
PairwiseHist: Fast, Accurate and Space-Efficient Approximate
Query Processing with Data Compression

Aaron Hurst

Aarhus University

Denmark

ah@ece.au.dk

Daniel E. Lucani

Aarhus University

Denmark

daniel.lucani@ece.au.dk

Qi Zhang

Aarhus University

Denmark

qz@ece.au.dk

ABSTRACT
Exponential growth in data collection is creating significant chal-

lenges for data storage and analytics latency. Approximate Query

Processing (AQP) has long been touted as a solution for accelerating

analytics on large datasets, however, there is still room for improve-

ment across all key performance criteria. In this paper, we propose

a novel histogram-based data synopsis called PairwiseHist that uses

recursive hypothesis testing to ensure accurate histograms and can

be built on top of data compressed using Generalized Deduplica-

tion (GD). We thus show that GD data compression can contribute

to AQP. Compared to state-of-the-art AQP approaches, Pairwise-

Hist achieves better performance across all key metrics, including

2.6× higher accuracy, 3.5× lower latency, 24× smaller synopses and

1.5–4× faster construction time.

PVLDB Reference Format:
Aaron Hurst, Daniel E. Lucani, and Qi Zhang. PairwiseHist: Fast, Accurate

and Space-Efficient Approximate Query Processing with Data

Compression. PVLDB, 17(6): 1432 - 1445, 2024.

doi:10.14778/3648160.3648181

1 INTRODUCTION
Rapidly advancing digital transformation is driving exponential

growth in data volumes across many sectors. This poses significant

challenges for current infrastructure and data management solu-

tions, which must not only handle swelling data workloads, but

also meet the demands of increasingly advanced analytics. Efficient

data storage and analytics techniques are therefore crucial.

Approximate Query Processing (AQP) is a well-established field

that focuses on enabling fast analytics on Big Data by sacrific-

ing some degree of accuracy [5, 30]. AQP techniques are typi-

cally based on either sampling or data synopses, or a hybrid of

the two [30, 32, 41, 42]. In general, small samples or compact syn-

opses enable analytics to be performed over large datasets within

required latency constraints. However, all AQP approaches exhibit

a distinct trade-off between accuracy, latency and synopsis size.

In this paper, we propose a novel histogram-based data synopsis

for AQP called PairwiseHist that consists of three key components:

i) one-dimensional histograms that capture within-column data

distributions, ii) two-dimensional histograms that capture relation-

ships between each pair of columns (hence, PairwiseHist), and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.

doi:10.14778/3648160.3648181

Latency

Accuracy

Query bounds

Construction

time

Total storage

requirements

Synopsis size

PairwiseHist

DeepDB

DBEst++

Figure 1: Relative performance comparison of PairwiseHist,
DeepDB and DBEst++ summarising Figs. 8, 10 and 11 and Ta-
ble 6. Outer rings indicate better performance. Each interval
represents approximately 2× improvement.

iii) small metadata for each histogram bin that enhance query pre-

cision, including the minimum, maximum and number of unique

values. By using histograms, PairwiseHist inherits desirable prop-

erties including accurate query bounds and effective outlier recall,

while the small number of histograms minimises synopsis size. All

histograms within PairwiseHist are constructed using recursive

hypothesis testing that ensures each bin contains uniformly dis-

tributed data, leading to high query accuracy. Low query execution

latency is realised by novel methods for resolving multi-predicate

queries that require only a few relatively small matrix multiplica-

tions. Overall, PairwiseHist delivers all-round superior performance

across accuracy, latency, synopsis size, synopsis construction time

and query bounds compared to state-of-the-art AQP techniques, as

illustrated in Fig. 1.

PairwiseHist takes inspiration from recent works in data com-

pression that demonstrate (approximate) data clustering can be

performed directly on compressed data without decompression [22–

24]. That is, by using Generalized Deduplication (GD) data com-

pression [54–57], part of the compressed data known as bases can
serve as a data synopsis on which analytics tasks can be performed

efficiently. Compared to GD bases, PairwiseHist significantly re-

duces storage requirements and improves accuracy by using low-

dimensional histograms with variable precision.

While PairwiseHist is a stand-alone AQP technique in its own

right, we also propose implementing it alongside data compression,

as illustrated in Fig. 2. Specifically, we use GreedyGD [23], a recent

version of GD, which is a lossless data compression algorithm that

offers state-of-the-art compression ratios and low random access

1432

https://orcid.org/0000-0002-9683-7774
https://orcid.org/0000-0001-5303-9804
https://orcid.org/0000-0001-5303-9804
https://doi.org/10.14778/3648160.3648181
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648181

SQL Parser Weightings Aggregation Transform

G
re
ed

yG
D
P
r
e
-
p
r
o
c
e
s
s
o
r PairwiseHist

2-d histograms1-d histograms

Metadata:

• Bin edges & centre

•Min & max values

• Bin count

• Unique value count

Compressed Data
GreedyGD

DeviationsBases

New data

0.3,AB,. . .

Database

SELECT AVG(delay) FROM . . . 109.3 ± 1.8

Figure 2: Our proposedAQP frameworkwith compression, in-
cluding data ingestion and PairwiseHist construction (black
arrows), query execution (blue) and data updates (red).

cost. While originally designed for IoT, GD has also proved effective

in several other domains [14, 16, 23, 40, 47]. In our proposed AQP

framework, GreedyGD both reduces overall storage requirements

and accelerates synopsis construction.

Due to its small synopsis size and low query latency, our ap-

proach also enables Edge analytics, even on resource-constrained

devices. This comes with many benefits, including low (commu-

nication) latency, scalability, privacy, energy savings and mobil-

ity [26, 39, 60]. Meanwhile, PairwiseHist’s fast construction and low

storage requirements reduce Cloud storage and computing costs

and enable more frequent updates.

In summary, the key contributions of this paper include:

(1) A novel histogram-based AQP technique called Pairwise-

Hist that uses a combination of one- and two-dimensional

histograms and an efficient storage encoding to deliver

data synopses that are 24× smaller and up to 4× faster to
construct than state-of-the-art AQP methods DeepDB [19]

and DBEst++ [34],

(2) Query execution techniques for seven common aggregation

functions that deliver at least 2.6× better accuracy (0.28%

median error vs. 0.73–28.9%), 3.5× lower latency and more

accurate bounds than the state-of-the-art,

(3) A novel AQP framework that integrates data compression

to reduce overall storage requirements by up to 4.3×, and
(4) A comprehensive performance evaluation of PairwiseHist

in comparison to the state-of-the-art across 11 real-world

datasets and two datasets scaled-up using IDEBench [12].

The remainder of this paper is structured as follows. Section 2

describes related work. Section 3 provides our system overview.

Section 4 outlines the PairwiseHist data structure and construction

algorithm. Section 5 defines the theory and mathematical formula-

tions for query execution. Section 6 evaluates the performance of

PairwiseHist. Finally, Section 7 concludes the paper.

2 RELATEDWORK
AQP methods are typically classified as either sampling-based or

synopses-based [5]. Sampling approaches can be either offline or

online [8]. Online methods select samples at query time and at-

tempt to minimise the amount of data that must be accessed to

achieve a desired accuracy. Gapprox [4], for example, uses cluster

sampling to reduce processing. Offline approaches, on the other

hand, attempt to prepare in advance the most representative sam-

ple for the most queries. For example, Babcock et al. [6] use biased

sampling and BlinkDB [3] uses stratified sampling. More recent

offline sampling work has focused on additional features, such as

integration middleware [41] and increasing sample re-usability [45].

However, sampling methods generally struggle with skewed data

and may support limited aggregation functions [30].

Synopsis-based approaches build a compact summary of the

data using statistical or machine learning techniques. Histograms

are a classical synopsis approach that is widely used in selectiv-

ity estimation, which involves estimating the number of tuples

that a query will access. This is an important step in database

query optimisers and is equivalent to AQP for COUNT queries.

Many histogram algorithms exist, including simple equi-width and

equi-depth histograms, as well as advanced methods, such as V-

optimal histograms [25], entropy-based histograms [51] and oth-

ers [1, 11, 50]. Most approaches, however, are limited to one dimen-

sion. Multi-dimensional histograms are notoriously challenging

to construct and their storage scales exponentially with the num-

ber of dimensions [10, 62]. Nonetheless, some multi-dimensional

histograms for selectivity estimation are available, including Dig-

itHist [48], DMMH [62] and STHoles [7]. To avoid the pitfalls of

high dimensionality, DigitHist uses lossy compression, DMMH uses

density modelling and STHoles uses previous query results. Cor-

mode et al. [10] also discuss using collections of histograms, which

is the approach we have taken with PairwiseHist. Common to all

histograms is that accuracy depends on ensuring a uniform distri-

bution of tuples within each bin. To the best of our knowledge, our

approach is the first to utilise hypothesis testing for this purpose.

Most recent synopsis-based AQP works focus on machine learn-

ing. These can be classified as either generative, which create syn-

thetic data for evaluating queries, or inferential, which directly

predict AQP results [29]. In [27, 28], a generative model that cap-

tures the joint probability distribution of a database using Mixed

Sum-Product Networks (MSPNs) is proposed. This approach can

evaluate simple queries directly using the MSPN weights or gen-

erate (synthetic) samples to answer more complex queries. While

this provides high accuracy, low latency and compact summaries, it

requires significant construction time (hours for just 10
6
samples).

DeepDB [19] proposes Relational SumProduct Networks (RSPNs),

which are purely inferential and extend (M)SPNs to supportmultiple

database tables, complex queries and model updates. In comparison

to [28], DeepDB achieves much faster construction, but has poor

latency with multi-predicate queries, higher storage requirements

and can give imprecise bounds. Our evaluation also revealed that

DeepDB does not support OR relationships between predicates,

despite claiming to, and performs poorly on real-world data.

DBEst [35] is an inferential approach that uses a combination of

model types. Kernel density estimators model individual columns,

while regression models capture relationships between pairs of

columns. This is similar to PairwiseHist with the density and re-

gression models corresponding to one- and two-dimensional his-

tograms, respectively. A significant limitation of DBEst is that a new

1433

model is required for every query template, which limits flexibility

and exponentially increases synopsis storage requirements.

DBEst++ [34] improves DBEst by switching to mixture density

networks for both regression and density modelling. This signifi-

cantly reduces storage requirements, delivers better accuracy and

latency, and supports data updates. However, storage requirements

for DBEst++ are misleading due to each model template requir-

ing its own model. Our tests also revealed that DBEst++ does not

support queries involving more than two columns, OR relation-

ships between predicates, queries on only categorical columns or

inequality predicates on date/time columns.

Other machine learning approaches include LAQP [61], which

combines an error prediction model with sampling, Electra [49],

which focuses on queries with many-predicates, NeuroSketch [58],

which is a bounded inferential model trained on queries, and Gen-

erative Adversarial Networks [13]. Typically, machine learning

methods are constructed from samples and exhibit similar limi-

tations as sampling-based AQP methods, namely vulnerability to

skewed data and limited aggregation function support.

A small number of unified approaches that combine online

sampling and synopses have also been proposed. For example,

AQP++ [42] generates a set of pre-computed aggregations known as

a prefix cube and answers queries by supplementing relevant prefix

cube elements with sampling. A similar approach has also been pro-

posed for selectivity estimation [38]. More recently, [32] proposed

PASS, which has a more flexible synopsis design, reminiscent of

DigitHist [48], that consists of a hierarchical set of pre-computed

aggregates at different resolutions that guide online stratified sam-

pling. Unlike other sampling-based approaches, PASS provides both

probabilistic and deterministic bounds. However, a significant limi-

tation is nearly 30× slower construction than AQP++ [32], which

itself requires over 20 minutes for just a 50 MB sample [42].

Many AQP approaches provide query error bounds, which give

analysts an indication of the confidence that they can place in AQP

results. Bounds are typically based on probabilistic confidence inter-

vals [30, 59], but can also be deterministic [3, 4, 31]. Unfortunately,

probabilistic bounds can often be incorrect [2] while deterministic

bounds may be too broad to be useful.

The overall performance of state-of-the-art AQP techniques is

summarised in Table 1, in which versatility refers to the variety of

supported query templates. As can be seen, PairwiseHist delivers

comprehensively superior performance. Moreover, by using data

compression, it uniquely offers significant overall storage reduction.

3 SYSTEM OVERVIEW
Problem Definition. Consider a dataset D with 𝑁 rows and 𝑑

attributes 𝑋1, . . . , 𝑋𝑑 and queries of the form:

SELECT 𝐹 (𝑋𝑖) FROM D WHERE 𝑃1 AND/OR 𝑃2 . . .

