
How do Categorical Duplicates Affect ML?
A New Benchmark and Empirical Analyses

Vraj Shah†

IBM Research
vraj@ibm.com

Thomas Parashos
California State University,Northridge

thomasjparashos@gmail.com

Arun Kumar
University of California, San Diego

akk018@ucsd.edu

ABSTRACT

The tedious grunt work involved in data preparation (prep) before
ML reduces ML user productivity. It is also a roadblock to industrial-
scale cloud AutoML workflows that build ML models for millions of
datasets. One important data prep step for ML is cleaning duplicates
in the Categorical columns, e.g., deduplicating CAwith California in
a State column. However, how such Categorical duplicates impact
ML is ill-understood as there exist almost no in-depth scientific
studies to assess their significance. In this work, we take the first
step towards empirically characterizing the impact of Categorical
duplicates on ML classification with a three-pronged approach.
We first study how Categorical duplicates exhibit themselves by
creating a labeled dataset of 1262 Categorical columns. We then
curate a downstream benchmark suite of 16 real-world datasets to
make observations on the effect of Categorical duplicates on five
popular classifiers and five encoding mechanisms. We finally use
simulation studies to validate our observations.We find that Logistic
Regression and Similarity encoding are more robust to Categorical

duplicates than two One-hot encoded high-capacity classifiers. We
provide actionable takeaways that can potentially help AutoML
developers to build better platforms and ML practitioners to reduce
grunt work. While some of the presented insights have remained
folklore for practitioners, our work presents the first systematic
scientific study to analyze the impact of Categorical duplicates on
ML and put this on an empirically rigorous footing. Our work
presents novel data artifacts and benchmarks, as well as novel
empirical analyses to spur more research on this topic.

PVLDB Reference Format:

Vraj Shah, Thomas Parashos, and Arun Kumar. How do Categorical

Duplicates Affect ML? A New Benchmark and Empirical Analyses. PVLDB,

17(6): 1391 - 1404, 2024.

doi:10.14778/3648160.3648178

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/pvn25/CategDupsRepo.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.
doi:10.14778/3648160.3648178

†Work done at IBM Research and University of California, San Diego.

Table 1: A simplified dataset for Churn Prediction with ML.

Name Gender State Title Contract Zipcode Density
MostCommon

Crime_Zipcode
Churn

John Male California
sr.

Scientist
monthly 93449 727 BURG ‘Y’

Jerry Mail CA
snr

scientist

Month-

to-month
91042 563 burglary ‘N’

1 INTRODUCTION

Automated machine learning (AutoML) is beginning to increase ac-
cess to ML for both small-medium enterprises and non-ML domain
experts. This has led to the emergence of several platforms such
as Google Cloud AutoML [4], Microsoft’s AutomatedML [7], and
H2O Driverless AI [5] with the promise to automate the end-to-end
ML workflow without any human-in-the-loop. Since ML prediction
accuracy is the most critical in AutoML environments, many works
have studied the automation and impact of algorithm selection,
hyperparameter search, and optimization heuristics on ML [28, 31].
Also, recently there is a growing interest for studying how data
prep specifically affects downstream ML [40, 47, 48].

Data prep for ML remains particularly challenging on struc-
tured data. It involves manual grunt work that is both tedious and
time-consuming. Even AutoML users are often asked to manually
perform many data prep steps before using their platforms [3]. Sur-
veys of AutoML users have repeatedly identified such challenges in
conducting data prep [24, 67]. One issue that they often encounter
is duplicates in the columns that are Categorical, which assumes
mutually exclusive values from a known finite set. This can require
significant manual effort to fix duplicates even if a single Categorical
column contains them in a data file.

Consider a dataset to be used for a common ML classification
task in Table 1. Duplicates, categories referring to the same real-
world object, occur in many Categorical columns such as Gender,
State, Title, and Contract. Note that Name is not Categorical since it
offers no discriminative power and cannot be generalized for ML.
The presence of duplicates within a Categorical column can poten-
tially dilute signal strength that one can extract for ML. Thus, an
ML practitioner would often deduplicate categories before ML. We
further discuss the conundrum for an ML practitioner in Section 3.
Even, AutoML platforms often suggest users to manually inspect
Categoricals and consolidate duplicates whenever they arise, as part
of their guidelines for obtaining an accurate model [2]. This can
involve non-trivial amount of deduplication effort at a Categorical
column-level as duplicates can arise as misspellings, abbreviations,
and synonyms, even within the same column. Note that this prob-
lem is related but complementary to entity deduplication issues
studied in the data cleaning literature, as we explain in Section 2.1.

1391

https://doi.org/10.14778/3648160.3648178
https://github.com/pvn25/CategDupsRepo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648178
https://www.acm.org/publications/policies/artifact-review-and-badging-current

In this paper, we ask: How do Categorical duplicates impact com-

monly used ML classifiers? Is category deduplication effort even worth-

while for ML? Is it always needed regardless of the employed Cate-

gorical encoding scheme? We take a step towards answering these
questions by developing an in-depth scientific understanding of the
importance of category deduplication for ML classification (hence-
forth referred to as łMLž). Our objectives are two-fold. (1) Perform
an extensive empirical study to measure the impact of Categorical
duplicates on ML and distill the findings into actionable insights
for handling them. This can help ML practitioners decide when and
how to prioritise their cleaning effort. Moreover, this can enable
AutoML platform builders design better ML workflows. (2) Present
critical artifacts that can help advance the science of building Au-
toML platforms by providing researchers an apparatus to tackle
open questions in this direction.

Approach Overview.We identify that the impact on ML accuracy
in presence of Categorical duplicates can be characterized with sev-
eral explanatory variables (EVs) such as their duplication properties,
training data properties, Categorical encoding, and ML model. Con-
sidering this, we make three-part contributions to cover our goals.
(1) We produce labeled dataset to study how real-world Categorical

duplicates arise. (2) We create a downstream benchmark suite to
phenomenalise the impact on ML on real-world data containing
Categorical duplicates with multiple EVs. (3) Significance of each
variable is hard to discern when all EVs act together. We use sim-
ulation study to disentangle the impact with each EV and explain
the phenomenon discretely.

Empirical Evaluation. An empirical comparison of our down-
stream benchmark reveals that category deduplication can often
improve the ML accuracy significantly, e.g., the median lifts in
% accuracies due to category deduplication on One-hot encoded
Logistic Regression (LR), Random Forest (RF), and artificial neu-
ral network (ANN) are 0.5, 1.5, and 2 (over 16 datasets) resp. Thus,
LR gets impacted much less with Categorical duplicates than the
high-capacity models. Overall, we make eight such observations on
the significance of EVs with downstream benchmark. We validate
them with simulation study and provide explanations into how ML
models with different biases behave with Categorical duplicates.

Takeaways for Practitioners.We distill our empirical analysis
into a handful of actionable takeaways for ML practitioners and
AutoML developers. For instance, LR is more robust to the adverse
impact of Categorical duplicates than high-capacity models as it
overfits less. Also, Similarity encoding [21], Transformer-based em-
bedding [42], and tabular representation learning-based method
TABBIE [33] are more robust than other encodings to tolerate Cate-
gorical duplicates, thereby diminishing the utility of category dedu-
plication task. We also expose a critical shortcoming of One-hot
and String encoding [52], when Categorical duplicates arising in
the deployment (or inference) but not during training can affect
ML performance significantly.

Some of these insights may be considered folklore by practition-
ers, but this work is the first in-depth systematic scientific study to
assess the impact of Categorical duplicates on ML. We explain the
impact from the bias-variance tradeoff perspective to put empirical
results on a rigorous footing. Our analyses can benefit practitioners

to systematically understand the various EVs that matter for accu-
racy. Also, this can be useful to develop better practices and design
ML workflows that are robust to Categorical duplicates. Moreover,
our work opens up new research directions at the intersection of
ML theory, data management, and ML system design.

Overall, our work is novel in terms of new labeled dataset, bench-
mark, and novel empirical analyses. We make four contributions:

1. A new benchmark dataset. To the best of our knowledge,
this is the first work to curate a large labeled dataset specifically
for Categorical duplicates where the entities are annotated.
We present several insights that characterizes how Categorical

duplicates exhibit themselves.

2. Empirical benchmarking to understand the significance

of category deduplication on ML. Our curated downstream
benchmark containing łin-the-wildž datasets enables us to
point out cases where the task may or may not benefit ML.

3. Characterization of explanatory variables with simula-

tion study. Our study can disentangle and explain the impact
of EVs on how Categorical duplicates affect ML.

4. Utility of our work. We present the first in-depth scientific
empirical study to systematically charactertize when and why
category deduplication can help/not help ML. We present sev-
eral practical insights for practitioners. We identify open ques-
tions for further research where our labeled data can be a key
enabler to address them. Also, we open source our benchmark
to enable more community-driven contributions [1].

2 RELATED WORK

2.1 Entity Matching (EM) and String Matching
(SM) Approaches

EM, the task of identifying whether records from two tables refer
to the same real-world entity has received much attention with
rule-based [50, 56, 57], learning-based [36, 41, 45, 63, 68], semi-
supervised [35], unsupervised [25, 66], active-learning [44] ap-
proaches, and even with Large Language Models (LLMs) [46, 65].
They operate at a tuple-level since they have access to the entire
feature vectors of the two tables. Note that tuple-level duplicates
do not necessarily imply duplication in Categorical strings, and
also vice versa. Thus, the problem of EM is orthogonal to category
deduplication. Admittedly, it is possible to view category dedu-
plication as an extension of row-level deduplication but doing so
is non-trivial. Regardless, our focus is to study only the impact of

category deduplication on ML and not how to perform deduplica-

tion or compare deduplication methods. Thus, prior work on EM is
complementary to ours in terms of utility for AutoML platforms.

SM, finding strings from two sets that refer to the same real-
world entity has been explored with an active learning solution
Smurf [20] and an unsupervised learning approach [39]. However,
such SM approaches are orthogonal to our focus on studying how
Categorical duplicates affect ML. We leave automating category
deduplication to future work, including potentially extending exist-
ing row-level deduplication and SM works.

1392

2.2 Data Cleaning and Data Prep for ML

CleanML [40] analyses the impact of many data cleaning steps on
ML. Our work is along the same direction, but they do not specif-
ically explore Categorical deduplication and its causal variables
that matter for accuracy. Although they do study string-level in-
consistencies within a column with four real datasets, they are not
all Categorical. Also, they focus on deriving a broad perspective
and a coarse-grained study of many cleaning steps such as this. In
contrast, we dive deep into Categorical deduplication. We study
the different explanatory variables that matter for accuracy to offer
empirical rigor and understand the importance of task scientifically.

We performed an objective benchmarking of a specific ML data
prep step, namely the feature type inference task [54]. We build
upon our open-sourced datasets but we study a completely differ-
ent problem. There exist numerous data prep tools such as rule-
based [32], exploratory data analysis-based [51], program synthe-
sis [30, 34], and visual interfaces [9] to reduce manual grunt work
effort and allow users to productively prepare their data for ML. Our
work’s insights can complement all these tools to reduce human
time and effort and make their analysis more interpretable. Some
works have studied human-in-the-loop cleaning to improve ML ac-
curacy and reduce user effort [37, 38]. However, they do not support
a cleaning operation with Categorical duplicates. Our labeled data
can spur more follow-up works in this general direction of automat-
ing and improving data prep for ML. Error detection [23], ML for
data cleaning methods [53, 61], and even techniques that perform
value standardization [18] are orthogonal to our focus since we do
not propose new techniques for Categorical deduplication.

