
MetaStore: Analyzing Deep Learning Meta-Data at Scale
Huayi Zhang

WPI, Data Science

Worcester, MA

zhanghuayi01@gmail.com

Binwei Yan

MIT

Cambridge, MA

bineva@mit.edu

Lei Cao

U of Arizona, CS; MIT, CSAIL

Cambridge, MA

lcao@csail.mit.edu

Samuel Madden

MIT, CSAIL

Cambridge, MA

madden@csail.mit.edu

Elke Rundensteiner

WPI, Computer Science

Worcester, MA

rundenst@cs.wpi.edu

ABSTRACT
The process of training deep learning models produces a huge

amount of meta-data, including but not limited to losses, hidden

feature embeddings, and gradients. Model diagnosis tools have been

developed to analyze losses and feature embeddings with the aim

to improve the performance of these models. However, gradients,

despite carrying rich information that is potentially relevant for

model interpretation and data debugging, have yet to be fully ex-

plored due to their size and complexity. Each single gradient has

a size as large as the number of parameters of the neural net –

often measured in the tens of millions. This makes it extremely

challenging to efficiently collect, store, and analyze large numbers

of gradients in these models. In this work, we develop MetaStore

to fill this gap. MetaStore leverages our observation that storing

certain compact intermediate results produced in the back propa-

gation process, namely, the prefix and suffix gradients, is sufficient

for the exact restoration of the original gradient. These prefix and

suffix gradients are much more compact than the original gradients,

thus allowing us to address the gradient collection and storage

challenges. Furthermore, MetaStore features a rich set of analytics

operators that allow the users to analyze the gradients for data

debugging or model interpretation. Rather than first having to re-

store the original gradients and then run analytics on top of this

decompressed view, MetaStore directly executes these operators

on the compact prefix and suffix structures, making gradient-based

analytics efficient and scalable. Our experiments on popular deep

learning models such as VGG, BERT, and ResNet and benchmark

image and text datasets demonstrate that MetaStore outperforms

strong baseline methods from 4 to 678x in storage costs and from 2

to 1000x in running time.

PVLDB Reference Format:
Huayi Zhang, Binwei Yan, Lei Cao, Samuel Madden, and Elke

Rundensteiner. MetaStore: Analyzing Deep Learning Meta-Data at Scale.

PVLDB, 17(6): 1446 - 1459, 2024.

doi:10.14778/3648160.3648182

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.

doi:10.14778/3648160.3648182

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Mazic4/MetaStore/.

1 INTRODUCTION
Background andMotivation. The training process of deep neural
networks (DNNs) produces a massive amount of meta-data, includ-

ing feature embeddings [39], losses [34], and gradients [31]. This

meta-data holds significant value that can be leveraged for many

tasks critical to achieving superior model performance. These tasks

include but are not limited to cleaning noise in the training data, ex-

plaining the behavior of trained models, or reusing and fine-tuning

models. For example, research [8, 20, 29, 39, 52] has shown that

analyzing training loss and feature embeddings can explain infer-

ence results and help debug DNN models. To address this need,

we develop a system called MetaStore, that collects, stores, and
analyzes such meta-data at scale.

Promise of Gradient Meta-Data. In this paper, we focus on one

particular type of meta-data: gradients. DNNs train models us-

ing a sequence of gradient descent steps which gradually fit the

model parameters to the training data. Thus, as the bridge between

the data and the model, these gradients can be used to effectively

estimate the influence of training samples or hyper-parameters

on the learned model parameters. For example, in the machine

learning literature, many robust deep learning techniques use gradi-
ents [7, 23, 30, 31, 45–47, 53, 55] during DNN training to for example

mitigate the impact of potential noise in the training examples and

dynamically adjust the hyper-parameters such as learning rate.

Similarly, in our setting of offline meta-data analytics, if these

gradients can be appropriately analyzed, they are of great value

to solve the data issues in deep learning and explain the behavior

of the models. In particular, we observe that meta gradient – the

inner product between the gradients of a training sample and a set

of testing samples – effectively measures how a training sample

contributes to the model performance. A positive meta gradient

indicates that it impacts the model in a positive way, and vice versa.

With this meta gradient, we are able to discover the mislabeled

samples in the training data, as they tend to contribute negatively

to the performance of the model. Moreover, given a testing sample,

we could explain why the model predicts it in the identified manner

by finding a small number of training samples whose gradients have

the largest inner product with that of the testing sample. Further, the

training samples that contribute the most to the model could guide

1446

https://doi.org/10.14778/3648160.3648182
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648182
https://github.com/Mazic4/MetaStore/
https://www.acm.org/publications/policies/artifact-review-and-badging-current

the collection of new training data to improve the performance of

the model.

Performance Challenges.However, it is challenging to effectively
collect, store, or analyze gradients, because the size of the gradient

tends to be huge. DNNs are typically composed of many layers, in-

cluding convolutional layers, linear layers, batch normalization, etc.

A DNN computes gradients w.r.t. the training examples layer-by-

layer. At each layer, the dimensionality of the gradient is equivalent

to the number of trainable parameters in that layer. Many modern

DNN models are huge, with up to billions of parameters [12].

As an example, in the well-known DNN models, such as

ResNet [17] or VGG [36], a single linear layer can have 4096 ×
4096 parameters. Given a CIFAR-10 dataset with 50,000 training

samples, it would take about 3 TB of disk space to store the gradients

produced in just one single linear layer. Worst yet, deep learning

trains models epoch by epoch and thus produces this amount of

gradients per epoch.

Therefore, merely storing this volume of gradients w.r.t. one (or

worse yet all) layers quickly becomes infeasible. Even if we had

sufficient (near infinite) storage resources for keeping all such gra-

dient data for each round of training, the mere task of just collecting
these gradients would be challenging itself. Directly logging the

gradients produced by the DNN training in an online process would

dramatically slow down the already exceedingly expensive training

process. Moreover, loading a large amount of meta-data into mem-

ory for analytics would introduce exorbitant I/O costs during query

execution. On the other hand, if we instead were to re-compute the

gradients on-the-fly whenever a gradient analytics query is issued,

this would cause prohibitive query execution costs. This is because
computing a gradient from scratch effectively requires re-execution

of the NN training pipeline.

Proposed Solution. By exploiting the properties of popular DNN

models and their gradient computation methodology, ourMetaS-
tore effectively addresses the above challenges.

MetaStore Compact Data Storage. First, our analysis of the

back-propagation process of DNN training reveals that the huge gra-

dient of a training sample can be decomposed into 2 small gradients,

namely, prefix and suffix gradients, from which the gradient can be

exactly re-constructed via a matrix product operation. These two

partial-gradients are typically several orders of magnitude smaller

than the original gradient especially when produced in layers with

a huge number of parameters.

MetaStore Lightweight Data Collection. Instead of first com-

puting the full gradient and then manually decomposing it, we

observe that both the small prefix and suffix gradients correspond

to intermediate data that could naturally be produced during the

back-propagation step when computing the gradient. Their collec-

tion can thus be done via a very lightweight process.

MetaStore Efficient Analytics. MetaStore is the first system

to provide a rich set of operators that allow users to conduct many

gradient-based analytics on the stored meta-data from discovering

erroneous training samples to interpreting model behavior. These

operators often involve computing the inner product similarity

of two gradients (meta gradient). This inner product operation is

computational expensive [47, 55] due to the high dimensionality of

the gradients. We design an efficient strategy to exactly compute the

inner product of two gradients directly on their respective prefix

and suffix gradients. With the prefix and suffix gradients much

smaller than the gradient itself, this speeds up the inner product

operation by several orders of magnitude.

Contributions. In summary, our key contributions include:

• We design MetaStore, a system that enables a novel class of

gradient-based analytics for model interpretation, data debugging,

and data valuation.

• Leveraging the prefix and suffix gradients decomposition ob-

servation, MetaStore overcomes the critical data volume bottleneck

in storing and analyzing gradients.

• We design efficient execution strategies to compute the inner-

product similarity between gradients directly on top of the compact

dual prefix/suffix gradient structures.

• Our experiments on popular benchmark datasets and a variety

of pre-trained DNN model architectures demonstrate that MetaS-

tore speeds up the query execution from 2 to 1000 fold and reduces

the storage costs from 4 to 678 fold.

2 PRELIMINARIES
Here, we review the forward and backward propagation processes

in DNN training to understand MetaStore’s methodology. A DNN

model 𝜙 (𝑥 ;𝜃) is formed by a stack of layers, with 𝑥 being the input

data sample, and 𝜃 being the parameters of the model.

Forward Propagation Process. During the inference time, also

called forward propagation, the data samples are fed into the first

layer. Then each layer takes the previous layer’s outputs as its input

and transforms the input features into new representations. Finally,

the output of the last layer is considered the DNN model’s output.

The transformation process inside each layer typically is to multiply

the input features with a set of parameters, called neurons. Each

layer thus can be regarded as a function of the input features and its

parameters, i.e.,zl+1 = f l (zl, 𝜃 l), where 𝑧𝑙 denotes the inputs (out-
put) of the 𝑙th (𝑙 − 1th) layer, and 𝜃𝑙 the parameters of the 𝑙𝑡ℎ layer.

The overall DNN model corresponds to a function composition:

�̂� = 𝜙 (𝑥 ;𝜃) = 𝑓 𝐿 (𝑓 𝐿−1 · · · (𝑓 1 (𝑥 ;𝜃1) · · ·), 𝜃𝐿) . (1)

Backward Propagation Process. Deep learning uses back-

propagation to train a DNN model. For this, the machine learning

practitioners provide the expected outputs of each data sample,

such as a label. They also define a loss function that produces a loss

value based on the difference between the expected and actual out-

puts of the DNN model. Then, the gradients of each parameter with

respect to the loss value are calculated to update the parameters in

the DNN model. More specifically, the gradients of the parameters

in each layer are calculated with the chain rule below:

∇𝜃𝑙𝐶 =
𝑑𝐶

𝑑𝜃𝑙
=

𝑑𝐶

𝑑𝑧𝑙+1

· 𝑑𝑧
𝑙+1

𝑑𝜃𝑙
=
𝑑𝐶

𝑑𝑧𝐿
· 𝑑𝑧𝐿

𝑑𝑧𝐿−1

· · · 𝑑𝑧
𝑙+1

𝑑𝑧𝑙
· 𝑑𝑧

𝑙

𝑑𝜃𝑙
(2)

where 𝐶 is the loss value, C = Loss(ŷ, y). An optimization

method, typically Stochastic Gradient Descent (SGD), updates the

parameters 𝜃𝑙 by taking one step of gradient descent:

𝜃𝑙 = 𝜃𝑙 − 𝛼 · ∇𝜃𝑙𝐶 (3)

where 𝛼 is a predefined learning rate that controls the learning

speed of the DNN model.