GROUP BY . . . ;

where 𝐹 is an aggregation function (e.g. AVG), 𝑃1, 𝑃2, . . . are predi-

cate conditions of the form “𝑋 𝑗 𝑂𝑃 LITERAL”, where𝑂𝑃 is a binary

logical operator (i.e., <, >, ≤, ≥,= or ≠) and LITERAL is a valid

value for column 𝑋 𝑗 , and GROUP BY can be applied to any cat-

egorical column. It is assumed that D is large enough such that

exact query execution is prohibitively expensive. Therefore, the

task is to design a framework such that bounded approximate query

Table 1: PairwiseHist compared to previous AQP works.

Accuracy Latency Bounds Size Build Versatility

PairwiseHist <1% sub-ms yes sub-MB secs v. high

VerdictDB [41] 1% seconds yes GBs ? v. high
Gapprox [4] <5% seconds yes n/a n/a low

BlinkDB [3] <10 % seconds yes GBs n/a high

DigitHist [48] 1% sub-ms yes MBs mins v. low

DMMH [62] 1–2% ms no sub-MB secs v. low

STHoles [7] 10% ? no sub-MB ? v. low

DeepDB [19] 1% ms yes MBs mins high

DBEst++ [34] 1%
∗

ms no MBs hours low

NeuroSketch [58] 5% sub-ms yes sub-MB mins v. high
LAQP [61] 10% ms no sub-MB ? v. high
Electra [49] 10% ? no ? ? low

PASS [32] <1% ms yes MBs mins high

AQP++ [42] <1% seconds yes MBs mins high

“?” indicates not reported by the authors.
∗
Much larger error observed in practice.

chunk 1

chunk 2

chunk 3

. . .

chunk 𝑛

Data

base 1

base 2

base 1

. . .

base 2

dev 1

dev 2

dev 3

. . .

dev 𝑛

Bases & Deviations

base 1

base 2

. . .

[1]

[2]

[1]

. . .

[2]

dev 1

dev 2

dev 3

. . .

dev 𝑛

Deduplicated

Figure 3: GD splits data into bases and deviations.

results can be obtained with high accuracy and low latency, while

minimising synopsis size, synopsis construction time and overall

storage requirements. Missing values must also be supported.

Data Compression. In our proposed AQP framework, Pairwise-

Hist is applied on top of compressed data, which reduces storage

requirements. As shown in Fig. 2, GreedyGD compresses incoming

data, which includes pre-processing to improve compressability.

Pre-processing is applied to each column independently based on its

data type and includes minimum value subtraction, floating point to

integer conversion (e.g. 10.22 to 1022), frequency-ranked categorical

value encoding (i.e., most common encoded as 0, second most as

1, etc.) and encoding missing values. Importantly, pre-processing

does not require additional storage or memory and datasets can be

processed in arbitrarily-sized batches, which allows processing of

datasets that are too large to fit in memory.

GreedyGD splits data chunks into bases and deviations. Bases
contain the majority of the information and are deduplicated, while

deviations are stored verbatim with IDs linking them to the appro-

priate bases, as illustrated in Fig. 3. Compression is achieved when

there are few bases compared to the number of data chunks. In our

framework, a chunk corresponds to a row in a relational database

table and bases contain the most significant bits from each attribute.

New rows can be added incrementally to the compressed data.

PairwiseHist. Once the data is compressed, PairwiseHist is built

on top of the compressed data by taking (a sample of) the bases as

input for the initial histogram bin edges. The histograms are then

refined using hypothesis testing to ensure that the distributions

1434

Table 2: Notations

C
o
n
s
t
r
u
c
t
i
o
n

𝑑 No. columns in the dataset

𝑁 No. rows in the dataset

𝑁𝑠 No. samples used to construct PairwiseHist

𝜌 PairwiseHist sampling ratio, 𝑁𝑠/𝑁
𝑀 Minimum points for bins to be split

𝛼 Significance level for hypothesis tests

H
i
s
t
o
g
r
a
m
s

𝑘 (𝑖) No. histogram bins in column 𝑖

𝒆 (𝑖) Bin edges for column 𝑖

𝑯 (𝑖) Bin counts matrix for column 𝑖

𝒗 (𝑖)± Bin minimum and maximum values for column 𝑖

𝒄 (𝑖) Bin midpoints for column 𝑖

𝒄 (𝑖)± Bin weighted centre bounds for column 𝑖

𝒖 (𝑖) No. unique values in each bin for column 𝑖

H
y
p
o
t
h
e
s
i
s Δ Bin width

𝛿 Sub-bin width

𝑠 No. sub-bins in a given bin

ℏ Sub-bin count

Q
u
e
r
i
e
s

𝜷 Bin coverage

𝒘 Bin weightings

𝑎 No. sub-bins fully covered by a query

𝑏 No. sub-bins fully or partially covered by a query

𝑡∗ Bin index of query result (MEDIAN/MIN/MAX only)

of tuples within individual bins are approximately uniform. This

process is described in detail in Section 4. As illustrated in Fig. 2,

PairwiseHist consists of one-dimensional histograms for each col-

umn, two-dimensional histograms for every pair of columns and

various metadata for each histogram bin. This collection of his-

tograms enables rapid query aggregation on any column subject

to arbitrary combinations of predicate conditions. Furthermore,

compared to a naïve multi-dimensional histogram, for which stor-

age increases exponentially with the number of dimensions [62],

our approach reduces storage requirements from𝑂 (𝑘𝑑) to𝑂 (𝑑2𝑘2)
for 𝑑 dimensions and 𝑘 bins per dimension. A compact storage

encoding for PairwiseHist is also proposed in Subsection 4.3.

PairwiseHist can also support multi-table databases. That is,

queries across different tables can be resolved via two-dimensional

histograms involving the primary/foreign keys. However, in this

paper we focus on single-table queries.

If PairwiseHist is used independently of GreedyGD, then his-

tograms are constructed from scratch (i.e., without using bases as

initial bin edges), with slightly longer synopsis construction time

due to less precise initial conditions.

4 PAIRWISEHIST
PairwiseHist generates its collection of histograms by recursively

refining (i.e., splitting) an initial set of histogram bins using hy-

pothesis testing, which ensures that data points within individual

bins are sufficiently uniformly distributed. Refinement is termi-

nated when a bin is either uniform or has too few points to be

split further. PairwiseHist is thus parameterised by the minimum

number of points required for a bin to be split,𝑀 , the hypothesis

2-d histogram: 𝑯 (𝑖 𝑗)

𝑘 (𝑗 |𝑖)

𝑘
(𝑖
|𝑗
)

Bin (𝑡𝑖 , 𝑡 𝑗) : ℎ (𝑖 𝑗)𝑡𝑖𝑡 𝑗

𝑒
(𝑖 | 𝑗)
𝑡𝑖+1

𝑒
(𝑖 | 𝑗)
𝑡𝑖

𝑒
(𝑗 |𝑖)
𝑡 𝑗

𝑒
(𝑗 |𝑖)
𝑡 𝑗 +1

𝑣
(𝑖 | 𝑗)+
𝑡𝑖

𝑣
(𝑖 | 𝑗)−
𝑡𝑖

𝑣
(𝑗 |𝑖)+
𝑡 𝑗

𝑣
(𝑗 |𝑖)−
𝑡 𝑗

𝑐
(𝑗 |𝑖)
𝑡 𝑗

𝑐
(𝑖 | 𝑗)
𝑡𝑖

Figure 4: Notation for two-dimensional histograms with bin
counts matrix 𝑯 (𝑖 𝑗) and individual bin count ℎ (𝑖 𝑗)𝑡𝑖𝑡 𝑗

.

test significance level, 𝛼 , and the number of samples used to con-

struct PairwiseHist, 𝑁𝑠 . Before describing PairwiseHist in detail,

this section provides an overview of the key notation, which is

summarised in Table 2.

Bin edges for one-dimensional histograms are denoted by the

vector 𝒆 (𝑖) =
⟨︂
𝑒
(𝑖)
1

, 𝑒
(𝑖)
2

, . . . , 𝑒
(𝑖)
𝑘 (𝑖)

⟩︂
, where the superscript (𝑖) indi-

cates the column to which the histogram applies and 𝑘 (𝑖) denotes
the number of bins for the one-dimensional histogram for column 𝑖 .

For two-dimensional histograms, the bin edges for columns 𝑖 and 𝑗

are denoted 𝒆 (𝑖 | 𝑗) and 𝒆 (𝑗 |𝑖) , respectively. This superscript notation
for two-dimensional histograms, (𝑖 | 𝑗) and (𝑗 |𝑖), indicates the fact
that two-dimensional histograms may have additional bin edges

in either or both dimensions compared to one-dimensional his-

tograms due to additional refinement. One-dimensional histogram

bin counts are denoted by the 𝑘 (𝑖) × 𝑘 (𝑖) diagonal matrix 𝑯 (𝑖)

where the diagonal elements contain the bin counts. That is:

𝑯 (𝑖) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ
(𝑖)
1

0 · · · 0

0 ℎ
(𝑖)
2

· · · 0

...
...

. . .
...

0 · · · 0 ℎ
(𝑖)
𝑘 (𝑖)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where ℎ
(𝑖)
𝑡 denotes the bin count for bin 𝑡 . Two-dimensional his-

togram bin counts are similarly denoted by the 𝑘 (𝑖 | 𝑗) ×𝑘 (𝑗 |𝑖) matrix

𝑯 (𝑖 𝑗) . In this case, off-diagonal values may be non-zero.

PairwiseHist stores various metadata for each bin, namely: 1)

minimum and maximum actual data values, 𝒗 (𝑖)−𝑡 and 𝒗 (𝑖)+𝑡 ; 2) the

bin midpoint, 𝑐 (𝑖)𝑡 , which is equidistant between the minimum and

maximum values; 3) bounds on the weighted centre of the data

points within the bin, 𝑐
(𝑖)−
𝑡 and 𝑐

(𝑖)+
𝑡 ; and 4) the unique count, 𝑢 (𝑖)𝑡 ,

which is the number of unique values in the bin. Note that for

two-dimensional histograms, each of these metadata apply to both

dimensions, as illustrated in Fig. 4.

In this paper, vectors are indicated by bold lower case letters

and matrices by bold upper case letters. The L1 norm is denoted

by ∥·∥1, the vector dot product by 𝒙 · 𝒚, Hadamard (element-wise)

multiplication by 𝒙 ⊙ 𝒚 and Hadamard division by 𝒙 ⊘ 𝒚. We also

use specific index variables for specific purposes. That is, 𝑖 and 𝑗

are used for column indices within a dataset, 𝑡 is used for histogram

bins and 𝑟 is used for sub-bins. The terms column and dimension
are used interchangeably, as well as tuple and data point.

1435

Algorithm 1 BuildPairwiseHist

Inputs: dataset D, sample size 𝑁𝑠 , minimum points𝑀 , hypothesis test signifi-

cance 𝛼 , initial bin edges 𝐸0 (optional)

Outputs: PairwiseHist data structure

1: 𝑫 ← downsample D to 𝑁𝑠 rows

2: for 𝑖 = 1, 2, . . . , number of columns in D do
3: // 1-d histograms
4: �̂� (𝑖) ← downsample 𝐸

(𝑖)
0

to ⌈𝑁𝑠/𝑀 ⌉ values, else min/max of D (𝑖)
5: 𝒆 (𝑖) , 𝒗 (𝑖)−, 𝒗 (𝑖)+, 𝒖 (𝑖) ← ⟨𝑒 (𝑖)

0
⟩, ∅, ∅, ∅ // initialise

6: for 𝑡 = 1, 2, . . . , size of �̂� (𝑖) − 1 do // loop over initial bins
7: 𝒙𝑡 ← elements of 𝑫 (𝑖) between of 𝑒

(𝑖)
𝑡 and 𝑒

(𝑖)
𝑡+1

8: 𝒆 (𝑖)
new

, 𝒗 (𝑖)−
new

, 𝒗 (𝑖)+
new

, 𝒖 (𝑖)
new
← RefineBin1D

(︁
𝑒
(𝑖)
𝑡 , 𝑒

(𝑖)
𝑡+1, 𝒙𝑡 , 𝑀, 𝛼

)︁
9: Append 𝒆 (𝑖)

new
, 𝒗 (𝑖)−

new
, 𝒗 (𝑖)+

new
, 𝒖 (𝑖)

new
to 𝒆 (𝑖) , 𝒗 (𝑖)−, 𝒗 (𝑖)+, 𝒖 (𝑖)

10: 𝒄 (𝑖) ←
(︁
𝒗 (𝑖)+ + 𝒗 (𝑖)−

)︁
/2

11: 𝒄−(𝑖) , 𝒄+(𝑖) ← bin centre bounds (Eq. 10)

12: 𝑯 (𝑖) ← Hist
(︁
𝑫 (𝑖) , 𝒆 (𝑖)