2.3 AutoML Platforms

Several AutoML tools such as AutoML Tables [4], Transmogri-
fAI [8], and AutoGluon [26] performing automated model selection
do automate many data prep tasks. However, they do not explicitly
handle Categorical duplicates. Instead, the users are asked to explic-
itly clean and remove inconsistencies in Categorical columns before
using their platform [3]. Our labeled data can lead to contribu-
tions from community to automate deduplication with a supervised
learning-based approach, including potentially extending AutoML
with deduplication processor in the optimization process [27, 47, 48].
Moreover, we believe that our empirical analyses and takeaways
provide valuable insights to improve AutoML platforms.

3 OUR APPROACH

Consider again an ML practitioner predicting Customer Churn
with Table 1 data. She sources the data from multiple tables such
as Customers and Zipcode, which contains details about the area
where the customers live. She expects likely duplicates in many
Categorical columns such as Gender, State, Title, and Contract since
they are collected using łFree Textž customer surveys. She wants to
build and periodically retrain ML pipelines such that they are most
robust to likely duplicates. She prefers an ML pipeline which is not
necessarily the most accurate but the one that is most reliable. She
wants to minimize any adverse impact from Categorical duplicates.

To build such an ML pipeline, she wants to choose from different
Categorical encoding schemes and ML models that are popular on
tabular data [58, 60]. Moreover, she has an intuition that many

Duplication properties

ML accuracy

Feature Vector from

Categorical Encoding

Data

Regime

Column

Relevancy

Hypothesis Space

 of ML Model

Figure 1: Summarization of EVs impacting ML in the context

of Categorical column that has duplicates.

Categoricals such as MostCommonCrime_Zipcode are not relevant
for the target and cleaning them may not be in the best interest of
her time. She would like to prioritize her efforts towards cleaning
Categoricals that are more likely to impact ML. In addition, she has
the resources to collect even more training data on customers, but
doesn’t know if more training data would necessarily translate to a
more robust pipeline. Overall, she is fraught with several questions:
How do Categorical duplicates impact the behavior of popular ML

classifiers and encodings?Would the effort towards cleaning duplicates

be less worthwhile for a non-relevant column as opposed to a column

that is relevant for the task? Would collecting more training data help

in mitigating the impact of Categorical duplicates?

Towards answering these questions, we take a step towards
empirically assessing the significance of category deduplication
on ML. We first identify the important variables that matter for
ML practitioners and study how they affect ML. We hand label a
large dataset of real-world Categorical columns with duplicates to
understand how they occur. We then make empirical observations
of the impact of deduplication with different explanatory variables
(EVs) in the real-world. We finally use synthetic study to validate
observed phenomenon and intricately study how each EV impact
ML. We first summarize the EVwe study and then explain our three-
part contributions towards building an in-depth understanding of
the importance of category deduplication for ML.

We focus this study in the context of a Categorical column that
has duplicates. As the domain size of column shrinks with dedupli-
cation, it can influence the following EVs impacting ML (as Figure 1
shows): (1) Feature vector from Categorical encoding. (2) Hypoth-
esis space denoting a set of all prediction functions from feature
space to label space that the ML model can represent. (3) Data
regime in terms of the number of training examples per unique
category in the column. (4) Column relevancy as a measure of the
importance of column for the downstream task. Admittedly, there
can exist other complex EVs such as skew in class labels with dif-
ferent distributions and conditional duplication properties given
the class label. However, in this work, we focus on the above EVs
because of their importance for ML practitioners. We leave studying
the other EVs to future work.

1. Our Hand-Labeled Data. We create the first large labeled data
where true entities within a Categorical column are annotated with
duplicate categories. This helps us understand the observed prop-
erties of Categorical duplicates and how they manifest themselves
in real-world columns. Our data includes 1262 string Categorical

columns from 231 raw CSV files. The labeling process took us
about 150 man-hours across 6 months. The utility of our labeled
data is two-fold. (1) Configure duplication parameter ranges and
skew distributions in simulation study. (2) Presents a crucial artifact

1393

Table 2: Notations used in this paper with a simplified exam-

ple to illustrate our notions with State column categories.

Symbol Meaning

C Set of category values in the column 𝐴

E Set of unique real-world entities referred by categories from C

ED Subset of real-world entities that have at least 1 duplicate; ED ⊆ 𝐸

occ(Z) Sum of occurrences of all categories present in set Z; Z ⊆ C

D Set of non-empty sets of duplicate values for each entity in ED; |D|	=	|ED|

Category set Ci

(𝟏 ≤ 𝒊 ≤ |C|)

Occurrence of

Category (occ({Ci}))

Entity set Ej

(𝟏 ≤ 𝒋 ≤ |E|)

New York C1 60

New York E1NY C2 30

new york C3 10

California C4 70
California E2Ca C5 30

Wisconsin C6 100 Wisconsin E3

for researchers to automate the task of Categorical deduplication
itself and even to objectively evaluate the accuracy of in-house
automated mechanisms by AutoML platform developers. In fact,
one such labeled data for ML feature type inference task lead to
objective benchmarking of existing AutoML tools and even lead to
more accurate supervised ML approaches to automate the task [54].
We dive into this part in Section 5.

2. Downstream Benchmark Suite.We use 16 real-world datasets
to empirically study the impact of Categorical duplicates. We choose
these datasets such that they capture different kinds of duplication
and also represents the different regimes in the EV’s spectrum
(explained in Section 6.2). We choose five popular ML classifiers and
five Categorical encoding schemes to showcase how they impact
the behavior of duplicates on ML. We leave in-depth discussion of
this component in Section 6.

3. Synthetic Study.We perform a Monte Carlo-style simulation
study to achieve two objectives. (1) Confirm the validity of observa-
tions we make with downstream benchmark. (2) Disentangle and
characterize the effect of duplicates with multiple EVs individually
to make the impact interpretable. We embed a true distribution and
vary the EV one at a time while fixing the rest to study their impact
on ML along with how they trend. Although we use our labeled
data to inform duplication parameter values, our simulation study
is not entirely dependent on it. One can very well fix arbitrary
duplication parameter values, although that doesn’t change the
trends and conclusions we derive. Section 7 covers this in depth.

4 PRELIMINARIES

4.1 Scope

4.1.1 Focus on studying downstreamML. We focus on the ML
classification setting over tabular data. We call the ML model to be
trained over the data as the łdownstreammodel.žWe study how Cat-

egorical duplicates impact the performance of popular downstream
models used ML practitioners [59, 60]. Note that our focus is not to
study how Categorical duplicates interact with different optimiza-
tion schemes for model selection or AutoML procedures [49, 62].
We leave this study to future work. Our goal is not to study the
upstream deduplication process itself, which is handled manually in
the paper. Also, our focus is not to extend existing entity matching
approaches such as with LLMs [46, 65] or devise new methods for

category deduplication. We leave studying automated upstream
deduplication mechanisms to future work.

4.1.2 Focus on duplicates in Categorical columns. We focus
on studying duplicates in the context of string nominal Categorical

features, which do not have a notion of ordering among its values.
Note that a Categorical feature contains mutually exclusive values
from a known finite domain set. In contrast, Text type features can
take arbitrary string values. Thus, generic open domain addresses
or even non-generalizable person names are not used as Categorical.
We study duplicates arising in Categorical feature column, which
is not the actual target for the prediction task. We leave studying
duplicates arising in the target column to future work.

4.2 Definitions

We present terms and notations needed to study the effect of Cate-
gorical duplicates in the context of implications forML accuracy.We
first draw upon notations from a mix of both database theory [43]
and ML literature [29] for known concepts. A relational table is de-
fined by schema 𝑅(𝐴1, 𝐴2, ..., 𝐴𝑛, 𝑌) with a relation (instance) 𝑟 .We
useA to denote a set of columns {𝐴1, 𝐴2, ..., 𝐴𝑛} and𝑌 is the target
column for prediction. Note that, formally, a column is referred to
as an attribute [43]. Let 𝐴𝑙 (𝑙 ∈ [1, 𝑛]) be a Categorical column with
a domain 𝑑𝑜𝑚(𝐴𝑙) ⊆ L, where L is the set of strings with finite
length. A relation 𝑟 is defined over A as a set of mappings with
{𝑡𝑝 : A →

⋃︁𝑛
𝑙=1

𝑑𝑜𝑚(𝐴𝑙), 𝑝 = 1...|𝑟 |}, where for each tuple 𝑡𝑝 ∈ 𝑟 ,

𝑡𝑝 (𝐴𝑙) ∈ 𝑑𝑜𝑚(𝐴𝑙), |𝑟 | is the number of examples in the the table.
Note that Categorical strings are not directly consumable bymost

ML models. Thus, an encoding scheme is required to transform A

to a feature vector to train an ML model. We explain this further in
Section 6.1. We now reuse and adapt terminologies from existing
database [22, 43] and ML literature [29] together for terms that we
need for the rest of the paper. Table 2 lists the notations and explains
the terms used with an example. For simplicity of exposition, we
focus on one Categorical column with duplicates, 𝐴𝑙 ∈ A.

Definition (Category). A Category set𝐶𝑙 = {𝐶𝑙
1
,𝐶𝑙

2
, ...,𝐶𝑙

|𝐶𝑙 |
} con-

tains all unique domain values occurring in the column𝐴𝑙 . Note that

𝐶𝑙 is also referred to as the active domain of 𝐴𝑙 relative to relation

𝑟 [43], i.e., 𝐶𝑙=𝑎𝑑𝑜𝑚(𝐴𝑙 , 𝑟)={𝑐 ∈ 𝑑𝑜𝑚(𝐴𝑙) | ∃𝑡
𝑝 ∈ 𝑟, 𝑡𝑝 (𝐴𝑙) = 𝑐}.

We drop the superscript (𝐶𝑙) and simplify the active domain opera-
tion with 𝐶 only to make it succinct for follow up set algebra. Each
distinct value in the column is defined as łcategory.ž For Table 2
example, 𝐶 = {New York, NY, new york, California, Ca, Wisconsin}.

Definition (Entity). An Entity set 𝐸 ⊆ 𝐶 represents a subset of
Categories that conceptually refer to different real-world objects. A
category from set 𝐶 can be uniquely mapped to an entity from set
𝐸. Let the mapping function be denoted by𝑀 : 𝐶 → 𝐸. In Table 2,
there are three unique real-world state objects, i.e., 𝐸 = {New York,

California, Wisconsin}. Note that entities are defined at a conceptual
level; thus, referring to New York as new York or NY is identical. But
for ease of exposition, we assume the category that most frequently
represents an entity (ties broken lexicographically) in the column
to be the true entity. There exist multiple categories representing
the same entity, i.e.,𝑀 (𝐶1)=𝑀 (𝐶2)=𝑀 (𝐶3)=𝐸1={New York}.