1447

3 GRADIENT-BASED DNN ANALYTICS
In this section, we first discussmeta gradient, the foundation that

most gradient-based DNN analytics techniques are built upon, and

then introduce our core operators for gradient-based analytics.

3.1 Meta Gradient
In deep learning, optimization methods such as SGD directly use

gradients to update the parameters of the DNN models.

Observation. Meta gradient – the inner product between the

gradients of a training sample and a set of validation samples –

effectively estimates how a training sample contributes to the model

performance. Below, we theoretically show why this important

observation is true.

Intuitively, the contribution of a training sample can be mea-

sured by how differently the model would perform if the target

sample was not in the training set [30, 31, 45]. Let’s consider a

standard classification task. The DNN model 𝜙 (𝑥 ;𝜃) is evaluated
on a set of validation samples {(𝑥𝑣

𝑗
, 𝑦𝑣
𝑗
)}𝑁 𝑣

𝑗=1
that are not in the

training set with 𝑦𝑣
𝑗
the label of 𝑥𝑣

𝑗
. We denote the validation loss

as L𝑣 (𝜃) = 1

𝑁 𝑣

∑︁𝑁 𝑣

𝑗=1
𝑙 (𝑥𝑣

𝑗
, 𝑦𝑣
𝑗
;𝜃). Let 𝜃𝑡 be the parameters of the

model that was trained with the target training sample 𝑥𝑡 and 𝜃 be

the parameters trained without using the target training sample 𝑥𝑡 .

Then the contribution of the training sample 𝑥𝑡 corresponds to the

difference between the validation losses of 𝜙 (𝑥𝑣 ;𝜃) and 𝜙 (𝑥𝑣 ;𝜃𝑡),
i.e., 𝐿𝑣 (𝜃𝑡) − 𝐿𝑣 (𝜃). With Taylor Expansion, this becomes:

𝐿𝑣 (𝜃𝑡) − 𝐿𝑣 (𝜃) =< ∇𝜃𝐿𝑣 (𝜃), 𝜃𝑡 − 𝜃 > (4)

By Eq. 3, 𝜃𝑡 − 𝜃 = 𝛼 · ∇𝜃𝐿(𝜃). Substituting this in, we get:
𝐿𝑣 (𝜃𝑡) − 𝐿𝑣 (𝜃) ∝< ∇𝜃𝐿𝑣 (𝜃),∇𝜃𝐿(𝜃) > (5)

In Eq. 5, ∇𝜃Lv (𝜃) · ∇𝜃L(𝜃) represents the inner product between
the training example’s gradient and the average gradient of the
validation samples. This is the meta gradient.

Therefore, Eq. 5 substantiates our claim that the meta gradient

effectively estimates to what degree a training sample contributes

to the model’s performance. A positive meta gradient indicates that

the training sample impacts the model in a positive way.

3.2 MetaStore Gradient-based Analytics
Leveraging the principles of meta gradients, MetaStore provides 4

core operators for gradient-based analytics:

• Point-to-point (P2P): given a training sample and a validation (or,

testing) example, estimate the contribution of the training sample

to the prediction result of the validation (testing) example.

• Point-to-batch (P2B): given a training sample and a batch of val-

idation (testing) examples, estimate the contribution of the training

sample to the prediction results of the batch of validation (testing)

examples.

• Batch-to-point (B2P): given a batch of training samples and a

validation (testing) example, estimate the contribution of the batch

of training samples to the prediction result of the validation (testing)

example.

• Batch-to-batch (B2B): given a batch of training samples and a

batch of validation (testing) examples, estimate the contribution of

the batch of training samples to the prediction results of the batch

of validation (testing) examples.

System

Meta-data Storage

Disk Memory

Meta-data Collector Meta-data
Analytics EngineModel Checkpoints

Memory

AutoGrad Framework
(e.g., Pytorch)

Training
Samples

Testing
Samples

Results
Data Flow:

Pre-compute

Data Flow:
Online Compute

Pre-computed
Metadata

Online Collected
Metadata

Figure 1: System Overview

Using these operators as building blocks, for the first time users

could easily develop gradient-based analytics techniques to inter-

pret the model prediction by examples [16, 38, 44], debug data

issues [8, 29], or valuate the training samples [22, 49], etc. These

tasks are critical for deep learning to achieve superior performance.

Below are some intuitive examples.

Interpreting Model Prediction By Examples. Users could use

the P2P operator to first compute the contribution of each training

sample to the prediction of one testing sample and then select

the top 𝑘 training samples shown to have the most significant

contribution to explain why the model predicts the given testing

sample in the identified manner.

Data Debugging. Users could use P2B operator to determine how

each specific training sample contributes to the prediction of a set

of testing samples. If the P2B operator returns a negative value, it

indicates this training sample could jeopardize the overall perfor-

mance of the model. The users thus could identify this sample as a

potential outlier or as mislabeled.

Data Valuation. Accordingly, using the P2B operator, the users

could evaluate the training samples based on their contribution

to the model. The more the training samples contribute, the more

valuable they are. Potentially, the valuation results could guide the

users to determine what new training samples they should collect

to best improve the model performance.

Similarly, the B2P and B2B operators allow the users to evaluate

how a batch of training samples as a whole impacts either the

prediction of one testing sample or the overall performance of the

model, thus interpreting model prediction or debugging data issues.

As deep learning typically updates the model batch by batch using

the average gradient of a batch of training samples, these operators

mimic the training process of deep learning, thus meaningful.

4 SYSTEM OVERVIEW
In this section we overview MetaStore (Fig. 1), which consists of

three key components: (1) a Meta-data Collector, (2) Meta-data

Storage, and (3) a Meta-data Analytics Engine.

Meta-data Collector: MetaStore collects meta-data in a way

non-intrusive to the DNN training process. MetaStore achieves

so by storing a set of model checkpoints during DNN training.

Each model checkpoint records the model parameters at a certain

DNN training step. MetaStore then collects the gradients of the

data samples at a model checkpoint by using the model replay
feature. Model replay is a process that is independent from the

1448

model training process. Therefore, in MetaStore, collecting meta-

data does not intervene with model training.

More specifically, given a data sample 𝑥𝑖 and a model check-

point 𝜙 (𝑥 ;𝜃), model replay first performs a forward propagation

process to get the prediction �̂�𝑖 of 𝑥𝑖 by 𝜙 (.), where ŷi = 𝜙 (xi, 𝜃). It
then calculates the loss value 𝐶𝑖 = 𝐿(�̂�𝑖 , 𝑦) and performs backward

propagation as described in Sec. 2 to obtain the gradient-related

meta-data. But it does not update the model parameters. By replay-

ing models, MetaStore is able to collect and materialize meta-data

for the training samples in the offline pre-processing stage.

Our meta-data collector is compatible with existing deep learn-

ing frameworks. For example, we can integrate MetaStore with

Pytorch by using its forward/backward hook function and with

Tensorflow by using its custom gradient function. This is because

the < prefix, suffix > pairs that MetaStore leverages are naturally

produced during the backpropagation process, while backpropa-

gation is used by all deep learning frameworks. Therefore, as long

as the deep learning framework provides the interfaces to access

intermediate data during backpropagation, MetaStore is able to

collect the < prefix, suffix > pairs.

Meta-data Storage: The meta-data is maintained on disk (Sec. 5).

With a DNN model composed of a series of layers (Sec. 2), a DNN

model’s gradient equals the concatenation of each layer’s gradient.

Thus, in MetaStore, the minimal unit of storage encapsulates the

meta data of a specific layer in the DNN, which then is typically

stored in a file. If the training set is large, MetaStore may further

divide the entire data set into small batches. In this case, each file

only contains the meta data corresponding to a small batch of data

samples. MetaStore also maintains a directory index that indicates

what data samples are stored in which file. It thus minimizes the

disk I/O costs at online query time by only loading into memory

the meta-data required by the query.

By decomposing the gradient into two partial gradients, namely

the prefix and suffix gradients, MetaStore’s storage strategies elimi-

nate the storage bottleneck caused by the size of the gradients. The

details are discussed in Sec. 5.

Meta-data Analytics Engine: This component provides effi-

cient execution strategies for the 4 core operators discussed in

Sec. 3.2. The input to each operator is the training and testing sam-

ples specified by the users. Because MetaStore already collects the

meta-data of all training samples and maintains them in storage,

the engine directly loads the requested gradients of the training

samples from storage into GPU memory. However, unlike the train-

ing samples, MetaStore had not seen the testing samples in the

training process. Therefore, it will compute their gradients on the

fly by calling the model replay function. The engine then efficiently

executes these operators using the optimized strategies discussed in

Sec. 6 and Sec. 7. In addition, the engine uses caching to maintain

the meta-data in GPU memory whenever possible and thus reduces

I/O costs. It uses the standard LRU cache replacement policy to

evict meta-data when memory overflows [16, 39].

5 SPACE-EFFICIENT GRADIENT STORAGE
MetaStore leverages our prefix/suffix observation to compactly

store the gradients meta-data. In Sec. 5.1, we introduce the key

idea using linear layers as an example layer type. Thereafter, we

illustrate how to extend these principles to other types of DNN

layers, including convolution and self-attention.

5.1 Gradient Storage: Linear Layers
Given a DNNmodel, assume its 𝑙th layer is a linear layer that applies

a linear transformation to the input feature vector 𝑥 : y = 𝜃x + b.
Suppose the input feature vector 𝑥 and the output feature vector

𝑦 have 𝐷𝑖𝑛 and 𝐷𝑜𝑢𝑡 dimensions, respectively. Then 𝜽 contains

𝐷𝑖𝑛 × 𝐷𝑜𝑢𝑡 parameters. Let
𝑑𝐶
𝑑𝜃

or ∇𝜃𝐶 denote the gradient of this

layer. By Eq. 2,
𝑑𝐶
𝑑𝜃

=
𝑑𝐶
𝑑𝑦

· 𝑑𝑦
𝑑𝜃

.