)︁
13: // 2-d histograms
14: for 𝑗 = 1, 2, . . . , 𝑖 − 1 do // all columns before 𝑖
15: 𝒆 (𝑖 | 𝑗) , 𝒆 (𝑗 |𝑖) ← 𝒆 (𝑖) , 𝒆 (𝑗) // initial 2-d bin edges
16: 𝑯 (𝑖 𝑗) ← Hist(𝑫 (𝑖 𝑗) , 𝒆 (𝑖 | 𝑗) , 𝒆 (𝑗 |𝑖)) // initial 2-d bin counts
17: for each bin (𝑡𝑖 , 𝑡 𝑗) in 𝑯 (𝑖 𝑗) where ℎ𝑡𝑖 𝑡 𝑗 > 𝑀 do
18: 𝑿𝑡𝑖 ,𝑡 𝑗

← elements of 𝑫 (𝑖 𝑗) within bin (𝑡𝑖 , 𝑡 𝑗)
19: 𝒆 (𝑖 | 𝑗)

new
, 𝒆 (𝑗 |𝑖)

new
← RefineBin2D(𝑒 (𝑖 | 𝑗)𝑡𝑖

, 𝑒
(𝑖 | 𝑗)
𝑡𝑖+1 , 𝑒

(𝑗 |𝑖)
𝑡 𝑗

, 𝑒
(𝑗 |𝑖)
𝑡 𝑗 +1 ,

𝑿𝑡𝑖 ,𝑡 𝑗
, 𝑀, 𝛼)

20: Insert 𝒆 (𝑖 | 𝑗)
new

into 𝒆 (𝑖 | 𝑗) after index 𝑡𝑖
21: Insert 𝒆 (𝑗 |𝑖)

new
into 𝒆 (𝑗 |𝑖) after index 𝑡 𝑗

22: 𝑯 (𝑖 𝑗) ← Hist(𝑫 (𝑖 𝑗) , 𝒆 (𝑖 | 𝑗) , 𝒆 (𝑗 |𝑖)) // refined 2-d bin counts
23: 𝒗 (𝑖 | 𝑗)− , 𝒗 (𝑗 |𝑖)− , 𝒗 (𝑖 | 𝑗)+ , 𝒗 (𝑗 |𝑖)+ ← min/max values in each bin

24: 𝒄 (𝑖 | 𝑗) , 𝒄 (𝑗 |𝑖) ← (𝒗 (𝑖 | 𝑗)+ + 𝒗 (𝑖 | 𝑗)−)/2, (𝒗 (𝑗 |𝑖)+ + 𝒗 (𝑗 |𝑖)−)/2
25: 𝒄−(𝑖 | 𝑗) , 𝒄+(𝑖 | 𝑗) , 𝒄−(𝑗 |𝑖) , 𝒄+(𝑗 |𝑖) ← bin centre bounds (Eq. 10)

26: 𝒖 (𝑖 | 𝑗) , 𝒖 (𝑗 |𝑖) ← number of unique values in each bin

The following subsections describe PairwiseHist construction

(Subsection 4.1), bin weighted centre bounds (Subsection 4.2) and

PairwiseHist storage (Subsection 4.3).

4.1 Histogram construction
PairwiseHist construction is outlined in Algorithm 1, which consists

of three sections: 1) extract a sample 𝑫 of size 𝑁𝑠 from dataset D
(line 1), 2) iterate over each column to generate one-dimensional

histograms (lines 3–11), and 3) iterate over each pair of columns to

generate two-dimensional histograms (lines 13–26).

One-dimensional histograms are generated by first selecting

initial bin edges, �̂�, using either the bases from GreedyGD (down-

sampled to at most ⌈𝑁𝑠/𝑀⌉) or just the min and max values of

the relevant column (line 4). Each initial bin is then refined using

RefineBin1D (lines 6–9), which determines whether a bin should

be split or not based on a hypothesis test. The one-dimensional

histograms are finalised by computing the midpoints, weighted

centre bounds and bin counts (using a standard histogram function,

denoted Hist) in lines 10–12.

RefineBin1D is described in detail in Algorithm 2. This is a recur-

sive algorithm that checks whether a given bin needs to be split, i.e.,

if the distribution of data points within the bin is not sufficiently

uniform. If so, it splits the bin and calls itself on the two newly

created splits, denoted by 𝐿 and 𝑅. We tested both equal-width (split

at bin midpoint) and equal-depth (split at median) approaches and

found equal-width to perform slightly better. Bins will not be split

Algorithm 2 RefineBin1D

Inputs: bin lower edge 𝑒𝐿 , bin upper edge 𝑒𝑅 , vector of data values 𝒙 within the

bin, minimum points𝑀 , significance 𝛼

Outputs: upper bin edges 𝒆∗ , bin minimum values 𝒗− , bin maximum values 𝒗+ ,
bin unique counts 𝒖

1: 𝑼 ← unique values in 𝒙
2: 𝑁𝑈 ← number of elements in𝑈

3: if 𝒙 is empty then
4: return ⟨𝑒𝑅 ⟩, ⟨𝑒𝐿 ⟩, ⟨𝑒𝑅 ⟩, ⟨0⟩
5: else if 𝑁𝑈 = 1 then
6: return ⟨𝑒𝑅 ⟩, ⟨𝑈0 ⟩, ⟨𝑈0 ⟩, ⟨1⟩
7: else if fewer than𝑀 tuples in 𝒙 or IsUniform(𝒙, 𝑒𝐿, 𝑒𝑅, 𝑁𝑈 , 𝛼) then
8: return ⟨𝑒𝑅 ⟩, ⟨min(𝑼) ⟩, ⟨max(𝑼) ⟩, ⟨𝑁𝑈 ⟩
9: else
10: 𝑧 ← select split point

11: 𝒙𝐿, 𝒙𝑅 ← split 𝒙 at 𝑧

12: 𝒆∗
𝐿
, 𝒗−

𝐿
, 𝒗+

𝐿
, 𝒖

𝐿
← RefineBin1D(𝒙𝐿, 𝑒𝐿, 𝑧,𝑀, 𝛼)

13: 𝒆∗
𝑅
, 𝒗−

𝑅
, 𝒗+

𝑅
, 𝒖

𝑅
← RefineBin1D(𝒙𝑅, 𝑧, 𝑒𝑅,𝑀, 𝛼)

14: return ⟨𝒆∗
𝐿
, 𝒆∗

𝑅
⟩, ⟨𝒗−

𝐿
, 𝒗−

𝑅
⟩, ⟨𝒗+

𝐿
, 𝒗+

𝑅
⟩, ⟨𝒖𝐿, 𝒖𝑅 ⟩

(a) (b) (c) (d) (e) (f)

Figure 5: Illustration of two-dimensional bin refinement:
(a) original data; (b) first bin is uniformly distributed (green);
(c) second bin is non-uniformly distributed (red) in both di-
mensions, but less uniform in the vertical dimension, so a
new split is added to all bins in the same column; (d) one of
the resulting sub-bins is non-uniform in the vertical dimen-
sion, so a new split is added; (e) the resulting sub-bins are
uniform (green) or contain fewer than 𝑀 points (gray), no
further splits; (f) both sub-bins from the third original bin
contain fewer than𝑀 points, no further splits.

if they are empty (line 3), have only one unique value (line 5) or

have too few data points (line 7). RefineBin1D returns the upper

edges from the original bin and all new splits, as well as the bin

minimum(s), maximum(s) and unique count(s).

Two-dimensional histograms are constructed using an inner

loop in BuildPairwiseHist (line 14) that iterates over all columns

previously iterated over by the outer loop (line 2), thereby covering

all pairs of columns. For each column pair, an initial histogram is

created using bin edges from the corresponding one-dimensional

histograms (lines 15–16). This histogram is then refined by apply-

ing RefineBin2D to each bin with at least 𝑀 tuples (lines 17–21).

RefineBin2D is the two-dimensional analogue of RefineBin1D and

performs a hypothesis test for uniformity on each column sepa-

rately. In the case where both columns are non-uniform, the split is

applied to the least uniform column. Note that any bin splits created

by RefineBin2D apply only to the current column pair. That is, if a

1436

split is applied to bin 𝑡𝑖 in the (𝑖 𝑗)th histogram, it does not affect

any other histograms involving column 𝑖 . However, the split does
apply to all bins with the same bin index 𝑡𝑖 in the (𝑖 𝑗)th histogram.

Fig. 5 provides an illustration of the two dimensions bin refinement

process. The two-dimensional histograms are completed by calcu-

lating the bin counts, minimums, maximums, midpoints, weighted

centre bounds and unique counts (lines 22–26).

Hypothesis testing in both RefineBin1D and RefineBin2D is

performed using the function IsUniform. Specifically, a chi-squared

test is performed against the null hypothesis that data points in the

given bin are uniformly distributed between the bin edges. That

is, the bin is divided into a number of sub-bins and the number

of points in each sub-bin is compared to the expected number

under the null hypothesis. The appropriate number of sub-bins, 𝑠 ,

is determined using the Terrell-Scott inequality [46] as follows:

𝑠 =

⌈︂
(2𝑢)1/3

⌉︂
. (2)

The test statistic is then:

𝜒2 =

𝑠−1∑︂
𝑟=0

(︁
ℏ𝑟 − ℏˆ

)︁
2

ℏˆ
, (3)

where ℏˆ = ℎ/𝑠 is the expected sub-bin count under the null hypoth-

esis and ℏ𝑟 is the actual count for the 𝑟 th sub-bin. The critical value,

𝜒2

𝛼 , is defined such that Pr
(︁
𝜒2 > 𝜒2

𝛼

)︁
= 𝛼 and the null hypothesis

is rejected (and the bin split) if 𝜒2 > 𝜒2

𝛼 .

Notably, PairwiseHist construction is highly parallelisable, since

each histogram and bin refinement can be computed independently,

provided one-dimensional histograms are constructed first.

4.2 Bin weighted centre bounds
To improve query bounds, PairwiseHist stores weighted centres

bounds for each histogram bin. The value of the weighted centre

bounds depends on whether bins passed the hypothesis test or

not. For bins that did not pass, the only available information on

their internal data distribution is that they contain ℎ data points, 𝑢

unique values and extrema 𝑣− and 𝑣+. In this case, weighted centre

bounds occur when ℎ−𝑢 + 1 points are at an extrema and one point

is at each of the other unique values, which are assumed to be as

close to the extrema as possible, i.e., with minimum spacing for the

given data type, denoted `. Conversely, the internal distribution

of bins that pass the hypothesis test is known to be approximately

uniform with respect to a given number of sub-bins. This fact can

be used to derive tighter bounds, as shown in Theorem 1. Passing

and non-passing bins can be distinguished by their bin count, which

is at least𝑀 for passing bins and less than𝑀 for non-passing bins.

Theorem 1. Consider a bin with count ℎ, minimum value 𝑣− ,
maximum value 𝑣+ and 𝑢 unique values. Assume this bin satisfies the
hypothesis test in IsUniform with 𝑠 =

⌈︁
(2𝑢)1/3

⌉︁
sub-bins and critical

value 𝜒2

𝛼 . Let 𝛿 = (𝑣+ − 𝑣−)/𝑠 be the sub-bin width. The bounds for
the weighted centre of the points within the bin are then

𝑐± = 𝑣− + (𝑠 ± 1)𝛿
2

± 𝛿

6

√︄
3𝜒2

𝛼 (𝑠2 − 1)
ℎ

. (4)

Proof. The lower bound occurs when all points are at the lower

edge of their respective sub-bins and can be expressed as follows:

𝑐− =
1

ℎ

𝑠−1∑︂
𝑟=0

ℏ𝑟 (𝑣− + 𝑟𝛿). (5)

where ℏ𝑟 is the count for the 𝑟 th sub-bin. Sub-bin counts can be

expressed in terms of the expected sub-bin count plus an epsilon

term, i.e., ℏ𝑟 = ℎ/𝑠 + 𝜖𝑟 . Substituting this into Eq. 5 gives:

𝑐− = 𝑣− + 𝛿 (𝑠 − 1)
2

+ 𝛿

ℎ

𝑠−1∑︂
𝑟=0

𝑟𝜖𝑟 . (6)

This can be optimised using Lagrange Multipliers with constraints:

𝑠−1∑︂
𝑟=0

𝜖𝑟 = 0 and 𝜒2

𝛼 =

𝑠−1∑︂
𝑟=0

(ℏ𝑟 − ℎ/𝑠)2
ℎ/𝑠 =

𝑠

ℎ

𝑠−1∑︂
𝑟=0

𝜖2

𝑟 . (7)

The Lagrangian is then:

L(𝜖𝑟 , _1, _2) = 𝑣− + 𝛿 (𝑠 − 1)
2

+ 𝛿

ℎ

𝑠−1∑︂
𝑟=0

𝑟𝜖𝑟

+ _1

𝑠−1∑︂
𝑟=0

𝜖𝑟 + _2

(︄
𝜒2

𝛼 −
𝑠

ℎ

𝑠−1∑︂
𝑟=0

𝜖2

𝑟

)︄
. (8)

Setting the partial derivative 𝜕L/𝜕𝜖𝑟 equal to zero gives 𝜖𝑟 = (𝑟𝛿 +
ℎ_1)/2𝑠_2. Substituting this into the constraints in Eq. 7 and solving

for _1 and _2 gives the following expression for 𝜖𝑟 :

𝜖𝑟 = ±2

𝑠

(︃
𝑟 − 𝑠 (𝑠 − 1)

2

)︃ √︄
3𝜒2

𝛼ℎ

𝑠2 − 1

. (9)

Taking the negative solution and substituting this into Eq. 6 gives

the desired result. A similar approach can be used for 𝑣+. □

Thus, bin weighted centre bounds are as follows:

𝑐± =

⎧⎪⎪⎨⎪⎪⎩
𝑣± ∓ (𝑢−1)𝑢`

2ℎ
, ℎ < 𝑀

𝑣− + (𝑠±1)𝛿
2
± 𝛿

6

√︂
3𝜒2

𝛼 (𝑠2−1)
ℎ

, otherwise.