Definition (Occurrence). We define Occurrence (or percentage
Occurrence) of category 𝐶𝑖 as percentage of times 𝐶𝑖 represents 𝐸 𝑗

1394

in the column. For instance, whenever real-world New York entity
occurs, 30% and 10% of the times NY and new york represents them
respectively. New York is referred to as the entity since it occurs
more than NY and new york. We define the Occurrence function
as 𝑜𝑐𝑐 : 𝑍 → [0, 100]. The input 𝑍 is a subset 𝑍 ⊆ 𝐶 such that all
categories of the subset map to a unique entity 𝐸 𝑗 (𝑗 ∈ [1, |𝐸 |]), i.e.,
𝐸 𝑗 = 𝑀 (𝑍1)=𝑀 (𝑍2)=...=𝑀 (𝑍 |𝑍 |). The output is the sum of occur-
rence values for all categories present in the input set which is a real
number in [0, 100].𝑜𝑐𝑐 (𝑍) = 𝑜𝑐𝑐 (𝑍1)+...+𝑜𝑐𝑐 (𝑍 |𝑍 |), e.g.,𝑜𝑐𝑐 ({𝐶1})
= 60, 𝑜𝑐𝑐 ({𝐶2,𝐶3}) = 40, and 𝑜𝑐𝑐 ({𝐶1,𝐶4}) = Undefined.

Definition (Duplicate). There exist a duplicate for 𝐸 𝑗 whenever
𝐸 𝑗=𝑀 (𝑍1)=𝑀 (𝑍2)=...=𝑀 (𝑍 |𝑍 |), |𝑍 |>1. Whenever 𝐸 𝑗 occurs, the %
times it is represented by 𝑍1, 𝑍2, and 𝑍𝑛 are 𝑜𝑐𝑐 (𝑍1),𝑜𝑐𝑐 (𝑍2), and
𝑜𝑐𝑐 (𝑍𝑛) resp. Without loss of generality, we assume that 𝑜𝑐𝑐 (𝑍1)
>=𝑜𝑐𝑐 (𝑍2)>=...>=𝑜𝑐𝑐 (𝑍 |𝑍 |) . Since 𝑍1 most frequently represents
the entity (ties broken lexicographically), the other categories𝑍2, ...,
𝑍𝑛 are referred to as duplicates of the entity 𝐸 𝑗 . We define 𝐸𝐷 ⊆ 𝐸

as the subset of the entities that contain at least one duplicate, i.e.,
∃𝑍 ⊆ 𝐶 s.t. |𝑍 |>1 and𝑀 (𝑍1)=...=𝑀 (𝑍 |𝑍 |) = 𝐸𝐷 𝑗 (𝑗 ∈ [1, |𝐸𝐷 |]). We
define a duplicate set 𝐷𝑘 (𝑘 ∈ [1, |𝐸𝐷 |]) for every entity in 𝐸𝐷 such
that 𝐷𝑘={𝑍2, 𝑍3, ..., 𝑍 |𝑍 | } represents a set of duplicate values, e.g.,
𝐸𝐷1=California, 𝐷1={Ca} and 𝐸𝐷2= New York, 𝐷2={new york, NY}.

Definition (Category Deduplication). This is the task of map-
ping categories from 𝐶 to an entity from 𝐸 with mapping function
𝑀. The new column after the assignment is called the deduplicated
column. Set 𝐶 and 𝐸 of the deduplicated column are identical.

Definition (Column Relevancy). Let Acc(A) be the % classifica-
tion accuracy obtained by the ML model with a set of columns A
to be used as features in the input. Relevancy of a column 𝐴𝑙 ∈ A

is defined as𝐴𝑐𝑐 (A) −𝐴𝑐𝑐 (A − {𝐴𝑙 }). This quantifies the absolute
predictive power of column 𝐴𝑙 for the downstream task.

5 OUR HAND-LABELED DATASET

We create a labeled dataset of Categorical columns where Entities
in each column is annotated with their duplicates whenever present.
This enables us to understand how real-world duplicates manifest
themselves and what do the sets 𝐸, 𝐸𝐷, 𝐷 and their occurrences
look like. We now discuss how this dataset is created, the types of
real-world duplicates present, and our dataset analysis with stats
and important insights into the behavior of duplicates.

5.1 Data Sources

We constructed a large real-world data of 9921 columns sourced
from Kaggle and UCI ML repository with diverse application do-
mains such as retail, healthcare, and finance [54]. Columns were
manually annotated with a standardized 9-class vocabulary of ML
feature types. The classes include feature types such as Numeric,
Categorical, Sentence, and Not-Generalizable (e.g., primary keys). Us-
ing this, we obtain just the string Categorical columns. In addition,
we collect more data files with such columns using open-source
data portals [10ś16]. We use 16 data files for empirical benchmark-
ing on real downstream tasks in Section 6. Overall, we find 231 raw
CSV files with at least one string Categorical column. We find a
total of 1262 such columns.

Table 3: Duplication types w/ examples from our labeled data

Duplication Types Column name Category Examples

1 Capitalization Country “United States” , “united States”

2 Misspellings Gender “Male” , “Mail” , “Make” , “msle”

3 Abbreviation
State “California” , “CA”

preparer_title “Senior Counsel” , “Sr. Counsel”

4
Difference of

Special Characters

City “New York” , “ New York, ”

Colour “Black/Blue” , “Black-Blue”

5 Different Ordering Colour “GoldWhite“ , “WhiteGold”

6 Synonyms
Gender “Female” , “Woman”

Venue “Festival Theatre”, “Festival Theater”

7
Presence of

Extra Information
City

“Houston” , “Houston TX” ,

“Houston TX 77055”

8 Different grammar
Colour “triColor” , “tricolored”

Venue ”Auditorium” , “TheAuditorium”

Current Limitation.We sourced many Categorical columns by lever-
aging our previous dataset [54]. The raw files were collected from
sources such as Kaggle and UCI ML repo where the data file may
have been subjected to some pre-processing. However, this is the
best we can do from academic research standpoint given legal con-
straints: acquire large public datasets using public APIs, annotate
them, and make them available to the community. It is hard to
acquire truly raw data files from several enterprises and make them
public due to legal constraints. Also, we do not make any general
claims about the manifestation of duplicates across the universe of
the datasets. This would require doing a comprehensive analysis of
datasets from all sources including that from enterprises and other
organizations. However, this does not diminish the utility of our
empirical analyses as both the downstream benchmark suite and
our synthetic study are independently useful.

5.2 Labeling Process

Among the Categorical columns we collected, we do not know
which columns contain duplicates beforehand. This necessitates us
to manually scan through all the 1262 Categorical columns and look
for duplicates in them. We follow the below process at a column-
level to reduce the cognitive load of labeling. For every Categorical

column, we enumerate its category set with the count of times each
category appears in it. Before scanning the category set, we sort
the categories by their appearance count in descending order and
their values in lexicographic order. As we scan the category set, we
annotate duplicates with their corresponding entities in the column.
We construct 𝐸, 𝐸𝐷, and 𝐷 sets, along with their occurrences for
all the columns. The entire labeling process took us roughly 150 man-

hours across 6 months and 3 people.

5.3 Types of Duplicates and Data Statistics

We find that there exist 𝑒𝑖𝑔ℎ𝑡 types of duplication. We present
these types with examples in Table 3. The differences shown are rel-
ative to the representation of the true entity. We now clarify some
of the types. Type 4 denotes the difference of any non-alphanumeric
special characters including comma, period, and white spaces. Type
5 denotes different ordering within multi-valued categories. Type
8 categories have either a common stem/lemma, presence of stop-
words, or a common singular representation. Note that a duplicate
can have duplication of multiple types and an entity can have nu-
merous duplicates, each belonging to multiple types, e.g., given

1395

Table 4: Statistics of the column containing Categorical du-

plicates in our 16 downstream datasets. |𝑟 |, |A|, and |𝑌 | are

the total number of examples, columns, and target classes

in the data resp. Duplication types numbering correspond

to Table 3. |𝑟𝐶 | denotes the number of training examples per

category of set 𝐶. We use colors green, blue, red with hand-

picked thresholds to visually present and better interpret the

caseswhere the amount of duplication is low (1-|𝐸 |/|𝐶 | < 0.25),

moderate (1-|𝐸 |/|𝐶 | > 0.25 & < 0.5), and high (1-|𝐸 |/|𝐶 | > 0.5)

resp. We use following thresholds with the same colors to

better interpret the data regime: low (|𝑟𝐶 | < 5), moderate

(|𝑟𝐶 | > 5 & < 25), and high (|𝑟𝐶 | > 25).

Datasets |r| |A| |𝒀|

Duplication Types
Amount of

Duplication

Data

Regime

1 2 3 4 5 6 7 8 |C| 1 -
𝑬

|𝑪|
%

Raw

|rC|

Truth

|rC|

Midwest Survey 2778 29 9 X X X X X X X 1008 64 2.5 6.5

Mental Health 1260 27 5 X X X X X 49 69 23.2 81.2

Relocated Vehicles 3263 20 4 X X X X X 1097 36 2.5 3.8

Health Sciences 238 101 4 X X X 56 61 3.6 8.3

Salaries 1655 18 8 X X X 647 29 1.8 2.2

TSM Habitat 2823 48 19 X X X X 912 11 2.6 2.9

EU IT 1253 23 5 X X X X X X 256 35 3.9 5.9

Halloween 292 55 6 X X X X 163 51 1.5 3

Utility 4574 13 95 X X X 199 31 16.2 24.3

Mid or Feed 1006 78 5 X X X X 37 62 20.6 59.7

Wifi 98 9 2 X X X 69 52 1.3 2.5

Etailing 439 44 5 X X X X X 71 68 5.3 14.3

San Francisco 148654 13 2 X X 2159 10 46.3 50.9

Building Violations 22012 17 6 X X X 270 63 53.7 145

US Labor 210287 25 4 X X X X X X 1169 47 31 60.4

Pet Registration 82545 14 2 X X X X 789 44 58.2 105

𝐸𝐷1= New York and 𝐷1 = {new-york., NY}, łnew-york.ž has both
Type 1 and 4 duplication, and the entity New York has duplicates
with duplication of Type 1, 3, and 4.

We annotated 67060 entities across all 1262 string Categorical

columns. We find that almost 5% of those entities have the presence
of at least one duplicate with a total of 5584 duplicates. Overall, 66
columns from 47 raw CSV files have the presence of at least one
duplicate. There are three parameters that quantify the amount of
duplication within a column. (1) Fraction of entities that have at
least one duplicate (|𝐸𝐷 |/|𝐸 |). (2) Duplicate set size for all entities
of the column (set 𝐷). (3) Duplicate occurrences 𝑜𝑐𝑐 ({𝐷𝑘𝑖 }), 𝑘 ∈

[1, |𝐸𝐷 |], 𝑖 ∈ [1, |𝐷 |]. We present the complete stats on the different
parameters that characterizes duplication over our labeled data and
on duplication types in technical report [55].

6 DOWNSTREAM BENCHMARK

We now empirically study the impact of category duplicates on
the downstream ML tasks. Note that our focus is not to compare
and evaluate category deduplication methods. We curate a bench-
mark suite of 16 real-world datasets, each containing a column
with duplicates. We use this to empirically evaluate and compare
three Categorical encoding schemes both with and without the
presence of duplicates. Finally, we make several important observa-
tions on the different EVs that impact the relationship of Categorical
duplicates with downstream classifiers.

