
FluidKV: Seamlessly Bridging the Gap between Indexing
Performance and Memory-Footprint on Ultra-Fast Storage

Ziyi Lu
Huazhong University of Science and

Technology
China

luziyi@hust.edu.cn

Qiang Cao∗
Huazhong University of Science and

Technology
China

caoqiang@hust.edu.cn

Hong Jiang
UT Arlington
TX, USA

hong.jiang@uta.edu

Yuxing Chen
Tencent Inc.

China
axingguchen@tencent.com

Jie Yao
Huazhong University of Science and

Technology
China

jackyao@hust.edu.cn

Anqun Pan
Tencent Inc.

China
aaronpan@tencent.com

ABSTRACT
Our extensive experiments reveal that existing key-value stores
(KVSs) achieve high performance at the expense of a huge mem-
ory footprint that is often impractical or unacceptable. Even with
the emerging ultra-fast byte-addressable persistent memory (PM),
KVSs fall far short of delivering the high performance promised by
PM’s superior I/O bandwidth. To find the root causes and bridge
the huge performance/memory-footprint gap, we revisit the ar-
chitectural features of two representative indexing mechanisms
(single-stage and multi-stage) and propose a three-stage KVS called
FluidKV. FluidKV effectively consolidates these indexes by fast and
seamlessly running incoming key-value request stream from the
write-concurrent frontend stage to the memory-efficient backend
stage across an intermediate stage. FluidKV also designs important
enabling techniques, such as thread-exclusive logging, PM-friendly
KV-block structures, and dual-grained indexes, to fully utilize both
parallel-processing and high-bandwidth capabilities of ultra-fast
storage hardware while reducing the overhead. We implemented a
FluidKV prototype and evaluated it under a variety of workloads.
The results show that FluidKV outperforms the state-of-the-art PM-
aware KVSs, including ListDB and FlatStore with different indexes,
by up to 9× and 3.9× in write and read throughput respectively,
while cutting up to 90% of the DRAM footprint.

PVLDB Reference Format:
Ziyi Lu, Qiang Cao, Hong Jiang, Yuxing Chen, Jie Yao, and Anqun Pan.
FluidKV: Seamlessly Bridging the Gap between Indexing Performance and
Memory-Footprint on Ultra-Fast Storage. PVLDB, 17(6): 1377 - 1390, 2024.
doi:10.14778/3648160.3648177

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/luziyi23/FluidKV.

∗Qiang Cao is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.
doi:10.14778/3648160.3648177

1 INTRODUCTION
Persistent memory (PM) and solid-state drive (SSD) have made
great strides in both I/O bandwidth and latency over the past decade.
PM, with its byte-addressability and fast persistency, is providing
researchers with an opportunity to reshape the storage landscape.
Meanwhile, key-value stores (KVSs), as a building block of modern
data-processing platforms, maintain a global index on a series of
persistent key-value pairs (KVs) to support simple-semantic KV-
accesses (e.g., Get/Put/Scan). Therefore, KVS on ultra-fast storage
has become the eye of the KVS research storm.

At the heart of a KVS is its indexing structure, and, depending
on how keys are organized and operated on in this structure, for
the purpose of this paper we broadly divide KVSs into two cat-
egories, single-stage indexing KVS and multi-stage indexing KVS.
Specifically, the single-stage indexing KVSs have a monothetic data
structure (e.g., B+-tree) in DRAM, storage, or DRAM-storage hy-
brid, to index all persistent KVs. On the other hand, the multi-stage
indexing KVSs, e.g., Log-structured merge-tree (LSM-tree [40]), dy-
namically and periodically migrate the incoming KVs from a small
in-memory KV-set to in-storage large KV-sets, each of which has
its own corresponding index.

Existing PM-based KVSs, be they single-stage and multi-stage
indexing, fall far short of achieving the high performance promised
by ultra-fast storage (e.g., PM) without heavily relying on a huge
DRAM capacity, as elaborated by our in-depth experimental analy-
sis in §2 and summarized by the following 5 key observations.

For the single-stage indexing KVSs, the DRAM-only indexing
ones, where the entire pivot index resides in DRAM [3, 9, 53], show
superior concurrency and performance (Observation 1) at the cost
of a huge DRAM footprint, making it difficult to adapt to the growth
of data volume (Observation 2). Storing part of the index (e.g., leaf
nodes) on PM [20, 31, 35, 57, 65] reduces DRAM footprint but sac-
rifices the overall performance.

