paper, we tackle theWSS andWIRS problems in the dynamic

setting to support dynamic addition or removal of elements to

the input set, from both theoretical and practical aspects. The

contributions are summarized as follows.

An efficient dynamic WSS scheme. Similar to both OPT [31]

and the solution in [24], we use the bucketing idea as the backbone

and present an efficient solution BUS (BUcket Sampling) that can
support updates in 𝑂 (1) time and can draw 𝑡 samples in expected

𝑂 (log𝑛 + 𝑡) time using linear space. Yet, different from [24, 31], we

do not maintain the lookup table or reduce the problem size by two

levels, which degrades the sampling efficiency. Instead, our solution

greatly simplifies the data structure using a 1-level bucket without

maintaining a space-consuming lookup table.We only need to insert

into or delete from the corresponding bucket with𝑂 (1) time to deal

with updates. For sampling, the key of our solution is that we can

draw a sample by checking𝑂 (log𝑛) buckets with 1−1/𝑛 probability
and then do rejection sampling, which assures an expected𝑂 (log𝑛)
time to draw a sample. This makes the sampling highly efficient

and outperforms alternatives. The examined buckets can be reused

when drawing 𝑡 independent samples, and BUS achieves a sampling

time of𝑂 (log𝑛 + 𝑡). Extensive experiments show that our proposed

BUS is efficient for both sampling and updates.

The first theoretical result for dynamicWIRS scheme. This
paper presents the first dynamic scheme for the WIRS problem that

achieves the same sampling complexity as the state-of-the-art static

solution while supporting 𝑂 (log𝑛) amortized update cost. For the

dynamic WIRS problem, we first need to modify the existing static

solution proposed by Tao [41] so that the augmented alias struc-

ture maintained at each node is replaced with a dynamic sampling

scheme, e.g., OPT or our proposed BUS scheme. Yet, a key challenge

to dealing with updates for the WIRS sampling structure is that

the popular height-balanced BST, e.g., red-black tree or AVL-tree,

may need rotations during the updates, causing 𝑂 (𝑛) changes in
the nodes falling into a subtree rooted at such rotated nodes in

the worst case. To tackle this issue, we combine the dynamic WSS

scheme with the idea of weight-balanced BST, e.g., BB[𝛼]-tree [33],
where the subtree is adjusted only when the weight, i.e., the num-

ber of nodes in the subtree, becomes unbalanced. This strategy can

amortize the update cost to𝑂 (𝑠) nodes if an update is triggered to a

subtree with 𝑠 nodes. Such a solution still incurs𝑂 (𝑛 log𝑛) space as
it needs to maintain the sampling scheme at each node. To reduce

the space cost, we apply a chunk-based solution, which divides

16

the input data into different chunks, where each chunk includes

Θ(log𝑛) records. This helps reduce the space cost to 𝑂 (𝑛). If the
sampling structure at each node is OPT, then we can achieve the

claimed𝑂 (𝑡 + log𝑛) sampling time to draw 𝑡 samples and𝑂 (log𝑛)
amortized update time. We denote such a solution as WIRS-OPT.

A practically efficient dynamic WIRS scheme.WIRS-OPT

suffers from a similar limitation to OPT and is impractical for large

datasets. To overcome these limitations, we propose a new method

calledWIRS-BUS that leverages BUS as the sampling structure at

each node. We further reduce the space and enhance the efficiency

of our WIRS-BUS method by introducing chunk-based optimiza-

tions. Since chunks are typically stored in consecutive cache lines,

scanning them for sampling is as efficient as sampling from an

alias structure. This optimization considerably reduces the stor-

age requirements without compromising sampling performance.

We also present a weight update solution for the BUS structure

to avoid the need for repeated element insertions and deletions

when chunks do not merge or split after updates. Our proposed

method, WIRS-BUS, can draw 𝑡 samples with a time complexity of

𝑂 (log2 𝑛 + 𝑡), which is superior to the simple multiplication of 𝑡 by

the sample cost of BUS (i.e., 𝑂 (𝑡 log𝑛)). This efficiency is achieved

by reusing the intermediate result from the first sample for subse-

quent samples. In practice, when 𝑡 is sufficiently large (which is

often the case), our WIRS-BUS method has similar time complexity

to that of WIRS-OPT and the state-of-the-art static solution [41].

Excellent sampling and update performance.We evaluate

our proposed solutions forWSS andWIRS problems against existing

solutions. We show that our BUS can achieve up to 10x improve-

ment on WSS sampling and 7x-10x speed-up on updates compared

to the current state-of-the-art dynamic solution on WSS. For the

WIRS problem, our WIRS-BUS again achieves up to 5x improve-

ment on sampling over the state-of-the-art dynamic solution for

WIRS while consuming the same amount of space and achieving

similar update efficiency. Remarkably, ourWIRS-BUS achieves iden-

tical sampling performance as the state-of-the-art static scheme for

WIRS, indicating that WIRS-BUS supports efficient updates without

any compromise on its sampling performance.

2 PRELIMINARIES
2.1 Problem Definition
Let 𝑆 be a set of 𝑛 elements in R, where each element 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑛)

is associated with a positive real weight 𝑤 (𝑎𝑖) ∈ R+. Over set 𝑆 ,
the weighted set sampling problem (WSS) is defined as follows.

Definition 2.1 (WSS). Let 𝑆 be an input set 𝑆 of 𝑛 elements in R,
where each element 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑛) is associated with a positive real

weight𝑤 (𝑎𝑖) ∈ R+. Given an input positive integer 𝑡 , the WSS re-

turns 𝑡 independent random samples from 𝑆 , so that for each sample,

element 𝑎𝑖 is sampled with a probability of𝑤 (𝑎𝑖)/
∑𝑛

𝑗=1𝑤 (𝑎 𝑗).

Notice that WSS is sampling with replacement. There are scenar-

ios where we only want to sample elements falling into a specific

range from the set 𝑆 , which is the weighted independent range sam-
pling (WIRS). The definition is as follows.

Definition 2.2 (WIRS). Given a set 𝑆 as above, an input positive

integer 𝑡 and a range 𝑄 = [ℓ, 𝑟] at query time, WIRS returns 𝑡

samples via executing a WSS with input 𝑡 on the set 𝑆𝑄 = {𝑎 ∈
[ℓ, 𝑟] |𝑎 ∈ 𝑆}, i.e., the set of elements falling into range 𝑄 .

Note that the range 𝑄 and number 𝑡 of samples are given at

query time. This makes the problem more challenging since we

aim to support efficient sampling for an arbitrary range without

explicitly constructing the subset 𝑆𝑄 of elements falling into 𝑄 .

Dynamic setting. In this paper, we consider the dynamic setting

where elements are dynamically added into 𝑆 or removed from 𝑆 .

In the dynamic setting, the WSS or WIRS needs to be performed

on the updated set after the insertion or removal of the elements.

Next, we review existing solutions for WSS and WIRS. Tab. 1

summarizes the sampling time, update time, space cost, and prepro-

cessing time of each method, including our proposed solutions.

2.2 Existing Solutions for WSS
Alias method for WSS. Let 𝑆 = {𝑎1, 𝑎2, · · · , 𝑎𝑛} be a weighted set.
Further let 𝑤 (𝑆) = ∑

𝑎𝑖 ∈𝑆 𝑤 (𝑎𝑖). To solve the WSS problem, the

alias method works as follows. Suppose we have 𝑛 equal weight

bins 𝐵1, 𝐵2, · · · , 𝐵𝑛 , where each bin holds an average weight �̄� =

𝑤 (𝑆)/𝑛. Note that there exists at least one element, denoted as

𝑎𝑛𝑙 , whose weight is no larger than �̄� , and one element, denoted

as 𝑎𝑛𝑠 , whose weight is no smaller than �̄� . We create two linked

lists 𝐿𝑛𝑙 and 𝐿𝑛𝑠 to maintain elements with weights no larger and

no smaller than �̄� , respectively. To build the alias structure, we

take out an 𝑎𝑛𝑙 from 𝐿𝑛𝑙 and an 𝑎𝑛𝑠 from 𝐿𝑛𝑠 . Then, we add a

pair 𝑝1 = (𝑎𝑛𝑙 ,𝑤 (𝑎𝑛𝑙)) in the first bin 𝐵1. We use 𝑝1 .𝑒𝑙𝑒 to in-

dicate the element and 𝑝1 .𝑤𝑒𝑖𝑔ℎ𝑡 to indicate the weight stored

in the pair. If 𝑝1 .𝑤𝑒𝑖𝑔ℎ𝑡 is smaller than �̄� , we further add a pair

𝑝2 = (𝑎𝑛𝑠 , �̄� −𝑤 (𝑎𝑛𝑙)) to 𝐵1. Next, we update the weight of 𝑎𝑛𝑠 to
𝑤 (𝑎𝑛𝑠)−(�̄� −𝑤 (𝑎𝑛𝑙)). We add 𝑎𝑛𝑠 to the appropriate list according

to its weight. We repeat this process until all 𝑛 bins take �̄� weights

and each bin includes at most two entries. To draw a sample, we

pick a bin uniformly at random. If it contains one entry 𝑝1, we re-

turn 𝑝1 .𝑒𝑙𝑒 . Otherwise, if it has two entries 𝑝1 and 𝑝2, we generate

a random number 𝑟 ∈ [0, �̄�] uniformly at random. If 𝑟 ≤ 𝑝1 .𝑤𝑒𝑖𝑔ℎ𝑡 ,

we return 𝑝1 .𝑒𝑙𝑒 ; otherwise, return 𝑝2 .𝑒𝑙𝑒 . The above alias structure
can draw 𝑡 samples with 𝑂 (𝑡) time with linear space.

Example 2.3. Assume that we have a weighted set 𝑆 = {𝑎1, 𝑎2, 𝑎3,
𝑎4, 𝑎5} where the weights are 3, 4, 6, 10, 2, respectively. Then, the
average weight �̄� = 5. Initially, 𝐿𝑛𝑙 includes {𝑎1, 𝑎2, 𝑎5} and 𝐿𝑛𝑠
includes {𝑎3, 𝑎4}. Then, we take 𝑎1 from 𝐿𝑛𝑙 and 𝑎3 from 𝐿𝑛𝑠 . Next,

we add pair 𝑝1 = (𝑎1, 3) into bin 𝐵1. Since the weight is still smaller

than �̄� = 5. We add the second pair (𝑎3, 2) to bin 𝐵1. Next, we

remove 𝑎1 from the linked list 𝐿𝑛𝑙 . We move 𝑎3 from 𝐿𝑛𝑠 to 𝐿𝑛𝑙
according to its new weight of 6−2 = 4. Similarly, we can create bin

𝐵2 = {(𝑎2, 4), (𝑎4, 1)}, 𝐵3 = {(𝑎5, 2), (𝑎4, 3)}, 𝐵4 = {(𝑎3, 4), (𝑎4, 1)},
and 𝐵5 = {(𝑎4, 5)}. To do sampling, we first generate a random

integer from [1, 5]. Assume that the integer is 1. Then, we generate

a random number 𝑟 from [0, �̄�]. Assume that 𝑟 = 1.2. By checking

elements in bin 𝐵1, we return 𝑎1 as the sample. The alias structure

and sampling process in this example are illustrated in Fig. 1(a).