6.1 Models and Encodings

We choose five classifiers used commonly among the ML prac-
titioners [59, 60]: LR, RF, XGBoost (XGB), SVM using a Radial Basis
Function (RBF) kernel (henceforth referred to as SVM), and an ANN.
RF, SVM, and XGB offers large VC dimensions and are high-capacity,
while LR has a low-capacity. We use ANN architecture with 2 hidden
units, each with 100 neurons. Although there is no magic number
for ANN architecture size, the above network already offers a very
large VC-dimension and a high-capacity [19]. We use the synthetic
study (Section 7) with two extremes in the ANN’s bias spectrum to
empirically assess the different capacities of ANN on ML.

We encode Categorical columns with five popular schemes: (1)
One-hot (OHE), (2) String (StrE) [52], (3) Similarity (SimE) [21], (4) a
pre-trained Transformer-based embeddings (TransE) [42], and (5) ta-
ble embedding method TABBIE [33]. OHE is the standard approach
to encode nominal Categoricals as it follows their two properties. (1)
Each category is orthogonal to one another. (2) Pairwise distance
between any two categories is identical. RF with OHE performs
binary splits on the data. RF can also handle raw łstringifiedž Cate-
gorical values by performing set-based splits on the data. We refer
to this as StrE. Note that StrE is not applicable for models which are
not tree-based, since they cannot handle raw string values. Both
OHE and StrE assume that the Categorical domain is closed with ML
inference, i.e., new categories in the test not seen during training
are handled by mapping them to a special category, łOthers.ž

SimE takes into account the morphological variations between

the categories. The feature vector for category set 𝐶𝑙 is given as

𝑋
𝑝

𝑙
=[𝑆𝑖𝑚(𝑡𝑝 (𝐴𝑙),𝐶

𝑙
1
), ..., 𝑆𝑖𝑚(𝑡𝑝 (𝐴𝑙),𝐶

𝑙
|𝐶 |

)], where 𝑆𝑖𝑚(.) is a sim-

ilarity metric defined as the dice-coefficient over 𝑛-gram (𝑛 ranges
from 2 to 4) strings [17]. TransE uses a pre-trained BERT base trans-
former model to obtain embeddings as features [42]. The feature
vector can be computed even for any new categories arising in test
set which are unseen during training for both TransE and SimE.
TABBIE [33] is a pre-trained tabular model that consists of three
transformers for converting rows, columns, and cells to vector rep-
resentations. It first obtains an uncontextualized embedding for
cells using the BERT model. The cell embeddings are then passed
through row/column transformers, which see the rows/columns of
the table as inputs and produce contextualized output representa-
tion for rows/columns respectively. The row/column embeddings
are obtained by prepending CLSROW/CLSCOL tokens and using
their embedding as the embedding for the full row/column. For
downstream ML classification, since we want a prediction class
from the target column and for every row in the test set, we first ob-
tain the row-level representations given by TABBIE. We then place
a single-layered ANN classifier (ANN-1L) output layer over TABBIE
and we finally fine-tune the representations over the training data.
We do not add more neural net layers to exclusively observe the
effects of duplicates with TABBIE on ML.

6.2 Datasets used for Analyses
We choose 16 datasets from Section 5.1 such that we not only

represent the different duplication types but also span the spectrum
of different variable combinations. Table 4 presents the statistics
over our datasets. We use the quantity % reduction in domain size

1396

Table 5: Classification accuracy comparison of ML models with different Categorical encodings over 16 downstream datasets.

Accuracy results are shown as delta lift or drop (shown as negative values) in % diagonal accuracy with Truth (column with

Categorical duplicates has been deduplicated with truth) relative to Raw (column has Categorical duplicates intact). Green, blue,

and red colors denote cases where the Truth accuracy relative to Raw is significantly higher, comparable, and significantly

lower (error tolerance of 1%) respectively. TRel denotes the true Relevancy of the column that has been deduplicated; this

indicates the importance of the column for downstream target. Due to space constraints, we defer the absolute accuracy results

on Raw and Truth with each method to tech report [55].

Dataset
Random Forest XGBoost ANN SVM Logistic Regression TABBIE +

ANN-1LTRel OHE StrE SimE OHE StrE SimE OHE SimE TransE OHE SimE OHE SimE

Midwest Survey 16.1 11.5 10 4.4 9.8 10.1 3.4 9.5 3.8 8.5 9.4 0.9 9.4 2.1 7.4

Mental Health 1.3 1.1 -0.1 -1.7 1.5 0.8 2 2 -0.4 -0.7 1.6 0.1 1.3 0.6 1.2

Relocated Vehicles 9.1 3 4.1 -0.1 5.9 7.5 0.3 3.6 0 1.6 4.7 -0.2 4 0.4 1.9

Health Sciences 0.4 2.2 0 -2.7 0.4 -0.4 0.9 4.9 1.8 0.4 1.9 1.2 0.9 1.8 0.1

Salaries 0.7 1.7 1.3 0.4 -0.3 0.7 0.2 0.5 5.4 3.8 0 0 0.2 -1.3 4.5

TSM Habitat 5.2 0.4 1.4 0.4 0.9 2.1 -0.3 -2.7 -2.7 0 0.2 0.2 0 0 0.7

EU IT 3.3 1.2 -0.6 4 2.4 -1.1 0.6 -2.4 5 1.5 2.5 0.8 0 0 2.9

Halloween -0.4 1.5 1.5 -4.9 2.3 4.2 0 4.2 0.8 0 3 3.8 3.4 1.1 0.1

Utility 8.1 1.4 1.2 1.4 0 1.1 -0.2 2.3 2.5 -0.2 0 0.5 -0.2 0.3 1.1

Mid or Feed 1.5 2.5 -0.2 1.8 3.3 0.3 0 2 0.2 0.1 0.2 0.3 1.7 -1.2 -0.4

Wifi 4.2 5.3 4.2 3.2 5.3 0 3.2 2.1 3.2 -0.9 1.1 8.4 1.1 8.4 0.3

Etailing -0.5 2 1.1 3 -0.9 2.3 -0.7 -3 0 -0.7 0.6 0.5 -0.5 1.8 0.2

San Francisco 24.4 0.1 -0.3 0 0 -0.1 -0.1 0.1 -0.1 0.2 0.1 0.2 -0.1 0 0.1

Building Violations -0.1 -0.1 0.1 0 0 0 0 0 0 -0.6 0 0 0 0 0

US Labor 3.9 1.3 0.8 1 1 0.5 1.1 2 0.8 0.7 2.1 1.4 0.8 0.4 0.8

Pet Registration 1.8 0.2 0.2 -0.1 0.2 0 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.1 -0.1

with deduplication (1-|𝐸 |/|𝐶 |) to summarize the magnitude of du-
plication. We use the data regime notion to denote the number of
training examples per category value of the column with duplicates
(|𝑟𝐶 |). We ensure that our selected datasets sufficiently represent
different ranges of values (high vs. low measured relatively) in both
EV spectrum. For instance, a dataset that involves a high amount of
duplication coupled with high- and low-data regimes such as Build-
ing Violation and Midwest Survey respectively. We will later see in
Section 6.4 that the former dataset is robust to duplicates even with
almost 51% of their column’s entity diluted with duplicates, while
the latter is not. This enables us to make specific observations on
the role of different EVs, which we validate and disentangle using
our simulation study in the Section 7.

We obtain the datasets from different sources [6]. Each dataset
has a column with Categorical duplicates which we manually dedu-
plicated in Section 5.2. We do not claim that these 16 datasets are
representative of the percentage one encounters in practice. Our
goal with the downstream benchmark is not to make universal
claims about the impact of Categorical duplicates on just the com-
monly encountered datasets. Instead, we select them plainly to
showcase different EV settings and study the behavior of duplicates
in those settings. The benchmark suite helps us point out the cases
where deduplication matters. This coupled with synthetic study
only serves as a guide to helpML practitioners and AutoML develop-
ers glean insights. We hope our work inspires more data benchmark
standardization in this space with industry involvement.

6.3 Methodology

We partition each dataset into an 80:20 split of train and test
sets. We perform 5-fold cross-validation and use a fourth of the

Mean lift in % accuracy Median lift in % accuracy

Max lift in % accuracy # Datasets with >1% accuracy lift

1.4 0.5

9.4 6

LR

OHE

RF ANNXGB SVM ANN-1L

2.2 1.5

11.5 12

1.6 2

9.5 9

2 1

9.8 8

1.7 0.9

9.4 8

0.9 0.4

8.4 5

0.6 0.4

4.4 7

1.3 0.5

5.4 6

0.7 0.2

3.4 4

1.1 0.4

8.4 5

1.5 1

10 8

1.8 0.6

10.1 6

0.9 0.2

8.5 4

1.3 0.5

7.4 5

SimE

StrE

TransE

TABBIE

Figure 2: Summary statistics showing the accuracy lifts with

Truth compared toRaw (allCategorical duplicates are intact).

examples in the train set for hyper-parameter search. We tune the
regularization parameter for LR and SVM. We tune the number of
trees and their maximum depth for RF and XGB with values for each
ranging from 5 to 100. ANN is L2 regularized and tuned. We present
the grids for hyper-parameter tuning in technical report [55].

6.4 Results

6.4.1 Results comparing the ML impact with and without
Categorical duplicates. Table 5 shows the delta lift/drop in di-
agonal accuracy of all ML models built with different encoding
schemes when the downstream data is completely deduplicated
with ground truth. As an example, Raw Midwest Survey contains a
column with Categoricals duplicates. Cleaning its duplicates with

1397

Table 6: Comparisons of overfitting gap with three classifiers

presenting representative choices from the bias-variance

tradeoff spectrum using OHE. The drop in overfitting gap for

Truth is shown relative to the accuracy on Raw.

Dataset

RF ANN LR

Raw Truth Raw Truth Raw Truth

Midwest Survey 50.7 -14.2 45.1 -10.4 24.4 -9.4

Mental Health 42.3 -7.2 26.7 -0.2 11.7 -3.5

Relocated Vehicles 27.3 -3.1 16.4 -3.6 17 -4.1

San Francisco -0.2 -0 1.1 -0.1 0.5 -0

Building Violations 1.8 -0.1 1.1 -0.2 0.2 +0.1

their true entities (Truth) leads to an 11.5% lift in accuracy relative to
the Raw, when building RFwith OHE. Figure 2 shows statistics sum-
marizing the impact with all ML models using different encodings
on 16 downstream datasets. Finally, we present the generalization
performance of classifiers with the overfitting gap (difference be-
tween train and validation accuracies) in Table 6. We summarize
our results with important observations below.
O1. There exist several downstream cases where Truth improves the
ML accuracy over Raw for any encoding scheme. For instance, the
delta accuracy increase with Truth on RFwithOHE is of median 1.5%
and up to 11.5% compared to Raw (across 16 datasets). Moreover,
the delta accuracy increase is of median 2% and up to 9.5% for ANN.

O2. Delta increases in accuracies with Truth are typically higher
with all high-capacity models (RF, SVM, XGB, and ANN) than a low-
capacity model LR. The median delta increases in accuracy with RF

and ANN using OHE are 1.5 and 2, compared to 0.5 for LR. Thus, LR
is more robust to duplicates than the high-capacity models.