(10)

4.3 Storage
To minimise PairwiseHist storage requirements, we observe that

bin midpoints and weighted centre bounds can easily be re-derived

from other parameters and thus need not be stored. Additionally,

bin counts, which require the most storage, are stored sparsely

when this is more effective. For sparse encoding, we store the delta

between non-zero indices and encode using Golomb coding, which

is optimal for geometrically distributed data. Fig. 6 provides an

overview of the storage configuration. In total, the storage require-

ments are:

𝑆 = 𝑆params + 𝑆1-d hists
+ 𝑆

2-d hists
+ 𝑆counts (11)

≤ 29 + 𝑑 + 4𝑑2

+
𝑑∑︂
𝑖=1

(︁
3𝑚 (𝑖) + 4

)︁ (︄ 𝑑∑︂
𝑗=1

𝑘 (𝑖 | 𝑗) − (𝑑 − 1)𝑘 (𝑖)
)︄

+
𝑑∑︂
𝑖=1

𝑑∑︂
𝑗=1

⌈︁
𝑘 (𝑖 | 𝑗)𝑘 (𝑗 |𝑖) ℓ (𝑖 𝑗)

ℎ
/ 8

⌉︁
bytes, (12)

1437

Params 1-d hists 2-d hists Bin countsOverall Storage Configuration

𝑁 𝑁𝑠 𝑀 𝛼 𝑑 𝑚 (1) , . . . ,𝑚 (𝑑)

Parameters: 𝑆params = 29 + 𝑑 bytes

𝑘 (𝑖 | 𝑗) − 𝑘 (𝑖) . . . , 𝑒
(𝑖 | 𝑗)
𝑡𝑖

, , 𝑣
(𝑖 | 𝑗)−
𝑡𝑖

, , 𝑣
(𝑖 | 𝑗)+
𝑡𝑖

, ,𝑢
(𝑖 | 𝑗)
𝑡𝑖

, . . .

2-d Histograms: 𝑆2-d hists = 2𝑑 (𝑑 − 1) +∑︁𝑑
𝑖=1
(3𝑚 (𝑖) + 4)

(︁ ∑︁𝑑
𝑗=1

𝑘 (𝑖 | 𝑗) − 𝑑𝑘 (𝑖)
)︁
bytes

𝑘 (𝑖) . . . , 𝑒
(𝑖)
𝑡 , , 𝑣

(𝑖)−
𝑡 , , 𝑣

(𝑖)+
𝑡 , ,𝑢

(𝑖)
𝑡 , . . .

1-d Histograms: 𝑆1-d hists = 2𝑑 +∑︁𝑑
𝑖=1

𝑘 (𝑖) (3𝑚 (𝑖) + 4) bytes

ℓ
(𝑖 𝑗)
ℎ

I (𝑖 𝑗)
ℎ

. . . , ℎ
(𝑖 𝑗)
𝑡𝑖𝑡 𝑗

, . . . Dense:

𝑆counts = 2𝑑2 +
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

⌈︂
𝑘 (𝑖 | 𝑗)𝑘 (𝑗 |𝑖) ℓ

(𝑖 𝑗)
ℎ

8

⌉︂
ℓ
(𝑖 𝑗)
ℎ

I (𝑖 𝑗)
ℎ

\ (𝑖 𝑗) . . . ,
{︁
G(𝑖𝑘 (𝑖) + 𝑗), ℎ (𝑖 𝑗)𝑡𝑖𝑡 𝑗

}︁
, . . .

Sparse:

𝑆counts = 3𝑑2 +
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

⌈︂
𝑆G+\ℓℎ

8

⌉︂or

Figure 6: PairwiseHist storage configuration.

dist > 150

𝑃1

AND dist < 300

𝑃2

OR dist < 450

𝑃3

AND air time > 90.5

𝑃4

𝑥2 > 81 𝑥2 > 231 𝑥2 < 381 𝑥3 > 655

−69

×1

−69

×1

−69

×1

−25

×10

𝑯 (2) 𝑯 (2) 𝑯 (2) 𝑯 (3)

𝜷 (2)
1

=⟨0.19, 1, . . .⟩ 𝜷 (2)
2

=⟨1, 1, 0.31, 0, 0⟩ 𝜷 (2)
3

=⟨1, 1, 1, 0.81, 0⟩ 𝜷 (3)
4

=⟨0, 0.375, 1, . . .⟩

𝜷 (2)
12

= ⟨0.19, 1, 0.31, 0, 0⟩

𝒘 (1) = 1 −
(︂
1 − 𝑯 (12)𝜷 (2)

12
⊘ 𝑯 (1)

)︂
⊙

(︃
1 − 𝑯 (12)𝜷 (2)

3
⊙ 𝑯 (13)𝜷 (3)

4
⊘

(︂
𝑯 (1)

)︂
2

)︃
Delayed

transformation

Transform coverage to

aggregation column

AND relation

GreedyGD

pre-process

Figure 7: Partial query execution for a query aggregating on
column 1 with predicates on columns 2 (dist) and 3 (air time),
including applying GreedyGD pre-processing, computing
coverage for each predicate and bin weightings.

where ℓℎ is the number of bits per bin count, i.e.,

ℓ
(𝑖 𝑗)
ℎ

=

⌈︂
log

2

(︂
1 +max

𝑡𝑖 ,𝑡 𝑗

(︂
ℎ
(𝑖 𝑗)
𝑡𝑖𝑡 𝑗

)︂)︂⌉︂
, (13)

and𝑚 (𝑖) is the number of bytes per value in the 𝑖th dimension. In

Fig. 6, I (𝑖 𝑗)
ℎ

is a binary variable that indicates whether the (𝑖 𝑗)th
histogram is stored densely or sparsely, \ (𝑖 𝑗) is the number of

non-zero values in 𝑯 (𝑖 𝑗) and G(·) is Golomb coding.

5 QUERY EXECUTION
This section explains how AQP tasks are executed using Pairwise-

Hist executes (top section of Fig. 2), which is illustrated in Fig. 7.

5.1 SQL parsing
SQL queries are parsed by applying GreedyGD pre-processing to

predicate literals so that they are in the same domain as the com-

pressed data on which PairwiseHist is built. For example, in Fig. 7,

the dist column’s minimum value of 69 is subtracted from pred-

icates 1–3, while the air time column’s minimum value of 25 is

subtracted from predicate 4. Predicate 4 is also multiplied by 10 to

convert from floating point to integer.

5.2 Coverage
Given a condition 𝑃 that applies to column 𝑗 , we define coverage,
𝜷 (𝑗) , as the 𝑘 (𝑗) × 1 vector whose 𝑡th element is the probability

that a point in the 𝑡th bin of the one-dimensional histogram for

column 𝑗 satisfies 𝑃 . That is,

𝛽
(𝑗)
𝑡 = Pr

(︂
𝑃
|︁|︁ 𝑒 (𝑗)𝑡 ≤ 𝑥 < 𝑒

(𝑗)
𝑡+1

)︂
(14)

where Pr is the probability operator. This is estimated as follows

for equality conditions (inverse for inequality):

𝛽
(𝑗)
𝑡 =

{︄
0, condition value outside bin

1/𝑢 (𝑗)𝑡 , otherwise,

(15)

and for all other condition types (i.e., ≤, <, ≥, >) as:

𝛽
(𝑗)
𝑡 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, 𝑣

(𝑗)−
𝑡 and 𝑣

(𝑗)+
𝑡 fail 𝑃

1, 𝑣
(𝑗)−
𝑡 and 𝑣

(𝑗)+
𝑡 satisfy 𝑃

0.5, one of 𝑣
(𝑗)−
𝑡 , 𝑣

(𝑗)+
𝑡 satisfy 𝑃 & 𝑢

(𝑗)
𝑡 = 2

𝑓𝑡 (𝑃), otherwise,

(16)

where 𝑓𝑡 (𝑃) is the fraction of the bin width (Δ𝑡) that satisfies 𝑃 .
Coverage is estimated separately for each predicate condition, as

illustrated in Fig. 7 with 𝜷
1
to 𝜷

4
corresponding to predicates 𝑃1 to

𝑃4. Groups of conditions that apply to the same column are consol-

idated. By ‘group’ we mean any group of two or more conditions

that are directly connected by a single AND or OR operator. For

example, in Fig. 7, 𝜷
1
and 𝜷

2
are consolidated into 𝜷

12
since they

both apply to the dist column and are directly connected by an AND

operator. However, despite 𝑃3 also applying to the same column, it

is not consolidated since it must be first combined with 𝑃4 due to

operator precedence (AND before OR). We refer to this process as

delayed transformation because we delay transforming coverages

into weightings in the aggregation dimension (Subsection 5.3) to

consolidate same-column conditions.

Coverage bounds are also computed and used to bound the query

result. The source of uncertainty here is the unknown distribution

of data points within partially covered bins. Applying similar logic

to Subsection 4.2, we can show that, for bins that do not pass the

1438

hypothesis test in IsUniform (i.e., bins with ℎ < 𝑀), coverage

bounds occur when only one data point or all but one data points

satisfy 𝑃 . However, for bins with at least𝑀 points, tighter bounds

can be derived by considering the partial bin count, which is defined
as the number of data points in a subset of the bin’s sub-bins.

Theorem 2 provides the key result for these bounds.

Theorem 2. Consider a histogram bin with count ℎ and 𝑢 unique
values. Assume that this bin satisfies the hypothesis test in IsUniform
with 𝑠 =

⌈︁
(2𝑢)1/3

⌉︁
sub-bins and critical value 𝜒2

𝛼 . The minimum and
maximum partial bin count over 𝑠 ≤ 𝑠 sub-bins is then:

ℎ±
𝑠 |𝑠 =

ℎ𝑠

𝑠
± ℎ𝑠

𝑠

√︄
𝜒2

𝛼 (𝑠 − 𝑠)
ℎ𝑠

. (17)

Proof. Use Lagrange Multipliers to optimise the partial count∑︁𝑠
𝑟=1

ℏ𝑟 , where ℏ𝑟 is the count for the 𝑟 th sub-bin, given constraints:

𝑠∑︂
𝑟=1

ℏ𝑟 = ℎ and 𝜒2

𝛼 =

𝑠∑︂
𝑟=1

(ℏ𝑟 − ℎ/𝑠)2
ℎ/𝑠 . (18)

The Lagrangian is then:

L(ℏ𝑟 , _1, _2) =
𝑠∑︂

𝑟=1

ℏ𝑟 + _1

(︄
ℎ −

𝑠∑︂
𝑟=1

ℏ𝑟

)︄
+ _2

(︄
𝜒2

𝛼 −
𝑠∑︂

𝑟=1

(ℏ𝑟 − ℎ/𝑠)2
ℎ/𝑠

)︄
. (19)

Setting the partial derivative of L with respect to ℏ𝑟 to zero gives

ℏ𝑟 =

{︄
ℎ
𝑠 +

ℎ (1−_1)
2𝑠_2

, 𝑟 < 𝑠

ℎ
𝑠 −

ℎ_1

2𝑠_2

, 𝑟 ≥ 𝑠
(20)

Substituting this into the two constraints in Eq. 18 and solving for

_1 and _2 gives the following result for ℏ𝑟 :

ℏ𝑟 =

⎧⎪⎪⎨⎪⎪⎩
ℎ
𝑠 ±

ℎ
𝑠

√︂
𝜒2

𝛼 (𝑠 − 𝑠) /ℎ𝑠, 𝑟 < 𝑠 ,

ℎ
𝑠 ∓

ℎ
𝑠

√︂
𝜒2

𝛼𝑠 /ℎ(𝑠 − 𝑠) 𝑟 ≥ 𝑠 .