BST for WSS. An alternative method is to maintain a balanced

BST for elements in 𝑆 . For each node 𝑢, it maintains the total

weight𝑤𝑙𝑒 𝑓 𝑡 (𝑢) (resp.𝑤𝑟𝑖𝑔ℎ𝑡 (𝑢)) of the elements in the left (resp.

right) subtree of 𝑢. If node 𝑢 has no left (resp. right) subtree, then

17

Table 1: Comparison of different methods for WSS and WIRS
Problem Method The time to draw � samples Update time Space cost Preprocessing time Remark
WSS Alias Method � (�) � (�) � (�) � (�) � (�) update cost

Binary Search Tree � (� log�) � (log�) � (�) � (� log�) � (log�) factor for update/sampling

OPT-Extension � (�) � (1) � (�) � (�) Large constant factor

BUS � (log� + �) � (1) � (�) � (�) -

WIRS Tao’s Method � (log� + �) Ω(�) � (�) � (� log�) Ω(�) update cost
Xie et al.’s Method � (� log�) � (log�) � (�) � (� log�) � (log�) factor for update/sampling

WIRS-OPT � (log� + �) � (log�) � (�) � (� log�) Large constant factor

WIRS-BUS � (log2 � + �) � (log�) � (�) � (� log�) -

a4
a1
a3

a2
a5
a4

a3

B1 B2 B3 B4 B5

a4 a4

1st step of
sampling

2nd step of
sampling

2nd step of
sampling

a4
a1
a3

a2
a5
a4

a3

B1 B2 B3 B4 B5

a44 a44

a1

a2 a4

a3

a1 a5

25

7 12

4 10

(a) Alias method (b) BST

Figure 1: Examples of WSS solutions

��� � � (�) = 0 (resp.����ℎ� (�) = 0). To sample an element, we start

from the root �. Let the weight of the element stored at root � be

� (�). A random number � ∈ [0,� (�)] is first sampled. Then, (i) if
��� � � (�) < � ≤ ��� � � (�) +� (�), we directly return the element

stored at �; (ii) if � ≤ ��� � � (�) we update � as its left child and

repeat from Step (i); (iii) otherwise, we update � = � −��� � � −� (�),
update � as its right child, and repeat from Step (i). As a balanced

BST has a height of � (log�), it incurs � (� log�) cost to draw �

samples. Besides, it takes linear space and naturally supports the

insertion/deletion of an element with � (log�) cost.

Example 2.4. With the same set � in Example 2.3, we can use a

BST to maintain � . Assume that �1 to �5 are in ascending order. Fig.

1(b) shows the corresponding BST structure. Suppose we generate a

random number � = 23.5 from [0, 25]. Firstly, we check root �3, we

find � > � (�3) +��� � � (�3). Then we go to the right child of �3 and

update � to 10.5. For the node �5, we find��� � � (�5) ≤ � ≤ � (�5).
Thus, we return �5 as the sample result.

Dynamic WSS schemes. As we mentioned in Sec. 1, existing

studies [24, 31] solve dynamic WSS in a different setting. Both solu-

tions mainly combine the bucketing and lookup table ideas. Given

� elements that fall into the range [1,�], the lookup table solution

achieves � (1) time per weight update and � (1) time per sampling

with � (� ·��+1) space. Then, they use the idea of bucketing to

reduce the problem size, say from� (�) to� (log�). After reducing
the size of the problem twice,� = �log

2
��2 and � = �log

2
�log

2
���.

The space cost of the lookup table is bounded by � (�). Yet, such
a lookup table incurs a huge space cost under its default setting.

For example, when � = 10
5
, we have � = 289, � = 5, and the

lookup table has � ·��+1 = 2.9 × 10
15

entries. Assume that each

entry takes a byte. OPT already takes more than 1PB to store the

table. It is possible to reduce the table size by reducing the problem

size, say to �log
2
�log

2
�log

2
����, or taking a larger bucket base, e.g.,

[10� , 10�+1). Either solution will increase the sampling cost due to a

more complicated sampling scheme or a higher rejection probability

inside each bucket, making the disadvantage more pronounced.

The above solution assumes that the number of elements is

fixed to be �, and only the weights of elements may change. It

is not difficult to come up with a dynamic rebuilding solution to

support insertion/removal of elements. In particular, given a set

of � elements, we first create a sampling structure in [31] for the

problem size of 2�, where � of them have a weight of zero. Then, if

a new element � is inserted, we may simply update the weight from

0 to � (�). When the number of elements in the set becomes 2�,

we rebuild the whole structure. Besides, if the number of elements

is less than �/2, we rebuild the sampling structure in [31] for the

problem size of �. This can amortize � (�) reconstruction cost to

Θ(�) elements, making the amortized insertion/deletion to be� (1).

2.3 Existing Solutions for WIRS
Tao’s method for WIRS. To deal with the WIRS problem, Tao

presents a method [41] that combines the BST and the alias method

to draw � independent samples with � (log� + �) time for a given

query range � . Following [41], to facilitate the range query, we

consider a BST T that stores data points at leaf nodes, and every

internal node has two children. The key of a leaf node is exactly the

value of the data point in R. The key of an internal node � is the

smallest leaf key in the right subtree of �. The advantage of such a

key choice is that it can efficiently identify the range of the data

points (leaf nodes) falling into the subtrees. For example, consider

Fig. 2. Given the internal node with key 5 and the information from

its parent, we know that the range of data points falling into the

right-subtree of node 5 is [5, 8) and the range of data points falling

into the left-subtree of node 5 is (−∞, 5). Let �� denote the set of

leaf nodes in T that has a key falling into the range � and �(�)
denote the set of leaf nodes in the subtree rooted at �. Given an

arbitrary query range � , an important property of BST [41] is that

we can identify a set � of canonical nodes in the BST such that (i)
for any two different nodes � and � in � , �(�) ∩ �(�) = ∅; (ii) the
union of leaf nodes of the subtrees rooted at canonical nodes is

exactly the set of leaf nodes fulfilling � , i.e., ∪�∈��(�) = �� .

Given the above facts, Tao proposes maintaining an alias struc-

ture for each node � for all points stored in the subtree rooted at �.

This, in total, incurs � (� log�) space as each point is stored in at

most � (log�) nodes. Then, to handle a WIRS query, it first derives

the set� of� (log�) canonical nodes and derives an alias structure

on the fly for these� (log�) nodes according to the sum of weights

of the points in each sub-tree. This incurs � (log�) running cost.

Then, it draws a sample according to the alias structure built on the

fly to choose the subtree of the canonical node and uses the alias

structure maintained at each node to sample a data point in the

subtree. Clearly, this returns a correct sample for the WIRS. Given a

range � , it can draw � independent samples for the WIRS problem

with � (log� + �) time using � (� log�) space. By storing � (log�)
points as a chunk [26], it reduces the space to� (�). Yet, it is a static
method and cannot be easily adapted to a dynamic setting.

18

Example 2.5. Consider the binary search treeT1 in Fig. 2. Assume

that the query range 𝑄 = [3, 11]. Then, we have a set 𝐶 of four

canonical nodes 𝐶 = {𝑢1, 𝑢2, 𝑢3, 𝑢4} (colored in black) such that

the leaf nodes of the subtree rooted at 𝑢1, 𝑢2, 𝑢3, 𝑢4 are disjoint and

their union is exactly the leaf nodes (thus the data points) falling

into the range 𝑄 = [3, 11]. To do WIRS with range 𝑄 = [3, 11], we
first construct an alias structure𝑇𝐶 for𝐶 , where the weight of each

node is the sum of the weights of the elements in the corresponding

subtree. For example, the weight of 𝑢2 is the sum of weights of

elements 5, 6, and 7. To draw a sample, it first uses 𝑇𝐶 to draw a

canonical node. Assume that it is𝑢2. Then, we use the alias structure

maintained at node 𝑢2 to sample an element from {5, 6, 7}. Assume

that it is 6. Then 6 is returned as the sample.

Xie et al.’s method for WIRS. To gain a better trade-off be-

tween space cost and sampling cost in practice, Xie et al. [48] pro-

pose to use a dyadic tree to do both sampling and dealing with the

range. Similar to Tao’s method, they first use the dyadic tree to

find the set 𝐶 of 𝑂 (log𝑛) canonical nodes and their correspond-

ing subtrees. Next, an alias structure 𝑇𝐶 is built on the fly for the

𝑂 (log𝑛) canonical node in 𝐶 . It first samples a canonical node via

𝑇𝐶 , then uses the binary search tree method similar to WSS (Sec.

2.2) to sample a node at this BST, which takes 𝑂 (log𝑛) time. In

total, it takes 𝑂 (𝑡 log𝑛) time to draw 𝑡 independent samples. The

dyadic tree is static and cannot be extended to dynamic settings. To

fix this, it is easy to use a balanced BST to extend to the dynamic

setting and use the same strategy as mentioned above. Then, it

can draw 𝑡 independent samples with 𝑂 (𝑡 log𝑛) running time and

update with 𝑂 (log𝑛) running time for each insertion/deletion. Yet

such a solution is still inferior in terms of sampling cost, as we will

show in our experiment. One may further consider using LSM-tree

[37] to do insertions, and only mark deleted elements as mentioned

in [48]. But this may cause𝑂 (𝑛) expected sampling time (details in

our technical report [5]), and is too expensive for large-scale data.

Example 2.6. Still consider the same set of elements in Exam-

ple 2.5 and the same query range 𝑄 = [3, 11]. This approach also

first finds the set 𝐶 = {𝑢1, 𝑢2, 𝑢3, 𝑢4} of canonical nodes and con-

structs an alias structure 𝑇𝐶 as well. To draw a sample, it first uses

𝑇𝐶 to draw a canonical node. Assume that it is𝑢2. It then samples an

element from the set {5, 6, 7}, i.e., the set of elements in the subtree

rooted at 𝑢2. It uses the BST rooted at 𝑢2 to do WSS from {5, 6, 7}.
Assume that 7 is sampled. Then, 7 is returned as the final sample.

2.4 Related Work
Sampling from aweighted set is a fundamental problemwidely used

in many applications. Some research works, e.g., [15], consider how

to reduce the space for the WSS problem. A lot of works consider

the problem based on different scenarios such as parallel sampling

[4], distributed sampling [27, 28] or data stream [14, 21].