O3. Categorical duplicates impact OHE the most, StrE (for RF and
XGB) the second most, and encoding methods such as SimE, TABBIE,
and TransE (for ANN) are the least affected (see Figure 2). Interest-
ingly, the median lifts in accuracies due to deduplication with SimE

are less than 0.5 for all models. Overall, Truth helps to improve the
ML performance with SimE significantly in just ∼34% of the all the
80 downstream cases (16 datasets and 5 models). This is because,
SimE considers morphological variations between the category
strings and maps a duplicate to a similar feature vector as the true
entity. So, duplicates are often located close to their true entities in
the feature space. Thus, any further lift in accuracy due to dedupli-
cation is marginal. Moreover, the embedding-based methods such
as TransE and TABBIE exhibit marginal impact with duplicates, as
the median lifts with Truth are 0.2 and 0.5 resp. TABBIE does not
further help TransE in reducing the adverse impact of duplicates.

O4. The overfitting gap reduces with deduplication (from Table 6),
thereby improving their generalization ability. Since high-capacity
models such as RF and ANN are more prone to overfitting than LR,
their accuracy lifts with Truth are more significant.

O5. If the magnitude of overfitting gap on Raw is insignificant
(< 1%), the amount of possible reduction in overfitting with Truth is
also small. Thus, it’s not worthwhile to deduplicate if the overfitting
gap on Raw is already low to begin with. We observe this will all the
datasets where the overfitting gap is close to 1%, e.g., San Francisco

and Building Violations. We observe this trend across all classifiers.

Median lift in % accuracy

% Downstream Datasets (where Duplication Type is present) with >1% accuracy lift

(A) Impact of duplicates relative to Truth

1 2 3 4 5 6 7 8

0.6

36

0.4

29

1.7

50

1.1

50

0.8

36

0.1

29

0.7

21

1.1

63

1.1

50

0.2

25

0.1

0

0.1

33

0.9

44

0.1

0

0.1

38

0.7

40

0.5

17

0.1

0

0.3

33

0.8

33

0.5

40

0.6

38

1

20

0.2

25

0.1

33

1.6

33

0.8

44

0.8

44

0.5

38

1.3

60

0.7

33

0.4

33

1

50

1

44

0.2

20

0.9

38

1.5

40

1

42

0.2

33

1.2

33

1.2

67

2

60

0.2

25

0.1

38

0.1

40

0.7

20

0.4

42

0.4

33

0.1

33

0.1

0

0.7

17

0.6

17

0.1

22

1.2

56

1.1

40

0.7

40

(B) Duplication Types 1 2 3 4 5 6 7 8

Avg. N-gram Dice Coefficient Score 0.35 0.32 0.23 0.45 0.65 0.34 0.31 0.51

Avg. Euclidean Distance 0.07 0.12 0.1 0.05 0.1 0.15 0.25 0.11

Duplication

Types

LR + OHE

LR + SimE

RF + OHE

RF + SimE

RF + StrE

ANN

+ TransE

ANN–1L

+ TABBIE

Figure 3: (A) Results summarizing the impact on ML exclu-

sively with each duplication type from Table 3. Number of

downstream datasets corresponding to each duplication type

are: Type 1) 14, Type 2) 8, Type 3) 10, Type 4) 12, Type 5) 3,

Type 6) 6, Type 7) 9, Type 8) 5. This amounts to a total of

67 downstream cases across the 8 types. (B) String similar-

ity scores of duplicate w.r.t its true entity: Dice coefficient

score [17] and Euclidean measure in the transformer embed-

ding space [42]. The scores are computed for all duplicates

in downstream datasets and averaged across a given Type.

O6. Category deduplication increases the column Relevancy for all
models, i.e., the column becomes more predictive for the down-
stream tasks after category deduplication. Note that the magnitude
of accuracy lift with Truth quantifies the increase in column Rele-

vancy with Truth, as per definition in Section 4.2.

O7. The accuracy lifts with Truth on all the models are more sig-
nificant when the column has high Relevancy unless there exist
a high-data regime with a large number of training examples per
category. Thus, if a column has already high Relevancy on Raw, it
may be worthwhile conservatively to deduplicate, e.g., Relocated
Vehicles and Midwest Survey.

O8. High-data regime is robust to the impact of Categorical dupli-
cates than low-data regime, regardless of the amount of duplication.
Even a high amount of duplication has a negligible impact in the
high-data regime, e.g., Building Violations has a massive 63% reduc-
tion in domain size due to deduplication, but there exist a large
number of training examples per category. We do not see any lift
in accuracy with category deduplication on any of the ML models.

Results with additional evaluationmetrics.We rerun our down-
stream benchmark with metrics such as macro/micro average of

1398

precision, recall, and F1-score. We find that none of the empirical

conclusions made with diagonal accuracy change with these metrics.

We defer their results and discussion to tech report [55].

6.4.2 Results with different duplication types. We now em-
pirically benchmark the impact on ML with each duplication type
discretely (from Table 3). Recall that we know the duplication type
for every duplicate arising in our labeled data from Section 5. We
utilize this to (1) pick a duplication type (say, Type 𝑘, 𝑘 ∈ [1, 8])
(2) pick a Raw downstream dataset where Type 𝑘 occurs, (3) dedu-
plicate and consolidate duplicates of Type𝑚 (∀𝑚 ∈ [1, 8],𝑚 ≠ 𝑘)
with their corresponding entities (categories that most frequently
represent the true real-world concepts in the column; see definition
in Section 4.2) in the Raw data. We then obtain a version of Raw
(say, Raw𝑘) where only a single duplication type (Type 𝑘) is present.
We repeat steps 2 and 3 for every Raw data in our downstream suite
where Type 𝑘 is present. We repeat all three steps ∀𝑘 and obtain a
suite of downstream datasets D𝑘 for every Type 𝑘, 𝑘 ∈ [1, 8].

We re-run the ML models together with encoding schemes from
Section 6.1 onD𝑘 , 𝑘 ∈ [1, 8]. Figure 3 (A) shows the results summa-
rizing how each duplication type impacts ML. We present represen-
tative choices with classifiers from the bias-variance tradeoff spec-
trum and defer results with other models/encoding schemes to tech
report [55]. To better interpret our findings, Figure 3 (B) presents
string similarity scores to understand how close the feature vector
representations of duplicates are relative to their true entities. Dice
coefficient score [17] counts the number of overlapping 𝑛−grams
(𝑛 from 2 to 4) relative to the sum of total 𝑛−grams between the
duplicate string and its corresponding true entity string. Euclidean
measure calculates the distance in a pre-trained transformer-based
embedding space [42] between the embeddings of duplicate relative
to its true entity. A higher dice coefficient score and a lower eu-
clidean distance imply that the feature representations of duplicates
are closer to their true entities. We summarize our findings by the
feature representation method used below.

OHE and StrE. Both methods model categories as mutually ex-
clusive and they do not get affected by the semantics of Categorical
strings. For instance, OHE masks the string with a binary variable,
one for each unique category in the column. StrE perform set-based
splits on the Categorical domain. Thus, we observe a similar trend
as Section 6.4, across the duplication types: high-capacity models
exhibit more adverse impact to duplicates than the low-capacity LR
with OHE and StrE is more robust to duplicates than OHE.

SimE. We find this method to have good robustness to all du-
plicate types when used in conjunction with LR, except on Type 7.
In contrast, high-capacity models manifest significant vulnerabil-
ity when there exist duplicates such as Type 3, Type 6, and Type 7

(Abbreviations, Synonyms, and Having Extra Information resp.).
Interestingly, the dice-coefficient scores for such duplication types
are also lower (relative to other Types), implying the feature vectors
of duplicates to be far from their true entities. Moreover, duplicates
due to Capitalization differences (Type 1) particularly cause tree-
based models, RF and XGB to have a significant impact, as their
median accuracy lifts with Truth and the number of datasets with
significant performance differences are significantly high.

TransE and TABBIE. We find both methods to be highly robust to
almost all duplication types, except that TABBIE exhibits significant

performance impact with Misspellings and Abbreviations (Type
2 and Type 3 resp.). Although Type 7 on TransE has the highest
(compared to the other types) Euclidean distance (in the embedding
space) from duplicates to their entities, the median lift with dedu-
plication is not significantly high. The total number of downstream
cases (out of 67) where we notice a > 1% performance impact of
duplicates with TransE and TABBIE are 20 and 21 resp. Thus, inter-
estingly, learning representations over tables doesn’t significantly
help to subside the adverse impact of Categoricals over TransE.

7 IN-DEPTH SIMULATION STUDY

We now dive deeper into the impact of each EV on the down-
stream ML. This study helps us not only validate our empirical
observations but also makes the significance of each EV impact-
ing ML more interpretable. Moreover, it reveals the limitations of
commonly used encoding schemes when unseen duplicates during
training arise in the test.

7.1 Models and Encodings

The structural model parameters such as the number of tree esti-
mators and maximum tree depth for RF and the specific ANN archi-
tecture can largely impact the bias-variance tradeoff. Thus, we fix
them to disentangle their impact and better illustrate our findings
by presenting two extremes of RF’s and ANN’s bias spectrum.We use
high-bias models such as shallow decision tree with a restricted tree
depth of 5 (denoted as ShallowDT), a low-capacity ANN comprising
of two hidden units with 5 neurons each (denoted as LoCapANN),
and also LR. In addition, we use low-bias high-capacity RF with the
number of tree estimators and maximum tree depth being fixed to
50 (denoted as HiCapRF). These values represent the median best-fit
parameters obtained by performing a grid search (with the grids
being same as Section 6.3) over the synthetically generated data
described in Section 7.2. We again use a high-capacity ANN compris-
ing of two hidden units with 100 neurons each (HiCapANN). We also
use LR, SVM, and XGB (using the same methodology as Section 6.3).

We focus this study in the context of OHE and StrE. SimE and
TransformE require the categories to be semantically meaningful
strings. An entity can have duplication of multiple types. Construct-
ing a fine-grained simulator that generates semantically meaningful
duplicates while preserving the same true entity is non-trivial and
intricate from the language standpoint. We leave designing an apt
simulation mechanism for SimE and TransformE to future.

7.2 Setup and Data Synthesis

There is one relational table with 𝑌 being boolean. We include 3
Categorical columns in the table and set |A|=3. We set entity set
size of every column, |𝐸 |=10 (all columns have a domain size of 10).

