CGgraph: An Ultra-fast Graph Processing System on Modern
Commodity CPU-GPU Co-processor

Haotian Liu?
Southern University of
Science and Technology

Pengjie Cui'*
Northeastern University
1810602@stu.neu.edu.cn

12231144@mail.sustech.edu.cn

ABSTRACT

In recent years, many CPU-GPU heterogeneous graph processing
systems have been developed in both academic and industrial to
facilitate large-scale graph processing in various applications, e.g.,
social networks and biological networks. However, the performance
of existing systems can be significantly improved by addressing two
prevailing challenges: GPU memory over-subscription and efficient
CPU-GPU cooperative processing.

In this work, we propose CGgraph, an ultra-fast CPU-GPU
graph processing system to address these challenges. In particular,

CGgraph overcomes GPU-memory over-subscription by extract-
ing a subgraph which only needs to be loaded into GPU memory
once, but its vertices and edges can be used in multiple iterations
during the graph processing procedure. To support efficient CPU-
GPU co-processing, we design a CPU-GPU cooperative processing
scheme, which balances the workloads between CPU and GPU
by on-demand task allocation. To evaluate the efficiency of CG-
graph, we conduct extensive experiments, comparing it with 7
state-of-the-art systems using 4 well-known graph algorithms on 6
real-world graphs. Our prototype system CGgraph outperforms all
existing systems, delivering up to an order of magnitude improve-
ment. Moreover, CGgraph on a modern commodity machine with
a CPU-GPU co-processor yields superior (or at the very least, com-
parable) performance compared to existing systems on a high-end
CPU-GPU server.

PVLDB Reference Format:

Pengjie Cui, Haotian Liu, Bo Tang, and Ye Yuan. CGgraph: An Ultra-fast
Graph Processing System on Modern Commodity CPU-GPU Co-processor.
PVLDB, 17(6): 1405 - 1417, 2024.

doi:10.14778/3648160.3648179

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/DBGroup-SUSTech/CGgraph.

* This work was done when Pengjie Cui was a research assistant at Southern University
of Science and Technology.

+ Both Bo Tang and Ye Yuan are corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.
doi:10.14778/3648160.3648179

1405

Bo Tang?' Ye Yuan3'
Southern University of Beijing Institute of
Science and Technology Technology

tangb3@sustech.edu.cn yuan-ye@bit.edu.cn

1 INTRODUCTION

The scale of graphs often undergoes significant growth over time
in various graph applications, e.g., social networks [13], web con-
tent [53], and biological networks [37]. The vertex-centric computa-
tion model [33] has been the de facto standard for large-scale graph
processing due to its simplicity and scalability. For example, it has
been widely adopted by various CPU-based distributed systems [21,
22,28, 33, 36, 44, 56, 58]. Moreover, many GPU-based graph systems
have been developed upon it [9, 20, 26, 31, 34, 39, 43, 48, 51, 55, 57]
to further improve the performance of large-scale graph process-
ing. We classify these GPU-based systems into two categories: (i)
GPU-only computing systems, such as Cusha [26], Gunrock [51],
Groute [9]; and (ii) CPU-GPU heterogeneous computing systems,
including Totem [20], Subway [39], LargeGraph [55]. While GPU-
only systems offer high performance, they fail to process large-scale
graphs that exceed the GPU global memory capacity (a.k.a GPU
memory over-subscription). To address it, CPU-GPU heterogeneous
systems have been developed to mitigate the issue by leveraging
both CPU and GPU resources.

However, there are still two open challenges, i.e., GPU memory
over-subscription and efficient CPU-GPU Cooperative Processing,
that need to be addressed in order to build an ultra-fast graph
processing system on a modern commodity CPU-GPU co-processor.
We elaborate the details of them in the following.

GPU memory over-subscription. Out-of-core graph processing
has emerged as a prevalent approach to tackle GPU memory over-
subscription in CPU-GPU heterogeneous systems. In particular,
three prominent approaches have been explored in the literature.
(I) Partition-based approach [23, 27, 41]: The large graph is parti-
tioned, and then “partitions” are loaded into the limited GPU global
memory before each iteration during the graph processing proce-
dure. While this approach has been improved by various techniques,
such as asynchronously streaming data movement [23, 27, 41],
and reducing data movement size by tracking active vertices or
edges [23, 41], the benefits are still limited. The core reason is the
data movement cost is expensive due to the limited bandwidth of
the PCle connection.

(IT) Unified memory-based approach [19, 30]: With the advent of
CUDA 8.0 and the Pascal architecture, GPU applications gained
the ability to transparently access the CPU main memory. Thus,
many graph processing systems load data pages from CPU main
memory to GPU global memory by triggering page faults. This
approach offers the advantage of on-demand data loading. However,
the limitations of this approach are two-fold: (i) the page faulting
process incurs overhead; and (ii) the on-demand loading of pages

https://doi.org/10.14778/3648160.3648179
https://github.com/DBGroup-SUSTech/CGgraph
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648179
https://www.acm.org/publications/policies/artifact-review-and-badging-current

7 - - 18 ~0 2.0

S [JActive vertices | | (& s [JActive vertices | | g
=0 —— Active edges S = 1 8L
= 4R X8 ——Activeedges | |6 =
g’ 12 @ 2 Fl4 =
= o0& S 12 8
£4 logp 26 r2 g
5 b1 5 L1028
@3 08 @ 53 @
> 06 @ >4 Lo o
3 .

S2 z 2 Lo6 &
= 04 9 k=) Los S
<1)< 13} <
< 02 ¢ < F02 4
I+ 0.0 I* L0.0

0 30 0 10 20 30 40 50 60 70

10 .20
Iterations

Iterations

(b) The number of active edges
and vertices per PR iteration

(a) The number of active edges
and vertices per SSSP iteration

Figure 1: The statistics of running SSSP and PR on friendster

may include a large proportion of inactive edges/vertices, resulting
in unnecessary data transfers.
(IT) Subgraph generation-based approach [39]: Recently, a subgraph

generation algorithm was proposed in Subway [39] to tackle GPU
memory subscription, which generates a subgraph that only in-
cludes active edges and vertices in GPU memory. A suite of tech-
niques (e.g., concise-and-efficient graph representation,GPU accel-
erated implementation) has been devised to optimize its generation
cost. This approach improved the performance of large-scale graph
processing by reducing the frequency and the size of loaded sub-
graph. Nevertheless, the generation cost of the subgraph in nearly
every iteration cannot be ignored.

Efficient CPU-GPU Cooperative Processing. Existing CPU-
GPU heterogeneous graph processing systems leverage both CPU
and GPU to execute graph algorithms. However, the methods of
cooperation between the CPU and GPU are significantly different
among these systems. We next summarize the CPU-GPU coopera-
tive methods in three groups.

() CPU and GPU are the first-class citizens [20]: It means both the
CPU and GPU execute the computation tasks in each iteration dur-
ing the graph processing procedure. For example, Totem [20] first
loads the partition to GPU memory at the beginning, then the GPU
cores will process the tasks of the active edges and vertices in its
memory, and the rest active edges and vertices will be executed
by CPU cores. The CPU and GPU are executing different computa-
tion tasks in each iteration. Obviously, the workload distribution
between the CPU and GPU can vary significantly across iterations.
(IT) GPU is the first-class citizen [23, 39, 41]: The GPU is primarily
responsible for executing the computational tasks in each iteration
in this method, and the CPU plays a supportive role and assists
the GPU in various ways. For instance, the CPU identifies the
active vertices that serve as input for the GPU-accelerated subgraph
generation algorithm in Subway [39]. There is no doubt that the
utilization of the CPU could be further improved, as it may remain
idle while the GPU is heavily occupied with task processing.

(IIT) Hybrid roles of CPU [55]: This method combines the utiliza-
tion of the CPU in both (I) and (II). The CPU initially acts as an
assistant to the GPU, as described in (II). However, it also executes
partial computation tasks during each iteration of graph process-
ing. For example, the CPU first identifies the frequent paths in the
graph and assigns the tasks which are in frequent paths to GPU in
LargeGraph[55]. After that, it processes the computations task in
infrequent path. Nevertheless, the method encounters task-level
imbalances during graph processing. The reason is that the number

1406

Table 1: The range of speedup times of CGgraph

[Dataset [[BFS | sSSP | WCC | PR]
gsh2015tpd 0.74-2.35X 1.22-4.44X 0.97-4.72X 1.25-2.23X
twitter2010 1.53-3.39X 2.18-4.68X 2.01-5.11X 2.70-9.73X
friendster 2.05-3.48X | 4.45-11.94X | 3.42-11.07X | 2.66-7.83X

weibo 2.11-2.94X 2.43-6.05X 2.81-7.50X 2.39-6.35X
uk-2006 0.96-4.15X 2.46-5.37X 1.58-3.91X 2.33-6.96X
un-union 1.30-2.86X 2.05-2.61X 1.45-2.82X 1.79-2.79X

of active edges for a vertex in the frequent path is obvious larger
than it in the infrequent path.

In this work, we propose CGgraph, an ultra-fast graph process-
ing system on a CPU-GPU co-processor, to simultaneously address
the above two open challenges. Moreover, its performance improve-
ment does not rely on the high-end CPU-GPU servers, as it is built
on a modern commodity machine with a CPU-GPU co-processor.

With the above discussion, the key limitation of all existing
solutions for GPU memory over-subscription is that the benefits
obtained by exploiting the high parallelism of GPU are neglected
due to the data movement overhead. In CGgraph, we address this
by following the “load once and use multiple times” principle. Specif-
ically, Figure 1(a) depicts the number of active edges and vertices in
each iteration by running Single Source Shortest Path (SSSP) and
PageRank (PR) algorithms on friendster, which includes 124 million
vertices and 1,806 million edges. Obviously, the number of active
edges and vertices undergoes significant variation across iterations
in both SSSP and PR algorithms. Hence, the general idea to address
GPU memory over-subscription in CGgraph is extracting a size-
constrained subgraph G’ from graph G, in which its vertices and
edges can be active in multiple iterations. Thus, CGgraph loads
it to GPU global memory before graph processing and keeps it in
GPU during the whole graph processing procedure.