The multi-stage indexing KVSs, such as LSM-tree, build an in-
memory KV-grained index only for a limited amount of incoming
unsorted data in the first stage and small coarse-grained indexes for
the other stages, making DRAM footprint controllable (Observation
3), while introducing the notorious write stalls and write/read am-
plifications due to the periodic compactions to merge KVs between

1377

https://doi.org/10.14778/3648160.3648177
https://github.com/luziyi23/FluidKV
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648177
https://www.acm.org/publications/policies/artifact-review-and-badging-current

adjacent stages. Recently, PM-aware LSM-trees [12, 30, 62] are de-
signed to optimize for PM idiosyncrasy and reduce write stalls.
However, both read and write performances of such multi-stage
indexing KVSs remain far lower than DRAM-only single-stage
indexing KVSs due to limited write-concurrency (Observation 4).
In addition, both single-stage and multi-stage indexing KVSs still
insufficiently utilize the bandwidth of PM (Observation 5).

In other words, it is very challenging for existing KVS indexing
structures, single-stage or multi-stage, to achieve high write/read
throughput and controllable DRAM footprint simultaneously. For-
tunately, Observation 5 offers a hint to effectively and efficiently
leverage the power of modern hardware. To this end, we propose a
fast-flowing three-stage KVS architecture, FluidKV, to seamlessly
consolidate such two indexing mechanisms. The key idea behind
FluidKV is to combine the high concurrency of single-stage indexes
and the controllable DRAM consumption of multi-stage indexes by
quickly and efficiently merging KVs from the former to the latter.

FluidKV comprises three consecutive processing stages, i.e., Fast-
Store, BufferStore, and StableStore. FastStore employs a concurrent
and key-grained index, along with thread-exclusive logging, to
fast absorb incoming KVs in a sequential but unsorted manner,
thus achieving high write performance. Adapting to available hard-
ware bandwidth and fluctuating workload, BufferStore dynamically
flushes FastStore data into a series of persisted and sorted KV-
sets and merge-sorts them into the backend StableStore, to control
the memory footprint in time. StableStore maintains a global key-
range-grained index on large-scale persistent data, thus minimizing
the DRAM footprint while maintaining read performance. FluidKV
presents a PM-friendly index and data block structure in BufferStore
and StableStore to store the persisted index and KVs to efficiently
exploit the ultra-fast storage.

We implement a FluidKV prototype and evaluate it under a
variety of workloads. The results show that FluidKV outperforms
ListDB, a state-of-the-art PM-aware multi-stage indexing KVS, by
up to 9x and 3.8x in write and read throughput respectively while
cutting 90% of ListDB’s DRAM footprint. Compared to state-of-the-
art single-stage indexing KVSs, FluidKV also ensures a controllable
DRAM footprint with similar or higher read/write performance.

The contributions of this paper include:
• An in-depth experimental analysis of the performance/memory-
footprint gap among representative KVS indexing mechanisms;
• A three-stage fast-flowing KVS architecture that effectively uti-
lizes the I/O capacity and parallel-processing capability of ultra-
fast storage;
• A write-optimized first stage (FastStore), an adaptive second
stage for fast data migration (BufferStore), and a DRAM-footprint-
cutting PM-aware backend third stage (StableStore);
• Evaluation of a FluidKV prototype against representative PM-
aware KVSs demonstrating high write performance, low DRAM
footprint, and acceptable read performance.

2 BACKGROUND AND ANALYSIS
In this section, we provide the necessary background for and an in-
depth analysis of the characteristics of emerging high-performance
storage devices and indexing mechanisms of existing key-value
stores (KVSs), which help reveal their performance pitfalls.

Key-value data

DRAM

PM

Volatile
index

(a) Single-stage indexing

DRAM

PM

Index

Key-value data
Key-value

Key-value data

Key-value data

Stage 0

Stage 1

Stage 2

Stage n
…

flush
compaction

(b) Multi-stage indexing

Figure 1: Classification of KVS indexing mechanism.