PrefixGradient. The first matrix
𝑑𝐶
𝑑𝑦

corresponds to the gradient of

the output feature vector with respect to the loss value, called prefix
gradient. Since the loss value 𝐶 is calculated based on the output of

the final layer, calculating the matrix
𝑑𝐶
𝑑𝑦

requires backpropagation

from previous layers. Because the linear layer is the 𝑙th layer, then

𝑑𝐶
𝑑𝑦

= 𝑑𝐶
𝑑𝑧𝐿

· 𝑑𝑧𝐿

𝑑𝑧𝐿−1
· · · 𝑑𝑧𝑙+1

𝑑𝑧𝑙
. Although calculating the prefix gradient

through backpropagation is expensive, its size is only 𝐷𝑜𝑢𝑡 . That is,

it is identical to the size of the output feature vector 𝑦, being much

smaller than the size (𝐷𝑖𝑛 × 𝐷𝑜𝑢𝑡) of the final gradient 𝑑𝐶
𝑑𝜃

we are

interested in.

Suffix Gradient. The other matrix
𝑑𝑦

𝑑𝜃
, also called Jacobian ma-

trix, corresponds to the suffix gradient. It indicates the expected
update on parameters 𝜃 that will produce a better output feature

embedding. Even though its general formulation is very complex

and large, the Jacobian Matrix in a linear layer is simple:

𝑑𝑦

𝑑𝜃
=
𝑑 (𝜃𝑥 + 𝑏)

𝑑𝜃
= 𝑥 (6)

By Eq. 6, the suffix gradient in the linear layers is in fact identical

to its input feature vector 𝑥 . The size, 𝐷𝑖𝑛 , is much smaller than the

size of the parameters 𝜃 .

Prefix/Suffix Observation. Naturally, extracting out and main-

taining the pair of small prefix and suffix gradients is sufficient to
reconstruct the original gradient of a linear layer as follows:

(∇𝜃𝐶)𝑟,𝑠 = (𝑑𝐶
𝑑𝑦

)𝑟 · 𝒙𝑠 (7)

where ∇𝜃𝐶𝑟,𝑠 represents the 𝑟 th row and 𝑠th column of 𝜃 and 𝑥𝑠
represents the 𝑠th column of input 𝑥 .

Space Complexity. The space complexity of storing the prefix and

suffix gradients is O(𝐷𝑜𝑢𝑡+𝐷𝑖𝑛), while storing the full gradient takes
𝐷𝑜𝑢𝑡 × 𝐷𝑖𝑛 space. Thus leveraging this prefix/suffix observation,

MetaStore drives down the storage costs by
𝐷𝑜𝑢𝑡×𝐷𝑖𝑛

𝐷𝑜𝑢𝑡+𝐷𝑖𝑛 .

General Outlook. Next, we show that the principle of decompos-

ing gradients into prefix and suffix gradients is also applicable to

other typical DNN layers, including those that tend to have a large

number of parameters and thus produce huge gradients. This is

because: (1) all these layers use the chain rule to compute gradients

during backpropagation, and (2) they can each be decomposed into

a set of linear layers.

In this paper, we use the convolutional (Sec. 5.2) and self-

attention layers (Sec. 5.2) as examples. Other similar layers include

normalization layers [21], embedding layers, long short term mem-

ory (LSTM) layers [13], and gated recurrent units (GRU) [11], to

just name a few. In addition we will briefly discuss how MetaStore

supports complex blocks that contain multiple such layers.

1449

5.2 Gradient Storage: Convolutional Layers
For the ease of understanding, we use the standard 1D convolu-

tional layer as an example to illustrate the idea. Same as with the

linear layer, we denote the parameters of the convolutional layer

as 𝜃 . The input data sample 𝑥 corresponds to a tensor in the shape

(𝐶𝑖𝑛, 𝑆), where 𝐶𝑖𝑛 represents the number of input channels and 𝑆

the number of features in each channel. For example, if the input

data is an RGB image with 32× 32 resolutions,𝐶𝑖𝑛 is equal to 3 and

𝑆 equal to 32 × 32. Similarly, its output is a tensor with a shape of

(𝐶𝑜𝑢𝑡 , 𝑆−𝐾), where𝐶𝑜𝑢𝑡 represents the number of output channels

and 𝐾 the number of the dimensions of one kernel. As a 1D matrix,

a kernel K performs the convolution operation on the features of

an input channel as follows: ys =
∑︁K
i Ki · xs+i .

The convolution operation produces the output features with

𝑆 − 𝐾 dimensions for each individual input channel. Aggregating

these output features produces the final features of one output

channel𝑚:

𝑦𝑚,𝑠 =

𝐶𝑖𝑛∑︂
𝑖

𝐾∑︂
𝑗

𝜃𝑚,𝑖,𝑗 · 𝑥𝐶𝑖𝑛,𝑠+𝑗 (8)

Repeating this process𝐶𝑜𝑢𝑡 times produces an output with𝐶𝑜𝑢𝑡
channels. Thus, there are 𝐶𝑜𝑢𝑡 × 𝐶𝑖𝑛 kernels in a convolutional

layer. In the training process, DNN learns these kernels to produce

good output features. Thus, in the convolutional layer, parameters

𝜃 is a tensor with the shape of (𝐶𝑜𝑢𝑡 ,𝐶𝑖𝑛, 𝐾). The final output 𝑦 is

a tensor that contains 𝐶𝑜𝑢𝑡 channels, with each channel composed

of 𝑆 − 𝐾 features.

Similar as with linear layers, the gradients
𝑑𝐶
𝑑𝜃

of the convolu-

tional layer can be decomposed into the prefix gradient
𝑑𝐶
𝑑𝑦

and

suffix gradient
𝑑𝑦

𝑑𝜃
, i.e.,

𝑑𝐶
𝑑𝜃

= 𝑑𝐶
𝑑𝑦

· 𝑑𝑦
𝑑𝜃

. This is because all layers in

DNN use the same chain rule (Eq. 2) to compute gradients during

back-propagation.

The Storage Strategy. Because 𝐶 is a scalar, the size of the prefix

gradient
𝑑𝐶
𝑑𝑦

is equal to the number of output features. Next, we

analyze the suffix gradient
𝑑𝑦

𝑑𝜃
. For this, we establish the connection

between the convolutional layer and the linear layer, so that MetaS-

tore will be able to adapt the storage strategy for the linear layer to

the convolutional layer.

Recall that 𝜃 is a tensor in the shape of (Cout ,Cin,K). It can thus

be regarded as an aggregation of𝐾 linear sub-layers, with the shape

of each sub-layer being (𝐶𝑜𝑢𝑡 ,𝐶𝑖𝑛). For the ease of presentation,
we denote the 𝑖th linear sub-layer 𝜃 (·,·,𝑖) as 𝜃𝑖 , and similarly 𝑥 (·,𝑠)
as 𝑥𝑠 , and 𝑦 (·,𝑠) as 𝑦𝑠 . Then, we have:

𝑑𝐶

𝑑𝜃𝑖
= [𝑑𝐶

𝑑𝑦0

. . .
𝑑𝐶

𝑑𝑦𝑠−𝐾
] [𝑑𝑦0

𝑑𝜃𝑖
. . .

𝑑𝑦𝑠−𝐾
𝑑𝜃𝑖

]𝑇 =

𝑠−𝐾∑︂
𝑠=0

𝑑𝐶

𝑑𝑦𝑠
· 𝑑𝑦𝑠
𝑑𝜃𝑖

(9)

From Eq. 8, we have:

𝑑𝑦𝑠

𝑑𝜃𝑖
=
𝑑 (∑︁𝐾

𝑖
𝜃𝑖 · 𝑥𝑠+𝑖)
𝑑𝜃𝑖

(10)

Since

𝑑 (𝜃𝑖 ·𝑥𝑠+𝑖)
𝑑𝜃𝑖

= 0 if 𝑖 ≠ 𝑖 , while
𝑑 (𝜃𝑖 ·𝑥𝑠+𝑖)

𝑑𝜃𝑖
= 𝑥𝑠+𝑖 if 𝑖 = 𝑖 .

Finally, we have:

𝑑𝐶

𝑑𝜃𝑖
=

𝑆−𝐾∑︂
𝑠

[𝑑𝐶
𝑑𝑦𝑠

· 𝑥𝑠+𝑖] (11)

Eq. 11 shows that MetaStore is able to reconstruct the gradients

of the convolutional layers in a similar way to those of the linear

layers. Therefore, MetaStore only needs to store the prefix gradient
and the features of the input samples, where the size of the prefix
gradient is the same as that of the output features.

Space Complexity. Storing the gradients as described above, the

space complexity of MetaStore is determined by the size of the input

samples and the size of the gradient of the output samples, that is,

𝑆 × (𝐶𝑖𝑛 +𝐶𝑜𝑢𝑡). Storing the original gradient takes 𝐾 ×𝐶𝑜𝑢𝑡 ×𝐶𝑖𝑛
space. Therefore, when 𝑆×(𝐶𝑖𝑛 +𝐶𝑜𝑢𝑡) < 𝐾×𝐶𝑜𝑢𝑡 ×𝐶𝑖𝑛 , MetaStore

saves space. This is often true. For example, the last layer of the

VGG16 model contains 9×512×512 parameters, while its input and

output features are only 512 × 1 × 1 when training a VGG16 model

on CIFAR-10 dataset. In this case, the saving is 4068x. In Sec. 8.2,

we verify this with experiments.

5.3 Gradient Storage: Self-Attention Layers
Here, we use the sentence classification task as an example to

show our gradient storage strategy on the self-attention layers

(SAL). The input sample 𝑥 of a SAL is a tensor with the shape

of (𝑆, 𝐻), where 𝑆 denotes the length of the sentence and 𝐻 the

number of hidden features of each word. SAL uses Key-Query-

Value to produce attention scores and update feature embeddings,

accordingly. More specifically, SAL consists of three sub-layers,

the key sub-layer 𝜃𝑘 , the query sub-layer 𝜃𝑞 , and the value sub-

layer 𝜃 𝑣 . Each sub-layer is a linear layer. Given an input sample,

each sub-layer performs a linear transformation on all word rep-

resentations in the sentence and generates three representations

for each word, namely 𝑧𝑘 , 𝑧𝑞 , 𝑧𝑣 , using the following equation:

zks = 𝜃k · xs, zqs = 𝜃q · xs, zvs = 𝜃v · xs . Then the final output is

ys = softmax (zks · zqs/
√
H) · zvs .