Independent range sampling is a classic problem in the database

community and has been studied for decades. Olken et al. have stud-

ied this problem based on 𝐵+-tree more than 20 years ago [36]. They

also further study this problem in the high-dimensional case based

on 𝑅-tree [35] and present a detailed survey [36] for this problem.

From a theoretical perspective, there are many works [6, 7, 26] that

design different sampling structures. Most of these works are based

8

1 2 3 4 5 6 7 8 9 10 12 13 15

u1

u2

u3

u4

5 12

3 7 10 15

2 4 6 9 13

Figure 2: A Binary Search Tree T1

on low-dimensional or static weighted data. There is a lot of work

[9–11, 43, 48] to study the sampling of high-dimensional data from

the perspective of the application. Xie et al. [48] also study the sam-

pling method of weighted data. Tao [41] points out that the main

idea of [48] is to utilize the tree structure of high-dimensional data

through DFS traversal. A high-dimensional query will eventually

be transformed into multiple one-dimensional queries.

3 DYNAMICWEIGHTED SET SAMPLING
Our dynamic WSS scheme is inspired by the bucketing strategy as

we mentioned in Sec. 1 where we divide the weights into different

buckets. Unlike existing solutions that maintain multiple levels of

buckets and require a lookup table with a large space cost, our

solution relies on a single-level bucket to handle all sampling tasks.

However, a major challenge of the bucket-based approach is the

potential existence of 𝑂 (𝑛) non-empty buckets in the worst case.

Our analysis shows that it is possible to examine 𝑂 (log𝑛) buckets
with a probability of 1 − 1/𝑛. Even in the scenario where we need

to examine all buckets, the cost remains at 𝑂 (𝑛) for a remaining

probability of 1/𝑛. This helps to bound the expected sampling cost

to 𝑂 (log𝑛). Next, we explain the details of our BUS scheme.

BUS structure and its construction. Firstly, we divide the

domain of the weights into disjoint ranges [2𝑖 , 2𝑖+1) where 𝑖 is

an integer that can be negative. We further maintain a bucket

𝐼𝑖 to include all the elements whose weights fall into the range

[2𝑖 , 2𝑖+1) and let𝑤 (𝐼𝑖) be the sum of the weights of elements falling

into bucket 𝐼𝑖 . Notice that 𝑤 (𝐼𝑖) can be maintained easily even

when there exist updates to elements in bucket 𝐼𝑖 . Similarly, we

can easily maintain𝑤 (𝑆) during the update. There might exist an

infinite number of buckets, but at most 𝑛 of them are non-empty.

To maintain non-empty buckets, we use a hash table, denoted as

𝐻𝐵 , to manage non-empty buckets by recording IDs of non-empty

buckets as keys. Such a hash table can use dynamic perfect hashing,

e.g., cuckoo hashing [39], to achieve 𝑂 (1) time to insert/delete an

arbitrary record by key in linear space. With this hash table, we can

locate a non-empty bucket by ID, record a new non-empty bucket

via its ID, and delete an empty bucket in 𝑂 (1) time.

For each bucket 𝐼𝑖 , we further maintain a dynamic array (e.g.,

vector in C++), denoted as𝐴𝑖 , to store elements with weights falling

into range [2𝑖 , 2𝑖+1). A dynamic array supports (i) inserting a new

element after the last element or deleting the last element with

amortized 𝑂 (1) time, (ii) accessing the 𝑖-th element in 𝑂 (1) time.

However, this is still insufficient. To explain, the dynamic array

can only delete the last element in 𝑂 (1) time, but the deletion

of an element may occur at an arbitrary position in the dynamic

array. To support the removal of an arbitrary element from 𝐴𝑖 , we

further maintain a hash table 𝐻𝑖 to record the position of each non-

empty element in𝐴𝑖 . Then, we can efficiently deal with deletions of

19

Algorithm 1: BUS-Construction(𝑆)

1 Initialize 𝐻𝐵 and 𝐻 where 𝐻𝐵 is for non-empty buckets

maintenance and 𝐻 is used for elements;

2 for each 𝑎 ∈ 𝑆 do
3 𝑖 ← ⌊log

2
𝑤 (𝑎)⌋;

4 if 𝑖 exists in 𝐻𝐵 then𝑤 (𝐼𝑖) += 𝑤 (𝑎);
5 else
6 Add 𝑖 into 𝐻𝐵 and set𝑤 (𝐼𝑖) = 𝑤 (𝑎).
7 Create a dynamic array 𝐴𝑖 for bucket 𝐼𝑖 ;

8 end
9 Insert 𝑎 into 𝐴𝑖 and let 𝑝𝑎 be the position of 𝑎 in 𝐴𝑖 ;

10 Add ⟨𝑎, 𝑝𝑎⟩ into 𝐻 ;

11 end
12 return BUS structure;

Algorithm 2: BUS-Sample(BUS structure)

1 Use Lemma 3.3 to locate the largest non-empty bucket and

record the bucket id as 𝑟 .

2 𝑤𝐼 ← 𝑅𝑎𝑛𝑑 (0,𝑤 (𝑆)), 𝑓 𝑙𝑎𝑔← 0, 𝑖 ← 𝑟,𝑤≤𝑟+1 (𝑆) ← 𝑤 (𝑆);
3 for 𝑖 from 𝑟 down to 𝑟 − 2 · ⌈log

2
𝑛⌉ do

4 if 𝑤𝐼 ≥ 𝑤≤𝑖 (𝑆) −𝑤 (𝐼𝑖) then 𝑓 𝑙𝑎𝑔← 1, break;

5 𝑤≤𝑖 (𝑆) = 𝑤≤𝑖+1 (𝑆) −𝑤 (𝐼𝑖);
6 end
7 if 𝑓 𝑙𝑎𝑔 = 0 then find 𝐼𝑖 by scanning all non-empty buckets ;

8 while True do
9 𝑥 ← 𝑅𝑎𝑛𝑑 (0, 2𝑖+1), sample a point 𝑎 uniformly from 𝐼𝑖 ;

10 if 𝑥 ≤ 𝑤 (𝑎) then return 𝑎;

11 end

elements by swapping the last element and the deleted element in

𝐴𝑖 and updating the positions in 𝐻𝑖 to guarantee that the elements

are consecutive in 𝐴𝑖 . This allows us to (i) insert/delete elements to

𝐼𝑖 in𝑂 (1) time; (ii) sample an element in 𝐼𝑖 uniformly at random. For

bucket 𝐼𝑖 , we maintain a counter𝑤 (𝐼𝑖) to store the total weight of

the elements in this bucket, which will be used during the sampling.

Notice that we can actually maintain only one hash table for all

elements instead of maintaining a hash table𝐻𝑖 for elements falling

into 𝐼𝑖 since the elements in 𝑆 are different by default and thus will

not result in duplicate keys even using only one hash table.

Example 3.1. Consider a weighted set 𝑆 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6}
where weights are 0.01, 0.1, 4, 6, 100, and 2, respectively. Then, we

have 5 non-empty buckets: 𝐼−7 = {𝑎1}, 𝐼−4 = {𝑎2}, 𝐼1 = {𝑎6}, 𝐼2 =

{𝑎3, 𝑎4}, 𝐼6 = {𝑎5}. The IDs of the buckets are −7,−4, 2, 6, 1. We

insert these IDs of non-empty buckets into the hash table 𝐻𝐵 . For

each bucket 𝐼𝑖 , we maintain a dynamic array 𝐴𝑖 and use the hash

table 𝐻 to maintain the position information. For example, for

bucket 𝐼2, we maintain a dynamic array𝐴2 to store 𝑎3 and 𝑎4. Then,

we further maintain 𝐻 [𝑎3] = 0 and 𝐻 [𝑎4] = 1, indicating that 𝑎3
(resp. 𝑎4) is stored at position 0 (resp. position 1) in 𝐴2.

Alg. 1 shows how to construct the BUS scheme. We first initialize

the hash table 𝐻𝐵 to maintain non-empty buckets and hash table

𝐻 to record the position of each element 𝑎 in its corresponding

bucket (Line 1). Then, we go through each element 𝑎 in 𝑆 and find

Algorithm 3: BUS-Update(BUS structure, 𝑎)

1 Find the bucket ID 𝑖 where 𝑎 is to be inserted/deleted;

2 Insert/delete 𝑎 in 𝐴𝑖 and hash table 𝐻 ;

3 Update the weight of bucket 𝐼𝑖 in 𝐻𝐵 and remove bucket 𝐼𝑖
from 𝐻𝐵 if it becomes empty;

4 Update the total weight𝑤 (𝑆) and return the BUS structure;

the corresponding bucket 𝐼𝑖 (Lines 2-3). If 𝐼𝑖 is still empty, we add

bucket ID 𝑖 into 𝐻𝐵 , set 𝑤 (𝐼𝑖) = 𝑤 (𝑎), and initialize a dynamic

array𝐴𝑖 to record elements falling into 𝐼𝑖 (Lines 6-7); otherwise, we

simply update the weight of bucket 𝐼𝑖 . Next, we add element 𝑎 into

𝐴𝑖 , record the position 𝑝𝑎 of 𝑎 in 𝐴𝑖 , and store 𝑝𝑎 in 𝐻 (Lines 9-10).

When all elements are processed, it returns the BUS structure.

BUS sampling. Next, we explain how to do sampling with the

BUS scheme. Given a bucket 𝐼𝑖 with a larger ID than bucket 𝐼 𝑗 (i.e.,

𝑖 > 𝑗), there is no guarantee that𝑤 (𝐼𝑖) < 𝑤 (𝐼 𝑗) since there might

exist more elements in bucket 𝐼 𝑗 and thus contributes to a higher

total weight. But still, we canmake full use of such ID information to

do efficient sampling. Let 𝑟 be the largest ID of non-empty buckets.

For instance, in Example 3.1, 𝑟 = 6 since 𝐼6 has the largest ID of all

non-empty buckets. Now, we assume that 𝑟 is known in advance

and will later clarify how to derive 𝑟 in 𝑂 (log𝑛) time.