2.1 Ultra-Fast Storage
The rapid development of solid-state drive (SSD) and persistent
memory (PM) technologies has unceasingly advanced both stor-
age capacity and performance, especially accelerating bandwidth
with increasing parallelism. Different from traditional block devices
such as SSD and hard-disk drives (HDD), PM (e.g., PCM [52], STT-
MRAM [2], Memristor [59], 3DXPoint[23], Memory-Semantic SSD
[24, 25, 42, 60]) is capable of memory semantics (i.e., load/store) and
accesses to byte-level small-sized data at GB/s-level I/O bandwidth
and 100ns-level latency. Because of the superior byte-addressing
capability and fast persistency, KVSs as a fundamental building
block of modern data-processing infrastructure leverage PM to ac-
celerate intensive small-sized KV workloads [16, 27, 29, 61] that are
prevalent in industrial and commercial applications [5]. Nowadays,
PM not only works as main memory, which can be accessed via
memory bus for low latency, but can also be attached on the PCIe
bus with the emerging CXL technology [1] for high scalability.

2.2 Key-value Store Indexing
A KVS generally consists of indexes and persistent data. In this
paper, we focus on the index structure, which is the core of KVS
for accurate and quick access to the persistent data on storage. To
understand the impact of different indexing mechanisms on the
overall performance of a KVS, we first classify the existing KVS
indexes into two groups, i.e., single-stage indexing (e.g., B+-tree)
and multi-stage indexing (e.g., LSM-tree) as shown in Figure 1, and
identify their respective performance characteristics and pitfalls
(Observation 1~5) through experiments.

2.2.1 Single-stage indexing. A single-stage indexing KVS main-
tains a monolithic KV-grained index to precisely record the location
of each KV in the persistent data, as shown in Figure 1a. Common
single-stage indexes include range indexes (e.g., B-tree variants,
trie, and skiplist) and hash indexes. Considering that KVSs require
support for range queries, this paper focuses only on range indexes.

Most KVSs optimized for ultra-fast storage keep the whole index
in DRAM to prevent the indexing from becoming a bottleneck. For
example, KVell [32] adopts a large B+-tree index and page cache
in memory to ensure read performance on fast SSDs. Flatstore [9]
builds an efficient multi-log structure on PM for persistent KVs and
employs an existing volatile index for fast searching.

To demonstrate the impact of single-stage indexing on KVS per-
formance, we test the read and write performances of Flatstore with
different numbers of user threads under workloads of 200M writes
and reads respectively. The sizes of key and value are equal and
8 bytes each (see §6.1 for detailed experimental setup). As shown
in Figure 2, Masstree, which denotes Flatstore with a DRAM-only
B+-tree (i.e., Masstree [38]), achieves read and write throughputs

1378

1 4 8 16 24 32
Thread Count

0

10

20

30

Th
ro
ug

hp
ut
(M

O
PS

) Masstree FFTree

1

(a) Random Put

1 4 8 16 24 32
Thread Count

0

10

20

Th
ro
ug

hp
ut
(M

O
PS

) Masstree FFTree

1

(b) Random Get

Figure 2: Scalability of single-stage indexing KVSs [OB1].

25M
(0.37GB)

50M
(0.75GB)

100M
(1.5GB)

200M
(3GB)

400M
(6GB)

800M
(12GB)

1600M
(24GB)

3200M
(48GB)

6400M
(96GB)

Number of KVs (Total size)

0.1

1

10
30

D
R
AM

us
ag

e
(G

B)

Masstree FFTree RocksDB

1Figure 3: The DRAM consumptions of typical single- and
multi-stage indexing KVSs [OB2, OB3].

of over 20 MOPS, demonstrating extremely high performance and
parallelism of single-stage indexing. This leads to Observation 1
(OB1): modern single-stage indexing has good concurrency
and scalability in both reads and writes.

However, in the face of ever-increasing KV data volumes, even
when the PM space is sufficient, the ever-expanding index con-
sumes a vast DRAM space. Especially for small-sized KVs, the
DRAM footprint of the index may be larger than the amount of KV
data itself because there are many inner nodes within the index
besides the leaf nodes. Figure 3 illustrates the DRAM consump-
tions of Masstree as a function of dataset size. The results reveal
Observation 2 (OB2): the DRAM footprint of single-stage in-
dexing KVS increases linearly with the dataset size at a steep
slope. When inserting about 1,600M 8+8 byte KVs (24GB in total),
its index runs out of the 64GB DRAM of our hardware platform,
demonstrating the dominant impact of the index DRAM footprint
on KVS data capacity.