Data generating process.We set up a łtruež distribution 𝑃 (A, 𝑌)

and sample examples in an IID manner. We study a complex joint
distribution where all features obtained from A determine 𝑌 . We
sample |𝑟 | number of total examples, where the examples for train-
ing, validation, and test are in 60:20:20 ratio. We then introduce
synthetic duplicates in one of the columns of the table in different
ways. We vary the EVs one at a time and study their impact on
ML accuracy along with how they trend. We generate 100 different

1399

Y-axis: Delta drop in % test accuracy due to duplication with OHE

Y-axis: Delta drop in % test accuracy due to duplication with StrE

training examples

(A)

% entities with duplicates

(B)

% occurrence of the duplicate

(C)

duplicates per entity

(D)

training examples

(A)

% entities with duplicates

(B)

% occurrence of the duplicate

(C)

duplicates per entity

(D)

Y-axis: Delta drop in % test

accuracy due to duplication

(only in test set) with OHE

% entities with duplicates

% occurrence of the duplicate

(E)

(F)

Figure 4: Simulation results for HiCapRF with OHE and StrE. (A-D) Duplicates are present in train, validation, and test set. (E-F)

Only test set is diluted with duplicates. (A) Vary |𝑟 |𝑡 (# training examples) while fixing (|𝐸𝐷 |/|𝐸 |, 𝑜𝑐𝑐 (𝐷𝑘), |𝐷𝑘 |)=(30, 25, 1) (B) Vary

|𝐸𝐷 |/|𝐸 | while fixing (|𝑟 |𝑡 , 𝑜𝑐𝑐 (𝐷𝑘), |𝐷𝑘 |)=(3000, 25, 1) (C) Vary 𝑜𝑐𝑐 (𝐷𝑘) while fixing (|𝑟 |𝑡 , |𝐸𝐷 |/|𝐸 |, |𝐷𝑘 |)=(3000, 30, 1) (D) Vary |𝐷𝑘 |

while fixing (|𝐸𝐷 |/|𝐸 |, |𝑟 |𝑡 , 𝑜𝑐𝑐 (𝐷𝑘))=(30, 3000, 25), for all 𝑘 ∈ [1, |𝐸𝐷 |]. Parameter settings of (E) & (F) are same as (B) & (C) resp.

(clean) training datasets and 10 different dirty datasets for every
clean one. We measure the average test accuracy and the average
overfitting gap of all models obtained from these 1000 runs.

The exact sampling process is as follows. (1) Construct a condi-
tional probability table (CPT) with entries for all possible values of
A from 1 to |𝐸 |. We then assign 𝑃 (𝑌 = 0|A) to either 0 or 1 with a
random coin toss. (2) Construct |𝑟 | tuples of A by sampling values
uniform randomly from |𝐸 |. (3) We assign 𝑌 values to tuples of A
by looking up into their respective CPT entry. (4) We perform the
train, validation, and test split of this clean dataset and obtain the
binary classification accuracy of the ML models on the test split.

Duplication process.We introduce duplicates in a column𝐴𝑙 ∈ A

of the clean data as follows. (1) Fix fraction of entities to be di-
luted with duplicates, e.g., |𝐸𝐷 |/|𝐸 |=0.3 (2) Form set 𝐸𝐷 (entities
to be diluted with duplicates) by sampling uniformly randomly
|𝐸𝐷 | categories from 𝐸, e.g., 𝐸𝐷={𝐸3, 𝐸5, 𝐸8}. (3) For every entity
in 𝐸𝐷 , fix duplicate set size |𝐷𝑘 |, 𝑘∈[1, |𝐸𝐷 |], e.g., |𝐷𝑘 |=1, 𝑘∈[1, 3].
We assume that all entities have identical duplicate set sizes. (4)
Given |𝐷𝑘 |, we form the set 𝐷 by introducing duplicates, e.g.,
𝐷1={𝐸3-𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒1}, 𝐷2={𝐸5-𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒1}, 𝐷3={𝐸8-𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒1}. (5)
Fix 𝑜𝑐𝑐 (𝐷𝑘), 𝑘∈[1, |𝐸𝐷 |]. For every duplicate value 𝑑 in 𝐷 , set oc-
currence 𝑜𝑐𝑐 (𝑑)=𝑜𝑐𝑐 (𝐷𝑘)/|𝐷𝑘 |, i.e., assume that all the duplicates
representing an entity are equally likely to occur. (6) We perform
the same train, validation, and test split of the resulting dataset as
obtained in step 4 of the data generating process. We finally obtain
the test accuracy of the ML models on the dirty dataset. We use
our labeled data to configure apt duplication parameter values such
that we can showcase an average and worst-case scenario.

7.3 Results

We vary all EVs one at a time while fixing the rest. We confirm
the trends and observations made with italics.

7.3.1 Varying the data regime. Figure 4 (A) presents the delta
drop in %accuracy with duplication relative to the ground truth
on HiCapRF as the number of training examples (|𝑟 |𝑡) are varied
with both OHE and StrE. We find that with the rise in |𝑟 |𝑡 , the
delta drop in accuracy decreases. With just 3 training examples
per CPT entry (|𝑟 |𝑡 = 3𝑘 and total entries in CPT=1𝑘), duplicates
cause a drop of median 2.3% and up to 4.3% accuracy with OHE.
With 10 training examples, the median and max drops in accuracies
due to duplicates with OHE are 0.3% and 0.7% respectively. This
confirms our observation on the downstream benchmark suite: A
higher data regime is more robust to duplication than a lower data

regime. The same trend holds with StrE encoding and also all the other

classifiers: LR, ShallowDT, LoCapANN and HiCapANN. Thus, a high-

data regime can tolerate duplicates by remaining more agnostic to the

model biases. Increasing the amount of duplication for a high data
regime (|𝑟 |𝑡=10𝑘) has a marginal impact on accuracy. Thus, even
high duplication has a marginal impact in the high-data regime. We
present the corresponding accuracy plots of the impact of duplicates
with data regime changes on the other classifiers in tech report [55].

7.3.2 Varying parameters controlling the amount of dupli-
cation. Figure 4 (B-D) shows how different duplication parameters
influence HiCapRF. We notice a clear trend: the drop in accuracy

with HiCapRF rises with the increase in any of the three duplication

controlling parameters, |𝐸𝐷 |/|𝐸 |, 𝑜𝑐𝑐 (𝐷𝑘), and |𝐷𝑘 |. Among the
three parameters, |𝐸𝐷 |/|𝐸 | has the most drastic effect on HiCapRF.
The effects of the increase in |𝐷𝑘 | are less pronounced because all
other parameters including 𝑜𝑐𝑐 (𝐷𝑘) are kept fixed. Thus, there exist
more duplicates for the same occurrence. Interestingly, we find from
Figure 4 that StrE is more robust to duplicates than OHE regardless of

the parameter being varied, as the delta drop in accuracy with StrE is

comparatively lower, although significant in high duplication cases.

1400

Y-axis: Delta drop in % test accuracy due to duplication with OHE

A B C

D

X-axis: % entities with duplicates

E F

Figure 5: Results with OHE for (A) LR (B) ShallowDT (C) LoCapANN (D) HiCapANN (E) SVM (F) XGBoost with same setup as Figure 4(B).

% Entities with duplicates

 on the non-relevant column

(A)

% Entities with duplicates

 on the relevant column

(B)

Y-axis: Delta drop in % test accuracy due to duplication with OHE

Figure 6: HiCapRF results. Vary |𝐸𝐷 |/|𝐸 |, while fixing

(|A|, |𝑟 |𝑡 , 𝑜𝑐𝑐 (𝐷𝑘), |𝐷𝑘 |)=(4, 5000, 25, 1). Duplicates introduced

on the column with (A) non-positive Relevancy (noisy col-

umn) (B) high Relevancy (predictive column).

Figure 5 presents how a key EV affects other classifiers. We find
that all high-bias models behave similarly as they show a marginal
drop in accuracy even when all entities are diluted with duplicates.
In contrast, HiCapANN exhibits similar behavior as HiCapRF when
|𝐸𝐷 |/|𝐸 | is increased. Note that the absolute accuracies of the high-
bias approaches are lower than that of high-capacity ones. Overall,
both high-capacity models are more susceptible to the adverse perfor-

mance impact of duplicates than high-bias approaches.We notice the
same trend as other EVs, 𝑜𝑐𝑐 (𝐷𝑘) and |𝐷𝑘 | are varied. We present
the corresponding accuracy plots with them in tech report [55].

7.3.3 Varying properties of duplicates beingmapped to łOth-
ers.ž We study how duplicates that do not arise in the train set but
are present in the test set (say, during deployment) can impact ML.
We modify and repeat our duplication process on just the test set
while keeping the train set intact. We introduce just one duplicate
in the test set that gets mapped to łOthers.ž Figure 4 (E-F) presents
the results on HiCapRF with OHE where |𝐸𝐷 |/|𝐸 | and 𝑜𝑐𝑐 (𝐷𝑘) are
varied. We find that the delta drop in accuracies with all parameters

are even more higher than the corresponding delta drops when both

train and test set were duplicated (Figure 4 (B-C)). This simply sug-
gests that the presence of unwarranted duplicates during the test
can cause downstream ML to suffer significantly.

7.3.4 Varying column Relevancy. We now study low vs. high
Relevancy setting with a slight twist in our simulation.We introduce
an additional noisy column in the clean dataset: All except one
column participates in CPT. Thus, we have the presence of both
high and low Relevancy columns. We introduce duplicates in both
types of columns one at a time. Figure 6 present results. We find

that duplication on a highly relevant column has a significant adverse

impact on HiCapRF performance. In contrast, the impact is negligible

when duplicates are introduced over the noisy column. Even increasing

the amount of duplication creates no impact with the low relevancy

column. We observe the same trend with HiCapANN.

7.4 Explanations and Takeaways

We now intuitively explain the behavior of ML classifiers in
presence of duplicates. We check the generalization ability of ML
models with the overfitting gap (as shown in Figure 7). We find
that the delta accuracy drop (Figure 4) closely follows the increase
in the overfitting gap due to duplicates with both high-capacity
models, HiCapRF and HiCapANN. That is, the increase in overfitting
or variance with duplicates explains the accuracy drop we see.
Thus, duplicates can negatively impact the generalization capability

of high-capacity models, which are prone to overfitting. However,
as the number of training examples rises, the overfitting subsides.
This explains our trends in the high-data regime.

We find that LR exhibits no amount of extra overfitting with
duplicates. This is because the VC dimension of LR is linear in
the number of features. As the dimensionality of the feature space
expands with duplicates, VC dimension of LR expands. We get an
expanded logistic hypothesis space with duplication that is a super-
set of the true logistic hypothesis space. Thus, a larger hypothesis
space can potentially lead to more variance unless the true con-
cept is simple enough to recover in an expanded feature space. We
check the weights of the hyperplane learned with LR in presence
of duplicates where a higher weight indicates higher importance.
We find that the absolute weights of duplicate features are often
close to zero. This suggests that the LR can learn the true concept by

completely ignoring the extra dimensions. Thus, the variance does

not rise. HiCapRF with OHE makes many binary splits on the data
to recover the true concept, causing the tree to fully grow to the
restricted height. Chances of further overfitting with duplicates are
reduced with a limited height. This explains why a set-based split

with StrE is more robust than binary splits with OHE as it allows to

pack more category splits within the same tree height.

8 DISCUSSION

8.1 Public Release

We release a public repository onGitHubwith our entire benchmark
suite [1]. This includes our entire labeled dataset of 1262 Categorical
columns along with entities in them annotated with corresponding
duplicates and their raw CSV files. We also release the code to run
downstream and benchmark suites.

1401

Y-axis: Delta increase in % overfitting gap in accuracy due to duplication with OHE

(A)

(B) (C)

(D)

X-axis: % entities with duplicates

(E)

Figure 7: Simulation results on (A) LR (B) ShallowDT (C) HiCapRF (D) LoCapANN (E) HiCapANN (with the same setup as Figure 4(B)).