For the CPU-GPU cooperative processing, the first pitfall of ex-
isting solutions is that the GPU should be used in every iteration
during graph processing. The overhead to invoke GPU will defi-
nitely be larger than its benefits in those iterations which only has
a few active edges and vertices, e.g., 1st-3rd iterations and 11th to
31st iterations in SSSP and 37th to 63th iterations in PR, as shown in
Figures 1 (a) and (b), respectively. In CGgraph, we devise a simple-
yet-effective GPU invoking strategy to decide whether the GPU will
be invoked or not in each iteration. Moreover, the most important
limitation of existing solutions is that almost all of them (if not all)
lack of fine-grained (i.e., vertex-level and edge-level) CPU and GPU
workload balance scheme. In CGgraph, we devise (i) an edge-level
CPU-GPU cooperative computation scheme and (ii) on-demand
task allocation approach to overcome it. To further unlock the com-
putation capabilities of CPU and GPU, a suite of optimizations (e.g.,
task stealing, inter-warp balancing strategy) for task processing on
CPU and GPU have been devised in CGgraph.

We conduct extensive experiments to demonstrate the superi-
ority of our CGgraph. Specifically, we report the minimum and
maximum speedup of CGgraph over 7 state-of-the-art systems by
running 4 widely used graph algorithms, i.e., Breadth-First-Search
(BFS), Weakly Connected Components (WCC), SSSP and PR on 6
public graph datasets in Table 1. CGgraph achieves up to 4.15X,
11.94X, 11.07X and 9.73X speedup over existing systems by pro-
cessing BFS, SSSP, WCC and PR, respectively. Interestingly, the

Algorithm 1: Graph Processing Algorithm X

1 Procedure X :

1 foreach neighbor u of v; do
2 foreach iteration do 2 | distance = v;.value + u.weight;
3 if convergent then s | if distance < u.value then
4 L return ; 4 L writeMin(u.value,distance);
5 setActive(u) = True;
else

foreach vertex v; in vertex set V do
L if isActive(v;) then

5

6

7

8 L Expand (v;) ; // Filter-Expand
[

(a) Vertex-centric computation model

The Expand (v;) ion of SSSP

Iteration o U1 [} U3 U4 U5 V6 [
init 0 400 +00 400 400 400 400 400
1st 0 1 +00 400 2 400 400 6
2nd 0 1 3 +00 2 9 2 4
3rd 0 1 3 5 2 7 2 3
4th 0 1 3 5 2 6 2 3
5th 0 1 3 5 2 6 2 3

(c) Iterations of SSSP algorithm

Figure 2: Graph computation model and its illustrative example of SSSP algorithm

performance of our proposed CGgraph on modern commodity
machine is even better than (or at least comparable with) the per-
formance of existing systems on a high-end CPU-GPU server. This
remarkable achievement confirms the efficiency and capability of
CGgraph in leveraging CPU and GPU hardware resources.

The rest of the paper is organized as follows. In Section 2, we
introduce the graph processing computation model and its research
challenges. In Section 3, we overview the architecture of CGgraph.
The techniques to address the above two open challenges are intro-
duced in Sections 4 and 5, respectively. The experimental evaluation
results are presented in Section 6. We conclude the paper and high-
light the future research directions in Section 7.

2 COMPUTATION MODEL AND ITS
CHALLENGES

In this section, we first introduce the widely-used computation
model in graph processing systems, then we highlight the research
challenges to build a fast graph processing system on a modern
commodity machine with a CPU-GPU co-processor.

2.1 Graph Processing Computation Model

Many graph processing systems employ the vertex-centric compu-
tation model (a.k.a., programming model) due to its high scalabil-
ity [21, 51, 58]. As depicted in Figure 2(a), the vertex-centric compu-
tation model adopts an “iterative-convergent” process. In particular,
the given graph algorithm is processed in an iterative manner, termi-
nating when all vertex values do not change or when the procedure
reaches a limited iteration time, known as “convergent” in Line
3, Algorithm 1. For each iteration, every vertex in the graph is
processed by Filter-Expand operation [34, 35]. We refer to the Filter-
Expand operation of a vertex as a computation task in the graph
processing system. In particular, the Filter step selects the active
vertices to execute the Expand (see Line 7), and the inactive vertices
are filtered. The Expand step processes the input active vertices, and
generates new active vertices for the next iteration. More specifi-
cally, the Expand step maintains algorithm-specific logic for vertex
processing, ensuring that all active vertices are processed with the
same algorithmic logic. The inside box in Figure 2(a) shows an ex-
ample of the Expand step for SSSP algorithm, which computes the
shortest distance from a given source vertex to all other vertices on
a weighted directed graph. The vertex-centric computation model
is generic as it can be instantiated to various graph processing
algorithms, e.g., BFS, PR, WCC, by only changing the algorithmic
logic in the above Expand step. Moreover, the computation tasks of

1407

Few CPU cores (8) Many GPU cores (3840)
@ E @ {i} SO - S
2 ®)) -
m} m} mmp | |2 |, [OOOese-sasees
212 &|%|ssssss- sssess
Ol z|g|seEses seeEeE
Bl e G| o | -
2 o [3MB LLC |
Large CPU Memory s =
(128 GB) Low PCle BW .| Small GPU Memory (12 GB)

(11 GB/s)
Figure 3: The architecture of CPU-GPU co-processor

all vertices in each iteration can be parallel processed inherently
via high-parallelism hardware (e.g., multi-threads CPU or GPU).

Example. Taking the graph G in Figure 2(b) as an example, we
illustrate the vertex-centric computation processing procedure of
SSSP with source node vy in Figure 2(c). At the beginning of the
iteration, the vertex values, i.e., the found shortest distance from
the source vertex vy so far, are initialized to +co. For Expand step
of v, it updates its vertex value to 0 and activates its neighbors
{v1,v4,v7}, which will be processed in the next iteration. In the 1st
iteration, the vertex values of v1, v4 and v7 are computed by their
corresponding Expand step, see the red values in the 1st iteration
row. The newly active vertex set is {v2, vs, v6,v7}, and it will be
processed in the 2nd iteration. As illustrated in Figure 2(c), the
processing procedure terminates after the 5th iteration, as all the
shortest distances from source vy are computed.

In the literature, the subgraph-centric computation model is also
used in various graph processing systems [38, 45, 46]. We omit
it in this work as it is not trivial to accelerate it by CPU-GPU
co-processing [24], e.g., how to exploit single instruction multiple
threads architecture of GPU to parallel process different subgraphs?

2.2 Research Challenges

In this section, we first introduce the characteristics of CPU-GPU
co-processors in modern commodity machine, then highlight the
challenges to build an ultra-fast graph processing system upon it.

CPU-GPU Co-processor. Figure 3 shows the architecture of a
CPU-GPU co-processor in a modern commodity machine, i.e., DELL
OptiPlex 7000MT Desktop Computer. There are several important
properties in a CPU-GPU co-processor. First, the GPU has a larger
number of cores (i.e., 3840 cores) compared to the CPU (with 8
cores), enabling high parallelism computation in the GPU. Second,
GPU utilizes high-bandwidth memory (HBM), which is higher (484
GB/s) than the memory access bandwidth of the CPU (38 GB/s).

Graph processing phase

l

|| CPU GPU
Iteration m m‘ [|,|Iteration
input 5 | [cutput
: SSSS SSSSfSSSS

Data processing phase ‘
si rained Graph G
1ZC-constrainet N h
Graph subgraph Residual gr/aph S“bé"l ap
reorder extraction E=G
CPU memory| |GPU memory

Figure 4: CGgraph architecture overview

Last but the most important, the size of the CPU main memory is
always significantly larger than the size of the GPU global memory,
e.g., 128GB vs. 12GB. The data movement from CPU memory to
GPU memory is very expensive, as the bandwidth of PCle is limited,
e.g., 11 GB/s, which is the core challenge to design an out-of-GPU-
memory data processing system [23, 32, 39, 41, 50, 55].

Research Challenges. The performance of many CPU-GPU het-
erogeneous graph processing systems could be further improved as:
(i) the gained parallel computing benefits from GPU are far smaller
than the extra data movement cost, and (ii) existing systems do not
fully utilize the computation power of CPU and GPU. Hence, there
are two research challenges to build an ultra-fast graph processing
system on modern commodity CPU-GPU co-processor:

C1: GPU memory utilization is quite low. As elaborated in Sec-

tion 1, existing systems utilize GPU global memory by (i) loading
data partitions into it at each iteration explicitly [23, 41, 55], and
(ii) generating a subgraph which only includes active edges and
vertices at nearly every iteration [39]. However, both methods incur
significant overheads, e.g., the data movement cost or subgraph
generation cost. Thus, the first challenge of our work is improving
the utilization of the limited GPU global memory.

C2: CPU-GPU cooperation is inefficient. Specifically, existing

systems either use CPU memory as the secondary storage [23, 39,
41] or assign computation tasks to CPU via a fixed strategy [20, 55].
The limitations are two-fold: (i) the co-processing between CPU
and GPU is implicit, which results in workload imbalance, and (ii)
they do not fully unlock the computation capabilities of the CPU
and GPU. Hence, the second challenge of our work is cooperating
CPU and GPU effectively.