(21)

Multiplying the solution for 𝑟 < 𝑠 by 𝑠 gives the desired result. □

Given Theorem 2, coverage bounds 𝜷− and 𝜷+ can be obtained

by dividing the partial bin count by the total bin count with the

appropriate number of sub-bins. That is,

𝛽
−(𝑗)
𝑡 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛽
(𝑗)
𝑡 , 𝛽

(𝑗)
𝑡 ∈ {0, 1}

1 /ℎ (𝑗)𝑡 , 𝛽
(𝑗)
𝑡 ∉ {0, 1} & ℎ

(𝑗)
𝑡 < 𝑀

𝑎
𝑠 −

𝑎
𝑠

√︂
𝜒2

𝛼 (𝑠 − 𝑎)/ℎ𝑎, otherwise,

(22)

𝛽
+(𝑗)
𝑡 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛽
(𝑗)
𝑡 , 𝛽

(𝑗)
𝑡 ∈ {0, 1}

1 − 1 /ℎ (𝑗)𝑡 , 𝛽
(𝑗)
𝑡 ∉ {0, 1} & ℎ

(𝑗)
𝑡 < 𝑀

𝑏
𝑠 +

𝑏
𝑠

√︂
𝜒2

𝛼 (𝑠 − 𝑏)/ℎ𝑏, otherwise,

(23)

where 𝑠 =
⌈︁(︁

2𝑢
(𝑗)
𝑡

)︁
1/3⌉︁

is the number of sub-bins, 𝑎 = ⌊𝛽 (𝑗)𝑡 𝑠⌋ is the
number of sub-bins that are fully covered by the predicate condition

and 𝑏 = ⌈𝛽 (𝑗)𝑡 𝑠⌉ is the number of fully or partially covered sub-bins.

5.3 Weightings
Given query predicate 𝑷 containing conditions 𝑃1, . . . , 𝑃𝑛 and ag-

gregation column 𝑖 , we define bin weightings,𝒘 (𝑖) , as the 𝑘 (𝑖) × 1

vector whose 𝑡 th element is the estimated number of points in the

𝑡 th bin of the one-dimensional histogram for column 𝑖 that satisfy

𝑷 . This can be expressed as follows:

𝑤
(𝑖)
𝑡 = ℎ

(𝑖)
𝑡 Pr

(︂
𝑷

|︁|︁ 𝑒 (𝑖)𝑡 ≤ 𝑥 < 𝑒
(𝑖)
𝑡+1

)︂
. (24)

For predicates that are the intersection (AND) of multiple condi-

tions 𝑃1, . . . , 𝑃𝑛 and assuming conditional independence between

predicate conditions, this can be expressed as follows:

𝑤
(𝑖)
𝑡 = ℎ

(𝑖)
𝑡 Pr

(︂
𝑃1 ∩ 𝑃2 ∩ . . . ∩ 𝑃𝑛

|︁|︁ 𝑒 (𝑖)𝑡 ≤ 𝑥 < 𝑒
(𝑖)
𝑡+1

)︂
= ℎ
(𝑖)
𝑡

𝑛∏︂
ℓ=1

Pr
(︂
𝑃ℓ

|︁|︁ 𝑒 (𝑖)𝑡 ≤ 𝑥 < 𝑒
(𝑖)
𝑡+1

)︂
. (25)

Likewise, for predicates that are the union (OR) of multiple con-

ditions and again assuming conditional independence between

predicate conditions, weightings can be expressed as follows:

𝑤
(𝑖)
𝑡 = ℎ

(𝑖)
𝑡 Pr

(︂
𝑃1 ∪ 𝑃2 ∪ . . . ∪ 𝑃𝑛

|︁|︁ 𝑒 (𝑖)𝑡 ≤ 𝑥 < 𝑒
(𝑖)
𝑡+1

)︂
= ℎ
(𝑖)
𝑡

(︂
1 − Pr

(︂
𝑃1 ∩ 𝑃2 ∩ . . . ∩ 𝑃𝑛

|︁|︁ 𝑒 (𝑖)𝑡 ≤ 𝑥 < 𝑒
(𝑖)
𝑡+1

)︂)︂
= ℎ
(𝑖)
𝑡

(︄
1 −

𝑛∏︂
ℓ=1

(︂
1 − Pr

(︂
𝑃ℓ

|︁|︁ 𝑒 (𝑖)𝑡 ≤ 𝑥 < 𝑒
(𝑖)
𝑡+1

)︂)︂)︄
. (26)

We then observe that

Pr
(︂
𝑃ℓ

|︁|︁ 𝑒 (𝑖)𝑡 ≤ 𝑥 < 𝑒
(𝑖)
𝑡+1

)︂
=

1

ℎ
(𝑖)
𝑡

[︂
𝑯 (𝑖 𝑗)𝜷 (𝑗)

]︂
𝑡
, (27)

which allows us to express weightings as follows:

𝒘 (𝑖) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑛∏︁
ℓ=1

𝑯 (𝑖 𝑗)𝜷 (𝑗) ⊘ 𝑯 (𝑖) , intersection

1 −
𝑛∏︁
ℓ=1

(︂
1 − 𝑯 (𝑖 𝑗)𝜷 (𝑗) ⊘ 𝑯 (𝑖)

)︂
, union

(28)

where the product (Π) is element-wise (Hadamard). By combining

these results, arbitrary combinations of AND and OR relations can

be processed. Note that due to assuming conditional independence,

Eq. 28 may not be reliable for highly correlated data. This is es-

pecially true for multiple conditions on the same column, which

are clearly not (conditionally) independent, and thus why we per-

form delayed transformation to consolidate such conditions prior

to computing bin weightings.

Weightings bounds,𝒘− and𝒘+, are computed using Eq. 28, us-

ing low and high coverage bounds, respectively. If PairwiseHist

is constructed from a data sample, these bounds are widened to

account for additional uncertainty due to sampling. That is, the

bounds are replaced by their outer two-sided 98-percentile con-

fidence interval bounds. Variance is estimated according to the

Binomial distribution as 𝛽𝑡 (1 − 𝛽𝑡) where 𝛽𝑡 = 𝑤𝑡/ℎ𝑡 . Including
compensation for finite population size, the weightings bounds are

updated as follows:

𝑤±𝑡 ← 𝑤±𝑡 ± 𝑧0.98

√︃
𝛽±𝑡

(︁
1 − 𝛽±𝑡

)︁ 𝑁 − 𝑁𝑠

𝑁 − 1

, (29)

where 𝑧0.98 is the value of the standard normal density function

corresponding to a two-sided 98-percentile confidence interval.

1439

Table 3: Aggregation functions

Aggregation Estimate Lower bound Upper bound

COUNT ∥𝒘 ∥1 / 𝜌 ∥𝒘− ∥1 / 𝜌 ∥𝒘+ ∥1 / 𝜌

SUM 𝒘 · 𝒄 / 𝜌 𝒘− · 𝒄− / 𝜌 𝒘+ · 𝒄+ / 𝜌

AVG 𝒘 · 𝒄 / ∥𝒘 ∥1 min

{𝒘− , 𝒘+}
{𝒘• · 𝒄− / ∥𝒘• ∥1 } max

{𝒘− , 𝒘+}
{𝒘• · 𝒄+ / ∥𝒘• ∥1 }

MIN

{︄
𝑣+
𝑡∗ , single-column, 𝑢𝑡∗ = 2 & 𝑤𝑡∗ <

ℎ𝑡∗
2

𝑣−
𝑡∗ , otherwise.

{︄
𝑣+
𝑡∗ , single-column, 𝑢𝑡∗ = 2 & 𝑤+

𝑡∗ <
ℎ𝑡∗

5

𝑣−
𝑡∗ , otherwise.

{︄
𝑣+
𝑡∗ − 𝑎𝛿𝑡∗ , single-column, 𝑢𝑡∗ > 2 & ℎ𝑡∗ > 𝑀

𝑣+
𝑡∗ , otherwise,

MAX

{︄
𝑣−
𝑡∗ , single-column, 𝑢𝑡∗ = 2 & 𝑤𝑡∗ <

ℎ𝑡∗
2

𝑣+
𝑡∗ , otherwise.

{︄
𝑣−
𝑡∗ + 𝑎𝛿𝑡∗ , single-column, 𝑢𝑡∗ > 2 & ℎ𝑡∗ > 𝑀

𝑣−
𝑡∗ , otherwise,

{︄
𝑣−
𝑡∗ , single-column, 𝑢𝑡∗ = 2 & 𝑤+

𝑡∗ <
ℎ𝑡∗

5

𝑣+
𝑡∗ , otherwise.

MEDIAN

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑣−
𝑡∗ , 𝑢𝑡∗ = 2 & 𝑓𝑡∗ < 0.5

𝑣+
𝑡∗ , 𝑢𝑡∗ = 2 & 𝑓𝑡∗ ≥ 0.5

𝑣−
𝑡∗ + Δ𝑡∗ 𝑓𝑡∗ , otherwise,

𝑣−
𝑡∗ 𝑣+

𝑡∗

VAR 𝒘 · 𝒄2 / ∥𝒘 ∥1 − (𝒘 · 𝒄 / ∥𝒘 ∥1)2 .
min

{𝒘− , 𝒘+}

{︂
𝒘• · (𝝃 −)2 / ∥𝒘• ∥1
− (𝒘• · 𝝃 − / ∥𝒘• ∥1)2

}︂ max

{𝒘− , 𝒘+}

{︂
𝒘• · (𝝃 +)2 / ∥𝒘• ∥1
−

(︁
𝒘• · 𝝃 + / ∥𝒘• ∥1

)︁
2

}︂
5.4 Aggregation
This section describes the mathematical formulations for query

aggregation, which are listed in Table 3, along with correspond-

ing bounds. Currently, seven aggregation functions are supported,

namely COUNT, SUM, AVG, MIN, MAX, MEDIAN and VAR.

5.4.1 COUNT. This can be estimated by summing the weightings

vector and then dividing by the sampling ratio, 𝜌 .

5.4.2 SUM. This can be estimated as the weighted sum of bin mid-

points, 𝒄 , using the estimated bin weightings,𝒘 . As with COUNT,

the result must also be scaled by the sampling ratio, 𝜌 .

5.4.3 AVG. This can be estimated as the weighted mean of bin mid-

points, 𝒄 , using the estimated bin weightings,𝒘 . The bounds follow
the same formulation, but naturally use the appropriate bounds for

bin midpoints. Additionally, each bound is estimated using both

bin weightings extrema and either the minimum or maximum is

returned. For example, the lower bound is the minimum over𝒘−

and𝒘+ where𝒘• is a placeholder variable.

5.4.4 MIN. Estimating MIN requires identifying the index, 𝑡∗, of
the first bin with non-zero weighting, i.e.,

𝑡∗ = min

𝑡
{𝑡 , s.t.𝑤𝑡 > 0}. (30)

Inmost cases, the estimate is theminimum value for this bin, 𝑣−
𝑡∗ . For

the special case where the query involves only a single column (for

aggregation and all predicates), there are only two unique values

in the 𝑡∗th bin (i.e., 𝑢𝑡∗ = 2) and the bin coverage is less than half

(i.e.,𝑤𝑡∗ < ℎ𝑡∗/2), then the bin maximum, 𝑣+
𝑡∗ , is a better estimate.

The lower bound follows the same formulation, except that 𝑡∗

must be determined from the bin weightings upper bound (to in-

clude the maximum range), i.e.,

𝑡∗ = min

𝑡
{𝑡 , s.t.𝑤+𝑡 > 0} (lower bound). (31)

Conversely, the bin corresponding to the upper bound is identified

using the bin weightings lower bound. A higher threshold is used

to ensure a higher likelihood of non-zero true bin coverage, i.e.,

𝑡∗ = min

𝑡
{𝑡 , s.t.𝑤−𝑡 > 1/2} (upper bound). (32)

A tighter upper bound can be obtained for queries involving a

single column in certain cases by considering the sub-bins. That is,

if the relevant bin passed the uniformity hypothesis test, and hence

ℎ ≥ 𝑀 , then we may assume that data is uniformly distributed

across the sub-bins. Thus, we can compute the number of sub-bins

that are fully covered as 𝑎 = ⌊𝑠𝑤−
𝑡∗/ℎ𝑡∗⌋ and reduce the upper bound

by this number of sub-bin widths, 𝛿𝑡∗ .