Storage Strategy. The three sub-layers perform the linear transfor-

mation on each word in the sentence. The shape of 𝑥 is (𝑆, 𝐻), while
the shapes of 𝜃𝑘 , 𝜃𝑞 , and 𝜃 𝑣 are all (𝐻,𝐻). Therefore, the shapes of
𝑧𝑘 , 𝑧𝑞 and 𝑧𝑣 are (𝑆, 𝐻). This is equivalent to linearly transforming

a batch of 𝑆 samples, where 𝑆 is the length of the sentence. Because

only the three sub-layers contain parameters, MetaStore handles

each sub-layers separately. It then concatenates the gradients of

each sub-layer to obtain the final gradient of the SAL.

Each input sequence can be modeled as a batch of words. Then

given a sub-layer, its gradient is equivalent to the sum of the gra-

dients with respect to a batch of data samples, where a sample

corresponds to one word. Then given one data sample 𝑥𝑠 , because

the sub-layer is linear, its gradient with respect to this sub-layer

can be decomposed the same way as done by the linear layer (Eq. 7),

that is, decomposed to a prefix gradient and input features 𝑥𝑠 . Finally,
the gradient of each sub-layer can be computed with Eq 12:

𝑑𝐶

𝑑𝜃𝑘
=

𝑆∑︂
𝑠

𝑑𝐶

𝑑𝑧𝑘
𝑙

·𝑥𝑠 ,
𝑑𝐶

𝑑𝜃𝑞
=

𝑆∑︂
𝑠

𝑑𝐶

𝑑𝑧
𝑞

𝑙

·𝑥𝑠 ,
𝑑𝐶

𝑑𝜃 𝑣
=

𝑆∑︂
𝑠

𝑑𝐶

𝑑𝑧𝑣
𝑙

·𝑥𝑠 (12)

Handling each sub-layer separately, MetaStore only needs to

store the prefix gradient per layer and the input features, where the

size of the prefix gradient corresponds to the size of output features.

MetaStore then is able to restore the original gradients using Eq. 12.

Space Complexity. The space complexity of MetaStore is (3𝐻 +
𝐻) × 𝑆 . Storing the full gradients takes 3 × 𝐻 × 𝐻 × S space. So

1450

MetaStore drives down the storage costs by𝑂 (3×𝐻
4

)x. Given a SAL

which produces 128 dimensional feature embeddings (H = 128), the

saving would be 96 fold.

5.4 Gradient Storage: Complex Blocks
Similar to the Convolutional layer and the Self-attention layers,

most of the complex blocks in popular deep learning model architec-

tures, such as residual blocks, can be decomposed into simple linear

sub-layers [18]. Because the key insight of MetaStore, i.e., collecting

and operating on the small < prefix, suffix > pairs, works effectively

on the linear layers, MetaStore can handle complex blocks like resid-

ual connections by decomposing these blocks into a series of simple

linear sub-layers. For example, consider a simple residual layer,

𝑦 = 𝑥 + 𝐹 (𝑥 ;𝜃) (13)

where 𝜃 represents the parameters of the residual layer, and 𝑥 , 𝑦

correspond to the model input and output respectively. Then based

on the chain rule (Eq. 2):

∇𝜃𝐶 =
𝑑𝐶

𝑑𝑦

𝑑𝑦

𝑑𝜃
=
𝑑𝐶

𝑑𝑦

𝑑 (𝑥 + 𝐹 (𝑥 ;𝜃))
𝑑𝜃

=
𝑑𝐶

𝑑𝑦

𝑑𝐹 (𝑥 ;𝜃)
𝑑𝜃

(14)

As shown above, we can observe that the gradients of the residual

layer parameters
𝑑𝑦

𝑑𝜃
are independent of the input tensor 𝑥 . The

prefix gradient
𝑑𝐶
𝑑𝑦

and the suffix gradient
𝑑𝐹 (𝑥 ;𝜃)
𝑑𝜃

are equivalent

to the normal non-residual layers.

6 META-DATA ANALYTICSS: P2P
Next, we describe MetaStore’s strategies that efficiently realize the

gradient-based analytics operators described in Sec. 3. We introduce

the execution strategy for the P2P operator below, while the P2B

operator is covered in Sec. 7. Due to space limitation, we only briefly

sketch the B2P and B2B operators in Sec. 7.2.

6.1 P2P Operator: Linear Layers
Because MetaStore stores the compact prefix and suffix gradients

instead of the original (often huge) gradients, a straightforward

solution to compute the inner product similarity between the gradi-

ents of two data samples would be to restore the gradients first and

then to compute the inner product. Obviously, this would introduce

extra overhead due to having to perform the restore operation.

MetaStore succeeds to compute the inner product of two gradi-

ents exactly without having to restore them first. More specifically,

MetaStore could compute the exact inner product of two gradients

by first in parallel computing the inner product on the prefix gra-

dient
𝑑𝐶
𝑑𝑦

and on the suffix gradient 𝑥 , and thereafter multiplying

these two results. Because it directly operates on the small prefix

and suffix gradients, it is orders of magnitude faster than storing

the original gradients before and then directly computing the inner

product. Lemma 1 proves the correctness of this optimized method.

Lemma 1. Given two data samples 𝑥1 and 𝑥2, denote their corre-
sponding outputs of a linear layer 𝜃 as 𝑦1 and 𝑦2, their loss values as
𝐶1 and 𝐶2, and the gradients as ∇𝜃𝐶1 and ·∇𝜃𝐶2. Then Eq. 15 holds.

< ∇𝜃𝐶1,∇𝜃𝐶2 >=<
𝑑𝐶1

𝑑𝑦1

,
𝑑𝐶2

𝑑𝑦2

> · < 𝑥1, 𝑥2 > . (15)

Figure 2: Naive method VS MetaStore.

Proof. From Eq. 7, we have,

< ∇𝜃𝐶1,∇𝜃𝐶2 > =

𝐷𝑜𝑢𝑡∑︂
𝑟=0

𝐷𝑖𝑛∑︂
𝑠=0

(∇𝜃𝐶1)𝑟,𝑠 · (∇𝜃𝐶2)𝑟,𝑠

=

𝐷𝑜𝑢𝑡∑︂
𝑟=0

𝐷𝑖𝑛∑︂
𝑠=0

(𝑑𝐶
𝑑𝑦1

)𝑟 · (𝑥1)𝑠 · (
𝑑𝐶

𝑑𝑦2

)𝑟 · (𝑥2)𝑠

=<
𝑑𝐶1

𝑑𝑦1

,
𝑑𝐶2

𝑑𝑦2

> · < 𝑥1, 𝑥2 >

(16)

Therefore, Eq. 15 holds. □
Time Complexity. As discussed in Sec. 5.1, a prefix gradient

has 𝐷𝑜𝑢𝑡 dimensions, while a suffix gradient has 𝐷𝑖𝑛 dimensions.

Therefore, the time complexity of MetaStore is 𝑂 (𝐷𝑖𝑛 + 𝐷𝑜𝑢𝑡). Be-
cause the size of the original gradients is 𝐷𝑜𝑢𝑡 × 𝐷𝑖𝑛 , the time

complexity of computing the inner product directly on the gradi-

ents is 𝑂 (𝐷𝑜𝑢𝑡 × 𝐷𝑖𝑛). Theoretically, MetaStore speeds up the P2P

operation by 𝑂 (𝐷𝑜𝑢𝑡×𝐷𝑖𝑛

𝐷𝑖𝑛+𝐷𝑜𝑢𝑡).

6.2 P2P Operator: Convolutional Layers
As discussed in Sec. 5.2, given a convolutional layer whose param-

eters form a tensor 𝜃 with a shape of (𝐶𝑖𝑛,𝐶𝑜𝑢𝑡 , 𝐾), because the
𝐾 is often very small (e.g., K=9 in the VGG16 model), we could

decompose 𝜃 into 𝐾 linear sub-layers 𝜃𝑖 .

Therefore, when computing the inner product of two gradients

produced in a convolutional layer, intuitively we could leverage the

P2P operator designed for the linear layers to compute the inner

product between the gradients with respect to 𝜃𝑖 and then sum

up all the results. Given two data samples 𝑥1 and 𝑥2, we denote

the corresponding outputs of a convolutional layer 𝜃 as 𝑦1 and 𝑦2,

their loss values as 𝐶1 and 𝐶2, and thus the gradients as ∇𝜃𝐶1 and

∇𝜃𝐶2. Lemma 2 shows how to use the prefix and suffix gradients

to directly compute ∇𝜃𝐶1 · ∇𝜃𝐶2 in a convolutional layer.

Lemma 2. < ∇𝜃kC1,∇𝜃kC2 > =
∑︁S−K
s

∑︁S−K
s̃ <

dC1
dys−K1

,
dC2
dy s̃−K2

>

· < xs1, x
s̃
2 >

Proof. From Eq. 11 and Lemma 1, we have,

< ∇𝜃𝑘𝐶1,∇𝜃𝑘𝐶2 > =<

𝑆−𝐾∑︂
𝑠

𝑑𝐶1

𝑑𝑦𝑠−𝐾
1

· 𝑥𝑠
1
,

𝑆−𝐾∑︂
𝑠

𝑑𝐶2

𝑑𝑦𝑠−𝐾
2

· 𝑥𝑠
2
>

=

𝑆−𝐾∑︂
𝑠

𝑆−𝐾∑︂
𝑠

<
𝑑𝐶1

𝑑𝑦𝑠−𝐾
1

,
𝑑𝐶2

𝑑𝑦𝑠−𝐾
2

> · < 𝑥𝑠
1
, 𝑥𝑠

2
>

(17)

1451

□

By Lemma 2 MetaStore could use Eq. 17 to compute <

∇𝜃𝑘𝐶1,∇𝜃𝑘𝐶2 >.