3 THE OVERVIEW OF CGGRAPH

Figure 4 depicts the architecture of our proposed CGgraph. It con-
sists of two phases: (i) data processing phase, and (ii) graph pro-
cessing phase, which are designed to address the two challenges
in Section 2, respectively. In particular, it first applies the graph
reordering algorithm on the raw graph data. Then, CGgraph ex-
tracts a size-constrained subgraph G’ from the reordered graph G,
in which its vertices and edges can be active in multiple iterations,
and loads it into GPU global memory. We will elaborate on the
details of data processing techniques in Section 4. For the graph
processing phase, CGgraph employs the widely used vertex-centric
computation model as other studies (see Section 2) to process graph

1408

algorithms. For each iteration, the GPU invoking strategy first de-
cides how to process the active vertices/edges, i.e., CPU-only or
CPU-GPU co-processing by exploiting the statistics of the subgraph
G’. Then, all computation tasks will be executed accordingly. The
details of the proposed techniques in the graph processing phase
are described in Section 5.

4 DATA PROCESSING PHASE IN CGGRAPH

As the data movement cost between CPU main memory and GPU
global memory is very expensive, the principle of our solution is:
“load once and use multiple times!” With the above idea in mind,
our research goal is extracting a subgraph G’ from the input large
graph G, such that (i) only load it to GPU global memory once,
and (ii) it unlocks the high parallelism computation capability of
GPU among multiple iterations. In this section, we first highlight
our observed insights in the graph processing computation model
(Section 4.1), which guides us to design the two core subroutines in
CGgraph: graph reordering and size-constrained subgraph extrac-
tion algorithm, as presented in Sections 4.2 and 4.3, respectively.

4.1 Observed Insights

Returning back the SSSP example (in Figure 2) of the graph pro-
cessing computation model in Section 2, we found vertex values
of v5 and v7 are updated in three iterations during the graph pro-
cessing procedure. Specifically, the vertex value of v7 is updated
by vp — v7, 09 = v1 — v7, and v9 — v; — vg — v7 in the 1st,
2nd, and 3rd iteration, respectively. Moreover, the vertex value v5
also be updated in the 2nd to 4th iterations as it is an out-going
neighbor of v7. We then summarize the first insight according to
the above observation.

Insight 1. The numbers of active times of different vertices in the
graph are quite different. Vertices with a large number of in-coming
edges are likely to be active in many iterations during the graph
processing. Consequently, the out-going neighbor of such vertices
will also be affected in many iterations.

Another interesting fact is that v3 is a special type of vertices
(a.k.a sink vertices), which do not have any out-going neighbors,
thus, the vertex value of v3 does not influence any other vertex value
in the whole processing procedure. Moreover, the vertex value of
v3 depends on the vertex values of its in-coming neighbors vz and
us. Hence, the second insight we observed is as follows.

Insight 2. The sink vertices do not influence other vertices. Thus,
their vertex values will not affect the values of other vertices. In
particular, the vertex value of a sink vertex can be computed after
all its in-coming neighbors’ vertex values are finalized, for example,
computing them in the last iteration.

4.2 Graph Reordering

With the above observed insights, a general idea is to selectively
load the vertices that have a high number of in-coming neigh-
bors into the GPU’s constrained memory, while excluding the sink
vertices. This problem is a variant of the well-known dense sub-
graph extraction problem [29]: given a sparse graph, how to find a
meaningful dense subgraph? One of the commonly used methods
is reordering and positioning the vertices or edges to a specific

eer. CO@EB DB |
init ‘+00I£|+90+ } } { ; ‘_l_‘
"1;;40|9218} ------- \;[j
(ma [4]0]9]2]1]8] 10]7]3]3 [-1-]
s ol [3]5)||[F15]
s Te7]3]3]||[=]-]
s e [7]3]5]l|[7]7]
the last iteration

(a) The original graph

(b)The graph after reordering

(c) SSSP on the original graph

(d) SSSP on the reordered graph

Figure 5: The effect of graph reordering on SSSP algorithm

location, then extracting a size-constrained subgraph upon the re-
ordered graph. For example, Chen et, al. [11] reorders the adjacency
matrix and gathers the dense part into the diagonal, then proposes
a blocking algorithm to find the dense diagonal block. Inspired by
it, we devise a graph reordering algorithm which stores the vertices
with more in-coming neighbors at the front while placing the sink
vertices at the end. In addition, we observed that when a vertex
finishes its computation, its neighbors are likely to be active in
the next iteration during the graph processing. We explicitly take
this observation into consideration to enhance data access local-
ity. Therefore, the reordering algorithm ensures that the out-going
neighbors of a vertex with a large number of in-coming neighbors
are situated nearby.

To achieve the above goals, we propose a heuristic graph reorder-
ing algorithm as follows, which takes all vertices V of the graph
as input, and outputs the reordered list S{,. It sorts all vertices in
V by the descending order of its in-degree at first, denoted by Sy.
Then we slightly revise the Breath-First-Search (BFS) algorithm
to traverse all these vertices in the graph to obtain the reordered
list S}, Specifically, the revised BFS algorithm starts with the first
non-visited vertex in the sorted vertex array Sy. During the tra-
versal procedure, each visiting vertex is either appended to the
reordered list S}, (i.e., non-sink vertex) or appended to the sink
vertices list Sg;,« (i.e., sink vertex). The above traversal steps repeat
until all vertices have been visited. Last, the sink vertices list Sg;,,x
is appended to the reordered list S{,. We refer the interested reader
to Appendix A in technical report [2] for the pseudocode and the
time complexity analysis of the graph reordering algorithm.

The benefits of our proposed graph reordering algorithm are
three-fold: (i) it reorders the vertices and edges which will be active
frequently during graph processing. It improves the utilization
of GPU global memory as we will elaborate in Section 4.3; (ii)
it explicitly moves the sink vertices of the graph to the end of
S{,, which significantly reduces the computation cost of graph
processing algorithms; and (iii) it increases CPU and GPU cache
hit rates as it takes the data access locality into consideration. We
next demonstrate the effectiveness of the above graph reordering
algorithm via the example in Figure 5.

Example. Figure 5(a) shows the original graph, and its reordered
graph is presented in Figure 5(b). The subscripts of v and v” rep-
resent the order of a vertex in the original graph and reordered
graph, respectively. The graph reordering algorithm changes the
id of each vertex, e.g., vo in the original graph is the same as v] in
the reordered graph. We run the SSSP algorithm on both graphs.
Their corresponding iterations are shown in Figures 5(c) and (d),

1409

respectively. In particular, the sink vertices in the reordered graph
are located at the end, which are marked as blue. We update them
only after the vertex values of other vertices have been finalized.
Obviously, moving the sink vertices to the end and postponing their
vertex value computation via the reordered graph significantly re-
duces the computation cost when we compare the iterations in
the original graph and reordered graph. For example, the vertex
values of sink vertices v and vy are updated three times, see the
columns with blue color vertex in Figure 5(c). However, they are
only updated once in the reordered graph, as the last two columns
in Figure 5(d).

Moreover, the graph reordering algorithm explicitly improves
data access locality in each iteration. In both Figures 5(c) and (d),
the gray cells in each row are the accessed vertices in each iteration.
Visually, the data access locality on the reordered graph is preserved
much better than on the original graph, as the visited vertices of
each iteration in Figure 5(d) are located in continuous grids. Taking
the 2nd iteration as an example, the original graph visits vy, v4, ve,
09, 010, and v11. However, four of these vertices are consecutively
positioned from vy to vg in the reordered graph, and two are sink
vertices that do not need access at this iteration.

Relevant studies. Many graph reordering algorithms [10, 14, 15,
17, 52, 54] have been studied in the literature for various optimiza-
tion goals. For example, RCM [14] rearranges the matrix repre-
sentation of a graph into a band matrix with a narrow bandwidth.
Gorder [52] enhances the average neighborhood overlap of con-
nections between adjacent nodes by maximizing the shared edges
within blocks of consecutive nodes (sliding window) with size w
to reduce the cache misses. Adapting them to our problem is pos-
sible, but the overall performance of CGgraph will be worse than
our above graph reordering algorithm. The primary reason is that
our goal is to reorder the vertices based on their in-degree while
explicitly considering data access locality, and we will verify this
in Section 6.

Generality discussion. The above graph reordering algorithm
is generic, and it can be used to improve the performance of all
existing graph processing systems (e.g., Totem [20], Subway [39])
as it enhances the data access locality in an explicit way. We will
confirm it in Section 6.

4.3 Size-constrained Subgraph Extraction

Before introducing our size-constrained subgraph extraction algo-
rithm, we demonstrate the effectiveness of our graph reordering
algorithm, which moves the vertices with high in-coming neighbors

2 3 4 5 6 7 89 01 23 456 7809

oM
0.IM
IM

3M

6M

15M

30M

60M

120M

250M

© ® w9 L s W N =

9 [500M

(a) The original graph (b) The reordered graph

Figure 6: The heatmaps of the edge distribution

to the front. Figures 6(a) and (b) show the heatmap of edge distribu-
tions among the vertex group pairs of twitter2010 in the original and
reordered graph, respectively. The deeper (resp. lighter) the color
of a cell, the larger (resp. smaller) the edges in this vertex group
pair. Specifically, twitter2010 has 42 millions of vertices, which are
equally divided into 10 groups. For example, the first 4.2 millions
vertex are assigned to group 0. An edge (v;,0;) in the graph G is
counted in vertex group pair (x,y) if and only if its start vertex v;
is in the vertex group x and its end vertex v; is in the vertex group
y. Comparing with the heatmap of the original graph in Figure 6(a),
the deeper color cells are concentrated on the left-upper corner of
the reordered graph heatmap in Figure 6(b). The reason is that our
graph reordering algorithm moves the vertices with high in-coming
neighbors to the front. Thus, the group pairs at the left-upper cor-
ner are probably include more edges than others. In addition, it is
not surprising that the color of the cells in right-bottom corner is
very light as these are sink vertices.