Although accommodating all or part of a KVS index in byte-
addressable PM [35, 36, 41] can reduce DRAM consumption, it
incurs the high cost of very noticeable performance degradation
for two reasons. First, it causes I/O contention between index up-
dates and KV data accesses. Second, small-sized accesses to PM are
significantly more inefficient than to DRAM [54, 56]. As shown in
Figure 2, Flatstore with Fast&Fair B+-tree [20] (denoted as FFTree),
which is a persistent B+-tree on PM, underperforms its DRAM-only
counterpart Masstree in write performance by 40%~70% and read
performance by 35%~40%. Figure 3 also shows that FFTree trades
read/write performance for reduced memory footprint, which is
still proportional to data size. In summary, the performance of a
given single-stage indexing KVS is dominated by its index structure,
which needs to strike a careful balance between performance and
DRAM footprint to accommodate an increasing data volume.

2.2.2 Multi-stage indexing. LSM-tree [40] is the most classic and
representativemulti-stage indexing structure in the last three decades.

1 4 8 16 24 32
Thread Count

0

1

2

3

Th
ro
ug

hp
ut

(M
O
PS

) RocksDB ListDB

1

(a) Random Put

1 4 8 16 24 32
Thread Count

0

2

4

Th
ro
ug

hp
ut

(M
O
PS

) RocksDB ListDB

1

(b) Random Get

Figure 4: The performance of LSM-tree-based KVS [OB4].

As shown in Figure 1b, a typical LSM-tree implementation on tra-
ditional block devices, such as LevelDB [15] and RocksDB [14],
comprises a small DRAM-storage hybrid stage 0 and multiple per-
sistent stages with exponentially increasing capacities. Stage 0
consists of an in-memory index called memtable and a persistent
write-ahead log (WAL) to fast persist user writes with sequential
I/O. The other stages store sorted KVs with small coarse-grained
persistent indexes (e.g., each index entry for 4KB block). The back-
ground threads asynchronously and periodically merge the KVs in
one stage into the next stage and update the persistent indexes. We
measured the DRAM footprint of RocksDB1 at different data vol-
umes. As shown in Figure 3, its DRAM consumption is consistently
within 1GB and is primarily derived from memtable. Therefore, we
conclude Observation 3 (OB3): multi-stage indexing KVS can
decouple DRAM footprint from data volume.

The key drawback of LSM-tree, namely, the I/O (write/read)
amplification, means that each KV written by the user is rewrit-
ten multiple times among stages, and a read request sequentially
queries multiple stages to retrieve the target KV. Many prior works
[6, 43, 55] have been proposed to alleviate I/O amplification for
LSM-tree on high-performance storage devices. ListDB [30] is a
state-of-the-art LSM-tree optimized for PM, replacing the sorted
structure with persistent skiplists. Therefore, the background com-
paction can update the skiplist index by modifying pointers instead
of rewriting all merged KV data to reduce data copying. We also
test the performance of RocksDB and ListDB on PM. The results
shown in Figure 4 uncover Observation 4 (OB4): the read/write
performance of multi-stage indexing KVS is limited. The per-
formances of RocksDB and ListDB are significantly lower than that
of single-stage indexing KVSs such as Masstree and FFTree. Partic-
ularly, both RocksDB and ListDB exhibit limited write parallelism.
One reason is the inefficiency of logging and index, e.g., the shared
logging that imposes synchronization overhead and the persistent
skiplist that induces small random I/Os. Another reason is the ten-
sion between write and read amplification. For example, increasing
the number of stages effectively reduces write amplification (e.g., by
using tiering structure[10, 11, 44]), but increases read amplification.

2.2.3 Indexes on ultra-fast storage. To understand the actual I/O
bandwidth-usage of the underlying PM, we loaded 200M KVs (3 GB)
to all the aforementioned KVSs. As shown in Figure 5, the KVSs
use less than 1GB/s read and 0.2GB/s write bandwidth with a single
thread. Even with 32 threads, the utilizations of write and read band-
width are only up to 30% and 70% respectively. Among them, FFTree
and ListDB utilize more bandwidth because they build persistent
indexes on PM. Whereas Masstree uses a DRAM-only index and

1We use pmem-rocksdb[22], a RocksDB version adopted for PM, to run on our platform.