5.4.5 MAX. This is the inverse of MIN. That is, we identify the

index, 𝑡∗, of the last bin with non-zero weighting, i.e.,

𝑡∗ = max

𝑡
{𝑡 , s.t.𝑤𝑡 > 0}, (33)

and use this to determine the estimates. Similar, but inverse, for-

mulations apply for the lower and upper bounds.

5.4.6 MEDIAN. This is estimated by first identifying the index, 𝑡∗,
of the bin that contains the median. That is,

𝑡∗ = min

𝑡

{︄
𝑡, s.t.

𝑡∑︂
𝜏=0

𝑤𝜏 ≥
1

2

∥𝒘 ∥1

}︄
. (34)

The estimate is then the bin minimum, 𝑣−
𝑡∗ plus the bin width,

Δ𝑡∗ = 𝑣+
𝑡∗ − 𝑣

−
𝑡∗ , multiplied by the fraction of the bin weighting that

is below the median, 𝑓𝑡∗ , which is calculated as follows:

𝑓𝑡∗ =
1

𝑤𝑡∗

(︄
1

2

∥𝒘 ∥1 −
𝑡∗−1∑︂
𝑡=0

𝑤𝑡

)︄
(35)

If the bin contains only two unique values (i.e., 𝑢𝑡∗ = 2), the bin

minimum or maximum is returned instead, depending on the value

of 𝑓𝑡∗ .

1440

MEDIAN bounds require identifying the minimum and maxi-

mum bin indices that could correspond to the median, i.e.,

𝑡∗ = min

{𝒘−, 𝒘+ }

{︄
min

𝑡

{︄
𝑡, s.t.

𝑡∑︂
𝜏=0

𝑤•𝜏 ≥
1

2

}︄}︄
(lower bound) (36)

𝑡∗ = max

{𝒘−, 𝒘+ }

{︄
min

𝑡

{︄
𝑡, s.t.

𝑡∑︂
𝜏=0

𝑤•𝜏 ≥
1

2

}︄}︄
(upper bound) (37)

5.4.7 VAR. This is estimated as the difference between theweighted

mean square value and the square of the estimated mean. The idea

for the bounds is to assume that all points within a bin are either

as far from the mean as possible (upper bound) or as close to the

mean as possible (lower bound). This is expressed using 𝝃 − and

𝝃 +, which represent the (assumed) location of points within each

bin for the purpose of estimating the bounds and are defined as

follows:

b−𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑣+𝑡 , 𝑣+𝑡 < 𝐴𝑉𝐺

𝑣−𝑡 , 𝑣−𝑡 > 𝐴𝑉𝐺

𝐴𝑉𝐺, otherwise,

(38)

b+𝑡 =

{︄
𝑣−𝑡 , |𝐴𝑉𝐺 − 𝑣−𝑡 | > |𝑣+𝑡 −𝐴𝑉𝐺 |
𝑣+𝑡 , otherwise.

(39)

where 𝐴𝑉𝐺 is the estimated mean. Thus, for the lower bound, bins

are represented by whichever of the bin minimum or maximum

is closest to the estimated mean, while the bin that straddles the

mean is represented by the mean itself. Conversely, for the upper

bound, bins are represented by whichever of the bin minimum or

maximum is furthest from the mean. As with AVG and MEDIAN

queries, the bounds are evaluated for both weightings extrema and

the appropriate min/max is returned.

6 PERFORMANCE EVALUATION
To evaluate PairwiseHist, 11 real-world datasets were used, which

are summarised in Table 4. The Basement, Current and Furnace
datasets [36, 37] contain electrical meter data for different areas

of a house. Gas [21], Light [44], Power [17] and Temp [43] contain

multifaceted IoT sensor data from a single source, while Aqua [52]
and Build [20] contain IoT sensor data combined from multiple

sources (aquaponics ponds and building rooms, respectively) with

several data columns each and a shared timestamp column. Aqua
and Build thus contain many null values due to asynchronous

sampling. Flights [53] and Taxi [9] contain records of individual

trips and include several categorical fields, as well as missing values.

Flights is commonly used in AQP literature (e.g. [12, 15, 19, 28, 34,

49]), while Power is used occasionally (e.g. [61, 62]). Overall, these

datasets encompass a wide variety of data types, dimensionality,

sizes and both sensor and non-sensor data.

We implemented PairwiseHist in Python 3.11 and compared it

to state-of-the-art AQP techniques DeepDB [19] and DBEst++ [34]

using their corresponding Python implementations [18, 33]. These

techniques were chosen for comparison due to their leading perfor-

mance (see Table 1) and code availability.

Our evaluation is divided into two parts: initial experiments on

the original datasets and comprehensive experiments on scaled-up

Table 4: Datasets used for evaluation

Dataset Rows Cols. Size (MB)

Aqua Aquaponics sensors [52] 913 465 13 66.7

Basement Basement power [36, 37] 1 051 200 12 50.5

Build Smart building systems [20] 14 381 639 7 402.7

Current Electric meters current [36, 37] 1 051 200 24 100.9

Flights
∗

Flight delays & cancellations [53] 5 819 079 32 756.5

Furnace Furnace power [36, 37] 1 051 200 12 50.5

Gas Home gas sensor [21] 928 991 12 44.6

Light IoT light detection [44] 405 184 9 19.9

Power Home power consumption [17] 2 049 280 10 82.0

Taxis Chicago taxi trips 2020 [9] 3 889 032 23 1 753.9

Temp Temperature sensor [43] 10 553 597 5 369.4

∗
Other works typically use only 12 columns (e.g. [19]), however, we use all 32 columns.

versions of the Power and Flights datasets. For the initial exper-

iments, we randomly generated 100 single-predicate queries for

each dataset with aggregation functions COUNT, SUM and AVG

and minimum selectivity of 10
−5
. For the scaled-up experiments,

IDEBench [12] was used to scale the datasets up to one billion

rows, resulting in sizes of 40 GB and 130 GB, respectively. We then

randomly generated 445 and 427 test queries for Power and Flights,
respectively, including all seven aggregation functions supported

by PairwiseHist, 1–5 predicate conditions and minimum selectivity

of 10
−6

. Due to aforementioned limitations of DeepDB and DBEst++

(Section 2), DeepDB supports only 146 queries (80 for Power and 66
for Flights), while DBEst++ supports just 86 queries (41 for Power
and 45 for Flights). Also, since DBEst++ requires many models to

support different query templates (see Section 2), we include all

DBEst++ models required to support the same queries as Pairwise-

Hist when comparing synopsis size.

Our experimental setup consisted of an Intel(R) Xeon(R) Gold

6130 2.10 GHz CPU with 24 GB RAM available during synopsis

construction and 6 GB during query execution. Default parameters

were used for DeepDB and DBEst++, as well as GreedyGD. All

experiments were performed with𝑀 set to 1% of 𝑁𝑠 (e.g.𝑀 = 10
3

for 𝑁𝑠 = 10
5
) and 𝛼 set to 0.001.

6.1 Initial experiments
The median query error and synopsis size for each dataset is shown

in Fig. 8 for PairwiseHist, DeepDB and DBEst++ with 100k and 10k

samples. As can be seen in Fig. 8(a), PairwiseHist has the lowest

error on 10 out of 11 datasets. Indeed, even with a mere 10k samples,

PairwiseHist outperforms DeepDB with 100k samples on 6 out of

11 datasets. Overall, for 100k samples, PairwiseHist has a median

error of just 0.28%, compared to 0.73% for DeepDB and 28.9% for

DBEst++. In terms of synopsis size, PairwiseHist is typically 1–

2 orders of magnitude smaller. For 100k samples, the mean size

for PairwiseHist is just 0.48 MB, compared to 11.5 MB for DeepDB

and 36.3 MB for DBEst++. That is, PairwiseHist is at least 2.6× as
accurate while requiring 24× less storage.

6.2 Parameter sensitivity
In general, higher𝑁𝑠 , higher𝛼 and lower𝑀 all correspond to higher

accuracy at the cost of larger synopsis size and longer construction

1441

A
q
u
a

B
a
se
m
en
t

B
u
il
d

C
u
rr
en
t

F
li
g
h
ts

F
u
rn
a
ce

G
a
s

L
ig
h
t

P
o
w
er

T
a
x
is

T
em

p

0.1

1

10

100

1,000
PairwiseHist 100k DeepDB 100k DBEst++ 100k

PairwiseHist 10k DeepDB 10k DBEst++ 10k

A
q
u
a

B
a
se
m
en
t

B
u
il
d

C
u
rr
en
t

F
li
g
h
ts

F
u
rn
a
ce

G
a
s

L
ig
h
t

P
o
w
er

T
a
x
is

T
em

p

0.1

1

10

100

(a) Median
error (%)

(b) Synopsis size (MB)

Figure 8: Error performance and storage requirements across 11 real-world datasets.

1 000 4 000 7 000 10 000

0

1

2

3

4

Min. points,𝑀

(a) Median error (%)

1m, 𝛼=0.01

100k, 𝛼=0.001

100k, 𝛼=0.01

100k, 𝛼=0.1

1 000 4 000 7 000 10 000

0.1

1

10

100

Min. points,𝑀

(b) Synopsis size (MB)

1m, 𝛼=0.01

100k, 𝛼=0.01

Figure 9: PairwiseHist performance on the scaled-up Flights
dataset for different parameter sets.

Table 5: Median relative error (%).

Power dataset Flights dataset
Aggregation PH DeepDB DBEst++ PH DeepDB DBEst++

COUNT 0.19 0.05 24.82 0.38 0.41 21.65

SUM 0.32 14.18 56.46 1.15 1.72 3.55

AVG 0.42 0.50 17.86 0.39 0.28 16.95

VAR 0.84 - 98.50 1.67 - 100.00

MIN 0.00 - - 0.00 - -

MAX 1.25 - - 4.41 - -

MEDIAN 0.00 - - 0.29 - -

Overall 0.20 0.45 56.46 0.43 0.64 28.42

PH = PairwiseHist: 1 million samples, DeepDB: 1 million samples, DBEst++: 100k samples.

time. However, 𝑁𝑠 has greatest impact on performance, while 𝛼

has minimal impact. This is illustrated in Fig. 9 for the scaled-up

Flights dataset, where 𝛼 has near-zero impact except on accuracy

for 𝑁𝑠 = 100k in some cases. In our tests, we have also observed

that construction time scales linearly with 𝑁𝑠 and query latency is

largely consistent across different parameter sets.

6.3 Accuracy
Query Accuracy. Table 5 presents the median error by dataset and

aggregation function for the scaled-up experiments. As can be seen,

PairwiseHist (denoted PH) performs well across all aggregation

functions and delivers between 1.5–2.3× better overall accuracy

than DeepDB with median errors of just 0.20% and 0.43% compared

to 0.45% and 0.64% for the two datasets. Note that a smaller sample

sizewas used for DBEst++were due to its prohibitively long training

time (see Subsection 6.6).

Table 6: Bounds accuracy rate and width.

Correct rate (%) Width (%)
Dataset PairwiseHist DeepDB PairwiseHist DeepDB

Power (original) 70.0 40.0 4.4 0.7
Power (1 billion) 80.0 51.2 3.4 0.6
Flights (original) 78.8 50.0 8.7 3.0
Flights (1 billion) 78.8 75.8 4.3 2.3

We also compared the distribution of query errors over the subset

of queries supported byDeepDB (Fig. 10(a)) andDBEst++ (Fig. 10(b))

as CDF plots, while the error distribution for PairwiseHist over

all queries is shown in (Fig. 10(c)). As can be seen, PairwiseHist

provides a better error distribution in each case. Indeed, with just

100k samples, PairwiseHist achieves a higher probability of sub-1%

error than DeepDB with 1 million samples. Overall, 85.1% of queries

have sub-10% error with PairwiseHist, as highlighted in Fig. 10(c).

During our evaluation, DeepDB was observed to perform signif-

icantly worse on real-world data compared to IDEBench-generated

synthetic data. To demonstrate this, we generated synthetic versions

of the Power and Flights datasets using IDEBench with the same

number of rows as the original data and tested identical queries

on them using DeepDB and PairwiseHist. The resulting median

errors are shown in Fig. 10(d). As can be seen, DeepDB performs

far worse on the real data compared to the IDEBench-generated

data. IDEBench generates synthetic data by applying normalisation

and Gaussian models. This suggests that, while DeepDB performs

well on standard test data, it may not perform as effectively in the

real world, where data is less well-behaved. PairwiseHist, on the

other hand, performs consistently well and has up to 31× lower

error than DeepDB on the real datasets.