With the reordered graph, we next present our size-constrained
subgraph extraction method as follows. First, it extracts a subset of
vertices from the beginning of the ordered vertex list. Second, we
identify the edges whose starting vertex and ending vertex are in the
set of extracted vertices. The extracted vertices and corresponding
selected edges form the subgraph G’, which will be loaded into GPU
memory to support efficient graph processing. The exact number of
the vertices to be extracted in the first step is determined as follows.
We first accumulate the total out-going neighbors of the vertices
from the ordered list. We then binary search the foremost vertex of
which the total size of all of their out-neighbors can be fit into the
size-constrained GPU memory.

The details of subgraph extraction algorithm. Different sub-
graphs of the same original graph will be extracted for various
graph algorithms. For each graph algorithm on a specific graph, we
determine the constrained memory size by excluding the additional
GPU memory overhead of the graph algorithm from the GPU global
memory budget. The additional GPU memory overhead of each
graph algorithm is easy to estimate as it is only used to synchronize
the intermediate results among CPU and GPU, we will elaborate
shortly in Section 5. However, all these extracted subgraphs share
the same starting vertex, i.e., the vertex at the beginning of the
reordered list S{,, as the purpose of the subgraph extraction algo-
rithm is identifying those vertices are probably to be activated in
multiple iterations during graph processing.

1410

5 GRAPH PROCESSING PHASE IN CGGRAPH

In this section, we first propose a CPU-GPU cooperative compu-
tation scheme for fast graph processing on a single machine with
CPU-GPU co-processor in Section 5.1. Next, we devise the process-
ing optimization techniques on CPU and GPU, which fully unlock
their computation capabilities, in Sections 5.2 and 5.3, respectively.
Last, we present a simple-yet-effective strategy to decide whether
CGgraph invokes GPU or not at each iteration in Section 5.4.

5.1 CPU and GPU Cooperative Processing

After the data processing phase in Section 4, the graph G is re-
ordered and the subgraph G’ which includes those selected high
in-degree vertices (and their corresponding selected edges) is loaded
into the GPU global memory. It is not trivial to parallel execute the
graph processing algorithms via the vertex-centric computation
model under the above setting. The major reason is that the sub-
graph G’, which is stored in GPU memory, probably only includes
a subset of edges for every vertex in it.

In this section, we propose a CPU-GPU cooperative computation
scheme to address it. For each iteration, every vertex in graph G
is classified into two categories: (i) CPU-only and (ii) CPU-GPU.
In particular, if the vertex v is not in subgraph G/, i.e., it is not
in the GPU memory, it only can be processed on the CPU, thus,
vertex v is in the CPU-only category. Otherwise, vertex v is in the
CPU-GPU category. It is easy to process the CPU-only vertices via
the vertex-centric computation model. Next, we present our CPU-
GPU cooperative processing scheme for the CPU-GPU category
vertices. For each CPU-GPU vertex v, two computation tasks will be
instantiated. One of its computation tasks will process a subset of
its edges (which is included in G”) on GPU, the other computation
task of it will process the rest of its edges in the residual graph, i.e.,
G — G’ on CPU. After that, the computed results of both tasks will
be aggregated to derive the final result of vertex v.

For implementation-wise, the last aggregation step of every CPU-
GPU vertex will do in a batch at the end of each iteration. In partic-
ular, every vertex value of GPU-processed computation tasks will
be moved back to the CPU main memory together. Each of them
will be aggregated with its corresponding vertex value on the CPU
main memory to derive the final result. In addition, the updated
value of every node in subgraph G’ will be synchronized to the
GPU memory at the beginning of the next iteration to guarantee
the GPU computation tasks will not work on the out-of-date values.
With the above vertex value synchronization method, the CPU
and GPU computation task of the same vertex does not need to be
processed at the same iteration. The value movement overhead is
quite small as our subgraph extraction approach in Section 4.3 only
extracts a subset of vertices from G, and it is the additional GPU
memory overhead of the corresponding graph algorithm. We will
verify it by experiments in Section 6.

Example. We use the graph G in Figure 7 as an example to illustrate
how to cooperate CPU and GPU to process the SSSP algorithm via
the vertex-centric computation model. Figure 7(a) is the reordered
graph G, the gray part in it is the subgraph G’ on GPU memory,
see Figure 7(b), which is selected by the data processing phase.
The black part is the residual graph, i.e., G — G’. To improve the
computation efficiency, for the CPU-GPU co-processing vertex v,

Iteration

init
1st
2nd
3rd
4th
5th

2 1 v2 U3 V4 5 Y6 v7
CPU/GPU|CPU/GPU [CPU/GPU |CPU/GPU |CPU/GPU |CPU/GPU |CPU-only |CPU-only
+00/+00 | +00/+00 | +00/+00 | +00/+00 | +00/+00 0 +00/— | +00/+00
+00/6 | +00/+00 | +0o/+00 | +00/1 | +o0/+00 0 2/- +00/—
5/4 +00/9 +00/2 1 3/400 0 2 +00/—
4/3 9/7 2 1 3 0 2 5/—

3 7/6 2 1 3 0 2 5
3 6 2 1 3 0 2 5

(a) Graph G on CPU

(b) Subgraph G’ on GPU

(c) Iterations of SSSP algorithm

Figure 7: Cooperative CPU-GPU computation and its illustrative example of SSSP algorithm

CGgraph only processes its edges on the residual graph G — G’ via
its computation task on the CPU.

Given the source node vs, Figure 7 (c) shows the SSSP algorithm
processing procedure. The computation tasks of vs and v7 are CPU-
only and the rest vertices in G are in the CPU-GPU category, as the
first row in Figure 7(c) shown. The distance of the source vertex
is initialized to 0 and others are set to +c0 in CPU memory at first.
During the first iteration, the initialized vertex values are copied to
GPU memory before computation task execution. The vertex value,
i.e., the shortest distance of it found so far, of vertex vg, is updated
by CPU-only computation task as vg is not in the subgraph G’.
The vertex value of vg and v3 are updated by their corresponding
GPU-based computation task, and the values are moved to the
CPU main memory for final aggregation. For example, the distance
value of vy and v3 on the CPU main memory are updated to 6
and 1, respectively, as the red color highlighted values at the 1st
iteration row in Figure 7(c). Moreover, the vertices vy, v1, v, and v4
are active and waiting for processing at the next iteration. For the
second iteration, the updated vertex values of vy to vs are moved
to GPU global memory at first. The distance values of v1 and vy are
updated by their corresponding GPU computation tasks. However,
the distance value of v4 is updated by its CPU computation task as
there is an edge (vs, v4) in the residual graph. For CPU-GPU vertex
09, its CPU computation task updates its value to 5 via the path
v5 — vg — v, and its GPU computation task updates its value to 4
via the path vs — v3 — vg. The final distance value of v is obtained
by aggregating the results of CPU and GPU computation tasks, i.e.,
min{5, 4} = 4, as red color highlighted. CGgraph executes the SSSP
algorithm following the above steps in each iteration until all the
distance values do not change anymore.

On-demand task allocation. Even though the above CPU and
GPU cooperative processing scheme is very efficient, it still has
room for further performance improvement. Specifically, the ver-
tices in the CPU-GPU category (i.e., in subgraph G’) will be co-
processed via CPU and GPU by default. However, it may incur the
workload imbalance between the CPU and GPU if there are too
many vertices waiting for execution on the GPU. In this section, we
alleviate the workload imbalance issue by proposing the following
on-demand task allocation approach.

Figure 8 shows our on-demand task allocation approach for CPU-
GPU co-processing. At the beginning of each iteration, the vertices
will be classified into CPU-only (in blue color) and CPU-GPU (in
red color) categories, as the task box in Figure 8 shown. We then
invoke CPU and GPU to cooperatively process these tasks by the

r: 00 000 0000 @0

GPU CPU
Executed CPU-GPU vertices Executed CPU-only vertices

PO ®

CPU-GPU vertices on GPU CPU-GPU vertices on CPU

olololo

U vertex vertex Residual grapl
Subgraph G value QZD value Graph G G-G
Syncrhonization
GPU memory CPU memory

@ CPUGPU vertex @ CPU-only vertex

@ CPU-CPU vertex but executed on CPU

Figure 8: On-demand task allocation

Figure 9: Task processing on CPU

vertex-level

above CPU-GPU cooperative processing scheme. When the CPU
executed all these CPU-only vertices, it will start to process the
CPU-GPU vertices, which originally are waiting for GPU execution,
as the tasks of vg, v9 in the red box of Figure 8 shown. Specifically,
the CPU-GPU vertices will not be executed by the GPU anymore if
they are allocated to the CPU for execution as all their edges can
be obtained from the graph G, which is in the CPU’s main memory.
As illustrated in Figure 8, the computation task of vg and vg (which
originally are CPU-GPU vertices in red color) are executed by the
CPU with all their edges in G, see the yellow vertices in Figure 8.
Until now, we devise a CPU-GPU cooperative processing scheme
with on-demand task allocation approach to cooperate with the
CPU and GPU for graph processing in CGgraph. In subsequent, we
present the performance optimization techniques for efficient task
processing on CPU and GPU in Sections 5.2 and 5.3, respectively.

5.2 Tasks Processing on CPU

To improve the utilization of every CPU core, we devise vertex-level
and edge-level work stealing mechanisms in this section.

Vertex-level work stealing. For every vertex in each iteration,
their corresponding computation tasks are uniformly assigned to

1411

neighbors of v

; ,
[v7 [vo] w6 Jvra] vs [va [ws Jora[vsofvralvsa|vislvasfvas]vaevadfvrsfore [usfvrrfoss|
. . T >

| @ CPU3| |

Figure 10: Edge-level work stealing

U

@ CPUy | next part to steal

the task queue of each CPU core, and wait for execution. As shown
in Figure 9, each CPU core has its own working queue, which
includes the assigned tasks in this iteration. Each CPU core executes
them one by one from the head to the tail of its working queue.
The computation intensiveness of different tasks is quite different,
which results in the different completion time for each CPU core.
We devise vertex-level work stealing method to address the above
load imbalance issue among CPU cores.