Given the largest ID 𝑟 of the non-empty buckets, we then only

consider the preceding buckets with IDs 𝑟 , 𝑟 − 1, · · · , down to

𝑟 − 2 · ⌈log
2
𝑛⌉. We have the following lemma to show that by

examining these 2⌈log
2
𝑛⌉ + 1 buckets, the total weights of these

buckets account for at least 𝑛/(𝑛 + 1) of the total weight of set 𝑆 .
Lemma 3.2. If the largest ID of the non-empty buckets is 𝑟 , the

sum of the weight of all elements falling into buckets with IDs smaller
than 𝑟 − 2 · ⌈log

2
𝑛⌉ is at most 1

𝑛+1 ·𝑤 (𝑆).
All omitted proofs can be found in our technical report [5]. Given

Lem. 3.2, it is easy to verify that we have at least 1− 1/𝑛 probability

to sample a bucket from IDs 2⌈log
2
𝑛⌉ + 1 to 𝑟 . We then design our

sampling algorithm as shown in Alg. 2. It first derives the largest

ID 𝑟 of non-empty buckets (Line 1). Next, it generates a random

number 𝑤𝐼 ∈ [0,𝑤 (𝑆)] uniformly at random. Then, it samples in

two steps. It first samples the bucket according to the weights of

the buckets (Lines 2-7). After sampling the bucket, it then samples

an element in the bucket with rejection sampling (Lines 8-11). To

identify the sampled bucket by the random number𝑤𝐼 , it finds the

bucket with ID 𝑖 so that:

𝑤≤𝑖−1 (𝑆) =
𝑖−1∑︁
𝑗=−∞

𝑤 (𝐼 𝑗) < 𝑤𝐼 ≤
𝑖∑︁

𝑗=−∞
𝑤 (𝐼 𝑗) = 𝑤≤𝑖 (𝑆) . (1)

To find the ID 𝑖 , it scans from the bucket with ID 𝑟 down to 𝑟 −
2⌈log

2
𝑛⌉. We maintain𝑤≤𝑖 (𝑆) as the total sum of the weights of all

elements falling into buckets with ID no larger than 𝑖 . If we find the

ID 𝑖 ∈ [𝑟−2⌈log
2
𝑛⌉, 𝑟] such that it satisfies Equation 1, thenwe stop

the search and mark a flag to indicate that 𝑖 falls in [𝑟 −2⌈log
2
𝑛⌉, 𝑟]

(Lines 3-6). Otherwise, we will check all non-empty bucket IDs via

a brute-force approach and identify the bucket 𝐼𝑖 , which takes𝑂 (𝑛)
cost (Lines 7). However, notice that this extreme case only happens

with at most 1/𝑛 probability, making the expected cost of finding

the correct bucket still bounded by𝑂 (log𝑛) cost. After locating the
bucket 𝐼𝑖 , we then randomly sample an element falling into bucket

20

I-7 I-4 I1 I2 I6
a1 a2 a6 a4 a5

a3

[2-7,2-6) [2-4,2-3) [21,22) [22,23) [26,27)Range

Bucket … … …

⌊ 𝑤 𝑆 ⌋⌊ 𝑤 𝑆 ⌋ − ⌈ 𝑛⌉

Figure 3: An example of BUS scheme

�� . We do rejection sampling according to the weight of the sampled

element �. In particular, we accept � with probability � (�)/2�+1.
Since� (�) ∈ [2� , 2�+1), it incurs � (1) trials in expectation. As we

can sample an element from the bucket �� with constant time via

the dynamic array �� , the cost to sample an element from bucket

�� incurs an expected � (1) cost. Adding the � (log�) cost to find

the largest ID of non-empty buckets, the � (log�) cost to sample

a bucket, and the constant cost to sample an element from the

sampled bucket, the total cost to sample an element can be bounded

by � (log�). If we need to draw � samples, we can build an alias

structure for the non-empty buckets among all buckets with IDs

in [− 2�log
2
��,]. Then, we can identify the bucket � with � (1)

cost. By this strategy, we can draw � samples in � (log� + �) time.

It remains to clarify how to find the largest ID of non-empty

buckets. The key is that given the total weight� (�) of all elements

in � , we can directly identify the largest ID of non-empty buckets

by examining buckets starting from ′ = log
2
� (�)� down to

 ′ − �log
2
��. The claim is summarized as the following lemma.

Lemma 3.3. Let � (�) be the sum of weights of all elements in �

and ′ = log
2
� (�)�. The largest ID of non-empty buckets must

fall within the range of [′ − �log
2
��, ′].

Example 3.4. Still consider � in Example 3.1 with 5 buckets �−7 =
{�1}, �−4 = {�2}, �1 = {�6}, �2 = {�3, �4}, �6 = {�5} that are non-

empty. Besides,� (�−7) = 0.01,� (�−4) = 0.1,� (�1) = 2,� (�2) = 10,

� (�6) = 100, and� (�) = 112.11. The corresponding BUS structure

is shown in Fig. 3. To draw a sample, we generate a random number

�� from [0, 112.11] and assume that �� = 10. We first find by

using Lem. 3.3. It starts from ID log
2
� (�)� = log

2
112.11� = 6.

By checking the hash table �� , we find that bucket �6 is non-empty,

and we derive that = 6. Next, we check which ID satisfies Equation

1 for IDs falling into [6 − 2�log
2
6�, 6] = [0, 6] in decreasing order

of IDs. Thus, we check �6 down to �0 and find that ID 2 satisfies that

�≤1 (�) = 2.11 < �� = 10 ≤ �≤2 (�) = 12.11 and thus bucket �2 is

sampled. Next, we randomly sample an element from �2. Say �3 is

sampled. Then, �3 is accepted with probability� (�3)/22+1 = 4/8.
If it is rejected, we re-sampled from �2 until an element is accepted.

BUSupdate. Finally, we explain how to handle updateswith BUS

scheme. Alg. 3 shows the pseudo-code of the update of BUS scheme.

It first identifies the bucket � of element � to be inserted/deleted.

This can be done in � (1) cost by directly computing log
2
� (�)�.

Then, we insert/delete the element in the dynamic array �� and

update the hash table � for the position. Next, the weight of bucket

�� is updated, and it is removed from the hash table�� if �� becomes

empty. Lastly, the weight� (�) of set � is updated. Every step incurs

only constant cost, making the total amortized update cost to be

� (1). We have Thm. 3.5 to summarize our BUS scheme.

Theorem 3.5. Given a weighted set � , the BUS scheme supports
each insertion/deletion in amortized� (1) time and takes� (log� + �)
time to draw � independent samples for WSS queries with linear space.

4 DYNAMICWIRS
Recap that the state-of-the-art static solution for the WIRS problem

proposed by Tao [41] is to combine the alias structure with the

binary search tree (BST). The solution can draw � independent

samples in � (log� + �) time. With the dynamic WIRS schemes

like OPT and BUS, a straightforward idea is to replace the alias

structure with OPT or BUS that are more efficient on updates. Yet, a

key trouble with such a solution, as we mentioned in Sec. 1, is that

a rotation of the height-balanced BST, e.g., AVL-Tree or Red–Black

tree, may cause � (�) changes of the elements under a subtree. To

tackle this issue, we combine the idea of weight-balanced BST, e.g.,

BB[
]-tree [33] and the scapegoat tree [22], where the subtree is
adjusted only when the weight, i.e., the number of nodes in the

subtree, becomes unbalanced. By this strategy, we can amortize

the update cost to � () nodes if we do an update on a subtree with

	 nodes. As we will show, by first combining the above BST with

OPT or BUS structure, we can bound the amortized update time to

� (log2 �). By further dividing elements into chunks, we can reduce

the amortized update time to � (log�) with OPT and BUS.

4.1 Basic Solution
Dynamic WIRS index scheme. Similar to the method in [41],

our WIRS index scheme also uses the BST to deal with the range

[ℓ,] efficiently. For ease of exposition, we use the following ter-

minologies in BST. Let T be a BST built for a set � of � elements.

Following [41], elements in the BST are only stored in leaf nodes.

Besides, every internal node � in T has two children, and we use

�.�� � � (resp. �.��ℎ�) to indicate the left child (resp. right child) of

node �. The key of an internal node � is the smallest leaf key in

the right subtree of �. We use 	��� (�) to denote the number of leaf

nodes (also the number of elements stored) in the subtree rooted

at �. Besides, recap from Sec. 2.3 that given a range � = [ℓ,], it
can be decomposed into a set of � (log�) canonical nodes (Ref. to
Example 2.5) such that the leaf nodes of the subtree rooted at these

canonical nodes are disjoint. Their union is exactly the leaf nodes

falling into the range � . In [41], it maintains an alias structure at

each internal node � to sample a leaf node from the subtree rooted

at �. As the alias structure does not support updates, we replace it

with OPT or BUS to support more efficient updates.

Next, we show how to combine the idea of weight-balanced

BST to bound the amortized update cost. The nodes in the weight-

balanced BST T satisfy the following balancing condition.

Definition 4.1 (Balancing condition). Given a constant
 ∈ [0.7, 1),
for any node�, eithermax{	��� (�.�� � �), 	��� (�.��ℎ�)} ≤
 ·	��� (�)
or 	��� (�) ≤ 3 must hold.

If a node � does not satisfy the balancing condition, we call it

unbalanced. If all nodes satisfy the balancing condition, we have

the following lemma to bound the height of T.

Lemma 4.2. The height of T is � (log�).
It is easy to derive as the size of each subtree decreases expo-

nentially. Therefore, the height of T is bounded by � (log�). To
summarize, our dynamic WIRS index is an augmented version of

the above weight-balanced BST, in which we associate a OPT or

BUS scheme to each internal node. In the following, we may directly

use WSS-augmented BST to refer to our dynamic WIRS index.

21

Algorithm 4: Dynamic-WIRS-Construction(𝑆)

1 𝑟𝑜𝑜𝑡 (T) = 𝐵𝑢𝑖𝑙𝑑𝐵𝑆𝑇 (𝑆, 1, |𝑆 |);
2 return the WSS-augmented BST 𝑟𝑜𝑜𝑡 (T);
3 procedure BuildBST(𝑆 , 𝑙 , 𝑟):
4 Create a new node 𝑢 for 𝑆 ′ = {𝑎𝑖 ∈ 𝑆 |𝑙 ≤ 𝑖 ≤ 𝑟 };
5 Create a WSS structure𝑊 (𝑢) for set 𝑆 ′ and add to 𝑢;

6 if 𝑙 == 𝑟 then return 𝑢;

7 𝑢.𝑘𝑒𝑦 ← 𝑎⌊ 𝑙+𝑟
2
⌋+1;

8 𝑢.𝑙𝑒 𝑓 𝑡 ← 𝐵𝑢𝑖𝑙𝑑𝐵𝑆𝑇 (𝑆, 𝑙, ⌊ 𝑙+𝑟
2
⌋);

9 𝑢.𝑟𝑖𝑔ℎ𝑡 ← 𝐵𝑢𝑖𝑙𝑑𝐵𝑆𝑇 (𝑆, ⌊ 𝑙+𝑟
2
⌋ + 1, 𝑟);

10 return 𝑢;

WIRS index construction. We consider constructing the WSS-

augmented BST for an ordered set 𝑆 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} with 𝑛 el-

ements. If the set 𝑆 is not sorted, we can first sort the data based

on the value of each element in 𝑆 (not the weight of the element),

with 𝑂 (𝑛 log𝑛) time. Alg. 4 shows the pseudo-code of the index

construction. Note that for an ordered set 𝑆 , we can build the WSS-

augmented BST recursively (Lines 3-10): (i) build a OPT or BUS

scheme for set 𝑆 and attach it to root 𝑢 (Line 5); (ii) choose the

middle element and set it as the key of root 𝑢 (Line 7); (iii) con-
struct a BST for all elements smaller than 𝑢.𝑘𝑒𝑦 and set it as the

left subtree of 𝑢 (Lines 8); (iv) construct a BST for all elements no

smaller than𝑢.𝑘𝑒𝑦 and set it as the right subtree of𝑢 (Line 9). When

there is only one element in the set, we set it as a leaf node (Line 5).