8.2 Utility of our Labeled Data

Besides the utility of our labeled data for empirically benchmarking
the impact of Categorical duplicates in Section 6, it also serve as
a critical artifact to enable researchers in addressing many open
questions. We highlight two important research directions below.

a. Design accurate methods for category deduplication. Al-
though Categorical duplicates can often impact ML accuracy sub-
stantially, many existing open source AutoML tools such as Auto-
Gluon [26] and TransmogrifAI [8] do not support an automated
deduplication workflow. Cleaning duplicates manually or using
ad hoc rules can be slow and error-prone for many users, espe-
cially non-technical lay users who were promised an end-to-end
automation of the entire ML workflow. Our labeled dataset will lead
to an objective assessment of the accuracy of automation of different

deduplication approaches. Moreover, this will serve towards bulding

supervised learning-based approach to automate the category dedupli-

cation task itself. In fact, one such hand-labeled data lead to highly
accurate supervised ML approaches and even outperformed the
existing industrial-strength tools for ML feature type inference [54].

b. Theoretical quantification. Our empirical study suggests that
Categorical duplicates can increase variance since the hypothesis
space of the model can grow. This opens up several research ques-
tions at the intersection of ML theory and data management: Is it
possible to establish bounds on the increase in variance using VC-
dimension theory [64]? Can we set up a decision rule to formally
characterize when catgeory deduplication would be needed? Our
labeled data can be a key enabler to empirically validate the theory.

8.3 Takeaways for ML Practitioners

We find that the presence of Categorical duplicates can poten-
tially impact downstream ML accuracy significantly. The amount
of impact can be characterized by multiple EVs that interact in
non-trivial ways. It is not always possible to disentangle the impact
on ML with each EV individually. However, our empirical analy-
ses can provide insights into when cleaning effort would be more
or less beneficial. The current practice among ML practitioners
to handle Categorical duplicates is largely ad hoc rule-based and
oblivious to many variables. While some of the presented insights
have remained folklore for practitioners, our work presents the first
systematic scientific study and put this on an empirically rigorous
footing. We now give general guidelines and actionable insights
to help them prioritise their category deduplication effort and also
potentially design better end-to-end automation pipelines.

a. Make ML workflows less susceptible to the adverse per-

formance impact of Categorical duplicates. LR is less prone to
overfitting than the other high-capacity models when Categorical

duplicates arise. This is because, as duplicates increase feature di-
mensionality of Categoricals, LR can completely ignore the extra
dimensions of duplicates by setting their weights close to 0,making
them overfit less. Also, StrE is relatively more robust than OHE

when using RF. Moreover, SimE, TransE, and TABBIE are signifi-
cantly more robust from Categorical duplicates compared to OHE

and StrE. Tabular representation learning method, TABBIE doesn’t
offer significant benefit in terms of robustness to duplicates over the
pre-trained embedding method TransE. Moreover, unseen Categori-

cal duplicates that arise during the deployment phase can degrade
ML performance with OHE or StrE. Overall, Similarity encoding
and LR or TransE/TABBIE can be utilized by ML practitioners if
they desire to guard their pipelines against any adverse drop in ML
performance from likely Categorical duplicates. Moreover, the im-
pact of duplicates get mitigated in a higher-data regime compared
to a low-data regime. Thus, whenever possible, one can consider
getting more train data to offset their impact by trading off runtime.

ML practitioners who are considering to use category deduplica-
tion approaches can prioritize their efforts cleaning only specific
kinds of duplicates: Abbreviations, Synonyms, and presence of Ex-
tra Information in duplicates for SimE with a high-capacity model
and, Misspellings and Abbreviations types for TABBIE. The behav-
ior of ML models with OHE and StrE do not vary considerably with
a specific duplication type. In addition, TransE manifests significant
robustness across all duplication types which makes it a reliable
encoding choice for ML practitioners.

b. Track the overfitting gap of ML models. Category deduplica-
tion can reduce the overfitting caused by Categorical duplicates on
ML. Thus, cleaning Categorical duplicates may not be worthwhile if
the overfitting gap is already low on the raw data. Monitoring and
presenting it as an auxiliary metric to the AutoML user can provide
them with more confidence about the downstream performance.

ACKNOWLEDGMENTS

This work was supported in part by an NSF Convergence Ac-
celerator grant OIA-2040727, an NSF CAREER Award, and gifts
from Google and Amazon. We thank Lucian Popa for his guidance
and insights to improve this work. We thank the members of UC
San Diego’s Database Lab, IBM’s Scalable Knowledge Intelligence
Group, Harsha Kokel, Jingbo Shang, and Lawrence Saul for their
feedback on this work.

1402

REFERENCES
[1] Accessed July 1, 2023. Github Repository for studying the impact of Cleaning

Category Duplicates on ML, https://github.com/pvn25/CategDupsRepo.
[2] Accessed July 1, 2023. Google AutoML Tables Cleaning Duplicates User Guide-

lines. https://cloud.google.com/automl-tables/docs/data-best-practices#make_
sure_your_categorical_features_are_accurate_and_clean

[3] Accessed July 1, 2023. Google AutoML Tables Data Prep User Guidelines, https:
//cloud.google.com/automl-tables/docs/data-best-practices.

[4] Accessed July 1, 2023. Google Cloud AutoML, https:// cloud.google.com/automl/ .
[5] Accessed July 1, 2023. H2O Driverless AI, https://www.h2o.ai/products/h2o-

driverless-ai/ .
[6] Accessed July 1, 2023. Meta-data for downstream benchmark suite, https://github.

com/pvn25/CategDupsRepo/ tree/main/Downstream%20Benchmark/Data.
[7] Accessed July 1, 2023. Microsoft AutoML, https://azure.microsoft.com/en-us/

services/machine-learning/automatedml/ .
[8] Accessed July 1, 2023. TransmogrifAI: Automated Machine Learning for Struc-

tured Data, https://transmogrif.ai/.
[9] Accessed July 1, 2023. Trifacta: Data Wrangling Tools & Software, https://www.

trifacta.com/.
[10] Accessed July 1, 2023. https://data.ca.gov/ .
[11] Accessed July 1, 2023. https://datacatalog.hsls.pitt.edu/ .
[12] Accessed July 1, 2023. https://data.cityofchicago.org/ .
[13] Accessed July 1, 2023. https://data.ny.gov/ .
[14] Accessed July 1, 2023. https:// everydaydata.co/ .
[15] Accessed July 1, 2023. https://github.com/fivethirtyeight/data/ .
[16] Accessed July 1, 2023. https:// osmihelp.org/ .
[17] Richard C. Angell, George E. Freund, and Peter Willett. 1983. Automatic Spelling

Correction Using a Trigram Similarity Measure. Inf. Process. Manag. 19, 4 (1983),
255ś261. https://doi.org/10.1016/0306-4573(83)90022-5

[18] Adel Ardalan, Derek Paulsen, Amanpreet Singh Saini, Walter Cai, and AnHai
Doan. 2021. Toward Data Cleaning with a Target Accuracy: A Case Study for
Value Normalization. CoRR abs/2101.05308 (2021). arXiv:2101.05308 https:
//arxiv.org/abs/2101.05308

[19] Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. 2019.
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear
neural networks. The Journal of Machine Learning Research 20, 1 (2019), 2285ś
2301.

[20] Paul Suganthan G. C., Adel Ardalan, AnHai Doan, and Aditya Akella. 2018.
Smurf: Self-Service String Matching Using Random Forests. Proc. VLDB Endow.
12, 3 (2018), 278ś291. https://doi.org/10.14778/3291264.3291272

[21] Patricio Cerda, Gaël Varoquaux, and Balázs Kégl. 2018. Similarity encoding
for learning with dirty categorical variables. Machine Learning 107, 8 (2018),
1477ś1494.

[22] Peter Christen. 2012. Data Matching - Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer. https://doi.org/10.1007/978-
3-642-31164-2

[23] Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data Cleaning:
Overview and Emerging Challenges. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and Sam Madden
(Eds.). ACM, 2201ś2206. https://doi.org/10.1145/2882903.2912574

[24] Anamaria Crisan and Brittany Fiore-Gartland. 2021. Fits and Starts: Enterprise
Use of AutoML and the Role of Humans in the Loop. In CHI ’21: CHI Conference on
Human Factors in Computing Systems, Virtual Event / Yokohama, Japan, May 8-13,
2021, Yoshifumi Kitamura, Aaron Quigley, Katherine Isbister, Takeo Igarashi,
Pernille Bjùrn, and Steven Mark Drucker (Eds.). ACM, 601:1ś601:15. https:
//doi.org/10.1145/3411764.3445775

[25] Dong Deng, Wenbo Tao, Ziawasch Abedjan, Ahmed K. Elmagarmid, Ihab F. Ilyas,
Guoliang Li, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan
Tang. 2019. Unsupervised String Transformation Learning for Entity Consolida-
tion. In 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao,
China, April 8-11, 2019. IEEE, 196ś207. https://doi.org/10.1109/ICDE.2019.00026

[26] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy,
Mu Li, and Alexander J. Smola. 2020. AutoGluon-Tabular: Robust and Accurate
AutoML for Structured Data. CoRR abs/2003.06505 (2020). arXiv:2003.06505
https://arxiv.org/abs/2003.06505

[27] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Ma-
chine Learning. In Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, Corinna Cortes, Neil D. Lawrence, Daniel D. Lee,
Masashi Sugiyama, and Roman Garnett (Eds.). 2962ś2970. http://papers.nips.cc/
paper/5872-efficient-and-robust-automated-machine-learning

[28] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and
Joaquin Vanschoren. 2019. An Open Source AutoML Benchmark. arXiv preprint
arXiv:1907.00909 (2019).

[29] Trevor Hastie, Jerome H. Friedman, and Robert Tibshirani. 2001. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. Springer. https:

//doi.org/10.1007/978-0-387-21606-5
[30] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit

Chaudhuri. 2018. Transform-Data-by-Example (TDE): An Extensible Search
Engine for Data Transformations. Proceedings of the VLDB Endowment 11, 10
(2018), 1165ś1177.

[31] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automated
Machine Learning - Methods, Systems, Challenges. Springer. https://doi.org/10.
1007/978-3-030-05318-5

[32] Nick Hynes, D Sculley, and Michael Terry. 2017. The Data Linter: Lightweight,
Automated Sanity Checking for ML Data Sets. In NIPS MLSys Workshop.

[33] Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. TABBIE:
Pretrained Representations of Tabular Data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 3446ś3456.

[34] Zhongjun Jin, Michael R Anderson, Michael Cafarella, and Hosagrahar V Ja-
gadish. 2017. Foofah: A Programming-By-Example System for Synthesizing
Data Transformation Programs. In Proceedings of the 2017 ACM International
Conference on Management of Data. 1607ś1610.

[35] Mayank Kejriwal and Daniel P. Miranker. 2015. Semi-supervised Instance
Matching Using Boosted Classifiers. In The Semantic Web. Latest Advances and
New Domains - 12th European Semantic Web Conference, ESWC 2015, Portoroz,
Slovenia, May 31 - June 4, 2015. Proceedings (Lecture Notes in Computer Sci-
ence), Fabien Gandon, Marta Sabou, Harald Sack, Claudia d’Amato, Philippe
Cudré-Mauroux, and Antoine Zimmermann (Eds.), Vol. 9088. Springer, 388ś402.
https://doi.org/10.1007/978-3-319-18818-8_24

[36] Pradap Venkatramanan Konda. 2018. Magellan: Toward building entity matching
management systems. The University of Wisconsin-Madison.