1379

1 4 8 16 24 32
Thread Count

0

5

10

PM
Ba

nd
w
id
th

U
sa
ge

(G
B/
s) Maximum write bandwidth

Masstree FFTree

1
(a) Write bandwidth utilizations

1 4 8 16 24 32
Thread Count

0

5

10

15

PM
Ba

nd
w
id
th

U
sa
ge

(G
B/
s) Maximum read bandwidth

RocksDB ListDB

1
(b) Read bandwidth utilizations

Figure 5: I/O bandwidth utilizations of single- and multi-
stage indexing KVSs when loading 200M KVs (3 GB) [OB5].

RocksDB has poor parallelism, which results in their insufficient
utilization of PM bandwidth. Through the experimental results we
obtain Observation 5 (OB5): for both single-stage and multi-
stage indexing, the bandwidth of PM is not a performance
bottleneck.

In summary, the performance pitfalls and differences between
single-stage and multi-stage indexing KVSs lie in their architec-
tural features. The former achieves excellent concurrency on both
read and write [OB1] at the cost of significant DRAM consumption
[OB2]. In contrast, the latter controls DRAM footprint by moving
incoming writes through stages [OB3] but suffers from a low over-
all performance and unbalanced read/write amplification [OB4].
Moreover, both indexes underutilize the high PM bandwidth [OB5].

3 MOTIVATION AND OPPORTUNITY
Based on the above comparative analysis of the two types of KVS
indexing mechanisms, we pose and attempt to answer the question
of: how to build a balanced key-value store on PM that accomplishes
the three design goals of read performance, write performance and
DRAM efficiency simultaneously, as shown in Figure 6?

Goal 1 (GO1): high write scalability. Efficiently handling
highly concurrent requests is critical for enhancing write through-
put. This requires an efficient indexing structure that avoids per-
formance bottlenecks due to multiple threads competing for the
in-memory index and the shared WAL as discussed in §2.2.2.

Goal 2 (GO2): controllable DRAM footprint. To rationalize
the use of memory space and avoid unlimited growth of DRAM
footprint with the increasing data volume, a memory-efficient in-
dexing mechanism is needed to carefully store the vast portion of
the global index of KVS in PM, thus reducing the actual DRAM
requirement.

Goal 3 (GO3): low read latency. The read latency of LSM-tree
consists of the index querying and PM accesses on multiple stages.
Because current commodity PM exhibits 5× higher read latency
than DRAM [54, 56], it is important to reduce PM accesses in the
critical read path of the multi-stage querying.

While it is very challenging to achieve all three goals simultane-
ously, our observations demonstrate two important opportunities
to design a KVS with improved overall performance.

First, it is an opportunity to combine the techniques of ex-
isting single-stage and multi-stage indexing to obtain their
respective advantages. As aforementioned, single-stage index
and multi-stage index exhibit different performance advantages
due to their different structures and techniques. Therefore, a KVS
design that combines their advantages [OB1, OB3] is expected to
achieve an overall performance improvement over both.

Write performance

Read performance DRAM efficiency

FluidKV
FFTree
ListDB
RocksDB
Masstree

1Figure 6: FluidKV design goals compared with the existing
KVSs (verified and detailed in §6.2.1).

Second, with the prevalence of high-performance hardware in-
cluding multi-core CPUs and fast PMs [OB5], it is an opportunity
to leverage hardware parallelism to amortize and reduce the
overhead of consolidating the two indexing schemes. The su-
perior processing power of modern hardware can perform multiple
stages quickly and simultaneously. Also, index structures with good
concurrency are likely to make full use of hardware parallelism.

These opportunities inspire and motivate us to design a dynamic
multi-stage KVS to fast and seamlessly flow incoming data from a
frontend small-scale write-optimal index to a backend large-scale
memory-efficient index across an intermediate bridging stage.