Note that the cost of building the whole BST (without considering

the WSS scheme at each internal node) can be bounded by 𝑂 (𝑛)
if the ordered set is maintained by an array or a BST. Adding the

cost of WSS structure construction at each internal node, it incurs

𝑂 (𝑛 log𝑛) cost. Note that Alg. 4 can be used to reconstruct any

unbalanced subtrees rooted at an internal node.

Lemma 4.3. Given a weighted set 𝑆 of size 𝑛, the dynamic WIRS
index can be built in 𝑂 (𝑛 log𝑛) time and takes 𝑂 (𝑛 log𝑛) space.

Example 4.4. For an ordered set 𝑆 , that contains four elements

{𝑎1 = 1, 𝑎2 = 3, 𝑎3 = 8, 𝑎4 = 9}. We first get the middle position

⌊(1 + 4)/2⌋ + 1 = 3 and set 𝑎3 as the key of root 𝑢. Then, we build a

OPT or BUS structure for the set 𝑆 and add it to 𝑢. Next, it splits 𝑆

into two sets: {𝑎1, 𝑎2} (resp. {𝑎3, 𝑎4}) with elements smaller (resp.

no smaller) than 𝑎3. Then, it builds a BST for {𝑎1, 𝑎2} (resp. {𝑎3, 𝑎4})
and set it as the left (resp. right) subtree of𝑢. The final BST is shown

in Fig. 4(a). The internal WSS structure is omitted for simplicity.

WIRS sampling. Alg. 5 shows the pseudo-code of how to do

sampling with the dynamic WIRS index. Given a range 𝑄 = [ℓ, 𝑟],
we first find the set 𝐶 of canonical nodes (Ref. to Sec. 2.3 for its

definition) with size 𝑂 (log𝑛) (Line 2). Here we show the pseudo-

code of finding the set 𝐶 of canonical nodes (Lines 9-13), which

recursively identifies the ranges corresponding to an internal node

𝑢 from its parents and checks if it is a subset of the given range

𝑄 = [ℓ, 𝑟]. If it is, then we add the internal node to the canonical

set 𝐶 and return. Otherwise, we turn to the left subtree and right

subtree to find the canonical nodes in a recursive manner.

After finding the set 𝐶 , we can then construct an alias structure

𝑇𝐶 of size 𝑂 (log𝑛) for set 𝐶 where the weight of each canonical

Algorithm 5: Dynamic-WIRS-Sample(T, 𝑡, [𝑙, 𝑟])

1 𝐶 ← ∅, 𝑅 ← ∅;
2 𝐹𝑖𝑛𝑑𝐶𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝑠 (𝑟𝑜𝑜𝑡 (T), 𝑙, 𝑟 , [𝑆.𝑚𝑖𝑛, 𝑆 .𝑚𝑎𝑥]);
3 Create alias structure 𝑇𝐶 for the set 𝐶 of canonical nodes;

4 for 𝑖 from 1 to 𝑡 do
5 Use 𝑇𝐶 to sample a canonical node 𝑢;

6 Use𝑊 (𝑢) to sample a data point 𝑥 and add 𝑥 to 𝑅;

7 end
8 return 𝑅;

9 procedure FindCanonicalNodes(𝑢, 𝑙 , 𝑟 , 𝑟𝑎𝑛𝑔𝑒𝑢):
10 if 𝑟𝑎𝑛𝑔𝑒𝑢 ⊆ [𝑙, 𝑟] then 𝐶.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑢) and return;
11 if 𝑟𝑎𝑛𝑔𝑒𝑢 ∩ [𝑙, 𝑟] = ∅ then return;
12 FindCanonicalNodes(𝑢.𝑙𝑒 𝑓 𝑡 , 𝑙 , 𝑟 , [𝑟𝑎𝑛𝑔𝑒𝑢 .𝑙𝑒 𝑓 𝑡,𝑢.𝑘𝑒𝑦));
13 FindCanonicalNodes(𝑢.𝑟𝑖𝑔ℎ𝑡 , 𝑙 , 𝑟 , [𝑢.𝑘𝑒𝑦, 𝑟𝑎𝑛𝑔𝑒𝑢 .𝑟𝑖𝑔ℎ𝑡]);

node 𝑢 is the sum of weights of leaf nodes in the subtree rooted

at 𝑢 (Line 3). We then use 𝑇𝐶 to handle all 𝑡 independent samples.

For each sample, we first use𝑇𝐶 to sample a canonical node 𝑢 (Line

5). Then, we use the WSS scheme𝑊 (𝑢) maintained at 𝑢 to draw a

sample of element (Line 6), which takes𝑂 (1) time when the sample

structure is 𝑂𝑃𝑇 . Since finding these nodes and building 𝑇𝐶 takes

𝑂 (log𝑛) time (and then can be reused for these 𝑡 samples), the total

time to draw 𝑡 independent samples given range 𝑄 is 𝑂 (log𝑛 + 𝑡)
for OPT. By replacing OPT with BUS, it takes 𝑂 (log𝑛) time to find

the largest ID 𝑟 of non-empty buckets and build an alias structure

for the 2⌈log𝑛⌉ buckets for each first sampling drawn from the

same canonical node 𝑢. Subsequent samplings at 𝑢 can reuse the

largest ID 𝑟 and the alias structure for 𝑢. Hence, later samples at

𝑢 take 𝑂 (1) time. Since the total time to initialize 𝑟 and the alias

structure for each canonical node takes𝑂 (log𝑛) time, and we have

𝑂 (log𝑛) canonical nodes, the total cost is at most 𝑂 (log2 𝑛). Then,
the time to draw 𝑡 independent samples is bounded by𝑂 (log2 𝑛+ 𝑡)
with BUS. With the above analysis, we have Thm. 4.5.

Theorem 4.5. The above balanced BST T with OPT (resp. BUS)
as the WSS sample structure at each internal node of T can draw 𝑡

independent samples in 𝑂 (log𝑛 + 𝑡) time (resp. 𝑂 (log2 𝑛 + 𝑡)).

Insertionwith dynamicWIRS index.Alg. 6 shows the pseudo-
code for dealing with insertions. We iterate through the root to

find the position where the new element should be inserted (Lines

3-6). Notice that along with each internal node 𝑣 visited during

the search, it inserts the new element 𝑒 into the WSS maintained

at 𝑣 (Line 3). It further maintains a list 𝐿 of visited internal nodes

(Line 4). We use 𝐿 to identify unbalanced internal nodes for possible

reconstruction. When we find the position where 𝑒 is to be inserted,

either the left child or the right child of 𝑣 returned after the search,

we do not directly insert there as we must keep all data at the leaf

node. To achieve this, we create a new internal node 𝑥 with a key

to be the larger one of 𝑣 .𝑘𝑒𝑦 and 𝑒 (Line 8). Then, it adds 𝑣 .𝑘𝑒𝑦 and

𝑒 as its left/right child according to which one is larger.

After completing the insertion of 𝑒 , we traverse 𝐿 to find the

unbalanced node 𝑢 closest to the root (Lines 9-14). If no such 𝑢

exists, the insertion is done. Otherwise, we first get the ordered

set 𝑆𝑢 corresponding to elements in the subtree rooted at 𝑢 in

𝑂 (𝑠𝑖𝑧𝑒 (𝑢)) time. Then we use Alg. 4 to rebuild the subtree rooted

22

1 3 8 9
1

3

8 9

4

Insert 4 Insert 5,6,7

1 3 4 5 6 7

8 9
3 9

8
3

4
9

8

3

4

5

7

6

9

8

1 3 4 5 6 7

8 93

4

5
7

6

9

8

Delete 8

(a) (b) (d) (e)

8 91

3
4

9

8

(c)

Rebalance
5

6
7

3
4

5
6 7

u2

u1

Figure 4: An example of the insertion/deletion with WSS-augmented BST (𝜶 = 0.8).

Algorithm 6: Dynamic-WIRS-Insertion(T, 𝑒)

1 𝑣 ← 𝑟𝑜𝑜𝑡 (T), 𝐿 ← ∅;
2 while 𝑣 .𝑙𝑒 𝑓 𝑡 ≠ ∅ do
3 Insert 𝑒 in the WSS structure𝑊 (𝑣) at internal node 𝑣 ;
4 𝐿.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑣);
5 if 𝑒.𝑘𝑒𝑦 < 𝑣 .𝑘𝑒𝑦 then 𝑣 = 𝑣 .𝑙𝑒 𝑓 𝑡 ;

6 else 𝑣 = 𝑣 .𝑟𝑖𝑔ℎ𝑡 ;

7 end
8 Replace 𝑣 with an internal node with 𝑣 .𝑘𝑒𝑦 and 𝑒 as children;

9 for 𝑢 in order of the list 𝐿 do
10 if 𝑢 is unbalanced then
11 Use Alg. 4 to rebuild the subtree rooted at 𝑢;

12 break;
13 end
14 end
15 return 𝑟𝑜𝑜𝑡 (T);

at 𝑢 in 𝑂 (𝑠𝑖𝑧𝑒 (𝑢)) time (Line 11). After the reconstruction, there

are no unbalanced nodes, and the insertion is finished. We have the

following lemma for the amortized cost of insertion.

Lemma 4.6. T handles each insertion in𝑂 (log2 𝑛) amortized time.

The insertion cost here is 𝑂 (log2 𝑛). We will see later in Sec. 4.2

that we can reduce the cost to 𝑂 (log𝑛) with the chunk idea.

Deletion with dynamicWIRS index.Alg. 7 shows the pseudo-
code of dealing with deletions. When deleting an element 𝑒 from 𝑆 ,

we first find the leaf 𝑢 that holds 𝑒 (Lines 1-6). Then we mark 𝑢 as

invalid but do not delete 𝑢 (Line 7). At the same time, we record the

number 𝑐𝑖 of invalid nodes in the tree. This delete operation has no

effect on insertion as it does not affect the true size of leaf nodes of

the left subtree and right subtree of each node. If an existing node

containing 𝑒 is marked as invalid while inserting 𝑒 , we only need to

mark it as valid. Clearly, 𝑐𝑖 can be maintained in 𝑂 (1) time. When

2 · 𝑐𝑖 > 𝑠𝑖𝑧𝑒 (𝑟𝑜𝑜𝑡 (T)), we rebuild the entire tree (Line 8). Note that
𝑠𝑖𝑧𝑒 (𝑢) counts both invalid and valid leaf nodes. The number of

valid leaf nodes is at least half of the total number of elements in

the tree. The time complexity of insertion is thus not affected.