Query Bounds. Query bounds should be both accurate (i.e., con-

tain the true result) and narrow. Table 6 lists the percentage of

queries forwhichDeepDB and PairwiseHist provide accurate bounds

and the median bound widths as a percentage of the exact result for

the subset of queries supported by DeepDB (DBEst++ does not pro-

vide bounds). A significance value of 0.99 was used for DeepDB. As

shown, PairwiseHist provides more accurate bounds than DeepDB,

especially for the real-world datasets. DeepDB has consistently

narrower bounds, but given their lower accuracy, this may indicate

that its bounds are overly optimistic.

1442

82.5%

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

Relative error

P
e
r
c
e
n
t
i
l
e

(b) DeepDB queries (𝑛 = 146)

PairwiseHist 1m

PairwiseHist 100k

DeepDB 1m

DeepDB 100k

95.1%

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

Relative error

P
e
r
c
e
n
t
i
l
e

(a) DBEst++ queries (𝑛 = 86)

PairwiseHist 1m

PairwiseHist 100k

DBEst++ 100k

DBEst++ 10k

85.1%

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

Relative error

P
e
r
c
e
n
t
i
l
e

(c) All queries (𝑛 = 872)

PairwiseHist 1m

PairwiseHist 100k

Power Flights Power Flights

0

1

2

3

4

M
e
d
i
a
n
e
r
r
o
r
(
%
)

(d) Real vs. IDEBench∗

PairwiseHist Real

PairwiseHist IDEBench

DeepDB Real

DeepDB IDEBench

∗
1m sample size used for all models

Figure 10: (a)–(c) CDF plots of query error for different subsets of queries across both datasets, (d) query performance on the
original real-world data and IDEBench-generated data of the same size.

0.25 & 0.05

Power Flights

0

20

40

(a) Synopsis size (MB)

PairwiseHist 1m

PairwiseHist 100k

DeepDB 1m

DeepDB 100k

DBEst++ 100k

DBEst++ 10k

Power Flights

0

50

100

150

(b) Total storage (GB)

Power Flights

0

5

10

15

(c) Median query latency (ms)

Power Flights

1 s

1 min

1 hr

1 day

(d) Construction time

Figure 11: Storage and runtime performance comparison on the scaled-up datasets.

6.4 Storage requirements
Synopsis sizes are shown in Fig. 11(a). As can be seen, PairwiseHist

requires the least storage in all cases and is at least 11× smaller

than DeepDB and DBEst++ (0.25 MB vs. 2.75 MB for Power with
1m samples). Additionally, with PairwiseHist built directly on com-

pressed data, total storage requirements are reduced, since data

can be permanently stored in compressed format. Total storage

requirements are shown in Fig. 11(b), where PairwiseHist delivers

savings of 3.2–4.3×.

6.5 Query latency
Median query latency, including the time to calculate query bounds

(for PairwiseHist and DeepDB), is shown in Fig. 11(c). As can be

seen, PairwiseHist is significantly faster than the state-of-the-art

approaches with an overall median latency of just 0.94 ms (for 1m

samples), which is 3.5× faster than DeepDB and 15× faster than

DBEst++. PairwiseHist’s low latency can be attributed to most ag-

gregations requiring just a handful of small matrix multiplications.

The corresponding median latency for exact query processing us-

ing SQLite, which we used for the ground truth, was 306.8 seconds,

which makes PairwiseHist over 300,000× faster.

6.6 Construction time
Finally, synopsis construction times are displayed in Fig. 11(d).

As can be seen, PairwiseHist consistently requires the least time,

being 1.2–4× faster than DeepDB, while DBEst++ is more than

two orders of magnitude slower. Indeed, for the Flights dataset,

DBEst++ requires over 30 hours for 100k samples, while Pairwise-

Hist requires less than 3 minutes with 1 million samples.

7 CONCLUSION
In this paper, we propose a novel AQP technique called PairwiseHist

and a novel framework for AQP that leverages data compression

to reduce overall storage requirements. By using a collection of

histograms approach, efficient storage encoding and various query

execution optimisations, we are able to simultaneously deliver sig-

nificant improvements in terms of accuracy, latency, synopsis size

and construction time compared to state-of-the-art AQP methods.

In future work, we intend to investigate histogram updates, online

refinement and multi-table support.

ACKNOWLEDGMENTS
This work is supported by the Analytics Straight on Compressed IoT

Data (Light-IoT) project (Grant No. 0136-00376B), granted by the

Danish Council for Independent Research, and Aarhus University’s

DIGIT Centre. Computation was partially performed on the UCloud

system, which is managed by the eScience Center at the University

of Southern Denmark.

REFERENCES
[1] JayadevAcharya, Ilias Diakonikolas, ChinmayHegde, Jerry Zheng Li, and Ludwig

Schmidt. 2015. Fast and Near-Optimal Algorithms for Approximating Distribu-

tions by Histograms. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. https://doi.org/10.1145/2745754.

2745772

[2] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan,

Samuel Madden, Barzan Mozafari, and Ion Stoica. 2014. Knowing when you’re

1443

https://doi.org/10.1145/2745754.2745772
https://doi.org/10.1145/2745754.2745772

wrong: Building Fast and Reliable Approximate Query Processing Systems. In

Proceedings of the ACM SIGMOD International Conference on Management of Data.
481–492. https://doi.org/10.1145/2588555.2593667

[3] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,

and Ion Stoica. 2013. BlinkDB. In Proceedings of the 8th ACM European Conference
on Computer Systems. https://doi.org/10.1145/2465351.2465355

[4] Hossein Ahmadvand, Maziar Goudarzi, and Fouzhan Foroutan. 2019. Gapprox:

using Gallup approach for approximation in Big Data processing. Journal of Big
Data 6, 1 (2019). https://doi.org/10.1186/s40537-019-0185-4

[5] Pritom Saha Akash, Wei-Cheng Lai, and Po-Wen Lin. 2022. Online Aggregation

based Approximate Query Processing: A Literature Survey. https://doi.org/10.

48550/ARXIV.2204.07125

[6] Brian Babcock, Surajit Chaudhuri, and Gautam Das. 2003. Dynamic Sample

Selection for Approximate Query Processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 539–550. https://doi.org/10.

1145/872757.872822

[7] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
https://doi.org/10.1145/375663.375686

[8] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate Query

Processing: No Silver Bullet. In ACM International Conference on Management of
Data (SIGMOD/PODS’17). ACM. https://doi.org/10.1145/3035918.3056097

[9] City of Chicago. 2022. Taxi Trips - 2020. https://data.cityofchicago.org/

Transportation/Taxi-Trips-2020/r2u4-wwk3 Accessed: 18 Feb, 2024.

[10] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. 2011.

Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches, In Foun-

dations and Trends in Databases. Foundations and Trends in Databases 4, 1-3,
1–294. https://doi.org/10.1561/1900000004

[11] Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. 2018. Fast and Sample Near-

Optimal Algorithms for Learning Multidimensional Histograms. In Proceedings
of the 31st Conference On Learning Theory, Vol. 75. 819–842.

[12] Philipp Eichmann, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. 2020.

IDEBench: A Benchmark for Interactive Data Exploration. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. ACM. https:

//doi.org/10.1145/3318464.3380574

[13] Mohammadali Fallahian, Mohsen Dorodchi, and Kyle Kreth. 2022. GAN-based

Tabular Data Generator for Constructing Synopsis in Approximate Query Pro-

cessing: Challenges and Solutions. https://doi.org/10.48550/ARXIV.2212.09015

[14] Marcell Fehér, Daniel E. Lucani, and Ioannis Chatzigeorgiou. 2022. An Adaptive

Column Compression Family for Self-Driving Databases. https://doi.org/10.

48550/arXiv.2209.02334 arXiv:2209.02334v1.

[15] Shaddy Garg, Subrata Mitra, Tong Yu, Yash Gadhia, and Arjun Kashettiwar. 2023.

Reinforced Approximate Exploratory Data Analysis. Proceedings of the AAAI
Conference on Artificial Intelligence 37, 6 (2023), 7660–7669. https://doi.org/10.

1609/aaai.v37i6.25929

[16] Christian Göttel, Lars Nielsen, Niloofar Yazdani, Pascal Felber, Daniel E. Lucani,

and Valerio Schiavoni. 2020. Hermes: enabling energy-efficient IoT networks

with generalized deduplication. In Proceedings of the 14th ACM International
Conference on Distributed and Event-based Systems. ACM. https://doi.org/10.

1145/3401025.3404098

[17] Georges Hebrail and Alice Berard. 2012. Individual household electric power

consumption Data Set. https://archive.ics.uci.edu/ml/datasets/Individual+

household+electric+power+consumption Accessed: 18 Feb, 2024.

[18] Benjamin Hilprecht. 2020. deepdb-public. https://github.com/

DataManagementLab/deepdb-public GitHub repository. Accessed: 1 Apr, 2023..

[19] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-

tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from

Queries, In Proceedings of the VLDB Endowment. Proceedings of the VLDB
Endowment 13, 7, 992–1005. https://doi.org/10.14778/3384345.3384349

[20] Dezhi Hong, Quanquan Gu, and Kamin Whitehouse. 2017. High-dimensional

Time Series Clustering via Cross-Predictability. In Proceedings of the 20th In-
ternational Conference on Artificial Intelligence and Statistics, Vol. 54. 642–651.
https://www.kaggle.com/datasets/ranakrc/smart-building-system Accessed: 18

Feb, 2024.

[21] Ramon Huerta, Thiago Mosqueiro, Jordi Fonollosa, Nikolai F Rulkov, and Irene

Rodriguez-Lujan. 2016. Online decorrelation of humidity and temperature in

chemical sensors for continuous monitoring. Chemometrics and Intelligent Labo-
ratory Systems 157 (2016), 169–176. https://doi.org/10.1016/j.chemolab.2016.07.

004

[22] Aaron Hurst, Daniel E. Lucani, Ira Assent, and Qi Zhang. 2022. GLEAN: Gen-

eralized Deduplication Enabled Approximate Edge Analytics. IEEE Internet of
Things Journal (2022). https://doi.org/10.1109/JIOT.2022.3166455

[23] Aaron Hurst, Daniel E. Lucani, and Qi Zhang. 2024. GreedyGD: Enhanced

Generalized Deduplication for Direct Analytics in IoT. IEEE Transactions on
Industrial Informatics (2024), 1–9. https://doi.org/10.1109/tii.2024.3353913

[24] Aaron Hurst, Qi Zhang, Daniel E. Lucani, and Ira Assent. 2021. Direct Analytics

of Generalized Deduplication Compressed IoT Data. In IEEE Global Communica-
tions Conference (GLOBECOM). https://doi.org/10.1109/GLOBECOM46510.2021.

9685589

[25] Yannis E. Ioannidis and Viswanath Poosala. 1995. Balancing histogram optimality

and practicality for query result size estimation. ACM SIGMOD Record 24, 2

(1995), 233–244. https://doi.org/10.1145/568271.223841

[26] Linghe Kong, Jinlin Tan, Junqin Huang, Guihai Chen, Shuaitian Wang, Xi Jin,

Peng Zeng, Muhammad Khan, and Sajal K. Das. 2022. Edge-computing-driven

Internet of Things: A Survey. Comput. Surveys 55, 8 (2022), 1–41. https://doi.

org/10.1145/3555308

[27] Moritz Kulessa, Benjamin Hilprecht, Alejandro Molina, Knowledge Engineering,

Group Data, Management Lab, Machine Learning, and Lab. 2019. Towards Model-

based Approximate Query Processing. In 1st International Workshop on Applied
AI for Database Systems and Applications.

[28] Moritz Kulessa, Alejandro Molina, Carsten Binnig, Benjamin Hilprecht, and

Kristian Kersting. 2018. Model-based Approximate Query Processing. https:

//doi.org/10.48550/ARXIV.1811.06224

[29] Taewhi Lee, Kihyuk Nam, Choon Seo Park, and Sung-Soo Kim. 2022. Exploiting

Machine Learning Models for Approximate Query Processing. In IEEE Inter-
national Conference on Big Data. https://doi.org/10.1109/bigdata55660.2022.

10020252

[30] Kaiyu Li and Guoliang Li. 2018. Approximate Query Processing: What is New

and Where to Go? Data Science and Engineering 3, 4 (2018), 379–397. https:

//doi.org/10.1007/s41019-018-0074-4

[31] Kaiyu Li, Yong Zhang, Guoliang Li, Wenbo Tao, and Ying Yan. 2019. Bounded

Approximate Query Processing. IEEE Transactions on Knowledge and Data
Engineering 31, 12 (2019), 2262–2276. https://doi.org/10.1109/tkde.2018.2877362

[32] Xi Liang, Stavros Sintos, Zechao Shang, and Sanjay Krishnan. 2021. Combining

Aggregation and Sampling (Nearly) Optimally for Approximate Query Process-

ing. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. https://doi.org/10.1145/3448016.3457277

[33] Qingzhi Ma. 2022. DBEstClient. https://github.com/qingzma/DBEstClient

GitHub repository. Accessed: 1 Apr, 2023..