Time Complexity. By Eq. 17 the time complexity of computing

< ∇𝜃𝑘𝐶1,∇𝜃𝑘𝐶2 > is (𝑆 − 𝐾)2 × (𝐶𝑜𝑢𝑡 + 𝐶𝑖𝑛). Because ∇𝜃𝐶1 ·
∇𝜃𝐶2 =

∑︁
𝑘 ∇𝜃𝑘𝐶1 · ∇𝜃𝑘𝐶2, the total time complexity of MetaStore

calculating the gradient inner product on a CNN layer is 𝐾 × (𝑆 −
𝐾)2×(𝐶𝑖𝑛+𝐶𝑜𝑢𝑡). The time complexity of directly using the original

gradients to compute the inner product would be 𝐾 ×𝐶𝑖𝑛 ×𝐶𝑜𝑢𝑡 –
which is identical to the number of the parameters. The potential

speedup is thus
𝐶𝑖𝑛×𝐶𝑜𝑢𝑡

(𝑆−𝐾)2×(𝐶𝑖𝑛+𝐶𝑜𝑢𝑡) .
Therefore, the performance of MetaStore will depend on the

number of features (𝑆) of the input samples and the number of

input and output channels (𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡). For most of the popular

models, 𝑆 decreases with the number of layers due to the convolu-

tion operation, while𝐶𝑖𝑛 and𝐶𝑜𝑢𝑡 increase. Therefore, the number

of parameters in the later convolutional layers of a DNN model is

often much larger than its early layers. Thus, MetaStore tends to sig-

nificantly outperform the naive method on the later convolutional

layers, while it can be slower on the earlier layers.

6.3 P2P Operator: Self-Attention Layers
As discussed in Sec. 5.3, a self-attention layer is formed by three

linear sub-layer 𝜃𝑘 , 𝜃𝑞 and 𝜃 𝑣 . Therefore, MetaStore can directly

leverage the strategy designed for the linear layer to compute the

inner product between the gradients with respect to each sub-layer

and then at the end multiply the results.

Time Complexity. Let’s denote two data samples as 𝑥1 and 𝑥2,

the corresponding output of a CNN layer 𝜃 is 𝑦1 and 𝑦2. The time

complexity of MetaStore is 𝑆2 × (𝐻 + 𝐻), where 𝑆 is the length of

the input sequence and 𝐻 represents the number of the dimensions

of the hidden vector for each word. The time complexity of the

naive solution that pre-computes and stores the original gradients

is 𝐻 × 𝐻 . So the potential speedup of MetaStore is
𝐻

2×𝑆2
.

In a standard BERT model,𝐻 = 768. As long as the length of each

sequence 𝑆 is smaller than

√
384, MetaStore will win. We find this

often holds on most of the popular benchmark NLP datasets [56].

6.4 Discussion: General to Other Scenarios
In addition to meta-gradient based analytics, MetaStore can pro-

vide benefit to other applications. As an example application, in

adversarial attacks on DNN models, given a training sample 𝑥 , one

of the most popular gradient-based adversarial attack techniques,

Fast gradient sign method (FGSM) [15], generates adversarial data

samples based on the gradient of a training sample on the feature

space
𝑑𝐶
𝑑𝑥

, where𝐶 is the loss value of 𝑥 . Computing the value of
𝑑𝐶
𝑑𝑥

normally requires a full pass of forward and backward propagation.

However, with the chain rule, one is able to calculate
𝑑𝐶
𝑑𝑥

directly

from the first layers of the meta-data (e.g., the < prefix, suffix >

pairs) that MetaStore materializes. For example, given a linear layer,

𝑑𝐶
𝑑𝑥

= 𝑑𝐶
𝑑𝑦

𝑑𝑦

𝑑𝑥
= 𝑑𝐶

𝑑𝑦
𝑊𝑥+𝑏
𝑥 = 𝑑𝐶

𝑑𝑦
𝑊 , where

𝑑𝐶
𝑑𝑦

corresponds to the

prefix artifacts that MetaStore stores.

Moreover, MetaStore remains beneficial even when gradi-

ent reconstruction is eventually needed. Specifically, when the

original gradient is needed, MetaStore will load the compact

< prefix, suffix > pairs into memory and then reconstruct the gra-

dient in memory. This greatly reduces the disk I/O costs compared

to loading the huge original gradients, no matter whether the ana-

lytics request includes inner product operations or not. In fact, in

our experiments, we find that the I/O costs are the main bottleneck.

They take around 95% of the overall query execution time.

7 META-DATA ANALYTICS: BATCH
OPERATORS

Next, we discuss our strategy to efficiently support the P2B operator

in Sec. 7.1. Then in Sec. 7.2 we show how to leverage the efficient

P2B execution strategy to support B2P and B2B operators.

7.1 P2B Operator: No Gradient Restore
The point-to-batch (P2B) operator estimates the contribution of one

training sample 𝑥𝑖 on the prediction results of a batch of testing

samples 𝐵 𝑗 . By the concept of the meta-gradient introduced in

Sec. 3.1, MetaStore measures this as the average inner product

similarity between the gradients of the training sample and any

testing sample in the batch. We denote this as I𝑎𝑣𝑔 (𝑥, 𝐵).
Because MetaStore has already preprocessed and stored the gra-

dient of each training sample beforehand as a < prefix, suffix > pair,

this pair can be directly fetched. However, MetaStore has to obtain

the gradient of the unseen testing samples on-the-fly using model

replay. Given a batch of testing samples, MetaStore can get their

gradients in two ways: (1) for each sample, we get its gradient in the

format of < prefix, suffix > pair; or, (2) we directly get the average

gradient of this batch. The existing deep learning infrastructures

such as Pytorch readily provide this interface, because deep learn-

ing typically updates the model parameters based on the average

gradient of a batch of training samples.

The advantage of the first approach is that MetaStore can directly

call the efficient P2P operators introduced in Sec. 6 to compute

I𝑎𝑣𝑔 (𝑥, 𝐵). However, it has to iteratively compute the inner product

for each pair of training and testing samples.When the testing batch

is large, this will become expensive.

On the other hand, I𝑎𝑣𝑔 (𝑥, 𝐵) is equivalent to the inner product
between the gradient of 𝑥𝑖 and the average gradient of the test-

ing batch. Therefore, if MetaStore restores the full gradient of the

training sample from the < prefix, suffix > pair and extracts the

average gradient of the testing batch using the second approach,

then it would be able to compute I𝑎𝑣𝑔 (𝑥, 𝐵) with one single inner
product operation. However, restoring the training sample from

the < prefix, suffix > pair tends to be expensive.

We design an efficient P2P execution strategy which uses one
single inner product operation to compute I𝑎𝑣𝑔 (𝑥, 𝐵), while not
restoring the full gradient of the training sample. This strategy is

built on Lemma 3.

Lemma 3. Let ∇𝜃𝐶 denote the gradient of training sample 𝑥 and
�̄�
𝑡 the average gradient of the testing batch, given a linear layer with

the shape of (𝐷𝑖𝑛, 𝐷𝑜𝑢𝑡), Eq. 18 holds.
I𝑎𝑣𝑔 (𝑥, 𝐵) =< ∇𝜃𝐶, �̄�

𝑡
>=< 𝑥𝑇 , �̄�

𝑡 𝑑𝐶

𝑑𝑦
> (18)

Proof.

I𝑎𝑣𝑔 (𝑥, 𝐵) =< ∇𝜃𝐶, �̄�
𝑡
> =

𝐷𝑖𝑛∑︂
𝑖=0

𝐷𝑜𝑢𝑡∑︂
𝑗=0

[(∇𝜃𝐶)𝑖, 𝑗 · �̄�
𝑡
𝑖, 𝑗] (19)

1452

From Eq. 7, we have (∇𝜃𝐶)𝑖, 𝑗 = 𝒙𝑖 · (𝑑𝐶𝑑𝑦) 𝑗 . Then:

I𝑎𝑣𝑔 (𝑥, 𝐵) =
𝐷𝑖𝑛∑︂
𝑖=0

𝐷𝑜𝑢𝑡∑︂
𝑗=0

[𝑥𝑖 · �̄�𝑡𝑖, 𝑗 · (
𝑑𝐶

𝑑𝑦
) 𝑗]

= 𝑥𝑇
𝐷𝑜𝑢𝑡∑︂
𝑗=0

[�̄�𝑡𝑖, 𝑗 · (
𝑑𝐶

𝑑𝑦
) 𝑗] =< 𝑥𝑇 , �̄�𝑡

𝑑𝐶

𝑑𝑦
>

(20)

where 𝒙 and
𝑑𝐶
𝑑𝑦

correspond to the <prefix, suffix> pair of the

training sample. This concludes the proof of Lemma 3. □

Time Complexity. The time complexity is 𝐷𝑖𝑛 ×𝐷𝑜𝑢𝑡 , which does

not rely on the size of the batch. Therefore, this strategy scales to

large testing batches.

Extending this method to the convolutional and self-attention

layers is straightforward. MetaStore decomposes their parame-

ters into a set of linear sub-layers. Using the average gradient of

the testing batch w.r.t. each linear sub-layer and the pre-stored

< prefix, suffix > pair, it first calculates the partial inner product as

described above and then aggregates up the partial results.

7.2 Other Operators: B2P and B2B
Unlike the P2P and P2B operators, the B2P and B2B operators in-

volve a batch of training samples which have their prefix and suffix

gradients already maintained in MetaStore storage. An intuitive

method to execute these two types of operators would thus be to

first restore the original gradient from the prefix and suffix gradi-

ents for each training sample, compute the average gradient for this

batch, then use model replay to extract the gradient or the average

gradient for the testing samples, and finally compute the inner

product. This method only needs to compute the inner product

once. However, as we have discussed in Sec. 7.1 and confirmed in

the experiments (Sec. 8.4), restoring the original gradient from the

prefix and suffix gradient typically is even more expensive than the

inner product operation itself, thus not acceptable.

After ruling out restoring the gradients as an option, we are left

with having to iterate over each training sample in the batch, then

call the P2P or P2B operator to compute the inner product, and

lastly, to take the average. Tomimic the DNN training process, users

might set the size of the training batch according to the batch size
hyper-parameter (typically 64 or 128). Thus, the cost of iterating

over each training sample in a batch tends to be acceptable.