Lemma 4.7. T handles each deletion in 𝑂 (log𝑛) amortized time.

The cost that each deletion charges is lower than that of insertion.

To explain, we only rebuild the tree after𝑂 (𝑛) deletions while each
insertion may cause some subtrees to rebuild. This reduces the

amortized update cost for deletion to 𝑂 (log𝑛). Next, we give an
example of how to update the index. For brevity, we omit the update

of the WSS index scheme at each internal node in the example.

Example 4.8. Given a weighted set 𝑆 = {1, 3, 8, 9} with 𝛼 = 0.8

and the initial WSS-augmented BST T is as shown in Fig. 4(a).

Algorithm 7: Dynamic-WIRS-Deletion(T, 𝑒)

1 𝑢 ← 𝑟𝑜𝑜𝑡 (T);
2 while u.left ≠ ∅ do
3 Delete 𝑒 from the WSS structure𝑊 (𝑢) at node 𝑢;
4 if e.key < u.key then 𝑢 = 𝑢.𝑙𝑒 𝑓 𝑡 ;

5 else 𝑢 = 𝑢.𝑟𝑖𝑔ℎ𝑡 ;

6 end
7 Mark 𝑢 as invalid, 𝑐𝑖 += 1;

8 if 2 · 𝑐𝑖 > 𝑠𝑖𝑧𝑒 (𝑟𝑜𝑜𝑡 (T)) then Use Alg. 4 to reconstruct T;

9 return 𝑟𝑜𝑜𝑡 (T);

Firstly, 4 is inserted into 𝑆 . By searching on T, we determine that 4

should be the right child of node 3. However, since we only store

data at leaf nodes, we replace node 3 as an internal node 𝑢1 (see

Fig. 4(b)), setting its key to 4. Nodes 3 and 4 then become children

of 𝑢1. As no node is unbalanced, the insertion is done. 5 and 6

are then added to 𝑆 in order. There are still no unbalanced nodes.

Next, 7 is inserted. Fig. 4(c) shows the BST after inserting 7 into the

right position. It also records the visited internal nodes with keys

8, 3, 4, 5, 6, and 7 in order. Then, we examine if these nodes are

unbalanced following the order. Internal node 3, i.e., 𝑢2 in Fig. 4(c),

is the first unbalanced. Thus, we reconstruct the subtree rooted at

𝑢2 by invoking Alg. 4. The updated tree is shown in Fig. 4(d), and

the new key of 𝑢2 is 5. Next, 8 is removed from 𝑆 . Note that we

only mark the leaf node corresponding to 8 (crossed in Fig. 4(e)) as

invalid after deletion, and it does not affect the size of other nodes.

Hence, the nodes in the tree are still balanced. Then, the deletion is

finished. Finally, the structure of the tree is shown in (d).

4.2 Chunk-based Optimization
Finally, we use the chunk solution [41] to reduce the space cost from

𝑂 (𝑛 log𝑛) to𝑂 (𝑛). In [41], they do not deal with updates. Here we

further show how to handle updates with the chunk solution and

will see that it can help reduce the amortized update time.

Index Structure.Themain idea of the chunk solution is to divide

the data elements into 𝑔 = Θ(𝑛/log𝑛) different partitions of size
𝑐𝑠𝑖𝑧𝑒 = Θ(log𝑛), called chunks, so that each chunk C𝑖 corresponds

to the set of data points falling into an interval [ℓ𝑖 , 𝑟𝑖). The chunks
are divided so that the intervals of all chunks are disjoint and the

union of all chunks is exactly set 𝑆 . The weight𝑤 (C) of a chunk C

is the sum of the weights of all elements in this chunk.

Then, we apply the solution in Sec. 4.1 on the derived chunks.

Notice that the key of a chunk is the smallest key of the elements

in this chunk to support range queries and handle splits/merges

of chunks caused by insertion/deletion efficiently. We build a TC
for the set {C1, . . . ,C𝑔} of chunks, where the weight of C𝑖 is𝑤 (C𝑖).

23

Next, we construct an alias structure for each chunk to guarantee

that a sample within this chunk can be drawn with 𝑂 (1) time. We

have the following lemma for the space cost of the WIRS structure.

Lemma 4.9. The space cost of the WIRS structures proposed in Sec.
4.1 can be bounded in 𝑂 (𝑛) if they are built on chunks.

To explain, the space cost of TC is 𝑂 (𝑔 log𝑔) given 𝑔 chunks. As

we build the index on chunks, the number of chunks is Θ(𝑛/log𝑛).
Replacing 𝑔 withΘ(𝑛/log𝑛), the space is bounded by𝑂 (𝑛). Besides,
the space of the sampling structure to be maintained for each chunk

is linear, so the total space cost is bounded by 𝑂 (𝑛).
Sampling for WIRS. To draw a sample, we first invoke the

samplingmethod in Sec. 4.1 to sample a chunk. Assume that a chunk

C is sampled. Within chunk C, we use the built alias structure to

draw a sample. It should be noted that the chunks containing the

left and right endpoints of the range 𝑄 may not be fully contained

in 𝑄 . In this case, we need to handle this part of the elements

separately. Since at most two chunks are not all included in the

query interval and each chunk has only Θ(log𝑛) elements, an alias

structure for these two chunks can be created in timeΘ(log𝑛), thus
not affecting the final sample complexity. Before each sampling, it

can easily check if the sample is drawn from these two chunks or

not by drawing a random number. Thus, the total sampling time is

unaffected, and we have the same sample complexity as Thm. 4.5.

To further reduce the space cost, we observe that the chunks are

loaded into consecutive cache lines, and thus the sampling time will

not degrade even if we directly scan the chunk to do the sampling.

In particular, we first draw a random number 𝑥 ∈ [0,𝑤 (C)]. Next,
we get the smallest index 𝑖 such that

∑ |C |
𝑖=1

𝑤 (𝑎𝑖) > 𝑥 and return 𝑎𝑖
in chunk C. With this strategy, we can avoid the alias structures

for such chunks. Note that we only do this when the size is smaller

than a constant 𝜏𝑐ℎ𝑢𝑛𝑘 . Thus the sampling cost at each chunk is

still 𝑂 (1). With such a strategy, the space cost is reduced by more

than half without affecting the sampling performance, showing a

good trade-off between the space cost and sampling efficiency.

Update. To insert an element 𝑒 , we first locate the chunk C𝑖
where 𝑒 is to be inserted. We append it to chunk C𝑖 with 𝑂 (log𝑛)
cost. When |C𝑖 | < 2𝑐𝑠𝑖𝑧𝑒 after insertion, where 𝑐𝑠𝑖𝑧𝑒 is the chunk

size, C𝑖 does not need to be split. We can modify the corresponding

chunk to a new weight on TC . When |C𝑖 | ≥ 2𝑐𝑠𝑖𝑧𝑒 , we split C𝑖 into

two new chunks C′
1
,C′

2
and build the alias structure for them if

their size is no smaller than 𝜏𝑐ℎ𝑢𝑛𝑘 . Then, we delete the original

C𝑖 in TC and add two new chunks C′
1
,C′

2
to TC using the insertion

and deletion algorithm presented in Sec. 4.1.

To delete an element 𝑒 , we first locate the chunk C𝑖 that contains

𝑒 and delete 𝑒 . If |C𝑖 | × 2 > 𝑐𝑠𝑖𝑧𝑒 after deletion, we only update the

new weight onTC . If |C𝑖 | × 2 ≤ 𝑐𝑠𝑖𝑧𝑒 , we insert the entire chunk C𝑖
into the predecessor chunk or successor chunk, denoted as C𝑚𝑒𝑟𝑔𝑒 .

If this operation causes the merged chunk C𝑚𝑒𝑟𝑔𝑒 to be split into

two chunks, the same operation is performed for the split as we

have done in the insertion. We must also delete the original chunk

C𝑖 in TC . Finally, the alias structure is constructed for the modified

chunks if the chunk size is no smaller than 𝜏𝑐ℎ𝑢𝑛𝑘 .

Moreover, we observe that most insertions/deletions of elements

will not create a new chunk. Instead, it only inserts (resp. deletes)

the element 𝑒 into (resp. from) an existing chunk𝐶 and increments

(resp. decrements) the weight𝑤 (𝐶) by𝑤 (𝑒). Then, for the whole

path from the root to the updated chunk, the sampling structure at

each node along the path only has a weight update and no insertions

or deletions. In previous BUS scheme, we only provide insertion and

deletion operations, which will result in unnecessary update costs if

we apply a deletion followed by an insertion to do the update. Since

the increment of the weight usually does not significantly change

the weight of the updated chunk 𝐶 , it will not change the bucket

that chunk𝐶 falls into. Thus, we only need to update the weight of

the chunk inside the bucket, improving the practical performance.

The optimization reduces the update time by almost half.

Theorem 4.10. Combining the chunk structure with WIRS-OPT
(resp. WIRS-BUS), it handles an insertion/deletion in 𝑂 (log𝑛) amor-
tized time. It draws 𝑡 independent samples with 𝑂 (log𝑛 + 𝑡) (resp.
𝑂 (log2 𝑛 + 𝑡)) time. The space cost of both methods is linear.

5 EXPERIMENTS
We experimentally evaluate our proposed solutions against alter-

native dynamic solutions for WSS and WIRS problems. All exper-

iments are conducted on a Linux machine with an Intel Xeon(R)

CPU with 256GB memory. All methods are implemented in C++

and compiled with full optimization. Our code is available at [5].

Datasets.We used the following three real-world datasets tested

in existing studies of weighted independent range sampling [48]:

(i) USA [2], which contains around 24 million road junctions of

the whole USA road network and each road junction is assigned a

weight that summarizes the length of its connected road segment;

(ii) Deli [3], which contains 38 million items collected by Delicious

and the weight of each item is the number of tags on this item; (iii)
Twitter [1], which includes 41 million users and the weight of each

user is the number of his/her followers. In addition, we generate

two synthetic datasets with two different distributions: (iv)Uniform,

which contains 10
8
elements where the weight of each element is

uniformly sampled from the range [0, 107]; (v) Exponential, which
includes 10

8
elements where the weight of each element is sampled

from an exponential distribution with rate parameter 𝜆 = 1/1000.
Main competitors.We compare our solution against existing

dynamic solutions on WSS and WIRS. For WSS, we compare our

BUS against the BST solution for WSS (Ref. to Sec. 2.2), dubbed as

BST. For sampling performance, we also test the state-of-the-art

static method alias method [42], dubbed as Alias, for reference. The

OPT method is only for theoretical interest and cannot work on

large datasets, as we explained in Sec. 2.2, and we thus omit it in

the experiments. For the WIRS problem, our solution, dubbed as

WIRS-BUS, combines (i) our proposed weight-balancing BST via

reconstruction, (ii) our BUS as the WSS structure at each internal

node, and (iii) the chunk idea to put Θ(log𝑛) elements in each

leaf node with 𝑐𝑠𝑖𝑧𝑒 = 240 and 𝜏𝑐ℎ𝑢𝑛𝑘 = 480 (Ref. to Sec. 4.2) by

default. We omit the basic solution presented in Sec. 4.1 without

the chunk idea as it takes too much space (100x more space) and is

impractical for large datasets. We also omit WIRS-OPT as it is only

for theoretical interest. The main competitor is a dynamic extension

of the static solution proposed by Xie et al. [48] as we mentioned

in Sec. 2.3. We denote this method as WIRS-BST. We also compare

our solution against the state-of-the-art static method mentioned

in Sec. 2.3, dubbed as WIRS-Alias, on sampling performance, as a

reference. The chunk settings of WIRS-Alias are the same as ours.