[34] Qingzhi Ma, Ali M. Shanghooshabad, Mehrdad Almasi, Meghdad Kurmanji, and

Peter Triantafillou. 2021. Learned Approximate Query Processing: Make it Light,

Accurate and Fast. In Conference on Innovative Data Systems Research.
[35] Qingzhi Ma and Peter Triantafillou. 2019. DBEst: Revisiting Approximate Query

Processing Engines with Machine Learning Models. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 1553–1570. https:

//doi.org/10.1145/3299869.3324958

[36] Stephen Makonin. 2016. AMPds2: The Almanac of Minutely Power dataset

(Version 2). https://doi.org/10.7910/DVN/FIE0S4

[37] Stephen Makonin, Bradley Ellert, Ivan V. Bajić, and Fred Popowich. 2016. Elec-

tricity, water, and natural gas consumption of a residential house in Canada from

2012 to 2014. Scientific Data 3 (2016). https://doi.org/10.1038/sdata.2016.37

[38] Magnus Müller, Guido Moerkotte, and Oliver Kolb. 2018. Improved selectivity

estimation by combining knowledge from sampling and synopses, In Proceedings

of the VLDB Endowment. Proceedings of the VLDB Endowment 11, 9, 1016–1028.
https://doi.org/10.14778/3213880.3213882

[39] Sabuzima Nayak, Ripon Patgiri, Lilapati Waikhom, and Arif Ahmed. 2022. A

review on Edge analytics: Issues, challenges, opportunities, promises, future

directions, and applications. Digital Communications and Networks (2022). https:

//doi.org/10.1016/j.dcan.2022.10.016 arXiv:2107.06835

[40] Lars Nielsen, Rasmus Vestergaard, Niloofar Yazdani, Prasad Talasila, Daniel E.

Lucani, and Marton Sipos. 2019. Alexandria: A Proof-of-Concept Implementa-

tion and Evaluation of Generalised Data Deduplication. In IEEE (GLOBECOM)
Workshops. https://doi.org/10.1109/gcwkshps45667.2019.9024368

[41] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018.

VerdictDB: Universalizing Approximate Query Processing. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. https:

//doi.org/10.1145/3183713.3196905

[42] Jinglin Peng, Dongxiang Zhang, Jiannan Wang, and Jian Pei. 2018. AQP++:

Connecting Approximate Query Processing With Aggregate Precomputation for

Interactive Analytics. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 1477–1492. https://doi.org/10.1145/3183713.3183747

[43] Matthew Porter. 2021. Temperature IoT on GCP. https://www.kaggle.com/

datasets/mattpo/temperature-iot-on-gcp Accessed: 18 Feb, 2024.

[44] Aashna Prasad. 2020. ML prediction for Light Detection Sensor

IoT. https://www.kaggle.com/datasets/aashnaprasad/ml-prediction-for-

lightdetection-sensor-iot Accessed: 18 Feb, 2024.

[45] Viktor Sanca, Periklis Chrysogelos, andAnastasia Ailamaki. 2023. LAQy: Efficient

and Reusable Query Approximations via Lazy Sampling. In Proceedings of the
ACM SIGMOD International Conference on Management of Data.

[46] David W. Scott. 2009. Sturges’ rule. WIREs Computational Statistics 1, 3 (2009),
303–306. https://doi.org/10.1002/wics.35

[47] Hadi Sehat, Anders Lindskov Kloborg, Christian Mørup, Elena Pagnin, and

Daniel E. Lucani. 2022. Bonsai: A Generalized Look at Dual Deduplication.

1444

https://doi.org/10.1145/2588555.2593667
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1186/s40537-019-0185-4
https://doi.org/10.48550/ARXIV.2204.07125
https://doi.org/10.48550/ARXIV.2204.07125
https://doi.org/10.1145/872757.872822
https://doi.org/10.1145/872757.872822
https://doi.org/10.1145/375663.375686
https://doi.org/10.1145/3035918.3056097
https://data.cityofchicago.org/Transportation/Taxi-Trips-2020/r2u4-wwk3
https://data.cityofchicago.org/Transportation/Taxi-Trips-2020/r2u4-wwk3
https://doi.org/10.1561/1900000004
https://doi.org/10.1145/3318464.3380574
https://doi.org/10.1145/3318464.3380574
https://doi.org/10.48550/ARXIV.2212.09015
https://doi.org/10.48550/arXiv.2209.02334
https://doi.org/10.48550/arXiv.2209.02334
https://doi.org/10.1609/aaai.v37i6.25929
https://doi.org/10.1609/aaai.v37i6.25929
https://doi.org/10.1145/3401025.3404098
https://doi.org/10.1145/3401025.3404098
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://github.com/DataManagementLab/deepdb-public
https://github.com/DataManagementLab/deepdb-public
https://doi.org/10.14778/3384345.3384349
https://www.kaggle.com/datasets/ranakrc/smart-building-system
https://doi.org/10.1016/j.chemolab.2016.07.004
https://doi.org/10.1016/j.chemolab.2016.07.004
https://doi.org/10.1109/JIOT.2022.3166455
https://doi.org/10.1109/tii.2024.3353913
https://doi.org/10.1109/GLOBECOM46510.2021.9685589
https://doi.org/10.1109/GLOBECOM46510.2021.9685589
https://doi.org/10.1145/568271.223841
https://doi.org/10.1145/3555308
https://doi.org/10.1145/3555308
https://doi.org/10.48550/ARXIV.1811.06224
https://doi.org/10.48550/ARXIV.1811.06224
https://doi.org/10.1109/bigdata55660.2022.10020252
https://doi.org/10.1109/bigdata55660.2022.10020252
https://doi.org/10.1007/s41019-018-0074-4
https://doi.org/10.1007/s41019-018-0074-4
https://doi.org/10.1109/tkde.2018.2877362
https://doi.org/10.1145/3448016.3457277
https://github.com/qingzma/DBEstClient
https://doi.org/10.1145/3299869.3324958
https://doi.org/10.1145/3299869.3324958
https://doi.org/10.7910/DVN/FIE0S4
https://doi.org/10.1038/sdata.2016.37
https://doi.org/10.14778/3213880.3213882
https://doi.org/10.1016/j.dcan.2022.10.016
https://doi.org/10.1016/j.dcan.2022.10.016
https://arxiv.org/abs/2107.06835
https://doi.org/10.1109/gcwkshps45667.2019.9024368
https://doi.org/10.1145/3183713.3196905
https://doi.org/10.1145/3183713.3196905
https://doi.org/10.1145/3183713.3183747
https://www.kaggle.com/datasets/mattpo/temperature-iot-on-gcp
https://www.kaggle.com/datasets/mattpo/temperature-iot-on-gcp
https://www.kaggle.com/datasets/aashnaprasad/ml-prediction-for-lightdetection-sensor-iot
https://www.kaggle.com/datasets/aashnaprasad/ml-prediction-for-lightdetection-sensor-iot
https://doi.org/10.1002/wics.35

[48] Michael Shekelyan, Anton Dignös, and Johann Gamper. 2017. DigitHist: A

Histogram-Based Data Summary with Tight Error Bounds. In Proceedings of the
VLDB Endowment, Vol. 10. 1514–1525. https://doi.org/10.14778/3137628.3137658

[49] Nikhil Sheoran, Subrata Mitra, Vibhor Porwal, Siddharth Ghetia, Jatin Varshney,

Tung Mai, Anup Rao, and Vikas Maddukuri. 2022. Conditional Generative

Model Based Predicate-Aware Query Approximation. Proceedings of the AAAI
Conference on Artificial Intelligence 36, 8 (2022), 8259–8266. https://doi.org/10.

1609/aaai.v36i8.20800

[50] Samriddhi Singla and Ahmed Eldawy. 2022. Flexible Computation of Multi-
dimensional Histograms. New York, NY, USA, Chapter 13, 119–130. https:

//doi.org/10.1145/3548732.3548746

[51] Hien To, Kuorong Chiang, and Cyrus Shahabi. 2013. Entropy-based histograms

for selectivity estimation. In Proceedings of the 22nd ACM International Conference
on Conference on Information & Knowledge Management (CIKM). ACM Press.

https://doi.org/10.1145/2505515.2505756

[52] Udanor Collins, Blessing Ogbuokiri, and Nweke Onyinye. 2022. Sensor Based

Aquaponics Fish Pond Datasets. https://doi.org/10.34740/kaggle/dsv/3748790

[53] USA Department of Transportation. 2016. 2015 Flight Delays and Cancellations.

https://www.kaggle.com/datasets/usdot/flight-delays Accessed: 18 Feb, 2024.

[54] Rasmus Vestergaard, Daniel E. Lucani, and Qi Zhang. 2020. A Randomly Ac-

cessible Lossless Compression Scheme for Time-Series Data. In IEEE INFOCOM.

https://doi.org/10.1109/infocom41043.2020.9155450

[55] Rasmus Vestergaard, Qi Zhang, and Daniel E. Lucani. 2019. Generalized Dedupli-

cation: Bounds, Convergence, and Asymptotic Properties. In IEEE Global Commu-
nications Conference (GLOBECOM). IEEE. https://doi.org/10.1109/globecom38437.

2019.9014012

[56] Rasmus Vestergaard, Qi Zhang, and Daniel E. Lucani. 2019. Generalized Dedupli-

cation: Lossless Compression for Large Amounts of Small IoT Data. In European
Wireless.

[57] Rasmus Vestergaard, Qi Zhang, Márton Sipos, and Daniel E. Lucani. 2021. Titchy:

Online Time-series Compression with Random Access for the Internet of Things.

IEEE Internet of Things Journal 8, 24 (2021), 17568–17583. https://doi.org/10.

1109/jiot.2021.3081868

[58] Sepanta Zeighami, Cyrus Shahabi, and Vatsal Sharan. 2022. NeuroSketch: Fast

and Approximate Evaluation of Range Aggregate Queries with Neural Networks.

Proceedings of the ACM on Management of Data 1, 1 (2022), 1–26. https://doi.

org/10.1145/3588954

[59] Kai Zeng, Shi Gao, Barzan Mozafari, and Carlo Zaniolo. 2014. The Analytical

Bootstrap: A New Method for Fast Error Estimation in Approximate Query

Processing. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data. 277–288. https://doi.org/10.1145/2588555.2588579

[60] Jiaxing Zhang, Ying Yan, Liang Jeff Chen, Minjie Wang, Thomas Moscibroda, and

Zheng Zhang. 2014. Impression Store: Compressive Sensing-based Storage for

Big Data Analytics. In 6th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 14). USENIX Association.

[61] Meifan Zhang and Hongzhi Wang. 2021. LAQP: Learning-based approximate

query processing. Information Sciences 546 (2021), 1113–1134. https://doi.org/10.

1016/j.ins.2020.09.070

[62] Meifan Zhang and Hongzhi Wang. 2021. Selectivity estimation with density-

model-based multidimensional histogram. Knowledge and Information Systems
63, 4 (2021), 971–992. https://doi.org/10.1007/s10115-021-01547-7

1445

https://doi.org/10.14778/3137628.3137658
https://doi.org/10.1609/aaai.v36i8.20800
https://doi.org/10.1609/aaai.v36i8.20800
https://doi.org/10.1145/3548732.3548746
https://doi.org/10.1145/3548732.3548746
https://doi.org/10.1145/2505515.2505756
https://doi.org/10.34740/kaggle/dsv/3748790
https://www.kaggle.com/datasets/usdot/flight-delays
https://doi.org/10.1109/infocom41043.2020.9155450
https://doi.org/10.1109/globecom38437.2019.9014012
https://doi.org/10.1109/globecom38437.2019.9014012
https://doi.org/10.1109/jiot.2021.3081868
https://doi.org/10.1109/jiot.2021.3081868
https://doi.org/10.1145/3588954
https://doi.org/10.1145/3588954
https://doi.org/10.1145/2588555.2588579
https://doi.org/10.1016/j.ins.2020.09.070
https://doi.org/10.1016/j.ins.2020.09.070
https://doi.org/10.1007/s10115-021-01547-7

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 PairwiseHist
	4.1 Histogram construction
	4.2 Bin weighted centre bounds
	4.3 Storage

	5 Query Execution
	5.1 SQL parsing
	5.2 Coverage
	5.3 Weightings
	5.4 Aggregation

	6 Performance Evaluation
	6.1 Initial experiments
	6.2 Parameter sensitivity
	6.3 Accuracy
	6.4 Storage requirements
	6.5 Query latency
	6.6 Construction time

	7 Conclusion
	Acknowledgments
	References