8 EXPERIMENTS
Our experimental study focuses on the following questions:

• Storage: Does MetaStore reduce the storage footprint of gradi-

ent meta-data and thereby offer practical feasibility?

• Execution Time: Does MetaStore speed up the execution of

gradient-based analytics compared to unoptimized methods?

• Preprocessing: Is MetaStore efficient at collecting meta-data?

• How useful are our analytics interfaces in applications?

8.1 Experimental Setup
Settings. All the experiments are implemented in Python3.7 on

Pytorch. We conduct all experiments on a virtual cloud instance

with Intel Xeron G6248 CPU, 0.5 TB Memory, an SSD storage disk

with 2TB space, and one V100 GPU with 32G memory.

Datasets. We evaluate our method with three benchmark datasets,

namely, ImageNet (image), CIFAR10 (image) and AGNews [54]
(text) dataset. ImageNet contains 1,200,000 images from 1000 classes.

Each image has the dimensions of 3 × 512 × 512. CIFAR10 contains

50,000 images from 10 classes. Each image has the dimension of

3 × 32 × 32. AGNews contains 30,000 sentences from four classes,

where each sentence contains 6 to 89 words.

Baseline Methods. In the experiments we only measure the effi-

ciency of the point-to-point (P2P) operators and the point-to-batch

(P2B) operators, because the B2P and B2B operators simply leverage

the P2P and P2B operators, as discussed in Sec. 7.2.

For the P2P operators, we compare MetaStore with the following

baseline methods:

1) Pre-compute: We pre-compute the full gradient on the

queried layers for all training samples and store them in disk. Once

an analytics query is submitted, we retrieve the gradient of the

indicated training sample from the disk into GPU memory, extract

the gradient for the indicated testing sample in the <prefix,suffix>

pair format, and run the corresponding analytics operators.

2) Re-compute: After an analytics query is submitted, it com-

putes the gradient of the training sample on the fly through model

replay using the model maintained in GPU.

For the point-to-batch (P2B) operators, we evaluate the Iterate
and Reconstructionmethods discussed in Sec. 7. Both methods lever-

age our compact <prefix, suffix> storage structure to reduce the I/O

costs when collecting the gradients of training samples.

1) Iterate: This method extracts the gradients for each indicated

testing sample in the <prefix,suffix> pair format as described in

Sec.4, and then calls our optimized P2P operator to compute the

inner product between the training samples and each testing sample

in the query batch and then compute the average.

2) Reconstruction: This method extracts the average gradient

for the testing batch through model replay, and then reconstructs

the gradients of training samples from the <prefix, suffix> pair.

Finally, it directly calculates the similarity between the gradient

of a training sample and the average gradient of the testing batch.

Therefore, Reconstruction only computes the inner product once.

Unlike the P2P operators experiments, in the P2B experiments

we don’t compare against Pre-compute and Re-compute baselines,
because Iterate and Reconstruction leverage our compact <pre-

fix,suffix> storage structure and optimized P2P operator. Thus, they

are clearly more efficient than Pre-compute and Re-compute. Sim-

ilarly, although Reconstruction could work for P2B operator, we

don’t compare against it in the P2P experiments. This is because

for the P2P operator, Reconstruction does not reduce the number of

inner product computations, while introducing extra computation

costs to reconstruct the original gradient from the <prefix, suffix>

structure. It is thus guaranteed to be worse than Pre-compute.
Data Compression.We evaluate how quantization improves

the performance of the above baseline methods as well as our

MetaStore. More specifically, we apply the Lower precision float
representation quantization [39] to reduce the size of meta-data.

Usefulness: We compare MetaStore with two baseline methods

(Sec. 8.7), namely Gradient-shapely [14] and Small-loss [29] also
discussed in related work, in studies assessing their relative utility.

DNN Models. We evaluate our method on three popular deep

neural network architectures, namely ResNet-50 [18], VGG16 [36]

1453

Figure 3: The End-to-End Query Execution Time of P2P Op-
erator using the VGG16, BERT and ResNet50 Models.

and BERT [12]. ResNet-50 contains 49 convolutional layers and

one linear layer. VGG16 consists of 13 Convolutional layers and

three linear layers. The BERT Model, popular in natural language

processing, contains 12 Attention layers and one linear layer. We

trained a ResNet-50 on ImageNet, a VGG16 model on CIFAR10, and

a BERT model on AGNews through finetuning.

8.2 Storage Costs

Table 1: Storage Costs: MetaStore vs Full Gradient.
Storage Cost (MB)

Layers Shape MetaStore Full Gradi-

ent

Disk Space

Saving

VGG16-Conv1 9 × 3 × 64 2744 69 0.025×
VGG16-Conv7 9 × 128 × 256 1310 23593 18.0×
VGG16-Conv13 9 × 512 × 512 163 94371 578×
VGG16-Linear1 512 × 10 21 205 9.76×
BERT-SAL1 3 × 768 × 768 2949 70779 24.00×
BERT-SAL6 3 × 768 × 768 2949 70779 24.00×
BERT-SAL11 3 × 768 × 768 2949 70779 24.00×
BERT-Linear1 768 × 4 31 122 3.93×
ResNet50-Conv48 9 × 512 × 512 157 90100 573.88×
ResNet50-Linear 2048 × 1000 118 80100 678.81×

In this set of experiments, we evaluate the storage costs and

savings of the MetaStore’s prefix/suffix gradient strategy of storing

decomposed gradients. We evaluate the storage costs for 10,000

training samples randomly sampled from the training set because

the baseline cannot handle the whole training set. Following previ-

ous work [16], for the VGG16 model, we report the storage costs

of the first, mid, and last convolutional layers and the linear layer,

while for the BERT model, we report the storage costs of the first,

mid and last self-attention layer and the last linear layer. For the

ResNet50 model, we report the storage costs of the last linear layer

and the 48th Convolutional layer as it contains the most number of

parameters in the ResNet50 model.

Table 1 shows these storage costs. We see that compared to

storing the original gradients, MetaStore reduces the storage costs

by up to x578 for the VGG16 model and by up to x678 for the

ResNet50 model. The only exception is the first convolutional layer

that features only a few parameters, has a small gradient, and thus

not much disk space is saved in this case.

Similarly, for the BERT model, MetaStore reduces the storage

costs by 24x. However, for this model, both methods need more disk

space than the ResNet50 and VGG16 models, because the BERT-

AGNews model contains many more parameters than the VGG16-

CIFAR10 model. Also, each layer in the BERT-AGNewsmodel gener-

ates a larger number of input and output features for each training

sample compared to the ResNet50 and VGG16-CIFAR10 model.

8.3 P2P Operator: End-to-End Execution Time
In this experiment, we evaluate the end-to-end execution time of

the P2P operator which computes the inner product between the

gradients of two data samples. This execution time includes the

times for calculating the gradients of the testing samples by model

replay, loading the gradients of the training samples into GPU

memory, and running the corresponding analytics operators.

8.3.1 Execution Times for Different DNN Layers.
First, we compare MetaStore against the Pre-compute and Re-
compute methods (Sec. 8.1) on the VGG16-CIFAR10, ResNet50-

ImageNet and BERT-AGNews models. Similar as with the above

storage experiments, we evaluate the first, middle and the last con-

volutional layer of the VGG16 model, the 48th Convolutional layer

and the last linear layer of the ResNet50 model, and the first, middle

and the last self-attention layer of the BERT Model. We randomly

select one testing sample from the testing set. For each pair of

training sample and this chosen testing sample, we run the P2P

operator. We use 10,000 training samples and thus call the P2P op-

erator 10,000 times. We repeat the experiment 10 times and report

the average execution time.

Fig. 3 (in log scale) shows that for the VGG16-CIFAR10 model,

MetaStore is up to 1,000 times faster than Pre-compute, and 7 orders
of magnitude faster than Re-compute. In particular, Pre-compute is
slower on the later convolutional layers, while MetaStore improves

speed there. This is because that the complexity of Pre-compute
increases linearly with the number of parameters, and the later

convolutional layers have more parameters. On the other hand,

the complexity of MetaStore increases linearly with the size of the

input features, which is smaller in the later layers compared to

the earlier layers. This is common for CNN networks, since the

convolution operation naturally shrinks the size of the features.

For the ResNet50 model, all three methods are slower on the

ResNet50 model than on the VGG16 model. This is expected, be-

cause ResNet50 has many more parameters than the VGG16 model.

However, MetaStore is still up to 3 orders of magnitude faster than

Pre-compute and 5 orders of magnitude faster than Re-compute.

For BERT, MetaStore is about 10 to 100 times faster than Pre-

compute and 100 to 1000 times faster than Re-compute. Because

different self-attention layers in BERT have the same architecture,

their performance does not vary much across different layers.

8.3.2 Varying Number of Dimensions of Layers.
In this set of experiments, we evaluate MetaStore’s performance

on DNN layers with a varying number of dimensions. To achieve

this, for the linear layer, we append one additional linear layer

before the last layer in ResNet50. Similarly, for the convolutional

layer, we append one additional convolutional layer after the last

convolutional layer in VGG16. We refer to these two “extended”

models as ResNet50-Linear and VGG16-Conv, respectively. We then

vary the number of dimensions of these new layers. For the self-

attention layer, we directly vary the input and output dimension of

each self-attention layers. We name this model BERT-Att.

For the ResNet50-Linear model, to ensure the appended layer

is aligned with the previous layers, we keep the input dimensions

fixed and only vary the output dimensions from 32 to 512. Similarly,

for the VGG16-Conv model, we fix the number of input channels

1454

(a) VGG16-Conv (b) BERT-Att (c) ResNet50-Linear

Figure 4: The End-to-End Query Execution Time of P2P Operator: Varying Num. of Dimensions of Different Layers.

and vary the output channels from 32 to 512. Thereafter, we focus

on comparing the end-to-end execution time on the new layer of

each model. For the BERT-Attention model, we vary the input and

output dimensions of each Self-Attention layers from 96 to 768. We

report the execution time of the last self-attention layer.

As depicted in Fig. 4, MetaStore is up to 1000× faster than both

baseline methods in all experiments. For the VGG16-Conv and

the ResNet50-Linear models, as shown in Fig. 4(a) and Fig. 4(c),

respectively, for all three types of layers, the execution time of

Pre-compute increases quickly as the output dimensions get larger,

while the query time of MetaStore does not increase significantly.