24

BSTAlias BUS

10

10
2

10
3

USA Deli Twitter Uniform Exponential

running time (ns)

Figure 5: WSS: Query Performance
BST insertBUS insert BUS delete BST delete

10

10
2

10
3

USA Deli Twitter Uniform Exponential

running time (ns)

Figure 6: WSS: Update performance.
BSTBUS

0.1

1

10

USA Deli Twitter Uniform Exponential

8.6 8.28.8 9.5
4.7 4.63.4 3.5

2.6 2.5

running time (s)

Figure 7: WSS: Index construction time.

0.1

1

10

USA Deli Twitter Uniform Exponential

5.4 6.85.4 6.8

2.5 2.82.3 2.3
1.3

1.6

memory usage (GB)

Figure 8: WSS: Memory usage.
BUS BST

 0

 0.2

 0.4

 0.6

 0.8

 1

10
2

10
3

10
4

cumulative distribution

running time (ns)

 0

 0.2

 0.4

 0.6

 0.8

 1

10
2

10
3

10
4

cumulative distribution

running time (ns)
(a) Sampling time distribution (b) Insertion time distribution

Figure 9:WSS: Time cost distribution on Exponential dataset.

5.1 Weighted Set Sampling
Exp 1: Sampling efficiency onWSS. In the first set of experiments,

we examine the sampling performance of our BUS scheme against

BST and Alias. Fig. 5 shows the results of the average time to draw

10
7
samples on five datasets for the WSS problem. Note that the

𝑦-axis is log-scale. BUS achieves up to an order of magnitude speed-

up over BST on all datasets, as it reduces the sampling cost from

𝑂 (𝑡 log𝑛) time to𝑂 (log𝑛 + 𝑡) expected time. Remarkably, our BUS

achieves comparable sampling performance as Alias when Alias is a

static structure that must be rebuilt when updates occur, while our

method supports super efficient updates as we will see shortly. This

shows that our BUS gains a better trade-off in sampling and update

efficiency, and is the preferred choice when we have updates.

Exp 2: Update efficiency onWSS.Next, we examine the update

performance of BUS and BST.We first randomly delete 10
6
elements

and then insert these 10
6
elements back. Fig. 6 reports the average

time to insert and delete these 10
6
random elements. Note that the

𝑦-axis is log-scale. Our BUS is far more efficient than BST for both

insertion and deletion, where BUS is up to an order of magnitude

faster (resp. 7x faster) than BST on insertion (resp. on deletion). For

the static Alias, it needs to rebuild the structure after every update,

which is too expensive. As we have tested in our experiment, BUS

(resp. BST) is 7 (resp. 6) orders of magnitude faster than Alias (via

reconstruction). We omit the result due to limited space. Interested

readers are referred to our technical report [5] for details. This

shows the high efficiency of our BUS when dealing with updates.

Exp 3: Indexing cost on WSS. Next, we compare the indexing

cost of BUS against BST. Fig. 7 reports the indexing time of both

methods. The indexing time for BUS and BST are similar. Note that

here BST can be built with𝑂 (𝑛) cost after sorting the elements thus

the index construction can be very efficient. Fig. 8 further reports

the memory consumption of both methods. Our BUS takes a similar

space cost to that of BST as both methods take linear space.

Exp 4: Distribution of sampling and update time on WSS.
Fig. 9(a) (resp. Fig. 9(b)) shows the distribution of sampling time

(resp. update time) for BUS and BST on the Exponential dataset

for drawing 10
6
samples (inserting 10

6
elements). Due to space

limitations, we refer interested readers to our technical report [5]

for the results of deletion on the Exponential dataset. As we can

see, even though our BUS is based on amortized/expected cost, our

solution is still far more efficient than BST for sampling and updates

in extreme cases on the Exponential dataset. To conclude, our BUS

shows high efficiency for both the average case and tail cases.

Exp 5: Mixing operation and scalability test on WSS. Next,
we examine the performance of BUS and BST when we mix sam-

pling queries and updates. Fig. 10(a) shows the performance of

both methods under a mixing workload of insertions, deletions,

and queries. We vary the update ratio from 20% to 80%, where

the update ratio is the fraction of update operations. Insertion and

deletion in updates are set as 1:1. Each WSS sampling query draws

10
5
samples. This is due to the fact that in order to answer some

statistical queries, we generally need to draw multiple samples to

get reliable results. As we can observe from Fig. 10, BUS shows a

stable superiority against BST under all tested update ratios.

We then test the scalability of both methods. We choose the

synthetic Exponential dataset and vary the set size from 5 × 107 to
4 × 108. The results are shown in Figs. 10 (b)-(d). We can see that

BUS significantly outperforms BST under all tested scales. With

the increase of the data scale, the advantage of BUS becomes more

significant compared to BST for both sampling and updates. This

shows that our BUS gains better scalability than the BST method.

5.2 Weighted Independent Range Sampling
Exp 6: Sampling efficiency onWIRS. Next, we test the sampling

performance of WIRS-BUS, WIRS-BST, and WIRS-Alias. We gener-

ate 10
3
WIRS queries where each range covers 50% of elements in

the input set 𝑆 . For eachWIRS query, we draw 10
5
independent sam-

ples. Fig. 12 reports the average sampling time for these 10
3
WIRS

queries where each query generates 10
5
samples. The test result

with the same query setting on larger datasets is shown in Fig. 11(b).

WIRS-BUS is up to 5x faster than BST for sampling since WIRS-

BUS requires𝑂 (log2 𝑛+𝑡) time whileWIRS-BST requires𝑂 (𝑡 log𝑛)
time to draw 𝑡 samples. Remarkably, ourWIRS-BUS achieves almost

identical performance as WIRS-Alias, while WIRS-Alias is a static

index and needs to be rebuilt when any update occurs. That means

our WIRS-BUS gains high update efficiency (as to be shown later)

without compromising the sampling efficiency.

Exp 7: Update efficiency on WIRS. Fig. 13 reports the in-

sertion and deletion times of WIRS-BUS and WIRS-BST. Recap

25

BUS BST

10
2

10
3

20 40 60 80

running time (s)

update ratio (%)

10
2

10
3

5 10 20 40

running time (ns)

Dataset size (×10
7
)

10
2

10
3

5 10 20 40

running time (ns)

Dataset size (×10
7
)

10
2

10
3

5 10 20 40

running time (ns)

Dataset size (×10
7
)

(a) Mixing operation (b) Scalability test for sampling (c) Scalability test for insertion (d) Scalability test for deletion

Figure 10: WSS: Changing update ratio and data size
WIRS-BUS WIRS-BST

10
2

10
3

20 40 60 80

running time (s)

update ratio (%)

10
2

10
3

5 10 20 40

running time (ms)

Dataset size (×10
7
)

1

10

10
2

5 10 20 40

running time (µs)

Dataset size (×10
7
)

1

10

10
2

5 10 20 40

running time (µs)

Dataset size (×10
7
)

(a) Mixing test for WIRS (b) Scalability test for query (c) Scalability test for insertion (d) Scalability test for deletion

Figure 11: WIRS: Changing update ratio and data size

WIRS-BSTWIRS-Alias WIRS-BUS

10

10
2

10
3

USA Deli Twitter Uniform Exponential

210

59 62

241

5857

296

726958

205

56 71

302

68

running time (ms)

Figure 12: WIRS: Sampling performance.

that the WIRS-BST has 𝑂 (log𝑛) update time and only needs to

update the BST maintained. Our WIRS-BUS has the same amor-

tized update time and has more complicated WSS sample structures

maintained at each internal node of the BST. Thus, WIRS-BUS is

expected to incur a higher practical update cost. This is verified in

our experiments where WIRS-BUS is slightly slower than WIRS-

BST. However, in most scenarios, queries are more frequent than

updates. Our WIRS-BUS still achieves a good trade-off between

the query and update efficiency and is the preferred choice when

sampling queries are more frequent than updates. We have also

included experiments to examine the distribution of sampling time,

insertion time, and deletion time. The conclusion is similar to that

of WSS. Thus, we omit it for the interest of space. Interested readers

are referred to our technical report [5] for the detailed results.

Exp 8: Indexing cost on WIRS. We also examine the indexing

time and memory cost of WIRS-BUS and WIRS-BST. The observa-

tion is that both methods have a similar indexing time and memory

cost, matching the complexity in Tab. 1.We omit them due to limited

space and refer interested readers to our technical report [5].

Exp 9: Mixing operation and scalability test onWIRS. Next,
we examine the performance of WIRS-BUS and WIRS-BST when

we mix sampling queries and updates. We still vary the update ratio

from 20% to 80% and set insertion and deletion to 1:1. Fig. 11(a)

shows the performance of both methods under a mixing workload

of updates and queries. The parameters of each query are the same

as those in Exp 6. We can find that WIRS-BUS performs far better

thanWIRS-BST for any update ratio. To explain, the sampling query

is in the order of𝑚𝑠 , while updates are in the order of 𝜇𝑠 . Thus, our

WIRS-BUS outperforms WIRS-BST in all tested update ratios.

We further test the scalability of WIRS-BUS and WIRS-BST. We

still use the Exponential dataset and change the size from 5 × 107
to 4 × 108. The results are shown in Figs. 11 (b)-(d). For query time,

WIRS-BST insertWIRS-BUS insert

WIRS-BUS delete WIRS-BST delete

0.1

1

10

10
2

USA Deli Twitter Uniform Exponential

3.5
7.5

3.6
7.6

3.0
7.1

3.6
7.2

2.7
6.6

3.2
6.9

2.6
4.3

9.0
3.6

8.8
4.5

9.19.0

running time (µs)

Figure 13: WIRS: Update performance.

we can see that WIRS-BUS outperforms WIRS-BST in all scales. As

the size of the dataset increases, the advantage of WIRS-BUS over

WIRS-BST becomes more significant. For update cost, WIRS-BUS

and WIRS-BST exhibit similar performance as that in Exp 7 on all

scales. The results show the excellent scalability of our WIRS-BUS.