Take Figure 9 as an example, suppose there are three computation
tasks in CPU; (i.e, v1, vz and v3) when CPU; completes. Then,
CPU; will steal tasks from the tail of CPU;’s working queue, i.e.,
the computation task of v3. We impose a clockwise stealing order
to guarantee the correctness and efficiency of execution, e.g., CPU;
will steal the tasks in the working queue of CPUj first, it will steal
the task of CPUy if and only if it cannot steal tasks from CPU;. In
our implementation, the CPU core will steal 64 tasks at a time as
we use a bitset with 64 bits to filter the inactive vertices.

Edge-level work stealing. The execution time of computation
tasks in each iteration always follows the long-tail distribution, e.g.,
a few vertices incur a very long execution time. To alleviate the
load imbalance issue caused by a few long computation tasks, we
further provide a fine-grained work stealing method on the CPU,
i.e., edge-level work stealing. For example, the CP Uy steals partial
work of task with vertex vg, which is executing by CPUs3, as shown
in Figure 9. We adapt the work splitting strategy [16] to split a
vertex that has a large number of neighbors. In particular, when
the CPU core processes a task associated with a large number of
edges, i.e., it exceeds a threshold €, we will mark it as “splittable”.
It means that the task can be stolen partially by other CPU cores,
we use the same stealing order as the vertex-level stealing method.
For a “splittable” task, each CPU core only processes a subset of
edges when processing it, and the rest edges can be processed by
other CPU cores. For example, as shown in Figure 10, the CPU3
processes the first 8 edges when it executes the task with vy, and
the CPUy steals the task vp with the second 8 edges and executes
it. Therefore, multiple CPU cores work together to complete the
computation task of vg.

In summary, for all the computation tasks on the CPU, we first
employ the vertex-level work stealing method to balance the work-
load among all CPU cores. After that, the edge-level work stealing
method is applied to reduce the execution time of the tasks which
have a large number of neighbors.

5.3 Tasks Processing on GPU

We exploit the computation ability of GPU by reducing the warp
divergence during computation task processing on it. In the liter-
ature, cooperative thread array (CTA) [9, 48, 51] is a widely-used
method to execute the computation tasks on GPU. It processes 256

1412

warp 0 warp 1 warp 2

1

5
L | I |
LA | |
8 I e
A | | | |
(a) Cooperative Thread Array (CTA)
’ Shared-Memory ‘
6
7
| | S | 7 72 I
(b) Inter-warp balancing strategy
High-degree task Medium-degree task Low-degree task

Figure 11: Task processing on GPU: CTA vs. IWB

computation tasks in a batch. CTA executes the high-degree tasks
(i.e., the corresponding vertices have more than 256 edges) in a
block manner, i.e., all 256 threads in a block will execute the task
together. The medium-degree tasks, whose edges are in the range
of 32 to 256, will be executed in a warp manner, i.e., use 32 threads
in a warp to execute it. The low-degree tasks (i.e., less than 32 edges
of their vertices) will be executed by a single thread.

Figure 11(a) depicts the task processing procedure example of
CTA for a batch of computation tasks. It executes high-degree
tasks (i.e., tasks of v, v1,v2, v3) by employing all threads across all
warps in the block. The medium-degree tasks will be executed by
all threads within a warp. For example, tasks of vy, v5 and tasks of
08, V9, 010, ¥11 are processed by the threads in warp; and warp,, re-
spectively. The low-degree tasks are executed by a single thread, see
tasks of vs and v7. CTA achieves high GPU utilization via different
execution manners for different tasks. However, it incurs significant
inter-warp divergence when processing medium-degree tasks. For
example, the threads in warp 0 are stalled after they processed the
task with v3.

To address the inter-warp divergence on GPU, we re-assign the
medium-degree tasks from overloaded warps to others. In particu-
lar, we calculate the average medium degree among warps. If the
medium-degree tasks in a warp are larger than the average, we
move the over part to the shared memory. For example, the average
number of medium-degree tasks is 2 (6 tasks and 3 warps). Thus,
the overloaded warp 2 will move two tasks (i.e., tasks of vg and v9)
to shared memory. Thus, both tasks can be executed by the threads
in warp 0 after the processing of the task with v3, see Figure 11(b).
In the implementation, we guarantee the number of tasks in the
shared memory will not exceed the size of it. In addition, we apply
the warp appending method [48] to visit the shared memory to
reduce the number of atomic operations.

5.4 GPU Invoking Strategy

Obviously, invoking GPU for cooperating incurs extra costs. If the
GPU invoking overhead is larger than the performance improve-
ment we can obtain by exploiting CPU-GPU cooperative processing,

Table 2: The statistics of the used graph datasets

Graph V] |E| Dgayg Sink Size Domain
gsh2015tpd (GS) 31M 581M 18.8 24.9% 5GB Web
twitter2010 (TW) 42M 1,469M 35.2 45% 12GB Social
friendster (FR) 124M 1,806M 1456 18.1% 15GB Social
weibo (WB) 70M 2,586M 37.1 14.6% 21GB Social
uk-2006 (UK) 78M 2,965M 38.01 11.3% 25GB Web
uk-union (UN) 134M 5,955M 41.2 10.1% 50GB Web

then we do not need to invoke it. As the profiling result shown in
Figure 1(a), the number of active edges at the beginning or ending
iterations is quite small. For example, the number of active edges
in the first 2 iterations and the last 10 iterations are less than 1,500.
Intuitively, invoking GPU in these iterations is not a good choice
as it cannot fully exploit the high-parallelism of GPU but incurs
extra overhead. In CGgraph, we propose a simple-yet-effective
GPU invoking strategy to decide whether it invokes GPU or not at
the beginning of each iteration. In particular, the GPU processor
only is invoked if and only if the number of active edges in the
iteration is larger than the given threshold r and the percentage of
the active edges in subgraph G’ is larger than the given threshold
0. The threshold parameters 7 and 6 in CGgraph are tunable for
different datasets and different graph processing algorithms.

Determining the default value of 7 and 0. In CGgraph, we set
the threshold 7 as 2.5 million as we observed that the processing
time of each iteration which has more than 2.5 million active edges
are obvious large during the internal profiling experiments. For
0, i.e., the percentage of the active edges in subgraph G’, we vary
its value from 15% to 75% with 7 set to 2.5 million, and test the
overall performance of CGgraph. We set 6 to 35% by default as it
works well in all cases. Please refer to Appendix B of the technical
report [2] for the detailed analysis.

6 EVALUATION

We evaluate the superiority of our proposed CGgraph via extensive
experiments in this section.

6.1 Experimental Settings

Graph dataset. Table 2 shows the statistics of 6 real-world graph
datasets, which are used in the evaluation. The scale of the graphs
ranges from 5GB to 50GB. By following the setting of [40], we
remove duplicate edges and self-loops from all graph datasets be-
fore graph processing. All these graph processing systems can
process both directed and undirected graphs, however, the undi-
rected graphs could be converted to directed ones by replacing each
undirected edge with a pair of directed edges. Thus, all edges are
directed in all experiments. The percentage of sink nodes in these
graphs is from 4.5% to 24.9%.

State-of-the-art systems. We compared CGgraph with 7 state-
of-the-art graph processing systems in 3 categories, i.e., CPU-only,
GPU-only, and CPU-GPU heterogeneous systems:

o Galois(V4.0) [36]. It is a CPU-only graph processing system on

a single machine. It is a state-of-the-art CPU-only system, we
use the source code provided by its github repository [3].

1413

Gemini [58]. It is a distributed CPU-only graph processing sys-
tem. It has notable shared-machine performance. To provide a
fair comparison, we remove its distributed design (e.g., messag-
ing abstraction) from its source code [4].

Gunrock(V2.0) [51]. It is a GPU-only graph processing system
that achieves good performance via its novel frontier-based ap-
proach. The source code is available at [6].

Groute [9]. It is a GPU-only graph processing system, it enjoys
excellent performance via its GPU-based asynchronous execu-
tion and communication. Its github repository is at [5].

Totem [20]. It is a CPU-GPU heterogeneous graph processing
system. It statically partitions the graph into two subgraphs,
one is used by the CPU and the other is loaded into GPU global
memory and used by the GPU. The updated vertex values of
each subgraph are synchronized after each iteration. The source
code is available at [8].

Subway [39]. It is also a CPU-GPU heterogeneous graph pro-
cessing system. It generates a subgraph that contains only active
edges and vertices on GPU memory. To further improve the per-
formance, it reduces both the number of times the subgraph is
loaded and the size of the loaded subgraph each time. We obtain
its source code at [7].

LargeGraph [55]. It is a CPU-GPU heterogeneous graph pro-
cessing system, which uses a dependency-aware data-driven
execution approach to achieve good performance. We cannot
obtain the source code from the authors of [55], thus, we tried
our best to re-implement it by ourselves.

Graph algorithms. We run 4 representative graph algorithms in
this work: breadth-first search (BFS), single-source shortest path
(SSSP), weakly connected component (WCC), and PageRank (PR).
For BFS and SSSP, we use the same source vertex when comparing
with other systems, which are randomly selected from the vertex set
with the out-degree not equal to zero. Since SSSP requires graphs
with edge weights, we randomly assign weight values between
(0, 100] to every edge by following the setting of the existing sys-
tems [58]. For PR, we use the same terminal condition with 0.85
as the damping factor and run it for 20 iterations. The reported
measurement is the average of processing the algorithm 10 times.

Implementation and hardware configurations. CGgraph is
implemented by over 8000 lines of C++ and CUDA code, which is
open-sourced at [1]. We compiled it with GCC 11.3 and CUDA 11.7
on Ubuntu 18.04 with O3-level optimization. We compare CGgraph
with other 7 systems on a modern commodity machine with CPU-
GPU co-processor by default. On the host, there is an Intel 19-9900k
CPU with 8 cores and 128GB memory. On the device, there is an
NVIDIA TITAN Xp GPU with 3840 CUDA cores and 12GB GDDR5
global memory. GPU connects with the host via the PCI Express
3.0 at 16x, which bandwidth is approximately 11 GB/s.