[37] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Jiannan Wang, and Eugene
Wu. 2016. ActiveClean: An Interactive Data Cleaning Framework For Modern
Machine Learning. In Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016, Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM, 2117ś2120.
https://doi.org/10.1145/2882903.2899409

[38] Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, and Eugene Wu. 2017.
BoostClean: Automated Error Detection and Repair for Machine Learning. CoRR
abs/1711.01299 (2017). arXiv:1711.01299 http://arxiv.org/abs/1711.01299

[39] Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021. Auto-
FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labeled Examples. In
SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh
Srivastava (Eds.). ACM, 1064ś1076. https://doi.org/10.1145/3448016.3452824

[40] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021. CleanML:
A Study for Evaluating the Impact of Data Cleaning onMLClassification Tasks. In
37th IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece,
April 19-22, 2021. IEEE, 13ś24. https://doi.org/10.1109/ICDE51399.2021.00009

[41] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB
Endow. 14, 1 (2020), 50ś60. https://doi.org/10.14778/3421424.3421431

[42] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[43] David Maier. 1983. The theory of relational databases. Vol. 11. Computer science
press Rockville.

[44] Venkata Vamsikrishna Meduri, Lucian Popa, Prithviraj Sen, and Mohamed Sar-
wat. 2020. A Comprehensive Benchmark Framework for Active Learning Meth-
ods in Entity Matching. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1133ś1147.
https://doi.org/10.1145/3318464.3380597

[45] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep Learning for Entity Matching: A Design Space Exploration. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, Gautam Das, Christopher M. Jermaine,
and Philip A. Bernstein (Eds.). ACM, 19ś34. https://doi.org/10.1145/3183713.
3196926

[46] Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher
Ré. 2022. Can Foundation Models Wrangle Your Data? arXiv preprint
arXiv:2205.09911 (2022).

[47] Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. 2021. From
Cleaning before ML to Cleaning for ML. IEEE Data Eng. Bull. 44, 1 (2021), 24ś41.
http://sites.computer.org/debull/A21mar/p24.pdf

[48] Felix Neutatz, Binger Chen, Yazan Alkhatib, Jingwen Ye, and Ziawasch Abed-
jan. 2022. Data Cleaning and AutoML: Would an optimizer choose to clean?
Datenbank-Spektrum (2022), 1ś10.

1403

https://github.com/pvn25/CategDupsRepo
https://cloud.google.com/automl-tables/docs/data-best-practices#make_sure_your_categorical_features_are_accurate_and_clean
https://cloud.google.com/automl-tables/docs/data-best-practices#make_sure_your_categorical_features_are_accurate_and_clean
https://cloud.google.com/automl-tables/docs/data-best-practices
https://cloud.google.com/automl-tables/docs/data-best-practices
https://cloud.google.com/automl/
https://www.h2o.ai/products/h2o-driverless-ai/
https://www.h2o.ai/products/h2o-driverless-ai/
https://github.com/pvn25/CategDupsRepo/tree/main/Downstream%20Benchmark/Data
https://github.com/pvn25/CategDupsRepo/tree/main/Downstream%20Benchmark/Data
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/
https://transmogrif.ai/
https://www.trifacta.com/
https://www.trifacta.com/
https://data.ca.gov/
https://datacatalog.hsls.pitt.edu/
https://data.cityofchicago.org/
https://data.ny.gov/
https://everydaydata.co/
https://github.com/fivethirtyeight/data/
https://osmihelp.org/
https://doi.org/10.1016/0306-4573(83)90022-5
https://arxiv.org/abs/2101.05308
https://arxiv.org/abs/2101.05308
https://doi.org/10.14778/3291264.3291272
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.1145/3411764.3445775
https://doi.org/10.1145/3411764.3445775
https://doi.org/10.1109/ICDE.2019.00026
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-319-18818-8_24
https://doi.org/10.1145/2882903.2899409
https://arxiv.org/abs/1711.01299
http://arxiv.org/abs/1711.01299
https://doi.org/10.1145/3448016.3452824
https://doi.org/10.1109/ICDE51399.2021.00009
https://doi.org/10.14778/3421424.3421431
https://doi.org/10.1145/3318464.3380597
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1145/3183713.3196926
http://sites.computer.org/debull/A21mar/p24.pdf

[49] Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. 2016.
Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data
Science. In Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference, Denver, CO, USA, July 20 - 24, 2016, Tobias Friedrich, Frank Neumann,
and Andrew M. Sutton (Eds.). ACM, 485ś492. https://doi.org/10.1145/2908812.
2908918

[50] Fatemah Panahi, Wentao Wu, AnHai Doan, and Jeffrey F. Naughton. 2017. To-
wards Interactive Debugging of Rule-based Entity Matching. In Proceedings
of the 20th International Conference on Extending Database Technology, EDBT
2017, Venice, Italy, March 21-24, 2017, Volker Markl, Salvatore Orlando, Bern-
hard Mitschang, Periklis Andritsos, Kai-Uwe Sattler, and Sebastian Breß (Eds.).
OpenProceedings.org, 354ś365. https://doi.org/10.5441/002/edbt.2017.32

[51] Jinglin Peng, Weiyuan Wu, Brandon Lockhart, Song Bian, Jing Nathan Yan,
Linghao Xu, Zhixuan Chi, Jeffrey M. Rzeszotarski, and Jiannan Wang. 2021.
DataPrep.EDA: Task-Centric Exploratory Data Analysis for Statistical Modeling
in Python. In Proceedings of the 2021 International Conference on Management of
Data (SIGMOD ’21), June 20ś25, 2021, Virtual Event, China.

[52] J. Ross Quinlan. 1986. Induction of decision trees. Machine learning 1, 1 (1986),
81ś106.

[53] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10,
11 (2017), 1190ś1201. https://doi.org/10.14778/3137628.3137631

[54] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun Kumar.
2021. Towards Benchmarking Feature Type Inference for AutoML Platforms. In
Proceedings of the 2021 International Conference on Management of Data. 1584ś
1596.

[55] Vraj Shah, Thomas Parashos, and Arun Kumar. Accessed July 1, 2023. How
do Categorical Duplicates Affect ML? A New Benchmark and Empirical Analyses
(Technical Report). https://adalabucsd.github.io/papers/TR_2023_CategDedup.
pdf.

[56] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel
Madden, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and
Nan Tang. 2017. Generating Concise Entity Matching Rules. In Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao
Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1635ś1638. https:
//doi.org/10.1145/3035918.3058739

[57] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel
Madden, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and
Nan Tang. 2017. Synthesizing Entity Matching Rules by Examples. Proc. VLDB
Endow. 11, 2 (2017), 189ś202. https://doi.org/10.14778/3149193.3149199

[58] Survey. Accessed July 1, 2023. 2021 State of Data Science and Machine Learning.
https://www.kaggle.com/kaggle-survey-2021.

[59] Survey. Accessed July 1, 2023. 2022 State of Data Science and Machine Learning
Results Visualized. https://www.kaggle.com/code/paultimothymooney/kaggle-
survey-2022-all-results.

[60] Survey. Accessed July 1, 2023. 2022 State of Data Science and Machine Learning.
https://www.kaggle.com/kaggle-survey-2022.

[61] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Samuel
Madden, and Mourad Ouzzani. 2021. RPT: Relational Pre-trained Transformer
Is Almost All You Need towards Democratizing Data Preparation. Proc. VLDB
Endow. 14, 8 (2021), 1254ś1261. https://doi.org/10.14778/3457390.3457391

[62] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Clas-
sification Algorithms. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 847ś855.

[63] Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Guoliang Li, Xiaoyong Du, Xiaofeng
Jia, and Song Gao. 2023. Unicorn: A unified multi-tasking model for supporting
matching tasks in data integration. Proceedings of the ACM on Management of
Data 1, 1 (2023), 1ś26.

[64] Vladimir Naumovich Vapnik. 2000. The Nature of Statistical Learning Theory,
Second Edition. Springer.

[65] David Vos, Till Döhmen, and Sebastian Schelter. 2022. Towards Parameter-
Efficient Automation of Data Wrangling Tasks with Prefix-Tuning. In NeurIPS
2022 First Table Representation Workshop.

[66] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2020. ZeroER: Entity Resolution using Zero Labeled Examples. In
Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David
Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini,
and Hung Q. Ngo (Eds.). ACM, 1149ś1164. https://doi.org/10.1145/3318464.
3389743

[67] Doris Xin, Eva Yiwei Wu, Doris Jung Lin Lee, Niloufar Salehi, and Aditya G.
Parameswaran. 2021. Whither AutoML? Understanding the Role of Automation
in Machine Learning Workflows. In CHI ’21: CHI Conference on Human Factors in
Computing Systems, Virtual Event / Yokohama, Japan, May 8-13, 2021, Yoshifumi
Kitamura, Aaron Quigley, Katherine Isbister, Takeo Igarashi, Pernille Bjùrn, and
Steven Mark Drucker (Eds.). ACM, 83:1ś83:16. https://doi.org/10.1145/3411764.
3445306

[68] Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end Fuzzy Entity-Matching
using Pre-trained Deep Models and Transfer Learning. In The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu,
Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo
Baeza-Yates, and Leila Zia (Eds.). ACM, 2413ś2424. https://doi.org/10.1145/
3308558.3313578

1404

https://doi.org/10.1145/2908812.2908918
https://doi.org/10.1145/2908812.2908918
https://doi.org/10.5441/002/edbt.2017.32
https://doi.org/10.14778/3137628.3137631
https://adalabucsd.github.io/papers/TR_2023_CategDedup.pdf
https://adalabucsd.github.io/papers/TR_2023_CategDedup.pdf
https://doi.org/10.1145/3035918.3058739
https://doi.org/10.1145/3035918.3058739
https://doi.org/10.14778/3149193.3149199
https://www.kaggle.com/kaggle-survey-2021
https://www.kaggle.com/code/paultimothymooney/kaggle-survey-2022-all-results
https://www.kaggle.com/code/paultimothymooney/kaggle-survey-2022-all-results
https://www.kaggle.com/kaggle-survey-2022
https://doi.org/10.14778/3457390.3457391
https://doi.org/10.1145/3318464.3389743
https://doi.org/10.1145/3318464.3389743
https://doi.org/10.1145/3411764.3445306
https://doi.org/10.1145/3411764.3445306
https://doi.org/10.1145/3308558.3313578
https://doi.org/10.1145/3308558.3313578

	Abstract
	1 Introduction
	2 Related Work
	2.1 Entity Matching (EM) and String Matching (SM) Approaches
	2.2 Data Cleaning and Data Prep for ML
	2.3 AutoML Platforms

	3 Our Approach
	4 Preliminaries
	4.1 Scope
	4.2 Definitions

	5 Our Hand-Labeled Dataset
	5.1 Data Sources
	5.2 Labeling Process
	5.3 Types of Duplicates and Data Statistics

	6 Downstream Benchmark
	6.1 Models and Encodings
	6.2 Datasets used for Analyses
	6.3 Methodology
	6.4 Results

	7 In-depth Simulation Study
	7.1 Models and Encodings
	7.2 Setup and Data Synthesis
	7.3 Results
	7.4 Explanations and Takeaways

	8 Discussion
	8.1 Public Release
	8.2 Utility of our Labeled Data
	8.3 Takeaways for ML Practitioners

	Acknowledgments
	References