Exp 10: Impact of parameters.We also have experiments to

examine the impact of the chunk size (Ref. to Sec. 4.2) on our WIRS-

BUS (to set 𝜏𝑐ℎ𝑢𝑛𝑘 accordingly), the impact of the range, and the

impact of sample number on WIRS query processing. Interested

readers are referred to our technical report [5] due to limited space.

6 CONCLUSIONS
This paper studies the WSS and WIRS problems. For WSS, we

propose BUS, which supports 𝑂 (1) amortized update time and can

draw 𝑡 samples with 𝑂 (log𝑛 + 𝑡) expected sampling time. The

idea is a simplified single-level bucket structure with a carefully

designed sampling algorithm. Then, we further present WIRS-BUS,

by extending BUS to the WIRS problem. WIRS-BUS can draw 𝑡

samples in𝑂 (log2 𝑛+𝑡) time and handle an update in𝑂 (log𝑛) time.

We also present WIRS-OPT that can improve the sampling time to

𝑂 (log𝑛 + 𝑡), which is mainly for theoretical interest. Experiments

show the effectiveness of the proposed BUS and WIRS-BUS. For

future work, we plan to study the dynamicWSS andWIRS problems

in externalmemory setting. Designingmore efficient dynamicWIRS

schemes in spatial databases is also an interesting direction.

ACKNOWLEDGMENTS
This research is supported by the NSFC grant (No. U1936205), Hong

Kong RGCECS grant (No. 24203419), RGCGRF grant (No. 14217322),

RGC CRF grant (No. C4158-20G), and Hong Kong ITC ITF grant

(No. MRP/071/20X).

26

REFERENCES
[1] 2010. Twitter. https://anlab-kaist.github.io/traces/.

[2] 2010. USA Road Networks. http://users.diag.uniroma1.it/challenge9/download.

shtml.

[3] 2013. Delicious. http://delicious.com/.

[4] 2019. Parallel Weighted Random Sampling. In ESA, Michael A. Bender, Ola

Svensson, and Grzegorz Herman (Eds.), Vol. 144. 59:1–59:24.

[5] 2023. Experiment code and technical report. https://github.com/CUHK-

DBGroup/WSS-WIRS.

[6] Peyman Afshani and Jeff M. Phillips. 2019. Independent Range Sampling, Revis-

ited Again. In SoCG, Vol. 129. 4:1–4:13.
[7] Peyman Afshani and Zhewei Wei. 2017. Independent Range Sampling, Revisited.

In ESA, Vol. 87. 3:1–3:14.
[8] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,

and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response

times on very large data. In EuroSys. 29–42.
[9] Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, and

Francesco Silvestri. 2021. Fair near neighbor search via sampling. SIGMOD
Rec. 50, 1 (2021), 42–49.

[10] Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, and

Francesco Silvestri. 2022. Sampling a Near Neighbor in High Dimensions -

Who is the Fairest of Them All? ACM Trans. Database Syst. 47, 1 (2022), 4:1–4:40.
[11] Martin Aumüller, Rasmus Pagh, and Francesco Silvestri. 2020. Fair Near Neighbor

Search: Independent Range Sampling in High Dimensions. In PODS. 191–204.
[12] Maham Anwar Beg, Muhammad Ahmad, Arif Zaman, and Imdadullah Khan.

2018. Scalable Approximation Algorithm for Graph Summarization. In PAKDD,
Vol. 10939. 502–514.

[13] Pawel Brach, Alessandro Epasto, Alessandro Panconesi, and Piotr Sankowski.

2014. Spreading rumours without the network. In COSN. 107–118.
[14] Vladimir Braverman, Rafail Ostrovsky, and Gregory Vorsanger. 2015. Weighted

sampling without replacement from data streams. Inf. Process. Lett. 115, 12 (2015),
923–926.

[15] Karl Bringmann and Kasper Green Larsen. 2013. Succinct sampling from discrete

distributions. In STOC. 775–782.
[16] Surajit Chaudhuri, Gautam Das, Mayur Datar, Rajeev Motwani, and Vivek R.

Narasayya. 2001. Overcoming Limitations of Sampling for Aggregation Queries.

In ICDE. 534–542.
[17] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. 1998. Random

Sampling for Histogram Construction: How much is enough?. In SIGMOD. 436–
447.

[18] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. 1999. On Random

Sampling over Joins. In SIGMOD. 263–274.
[19] Joshua Colvin, Michael I Monine, Ryan N Gutenkunst, William S Hlavacek,

Daniel D Von Hoff, and Richard G Posner. 2010. RuleMonkey: software for

stochastic simulation of rule-based models. BMC bioinformatics 11, 1 (2010),

1–14.

[20] Teresa Maria Creanza, Giuseppe Lamanna, Pietro Delre, Marialessandra Contino,

Nicola Corriero, Michele Saviano, Giuseppe Felice Mangiatordi, and Nicola An-

cona. 2022. DeLA-Drug: A Deep Learning Algorithm for Automated Design of

Druglike Analogues. Journal of Chemical Information and Modeling 62, 6 (2022),

1411–1424.

[21] Pavlos S. Efraimidis. 2015. Weighted Random Sampling over Data Streams. In

Algorithms, Probability, Networks, and Games. 183–195.
[22] Igal Galperin and Ronald L. Rivest. 1993. Scapegoat Trees. In SODA, Vijaya

Ramachandran (Ed.). 165–174.

[23] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza

Zadeh. 2013. WTF: the who to follow service at Twitter. InWWW. 505–514.

[24] Torben Hagerup, Kurt Mehlhorn, and J. Ian Munro. 1993. Maintaining Discrete

Probability Distributions Optimally. In ICALP, Vol. 700. 253–264.
[25] Guanhao Hou, Qintian Guo, Fangyuan Zhang, Sibo Wang, and Zhewei Wei. 2023.

Personalized PageRank on Evolving Graphs with an Incremental Index-Update

Scheme. Proc. ACM Manag. Data 1, 1 (2023), 25:1–25:26.
[26] Xiaocheng Hu, Miao Qiao, and Yufei Tao. 2014. Independent range sampling. In

PODS. 246–255.
[27] Lorenz Hübschle-Schneider and Peter Sanders. 2020. Communication-Efficient

Weighted Reservoir Sampling from Fully Distributed Data Streams. In SPAA.
ACM, 543–545.

[28] Rajesh Jayaram, Gokarna Sharma, Srikanta Tirthapura, and David P. Woodruff.

2019. Weighted Reservoir Sampling from Distributed Streams. In PODS. 218–235.
[29] Marc Langheinrich, Atsuyoshi Nakamura, Naoki Abe, Tomonari Kamba, and

Yoshiyuki Koseki. 1999. Unintrusive Customization Techniques for Web Adver-

tising. Comput. Networks 31, 11-16 (1999), 1259–1272.
[30] Wenqing Lin. 2019. Distributed Algorithms for Fully Personalized PageRank on

Large Graphs. InWWW. 1084–1094.

[31] Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni. 2003. Dynamic Generation

of Discrete Random Variates. Theory Comput. Syst. 36, 4 (2003), 329–358.
[32] Mohammad Najafi, Sarah Taghavi Namin, Mathieu Salzmann, and Lars Petersson.

2016. Sample and Filter: Nonparametric Scene Parsing via Efficient Filtering. In

CVPR. IEEE Computer Society, 607–615.

[33] Jürg Nievergelt and Edward M. Reingold. 1973. Binary Search Trees of Bounded

Balance. SIAM J. Comput. 2, 1 (1973), 33–43.
[34] Frank Olken and Doron Rotem. 1986. Simple Random Sampling from Relational

Databases. In VLDB. 160–169.
[35] Frank Olken and Doron Rotem. 1993. Sampling from Spatial Databases. In ICDE.

199–208.

[36] Frank Olken and Doron Rotem. 1995. Random sampling from databases: a survey.

Statistics and Computing 5, 1 (1995), 25–42.

[37] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.

The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351–
385.

[38] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The
pagerank citation ranking: Bring order to the web. Technical Report. Stanford
University.

[39] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. J. Algorithms
51, 2 (2004), 122–144.

[40] Jürgen Schmidt, Rihab Laarousi, Wolfgang Stolzmann, and Katja Karrer-Gauß.

2018. Eye blink detection for different driver states in conditionally automated

driving and manual driving using EOG and a driver camera. Behavior research
methods 50 (2018), 1088–1101.

[41] Yufei Tao. 2022. Algorithmic Techniques for Independent Query Sampling. In

PODS. 129–138.
[42] Alastair J. Walker. 1977. An Efficient Method for Generating Discrete Random

Variables with General Distributions. ACM Trans. Math. Softw. 3, 3 (1977), 253–
256.

[43] Lu Wang, Robert Christensen, Feifei Li, and Ke Yi. 2015. Spatial Online Sampling

and Aggregation. Proc. VLDB Endow. 9, 3 (2015), 84–95.
[44] SiboWang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 2016. HubPPR:

Effective Indexing for Approximate Personalized PageRank. Proc. VLDB Endow.
10, 3 (2016), 205–216.

[45] Sibo Wang and Yufei Tao. 2018. Efficient Algorithms for Finding Approximate

Heavy Hitters in Personalized PageRanks. In SIGMOD. 1113–1127.
[46] Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei, Wenqing

Lin, Yin Yang, and Nan Tang. 2019. Efficient Algorithms for Approximate Single-

Source Personalized PageRank Queries. ACM Trans. Database Syst. 44, 4 (2019),
18:1–18:37.

[47] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA:

Simple and Effective Approximate Single-Source Personalized PageRank. In

SIGKDD. 505–514.
[48] Dong Xie, Jeff M. Phillips, Michael Matheny, and Feifei Li. 2021. Spatial Indepen-

dent Range Sampling. In SIGMOD. 2023–2035.
[49] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random

Sampling over Joins Revisited. In SIGMOD. ACM, 1525–1539.

27

https://anlab-kaist.github.io/traces/
http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml
http://delicious.com/
https://github.com/CUHK-DBGroup/WSS-WIRS
https://github.com/CUHK-DBGroup/WSS-WIRS

	Abstract
	1 Introduction
	1.1 Limitations of existing solutions
	1.2 Our contribution

	2 Preliminaries
	2.1 Problem Definition
	2.2 Existing Solutions for WSS
	2.3 Existing Solutions for WIRS
	2.4 Related Work

	3 Dynamic Weighted Set Sampling
	4 Dynamic WIRS
	4.1 Basic Solution
	4.2 Chunk-based Optimization

	5 Experiments
	5.1 Weighted Set Sampling
	5.2 Weighted Independent Range Sampling

	6 Conclusions
	Acknowledgments
	References