6.2 Overall Performance Evaluation

End-to-end processing time evaluation. Table 3 presents the
end-to-end processing time (in seconds) of all evaluated graph
systems when running 4 different algorithms on 6 graph datasets.
Firstly, it is no doubt that CGgraph performs the best among all

Table 3: The execution time (in seconds) of compared systems

Alg G ‘ CPU-only ‘ GPU-only ‘ CPU-GPU heterogeneous system ‘
‘ Galois ‘ Gemini ‘ Gunrock ‘ Groute ‘ Totem ‘ Subway ‘ LargeGraph ‘ CGgraph ‘
GS 0.93 1.01 0.32 0.57 0.89 0.81 0.73 0.43
™ 224 2.08 - 1.01 213 1.89 1.53 0.66
BES FR 5.20 4.06 - 3.05 5.21 4.13 1.49
WB 6.97 6.43 5.01 6.19 5.12 2.37
UK 5.15 6.03 4.74 4.79 1.39 145
UN 10.42 11.85 - - 5.39 4.15
GS 3.42 3.33 0.94 159 2.47 2.01 1.13 0.77
TW | 11.81 9.23 - - 5.50 9.25 8.13 2.52
SSSP FR 40.96 31.19 17.73 16.30 15.27 3.43
WB 52.73 48.67 - 23.50 21.24 8.71
UK | 28.63 31.13 - 5.39 4.15
UN | 39.75 - - - - - 31.33 15.21
GS 2.97 3.73 0.81 0.77 1.81 1.73 1.34 0.79
™ 6.41 8.14 - 3.20 5.97 5.73 5.35 1.59
wee FR 26.35 22.21 - 8.14 10.28 8.76 2.38
WB 37.57 32.13 14.73 16.32 14.11 5.01
UK 15.13 29.42 17.81 20.37 11.92 7.54
UN | 25.72 35.95 - - - - 18.43 12.71
GS 13.72 12.57 3.07 4.56 5.42 4.07 5.49 2.46
TW | 58.14 44.83 - 16.12 25.46 23.13 20.50 5.97
PR FR 92.70 75.37 - 41.23 33.73 31.46 11.83
WB | 118.59 98.27 48.27 44.73 45.82 18.68
UK 57.82 38.51 23.49 20.57 19.27 8.30
UN 69.21 54.61 - - 44.26 24.75

compared systems. In particular, CGgraph ranks 1st among all 8
systems in 21 over 24 test cases, see bold values in the last column
of Table 3. In addition, it ranks 2nd in the rest three test cases. How-
ever, the performance of CGgraph are comparable with the best in
these three cases. Secondly, the GPU-only systems (i.e., Gunrock
and Groute) fail to process large graphs as they encountered out-
of-memory errors during graph processing, which are indicated
with “-” in Table 3. Moreover, the CPU-GPU heterogeneous graph
processing systems outperform the CPU-only systems due to the
utilization of high parallelism on the GPU. Thirdly, there is no clear
winner among the existing CPU-GPU heterogeneous systems (i.e.,
Totem, Subway, and LargeGraph). Moreover, Totem and Subway
cannot process the largest dataset UN in all tested algorithms as
they encounter out-of-memory errors. Nevertheless, CGgraph out-
performs all of them in almost all tested cases. The core reason is
CGgraph addresses GPU memory over-subscription via extracting
a subgraph that only load once but can be used by multiple itera-
tions, and it also devises efficient CPU-GPU cooperative processing
scheme, which are equipped optimization techniques for task pro-
cessing on CPU and GPU. Fourthly, from the graph algorithm-wise,
the speedup times of CGgraph over all other systems in SSSP (up
to 11.94X) and PR (up to 9.73X) are significantly larger than its in
BFS (up to 4.15X). It is because of the algorithmic-logic of SSSP
and PR are more complex than BFS, which also indicates the supe-
riority of CGgraph to process complex algorithms on large-scale
graphs. Lastly, CGgraph is obviously better than other systems
when processing social network graphs (e.g., TW, FR and WB) as
the number of computation tasks in these graphs are extremely
large in some iterations and the efficient cooperative processing
scheme in CGgraph could balance the workload in both vertex-level
and edge-level on CPU and GPU.

Comparison with compress-based systems. In the literature,
several studies have been proposed to run graph algorithms in
compressed graphs. We compare the performance of running BFS
on three compress-based graph systems (i.e., GCGT [42], EFG [18]
and CompressGraph [12]) and our CGgraph in 6 graph datasets.
In particular, we adapt both Ligra [44] and Gunrock [51] to run

1414

30

GCGT EFG I CGgraph
CompressGraph-Ligra m CompressGraph-Gunrock
ol ‘ﬁ m
bt 7
E 7 7
= 7 7 ’
! 7 /) N N N
Z N N N N N

GS ™ FR wB UN

Figure 12: The performance of running BFS on compress-
based graph systems and CGgraph

BFS on CompressGraph as it is a generic compression framework.
The results are plotted in Figure 12, where indicates the system
cannot return result due to runtime error. Obviously, CGgraph
performs the best. In particular, the speedup times of CGgraph

over these compress-based competitors ranges from 1.81X to 14.37X.
Interestingly, Gunrock fails to run BFS on TW (see Table 3), but it
takes 2.12 seconds with the compressed TW via CompressGraph.

6.3 Effectiveness of Designed Techniques

6.3.1 Effectiveness of Graph Reordering. In this section, we evalu-
ate the effectiveness of the proposed graph reordering algorithm
(see Section 4.2) in CGgraph. In particular, we first verify the effec-
tiveness of different graph reordering algorithms on the end-to-end
performance of CGgraph, then we demonstrate the performance
improved by adapting our graph reordering algorithm to other
graph processing systems.

Comparison among different graph reordering algorithms.
In this experiment, we compare the following 6 graph reordering
algorithms.

e Default, it uses the default vertices order in the input graph and
did not apply any graph reordering algorithm on it in CGgraph.

e Random, we follow other graph systems [19, 52] to randomly
shuffle the vertices in the input graph and use the shuffled vertex
array in CGgraph.

o In-degree [17], it sorts the vertices in the input graph by the
descending order of their in-degree.

e BP[15], the vertices in the input graph are reordered in a compression-

friendly manner via recursive graph bisection.

e RCM [14], it employs a BFS-based algorithm to permute a sparse
adjacency matrix by reducing its bandwidth.

e Gorder [52], it minimizes cache misses by maximizing the shared
edges within consecutive node blocks of size w.

e CGgraph, it is our proposal, which utilizes the proposed graph
reordering algorithm in Section 4.2.

Figure 13 depicts the speedup times of different graph reordering
algorithms over the default vertex order in CGgraph. We report
SSSP and PR on two different datasets FR and UK and omit others
due to page limits. The speedup times of CGgraph over the Default
of SSSP and PR on FR are 1.72 and 1.57, and on UK are 1.52 and
1.49, respectively. It consistently outperforms all alternative options
because our graph reordering algorithm in CGgraph takes both the
in-degree of vertices and the data access locality into consideration.

»p

»p

Default [[ZZ] Random [In-degree

[Default 2] Random -] In-degree [g
[RCM TEIRCM 8P N Gorder I CGeraph

X Gorder I CGgraph

-

(8]
(8]

3

S
3

Speedup
£

Speedup

0.0

0.0

(a) SSSP (b) PR
Figure 13: Comparison of different graph reordering methods

Table 4: The speedup times via CGgraph’s graph reordering

l System [Galois [Gemini [Totem [Subway [LargeGraph]
SSSP FR 3.01X 2.85X 2.37X 2.26X 231X
UK | 3.48X 3.01X - 2.38X 1.49X
PR FR 4.66X 3.86X 2.45X 2.24X 2.07X
UK | 4.01X 3.13X 2.19X 2.01X 1.82X

In addition, the Random order performs even worse than Default
as it does not exhibit the data access locality in the original graph.

Performance improvement of other systems. In this experi-
ment, we evaluate the generality of our proposed graph reordering
algorithm by using the reordered graph in existing 5 graph pro-
cessing systems, i.e., Galois, Gemini, Totem, Subway and Large-
Graph. Gunrock and Groute are ignored as they cannot process
large graphs as FR and UK. More specifically, we only change the
input graph of these systems and do not revise any execution logic
in these existing systems.

Since Totem fails to process SSSP on the original UK (see the
corresponding “-” in Table 3), it is not surprising it also fails with
the reordered UK (in Table 4). Except it, our graph reordering al-
gorithm improves the performance of all these 5 systems in all
tested cases, as shown in Table 4. The overall speedup times among
these systems range from 1.82X to 4.66X. Interestingly, even in
the recently proposed CPU-GPU heterogeneous graph processing
systems (i.e., Subway and LargeGraph), our reordering algorithm
brings up to 2.38X speedup in the tested cases. The core reason is
our graph reordering algorithms offer excellent data access locality,
which significantly reduces cache misses during graph processing.

6.3.2 Effectiveness of Subgraph Extraction Approach. We then eval-
uate the effectiveness of the subgraph extraction approach in this
section. In particular, there are three approaches for extracting
a subgraph from the reordered graph. The first approach is ran-
domly extracting a subset of vertices and their corresponding edges
to form the subgraph, we use it as the baseline method. The sec-
ond approach is extracting the vertices and all of their neighbors
as much as possible from the reordered vertices list, we refer to
it as vertex-based method. The third approach is using our size-
constrained subgraph extraction approch in Section 4.3, we refer it
as vertex-edge-based method.