This can be explained by the time complexity of Pre-compute which
equals the input dimensions multiplied by the output dimensions,

while the time complexity of MetaStore equals the input dimensions

plus the output dimensions, as discussed in Sec. 5. For the BERT-

Attention model, MetaStore is up to 1,000× faster than both baseline

methods. In all experiments, Re-compute is much slower than the

other two methods in most cases, because calculating the gradient

of a single layer on the fly is expensive.

8.3.3 Vary the Number of Training Samples.
We vary the number of training samples for each query from 500

to 8,000 and compare MetaStore against the Pre-Compute and Re-

Compute methods. We measure the cumulative total time of run-

ning 100 queries on the last convolutional and the last linear layer

in the VGG16-CIFAR10 model, the 48th convolutional and the last

linear layer in the ResNet50-ImageNet model, and the last self-

attention layer in the BERT-AGNews model. We cache the gradients

in the memory, when possible, using LRU as cache replacement

policy. As shown in Fig. 5, MetaStore only gets about 5 times slower

when increasing the number of training samples from 500 to 8000

on the VGG16-CIFAR10, ResNet50-ImageNet, and BERT-AGNews

models, while the execution time of Pre-Compute and Re-Compute
increase 12-15 times in both cases. This is because MetaStore can

cache more data samples in memory due to its efficient storage

strategy, therefore significantly reducing the I/O costs. The query

execution time of Pre-compute increases fast as the number of ana-

lyzed samples increases. Eventually, when the number of training

samples increases to 8,000, it becomes as slow as the Re-compute
method which computes the gradients on the fly. This is because

the gradients of the ResNet50-ImageNet model are very large. It

is thus not able to cache the gradients of many training samples

in memory, hence suffering from high disk I/O costs. In contrast,

when the number of analyzed samples increases from 500 to 8,000,

the execution time of MetaStore only increases around 10 times.

8.4 P2B Operator: Execution Time
We evaluate the performance of our optimized method (Sec. 7.1)

for the P2B operator. In this experiment, we compare Iterate and
Reconstruction as baseline methods. The reconstruction method

leverages our prefix/suffix gradients insights, thus significantly

reducing its I/O costs.

As shown in Fig. 6, our method is at least 2 times faster than

the baseline methods in all experiments. Compared with the recon-

struction method, our method speeds up the execution by up to 10x,

because it directly computes the results on the <prefix, suffix> pairs

of training samples, and thus avoids reconstructing large gradients

for the training samples.

8.5 Meta-data Collection and Storage Times
We evaluate the time of extracting and storing the gradient of 10,000

training samples. We compare MetaStore against computing and

storing the full gradients. Again, we measure the collection time on

the first, mid, and last convolutional layers and the linear layer in

the VGG16-CIFAR10 model, the 48th convolutional layer and the

last linear layer of the ResNet50-ImageNet model, and the first, mid,

and last self-attention layers and the last linear layer in the BERT-

AGNews model. Fig. 7 shows that MetaStore is up to 1,000 times

faster than the baseline. This is because although both methods

use the same forward and backward propagation process to extract

meta-data, MetaStore only needs to log the small prefix and suffix

matrices into the storage.

Similar to the trend in the storage cost experiments, the baseline

takes more time to collect meta-data on the later convolutional

layer in the VGG16 model in comparison to MetaStore. Again, this

is because the later convolutional layers in the VGG16 model have

more parameters than the earlier convolutional layers.

We also evaluate the meta-data collection time by varying the

number of dimensions of the target layers. As shown in Fig. 8,

MetaStore consistently outperforms the baseline. As the number of

dimensions increases, the collection time of the baseline increases

linearly, while MetaStore only becomes slightly slower.

8.6 Augmented with Data Compression
Our technique is orthogonal to the choice of the compression meth-

ods, including quantization. For this reason, we were able to apply

quantization to both MetaStore and to the pre-compute baseline.

We evaluate this addition of compression by varying the pre-

cision of quantized meta-data from 8 digits to 32 digits, and then

1455

(a) VGG16-CIFAR10 (b) BERT-AGNews (c) ResNet50-ImageNet

Figure 5: The End-to-End Query Execution Time of P2P Operator: Varying the Number of Training Samples.

(a) VGG16-CIFAR10 (b) BERT-AGNews (c) ResNet50-ImageNet

Figure 6: The End-to-End Query Execution Time of P2B Operator: Varying the Number of Training Samples.

Figure 7: Pre-processing Time

measure both the end-to-end query execution time and the stor-

age costs. As shown in Fig. 10, quantization indeed reduces the

storage costs of both MetaStore and the pre-compute methods by

up to 4×. However, MetaStore is still up to three orders of magni-

tude more efficient than the pre-compute method in terms of both

storage costs and query execution time. In particular, for query

execution time, the pre-compute method with quantized tensors

is up to 10 × faster than the original method using the standard

precision tensors. Because MetaStore is already very efficient due

to our < prefix, suffix > insight, quantization is not able to speed

up MetaStore that much. Most importantly, in all scenarios, MetaS-

tore remains up to 1000× faster than the baselines even with the

addition of quantization.

8.7 Utility of Gradient-based Analytics
We use data debugging as an example to showcase that the gradient-

based analytics enabled by MetaStore are indeed useful.

As discussed in Sec. 3.2, users can use the P2B operator to dis-

cover mislabeled objects (data debugging). The 𝑘 training samples

(where 𝑘 is a user defined input parameter) that have the smallest

meta-gradient with a batch of testing samples are the least influen-

tial samples, and therefore the most likely to be mislabeled.

We train a VGG16 model using CIFAR10. We randomly flip the

labels of 1000 samples from class 0 to class 1 and select 1000 testing

samples to form the batch. We gradually add the layers of the DNN

model, starting with only the last linear layer and then adding the

last, middle, and first convolutional layers step by step.

As shown in Fig. 9, our MetaStore achieves higher noisy label

detection precision and query efficiency than the small-loss method

because the later method requires one pass of forward propagation

to calculate the loss value.

In Fig. 9, we also observe that our MetaStore solution

achieves similar precision on this noisy labeling task as Gradient-

shapely [14] – yet in addition it is up to 3 orders of magnitude faster.
This is because Gradient-shapely requires iteratively calculating

the original gradients of training samples at query time, while our

MetaStore operates on the compact < prefix, suffix > pairs.

Fig. 9 shows that by increasingly analyzing more layers, the

precision of MetaStore and Gradient-shapely increases from 0.1

to 0.6. Moreover, although the query execution time of Gradient-

shapely increases significantly as more layers are analyzed, the

query execution time of MetaStore remains relatively stable. This

shows MetaStore allows users to analyze more layers and thus is

able to get better results with much less computing resources.

1456

(a) VGG16-Conv (b) BERT-Attention (c) ResNet50-Linear

Figure 8: Fig.(a)-(c):The Meta-data Collection Time: Varying the # of Dimensions of Different Types of Layers.

(a) Precision of Detected Accuracy (b) End-to-End Query Time

Figure 9: Mislabel Detection: Precision and Query Time

(a) End-to-End Query Times (b) Storage Costs

Figure 10: Quantization: Query Time and Storage Costs.

9 RELATEDWORK
DNNDiagnosis Tools. A plethora of developed tools have been re-

searched for diagnosing DNN models, some of which involve meta-

data. Among them, MISTIQUE [39, 40] compactly stores the meta-

data, namely, feature embeddings and losses. DeepEverest [16]

speeds up the model diagnosis queries on storage. However, none

of them support gradient-based diagnostic queries.

Several works [4, 24, 24, 28, 33, 35, 50] target the visualization

of meta-data. However, none of them use gradients.

Gradient-shapely [14] evaluates the contribution of each training

sample to model predictions by estimating the shapely value [22].

Given a training sample, Gradient-Shapely calculates its gradient

and updates the model parameters. It compares the validation loss

on the models before and after the update and uses the decrease of

the validation loss as the training sample’s shapely value. Gradient-

shapely confirms that gradients are indeed effective in model in-

terpretation, debugging, and data valuation. However, unlike our

work, Gradient-shapely [14] does not address the scalability and

efficiency issues of gradient analytics.

Robust Deep Learning with Meta-data. Researchers have used
meta-data in the training process to make DNN models robust to

noisy data and adversarial attack [9, 19, 29, 34, 37, 39]. In particular,

Small-loss [29] uses training losses to detect mislabeled training

samples. It is based on a simple and common observation that

correctly training samples tend to have smaller training loss values

than incorrectly labeled samples.

People have used gradients to perform adversarial attacks on

DNN models [15, 32, 51]. Some methods [1, 9] leverage statistics of

gradients to identify potential data leakage of DNN models. Some

other methods use the gradients to modify the training process and

search for hyper-parameters [7, 23, 27, 48] to improve DNNmodels’

performance. However, all above works do not tackle the problem

of compactly storing and efficiently analyzing gradients.

Gradient Compression. Federated learning may need to trans-

fer gradients from the clients to the servers. To reduce the com-

munication costs, researchers have proposed techniques [3, 5, 6,

10, 26, 43] to compress the gradients by approximation. Some

works [2, 3, 5, 6, 43] use quantization and sparsification techniques

to compress the gradients by preserving the large gradient val-

ues while discarding the small ones. Because our < prefix, suffix >

based optimization is orthogonal to the choice of the compression

methods, including quantization, we are able to seamlessly apply

the quantization technique to our MetaStore.

Some other works [25, 41, 42] use matrix factorization to de-

compose big gradients. However, performing matrix factorization

on each training sample will introduce prohibitive overhead. Fur-

thermore, the original gradients have to be reconstructed when

computing the meta gradient at the online query stage, while recon-

structing gradients is slow as shown in our experiments (Sec. 8.4).

Our MetaStore instead efficiently analyzes the gradients without

conducting any extra operations such as matrix factorization and

gradient reconstruction.

10 CONCLUSION
We propose MetaStore to efficiently collect, store, and analyze meta-

data produced by DNN training. The key techniques of MetaStore

address the challenges caused by the size of the gradients and thus

enable gradient-based analytics for data debugging and model in-

terpretation. Our experiments show that MetaStore significantly

reduces storage costs and query execution times by orders of mag-

nitude compared to baseline solutions.