Table 5 reports the speedup times of vertex-based and vertex-
edge-based approaches over the baseline method when processing
SSSP and PR on FR and UK. Specifically, both end-to-end process-
ing time and vertex value synchronization cost are reported. The
synchronization cost is updating the vertex values between GPU
memory and CPU memory (see Figure 8), which includes both
the PCle cost and the value updating cost in the CPU. First, both

1415

Table 5: The speedup times of subgraph extraction approach

Algorithm | Graph End-to-end Synchronization
vertex [vertex-edge vertex [vertex-edge
SSSP FR 151X 1.67X 1.01X 1.21X
UK 1.50X 1.74X 1.00X 1.69X
PR FR 1.33X 1.45X 1.00X 1.02X
UK 1.30X 1.46X 1.00X 1.14X
3.0{ B9 Tow EZ2 Tow SN Tow 101 B8 T 24 Tew B Tow
254 s
2201 K z
Eisi E
1.04 &
05 B 5
clEN BN BN B N A
’ Totem Subway LargeGraph CGgraph Subway LargeGraph CGgraph
(a) SSSP on GS (b) SSSP on TW
61 BB T A Tou KX Tory 30] O Tow 22 Tow SN Tomw

Time (s)

%020 %2020 % 0% % % Y% %

L7777 A

Subway LargeGraph CGgraph
(c) PR on GS (d)PRon TW
Figure 14: Breakdown of graph processing time

vertex-based and vertex-edge-based approaches are better than the
baseline approach, it confirms the effectiveness of our idea to ex-
tract a subgraph that can be used in multiple iterations. Second, the
vertex-edge-based approach achieves 1.02X to 1.69X improvements
on synchronization cost, which is higher than the vertex-based
approach. The reason is that the number of synchronized values
in vertex-edge-based approach is smaller than the vertex-based ap-
proach as only a subset of edges of every selected vertex will be
included in the extracted subgraph in our approach.

Totem

6.3.3 Effectiveness of CPU-GPU Cooperative Processing. We next
evaluate the effectiveness of our CPU-GPU cooperative processing
scheme in CGgraph. We run SSSP and PR on all these 4 CPU-GPU
heterogeneous systems. In this experiment, we use the two smallest
datasets, i.e., GS and TW, as existing CPU-GPU systems fail to
process large graphs in some tested cases. We measure the end-to-
end processing time (T;4;47), CPU processing time (Tcpy) and GPU
processing time (Tgpy), and plot them in Figure 14.

First of all, the end-to-end processing time of CGgraph is the
smallest among all 4 systems in every tested case, as T;,;4; bar
shown in Figure 14. Secondly, the gap between the CPU processing
time (Tcpyy) and the GPU processing time (Tgpyr) of CGgraph is sig-
nificantly smaller than the other systems as we explicitly consider
the workload balance between CPU and GPU via on-demand task
allocation in Section 5.1. Thirdly, the end-to-end processing time
(Tyota1) of Subway and LargeGraph in all tested cases are obviously
larger than their CPU processing time (Tcpy) as both systems do
not balance the workload on CPU and GPU, and the data movement
or the subgraph generation in them incurs extra overhead.

6.3.4 Effectiveness of Optimizations on CPU. In this section, we
verify the effectiveness of our proposed optimization techniques on
the CPU. The baseline idea to process the tasks on the CPU is equally

Table 6: Comparison of workload balance methods on CPU

[Algorithm [Graph [V-Donating [V-Stealing [V/E-Stealing [

FR 1.11X 1.33X 1.41X
SSSP UK 1.17X 1.21X 1.33X
PR FR 1.12X 1.30X 1.36X
UK 1.10X 1.35X 1.44X
Table 7: Comparison between CTA and IWB
. L1 Hit ratio AT/warp
Algorithm | Graph CTA [WE | CTA [TWE Speedup
SSSP GS 41.2% | 65.7% | 19.14 | 22.86 1.30X
T™W™W 33.3% | 56.8% | 21.18 | 22.59 1.44X
PR GS 45.9% | 70.7% | 19.41 | 23.63 1.33X
™ 44.9% | 66.6% | 24.20 | 25.98 1.38X

dividing them into the task queue of every core on the CPU, then
each core exclusively executes the assigned tasks in its task queue.
To improve the load balance among different cores in the CPU,
there are three methods have been explored: (i) V-Donating [25].
An overloaded core shares its tasks with underloaded cores at the
vertex-level; (ii) V-Stealing [4]. An underloaded core steals tasks
from overloaded cores at the vertex-level; and (iii) V/E-Stealing.
Our proposed solution in Section 5.2, which allows the underloaded
core to steal tasks from overloaded cores at both vertex-level and
edge-level.

Table 6 shows the speedup times of different methods over the
baseline by running SSSP and PR on FR and UK. It is no doubt all
the above three CPU load balance solutions achieve better perfor-
mance when compared with the baseline method, which does not
balance the workload among different cores on the CPU at all. Even
both V-Stealing and V-Donating methods balance the workload
at vertex-level, V-Stealing is slightly better than V-Donating as
V-Donating incurs extra cost to collect the status of other cores
and write shared tasks into shared memory. Last but the most im-
portant, our proposed V/E-Stealing performs the best among all
these methods. The key reason is that it guarantees the fine-grained
workload balance of different cores on the CPU.

6.3.5 Effectiveness of Optimizations on GPU. We last evaluate the
impact of our Inter-Warp balancing (IWB) optimization for task
processing on GPU. In particular, we compare the performance of
IWB with the widely-used CTA by running SSSP and PR on GS and
TW. We measure and report the following three metrics [47, 49]: (i)
L1 cache hit ratio, (ii) the average active threads per warp (denoted
as AT/Warp), and (iii) the end-to-end speedup times of CGgraph
with IWB over CGgraph with CTA.

As depicted in Table 7, IWB not only achieves high GPU utiliza-
tion (see AT/WARP) but also increases the L1 cache hit ratio. Since
IWB allows the idle threads to fetch tasks to run from the shared
memory, the average activated threads in the warp of IWB is larger
than it is of CTA. The L1 cache hit ratio of IWB is higher than that
of CTA, e.g., it ranges from 56.8% to 70.7% in all tested cases with
IWB, but it is only 33.3% to 45.9% with CTA. This is because IWB
explicitly moves the medium-degree vertices to L1 cache. The high
L1 cache hit ratio and more running threads per warp lead to the
speedup times of IWB over CTA ranging from 1.33X to 1.44X.

1416

Table 8: Performance evaluation on a high-end server

‘ G | SSSP I WCC PR |

[HS-BoE | SM-CGg | HS-CGg | HS-BoE | SM-CGg | HS-CGg | HS-BoE | SM-CGg | HS-CGg |
GS [040 0.77 0.55 0.45 0.79 0.52 159 2.46 173
W | 210 252 157 111 159 1.05 4.27 5.97 3.65
FR | 1027 343 2,07 473 238 145 1863 | 11.83 9.43
WB | 1449 | 871 479 5.26 5.01 3.11 27.75 | 18.68 | 1413
UK | 754 415 3.89 451 7.54 531 13.76 8.30 5.46
UN | 2118 | 1521 9.27 13.07 | 1271 8.99 2839 | 2475 | 1545

6.4 Performance Evaluation on High-end Server

We evaluate CGgraph and other systems on a high-end CPU-GPU
server, which was equipped with a 12-core Intel Xeon Silver 4214
CPU and an NVIDIA Tesla V100S GPU featuring 5120 cores and
32GB of global memory. Specifically, we compare the best perfor-
mance of existing systems on the high-end server (i.e., HS-BoE), the
performance of CGgraph on a single modern commodity machine
(i.e., SM-CGg), and the performance of CGgraph on the high-end
server (i.e., HS-CGg). In Table 8, we show the experimental results
by running SSSP, WCC and PR in these 6 datasets, and refer the inter-
ested readers to our technical report [2] for complete experimental
results. The key findings are two-fold: (i) CGgraph consistently
outperforms existing systems with the high-end server, see the
values in the columns of HS-CGg in Table 8; (ii) the performance
of our CGgraph on modern commodity CPU-GPU co-processor is
better than (see bold values in Table 8) or at least comparable with
the best performance of other systems on high-end servers. For
example, the best performance of existing systems to process SSSP
on UN with a high-end server is achieved by LargeGraph, which
takes 21.18s. However, CGgraph only takes 15.21s to process SSSP
on UN on a modern commodity machine.

7 CONCLUSION

In this paper, we propose an ultra-fast graph processing system
CGgraph on a modern commodity machine with the CPU-GPU
co-processor. CGgraph achieves significant speedup by overcoming
GPU memory over-subscription and providing an efficient CPU-
GPU cooperative processing scheme. In the evaluation, we com-
pare CGgraph with 7 state-of-the-art graph processing systems in
various experimental settings. The results indicate that, CGgraph
achieves a substantial performance improvement on a commodity
CPU-GPU co-processor. In the future, we plan to study the dis-
tributed CPU-GPU heterogeneous graph processing system and
consider hardware-software co-design for graph algorithms with
CPU-GPU co-processor.

ACKNOWLEDGMENTS

We thank all reviewers for constructive comments. Dr. Ye Yuan
is supported by the National Key RD Program of China(Grant
No0.2022YFB2702100), the NSFC (Grant Nos. 61932004, 62225203,
U21A20516) and the DITDP (Grant No. JCKY2021211B017). Dr. Bo
Tang was partially supported by Shenzhen Fundamental Research
Program (Grant No. 20220815112848002), the Guangdong Provin-
cial Key Laboratory (Grant No. 2020B121201001) and a research
gift from Huawei Gauss department. He is also affiliated with the
Research Institute of Trustworthy Autonomous Systems, Southern
University of Science and Technology, Shenzhen, China.

REFERENCES

(11

[12]

[13]

[14

[15]

[16]
[17]

(18]

[19]

[22]

[23]

[24]

[25]

™
&

[27]

[28

[29]

[30]

[31]

2023. CGgraph source code. https://github.com/DBGroup-SUSTech/CGgraph
2023. CGgraph (Technical Report). https://github.com/PengBo410/CGgraphV1/
blob/master/src/TR/TR.pdf

2023. Galois. https://github.com/IntelligentSoftwareSystems/Galois

2023. Gemini. https://github.com/thu-pacman/GeminiGraph

2023. Groute. https://github.com/groute/groute

2023. Gunrock. https://github.com/gunrock/gunrock

2023. Subway. https://github.com/AutomataLab/Subway

2023. Totem. https://github.com/netsyslab/Totem

Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute:
An asynchronous multi-GPU programming model for irregular computations.
ACM SIGPLAN Notices 52, 8 (2017), 235-248.

Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
label propagation: A multiresolution coordinate-free ordering for compressing
social networks. In WWW. 587-596.

Jie Chen and Yousef Saad. 2010. Dense subgraph extraction with application to
community detection. TKDE 24, 7 (2010), 1216-1230.

Zheng Chen, Feng Zhang, JiaWei Guan, Jidong Zhai, Xipeng Shen, Huanchen
Zhang, Wentong Shu, and Xiaoyong Du. 2023. CompressGraph: Efficient Parallel
Graph Analytics with Rule-Based Compression. Proceedings of the ACM on
Management of Data 1, 1 (2023), 1-31.

Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Grijincu,
Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, and Sriram Sankar.
2013. Unicorn: A system for searching the social graph. PVLDB 6, 11 (2013),
1150-1161.

Elizabeth Cuthill and James McKee. 1969. Reducing the bandwidth of sparse
symmetric matrices. In ACM National Conference. 157-172.

Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey
Pupyrev, and Alon Shalita. 2016. Compressing graphs and indexes with re-
cursive graph bisection. In SIGKDD. 1535-1544.

James Dinan, D Brian Larkins, Ponnuswamy Sadayappan, Sriram Krishnamoor-
thy, and Jarek Nieplocha. 2009. Scalable work stealing. In SC. 1-11.

Priyank Faldu, Jeff Diamond, and Boris Grot. 2019. A closer look at lightweight
graph reordering. In IISWC. IEEE, 1-13.

Prasun Gera and Hyesoon Kim. 2023. Traversing Large Compressed Graphs on
GPUs. In 2023 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 25-35.

Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David Bader. 2020.
Traversing large graphs on GPUs with unified memory. PVLDB 13, 7 (2020),
1119-1133.

Abdullah Gharaibeh, Lauro Beltrdo Costa, Elizeu Santos-Neto, and Matei Ripeanu.
2012. A yoke of oxen and a thousand chickens for heavy lifting graph processing.
In PACT. 345-354.

Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed graph-parallel computation on natural graphs. In
OSDI. 17-30.

Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. Graphx: Graph processing in a distributed dataflow
framework. In OSDI. 599-613.

Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. 2017. Graphie: Large-
scale asynchronous graph traversals on just a GPU. In PACT. 233-245.

Hideya Iwasaki, Kento Emoto, Akimasa Morihata, Kiminori Matsuzaki, and
Zhenjiang Hu. 2022. Fregel: a functional domain-specific language for vertex-
centric large-scale graph processing. Journal of Functional Programming 32
(2022), ed.

Joseph John, Josh Milthorpe, and Peter Strazdins. 2022. Distributed Work Stealing
in a Task-Based Dataflow Runtime. In PPAM. Springer, 225-236.

Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014. CuSha:
vertex-centric graph processing on GPUs. In HPDC. 239-252.

Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok Seo, and Jinwook Kim.
2016. GTS: A fast and scalable graph processing method based on streaming
topology to GPUs. In SIGMOD. 447-461.

Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna. 2020. Gpop:
A scalable cache-and memory-efficient framework for graph processing over
parts. TOPC 7, 1 (2020), 1-24.

Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A survey
of algorithms for dense subgraph discovery. Managing and mining graph data
(2010), 303-336.

Chen Li, Rachata Ausavarungnirun, Christopher J Rossbach, Youtao Zhang, Onur
Mutly, Yang Guo, and Jun Yang. 2019. A framework for memory oversubscription
management in graphics processing units. In ASPLOS. 49-63.

Hang Liu and H Howie Huang. 2015. Enterprise: breadth-first graph traversal
on GPUs. In SC. 1-12.

1417

(32

[33

(34]
(35]

[36

(37]

(39]

[40

[41

[42]

=
&

o
=

Haotian Liu, Bo Tang, Jiashu Zhang, Yangshen Deng, Xiao Yan, Xinying Zheng,
Qiaomu Shen, Dan Zeng, Zunyao Mao, Chaozu Zhang, et al. 2022. GHive: accel-

erating analytical query processing in apache hive via CPU-GPU heterogeneous
computing. In SoCC. 158-172.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In SIGMOD. 135-146.

Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. 2019. A pattern based
algorithmic autotuner for graph processing on GPUs. In PPoPP. 201-213.
Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU
graph traversal. ACM SIGPLAN Notices 47, 8 (2012), 117-128.

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight
infrastructure for graph analytics. In SOSP. 456-471.

Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin,
and Jingren Zhou. 2018. Real-time constrained cycle detection in large dynamic
graphs. PVLDB 11, 12 (2018), 1876-1888.

Abdul Quamar, Amol Deshpande, and Jimmy Lin. 2016. Nscale: neighborhood-
centric large-scale graph analytics in the cloud. The VLDB Journal 25 (2016),
125-150.

Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. 2020. Subway: Mini-
mizing data transfer during out-of-GPU-memory graph processing. In EuroSys.
1-16.

Peter Sanders, Christian Schulz, and Dorothea Wagner. 2014. Benchmarking for
graph clustering and partitioning. ESNAM (2014).

Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten Schwan.
2015. Graphreduce: processing large-scale graphs on accelerator-based systems.
In SC. 1-12.

Mo Sha, Yuchen Li, and Kian-Lee Tan. 2019. Gpu-based graph traversal on com-
pressed graphs. In Proceedings of the 2019 International Conference on Management
of Data. 775-792.

Xuanhua Shi, Xuan Luo, Junling Liang, Peng Zhao, Sheng Di, Bingsheng He,
and Hai Jin. 2017. Frog: Asynchronous graph processing on GPU with hybrid
coloring model. TKDE 30, 1 (2017), 29-42.

Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In PPoPP. 135-146.

Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Nagarkar,
Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. 2014. Goffish: A
sub-graph centric framework for large-scale graph analytics. In Euro-Par 2014
Parallel Processing: 20th International Conference, Porto, Portugal, August 25-29,
2014. Proceedings 20. Springer, 451-462.

Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,
and John McPherson. 2013. From" think like a vertex" to" think like a graph".
Proceedings of the VLDB Endowment 7, 3 (2013), 193-204.

Charbel Toumieh and Alain Lambert. 2021. Gpu accelerated voxel grid generation
for fast mav exploration. arXiv:2112.13169 (2021).

Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xiaodong
Zhang. 2019. SEP-graph: finding shortest execution paths for graph processing
under a hybrid framework on GPU. In PPoPP. 38-52.

Pengyu Wang, Jing Wang, Chao Li, Jianzong Wang, Haojin Zhu, and Minyi
Guo. 2021. Grus: Toward unified-memory-efficient high-performance graph
processing on gpu. TACO 18, 2 (2021), 1-25.

Qiange Wang, Xin Ai, Yanfeng Zhang, Jing Chen, and Ge Yu. 2023. HyTGraph:
GPU-Accelerated Graph Processing with Hybrid Transfer Management. In 2023
IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 558-571.
Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In PPoPP. 1-12.

Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup graph processing
by graph ordering. In SIGMOD. 1813-1828.

Ye Yuan, Guoren Wang, Lei Chen, and Haixun Wang. 2013. Efficient keyword
search on uncertain graph data. TKDE 25, 12 (2013), 2767-2779.

Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe, and
Matei Zaharia. 2017. Making caches work for graph analytics. In Big Data. IEEE,
293-302.

Yu Zhang, Da Peng, Xiaofei Liao, Hai Jin, Haikun Liu, Lin Gu, and Bingsheng He.
2021. LargeGraph: An efficient dependency-aware GPU-accelerated large-scale
graph processing. TACO 18, 4 (2021), 1-24.

Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,
and Saman Amarasinghe. 2018. Graphit: A high-performance graph dsl. PACMPL
2, OOPSLA (2018), 1-30.

Jianlong Zhong and Bingsheng He. 2013. Medusa: Simplified graph processing
on GPUs. TPDS 25, 6 (2013), 1543-1552.

Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A computation-centric distributed graph processing system.. In OSDI, Vol. 16.
301-316.

https://github.com/DBGroup-SUSTech/CGgraph
https://github.com/PengBo410/CGgraphV1/blob/master/src/TR/TR.pdf
https://github.com/PengBo410/CGgraphV1/blob/master/src/TR/TR.pdf
https://github.com/IntelligentSoftwareSystems/Galois
https://github.com/thu-pacman/GeminiGraph
https://github.com/groute/groute
https://github.com/gunrock/gunrock
https://github.com/AutomataLab/Subway
https://github.com/netsyslab/Totem

	Abstract
	1 Introduction
	2 Computation Model and Its Challenges
	2.1 Graph Processing Computation Model
	2.2 Research Challenges

	3 The Overview of CGgraph
	4 Data Processing Phase in CGgraph
	4.1 Observed Insights
	4.2 Graph Reordering
	4.3 Size-constrained Subgraph Extraction

	5 Graph Processing Phase in CGgraph
	5.1 CPU and GPU Cooperative Processing
	5.2 Tasks Processing on CPU
	5.3 Tasks Processing on GPU
	5.4 GPU Invoking Strategy

	6 Evaluation
	6.1 Experimental Settings
	6.2 Overall Performance Evaluation
	6.3 Effectiveness of Designed Techniques
	6.4 Performance Evaluation on High-end Server

	7 Conclusion
	Acknowledgments
	References