ACKNOWLEDGMENTS
This research was supported in part by NSF under grants IIS-

1910880, CSSI-2103832, CSSI-2103799, CNS-1852498, NRT-HDR-

1815866, NRT-HDR-2021871, DBI-2327954, and by the U.S. Dept. of

Education under grant P200A180088.

1457

REFERENCES
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages 308–318,
2016.

[2] A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent.

arXiv preprint arXiv:1704.05021, 2017.
[3] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-

efficient sgd via gradient quantization and encoding. Advances in neural infor-
mation processing systems, 30, 2017.

[4] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh. Mod-

eltracker: Redesigning performance analysis tools for machine learning. In

Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, pages 337–346, 2015.

[5] D. Basu, D. Data, C. Karakus, and S. Diggavi. Qsparse-local-sgd: Distributed sgd

with quantization, sparsification and local computations. Advances in Neural
Information Processing Systems, 32, 2019.

[6] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd:

Compressed optimisation for non-convex problems. In International Conference
on Machine Learning, pages 560–569. PMLR, 2018.

[7] O. Bohdal, Y. Yang, and T. Hospedales. Evograd: Efficient gradient-based meta-

learning and hyperparameter optimization. Advances in Neural Information
Processing Systems, 34:22234–22246, 2021.

[8] L. Cao, Y. Yan, Y. Wang, S. Madden, and E. A. Rundensteiner. Autood: Automatic

outlier detection. In SIGMOD.
[9] N. Carlini, U. Erlingsson, and N. Papernot. Distribution density, tails, and outliers

in machine learning: Metrics and applications. arXiv preprint arXiv:1910.13427,
2019.

[10] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrishnan.

Adacomp: Adaptive residual gradient compression for data-parallel distributed

training. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 32, 2018.

[11] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties

of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[12] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[13] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual

prediction with lstm. Neural computation, 12(10):2451–2471, 2000.
[14] A. Ghorbani and J. Zou. Data shapley: Equitable valuation of data for machine

learning. In International conference onmachine learning, pages 2242–2251. PMLR,

2019.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial

examples. arXiv preprint arXiv:1412.6572, 2014.
[16] D. He,M. Daum,W. Cai, andM. Balazinska. Deepeverest: Accelerating declarative

top-k queries for deep neural network interpretation. Proc. VLDB Endow., 15(1):98–
111, 2021.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

CoRR, abs/1512.03385, 2015.
[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[19] D. Hofmann, P. VanNostrand, H. Zhang, Y. Yan, L. Cao, S. Madden, and E. Run-

densteiner. A demonstration of autood: a self-tuning anomaly detection system.

Proceedings of the VLDB Endowment, 15(12):3706–3709, 2022.
[20] R. Hu, D. Zhang, D. Tao, H. Zhang, H. Feng, and E. Rundensteiner. Uce-fid: Using

large unlabeled, medium crowdsourced-labeled, and small expert-labeled tweets

for foodborne illness detection. In 2023 IEEE International Conference on Big Data
(BigData), pages 5250–5259. IEEE, 2023.

[21] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[22] R. Jia, D. Dao, B.Wang, F. A. Hubis, N. Hynes, N. M. Gürel, B. Li, C. Zhang, D. Song,

and C. J. Spanos. Towards efficient data valuation based on the shapley value.

In K. Chaudhuri and M. Sugiyama, editors, The 22nd International Conference
on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha,
Okinawa, Japan, volume 89 of Proceedings of Machine Learning Research, pages
1167–1176. PMLR, 2019.

[23] Y. Jin, T. Zhou, L. Zhao, Y. Zhu, C. Guo, M. Canini, and A. Krishnamurthy. Autolrs:

Automatic learning-rate schedule by bayesian optimization on the fly. arXiv
preprint arXiv:2105.10762, 2021.

[24] M. Kahng, D. Fang, andD. H. Chau. Visual exploration ofmachine learning results

using data cube analysis. In Proceedings of the Workshop on Human-In-the-Loop
Data Analytics, pages 1–6, 2016.

[25] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon.

Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

[26] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. Deep gradient compression:

Reducing the communication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

[27] M. Liu, L. Chen, X. Du, L. Jin, and M. Shang. Activated gradients for deep neural

networks. IEEE Transactions on Neural Networks and Learning Systems, 2021.
[28] D. Matthew Zeiler and F. Rob. Visualizing and understanding convolutional

neural networks. ECCV, 2014.

[29] G. Pleiss, T. Zhang, E. Elenberg, and K. Q. Weinberger. Identifying mislabeled

data using the area under the margin ranking. Advances in Neural Information
Processing Systems, 33:17044–17056, 2020.

[30] G. Pruthi, F. Liu, S. Kale, and M. Sundararajan. Estimating training data influence

by tracing gradient descent. Advances in Neural Information Processing Systems,
33:19920–19930, 2020.

[31] M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to reweight examples for

robust deep learning. In International conference on machine learning, pages
4334–4343. PMLR, 2018.

[32] J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and E. Granger.

Decoupling direction and norm for efficient gradient-based l2 adversarial attacks

and defenses. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4322–4330, 2019.

[33] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-

cam: Visual explanations from deep networks via gradient-based localization. In

Proceedings of the IEEE international conference on computer vision, pages 618–626,
2017.

[34] Y. Shen and S. Sanghavi. Learning with bad training data via iterative trimmed

loss minimization. In International Conference on Machine Learning, pages 5739–
5748. PMLR, 2019.

[35] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional net-

works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[36] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[37] S. Swayamdipta, R. Schwartz, N. Lourie, Y. Wang, H. Hajishirzi, N. A. Smith, and

Y. Choi. Dataset cartography: Mapping and diagnosing datasets with training

dynamics. arXiv preprint arXiv:2009.10795, 2020.
[38] P. M. VanNostrand, H. Zhang, D. M. Hofmann, and E. A. Rundensteiner. Facet:

Robust counterfactual explanation analytics. Proceedings of the ACM on Manage-
ment of Data, 1(4):1–27, 2023.

[39] M. Vartak, J. M. F. da Trindade, S. Madden, and M. Zaharia. Mistique: A system

to store and query model intermediates for model diagnosis. In Proceedings of
the 2018 International Conference on Management of Data, pages 1285–1300, 2018.

[40] M. Vartak, H. Subramanyam, W.-E. Lee, S. Viswanathan, S. Husnoo, S. Madden,

and M. Zaharia. Modeldb: a system for machine learning model management.

In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, pages 1–3,
2016.

[41] T. Vogels, S. P. Karimireddy, and M. Jaggi. Powersgd: Practical low-rank gradi-

ent compression for distributed optimization. Advances in Neural Information
Processing Systems, 32, 2019.

[42] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright. Atomo:

Communication-efficient learning via atomic sparsification. Advances in Neural
Information Processing Systems, 31, 2018.

[43] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. Terngrad: Ternary

gradients to reduce communication in distributed deep learning. Advances in
neural information processing systems, 30, 2017.

[44] W. Wu, L. Flokas, E. Wu, and J. Wang. Complaint-driven training data debugging

for query 2.0. In SIGMOD, pages 1317–1334, 2020.
[45] M. Xia, S. Malladi, S. Gururangan, S. Arora, and D. Chen. Less: Selecting in-

fluential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333,
2024.

[46] T. Xiao, X.-Y. Zhang, H. Jia, M.-M. Cheng, and M.-H. Yang. Semi-supervised

learning with meta-gradient. In International Conference on Artificial Intelligence
and Statistics, pages 73–81. PMLR, 2021.

[47] Y. Xu, L. Zhu, L. Jiang, and Y. Yang. Faster meta update strategy for noise-robust

deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 144–153, 2021.

[48] H. Yong, J. Huang, X. Hua, and L. Zhang. Gradient centralization: A new optimiza-

tion technique for deep neural networks. In European Conference on Computer
Vision, pages 635–652. Springer, 2020.

[49] J. Yoon, S. Arik, and T. Pfister. Data valuation using reinforcement learning. In

International Conference on Machine Learning, pages 10842–10851. PMLR, 2020.

[50] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural

networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.
[51] Z. Yuan, J. Zhang, Y. Jia, C. Tan, T. Xue, and S. Shan. Meta gradient adversarial

attack. In Proceedings of the IEEE/CVF International Conference on Computer

1458

Vision, pages 7748–7757, 2021.
[52] H. Zhang, L. Cao, S. Madden, and E. Rundensteiner. Lancet: labeling complex

data at scale. Proceedings of the VLDB Endowment, 14(11), 2021.
[53] H. Zhang, L. Cao, P. VanNostrand, S. Madden, and E. A. Rundensteiner. Elite:

Robust deep anomaly detection with meta gradient. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 2174–
2182, 2021.

[54] X. Zhang, J. J. Zhao, and Y. LeCun. Character-level convolutional networks for

text classification. In NIPS, 2015.

[55] Z. Zhang and T. Pfister. Learning fast sample re-weighting without reward data.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
725–734, 2021.

[56] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler.

Aligning books and movies: Towards story-like visual explanations by watching

movies and reading books. In Proceedings of the IEEE international conference on
computer vision, pages 19–27, 2015.

1459

	Abstract
	1 Introduction
	2 Preliminaries
	3 Gradient-based DNN Analytics
	3.1 Meta Gradient
	3.2 MetaStore Gradient-based Analytics

	4 System Overview
	5 Space-Efficient Gradient Storage
	5.1 Gradient Storage: Linear Layers
	5.2 Gradient Storage: Convolutional Layers
	5.3 Gradient Storage: Self-Attention Layers
	5.4 Gradient Storage: Complex Blocks

	6 Meta-data Analyticss: P2P
	6.1 P2P Operator: Linear Layers
	6.2 P2P Operator: Convolutional Layers
	6.3 P2P Operator: Self-Attention Layers
	6.4 Discussion: General to Other Scenarios

	7 Meta-data Analytics: Batch Operators
	7.1 P2B Operator: No Gradient Restore
	7.2 Other Operators: B2P and B2B

	8 Experiments
	8.1 Experimental Setup
	8.2 Storage Costs
	8.3 P2P Operator: End-to-End Execution Time
	8.4 P2B Operator: Execution Time
	8.5 Meta-data Collection and Storage Times
	8.6 Augmented with Data Compression
	8.7 Utility of Gradient-based Analytics

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