4 FLUIDKV DESIGN
4.1 Overview
We propose FluidKV, a dynamically balanced and parallelized key-
value store, to achieve both high performance and low DRAM con-
sumption on ultra-fast storage such as PM. FluidKV is designed as a
three-stage architecture that includes a small and high-performance
FastStore at the frontend, a large and memory-efficient StableStore
at the backend, and a BufferStore bridging the frontend and backend
stages to provide the fluidity, as shown in Figure 7.

FastStore (§4.2) adopts a KV-grained concurrent volatile range
index and multiple thread-exclusive logs. FastStore is responsible
for the fast processing of highly concurrent user writes and allows
dynamically trading more memory for throughput under write-
intensive workloads [GO1].

StableStore (§4.3) stores and indexes sorted key-value pairs
using a set of data blocks and their index nodes on PM, respectively.
The structures of the index node and data block are I/O-efficient
for PM. As a result, StableStore maintains large-scale KV data and
a read-optimized index with extremely low DRAM consumption
[GO2] while guaranteeing acceptable query latency [GO3].

BufferStore (§4.4) is an adjustable stage between FastStore and
StableStore, enabling the seamless flow and fluidity of FluidKV. It
converts the KV-grained indexes of FastStore into small sorted-
block-grained indexes to quickly reduce memory overhead [GO2]
while merging these sorted block indexes into StableStore to reduce
read amplification [GO3].

FluidKV offers standard KV interfaces such as Get, Put, and
Delete, and also supports range scan, variable-sized values, and
crash consistency. FluidKV prototype employs the commodity Intel
Optane DCPMM as a practical PM device for the proof-of-concept

1380

Data

Block
Data

Block
Data

Block

KV-grained
range index

Per-thread

Log

Per-thread

Log

Per-thread

Log

flush

LST-grained
range index

Index

Block

Data

Block

…

…
Data

Block
Data

Block
Data

Block

Index

Block

Data

Block

Data

Block
Data

Block
Data

Block

Index

Block

Data

Block

Volatile index

Persistent index/data

FastStore BufferStore StableStore

Buffer-tree

compaction

User write User read

Buffer-tree

Figure 7: Architecture of FluidKV.

purpose, but FluidKV’s design principles and key techniques can
be applied to other types of PM such as ultra-fast CXL-based SSDs.

4.2 FastStore: Fast and Concurrent Writing
FastStore, as the frontend of FluidKV, is designed to fast process
highly concurrent writes. It primarily uses an in-memory B+-tree
index with high parallelism and employs the logging mechanism
from LSM-tree, which can provide storage-friendly sequential I/O.
Furthermore, FastStore uses the log structure to quickly persist user
data but employs a thread-exclusive logging mechanism to reduce
the log contention by exploiting parallelism.

FastStore Structure. As shown in Figure 8, FastStore stores
incoming KVs into multiple thread-exclusive logs on PM and main-
tains a volatile index in DRAM. For small fixed-sized KV (e.g., 8+8
bytes), FastStore stores all KV data in both index and PM-logs for
crash recovery. This approach is similar to LSM-tree’s memtable
and WAL, thus avoiding slow PM access when querying buffered
KVs. For variable-sized KVs, FluidKV applies a key-value separation
mechanism [37], storing a full-length KV in a PM-log while only
recording its PM address as the value of the key in the in-memory
index. In addition to the KV length and data, the log record also
includes a 1-bit Valid flag to indicate whether the KV is deleted,
and a 31-bit log sequence number (LSN) to record the written order
of records for crash consistency. For PM consistency and cache
locality, all records are designed to be easily aligned to the size of
64 bytes. To save PM space, when there are log records smaller
than 32 bytes, multiple consecutive small records are allowed to be
packed into one cacheline.

Volatile range index. Although many hybrid PM-DRAM in-
dexes [8, 35, 41] store leaf nodes in PM to keep persistency without
logging, their performances are still low because of the small ran-
dom PM accesses induced. So, FastStore uses a fast DRAM-only
range index, leaving the responsibility of persistence to the IO-
friendly logging mechanism. Because the latency of current PM
is an order of magnitude higher than that of DRAM, the DRAM-
only index is unlikely to become a performance bottleneck of Fast-
Store. Therefore, FastStore can in principle use all kinds of existing
volatile range indexes. However, for performance purposes, the
index must meet requirements for high concurrency and range
query performance. For concurrency, indexing with fine-grained
locks or optimistic concurrency control are used to avoid sudden
performance degradation due to thread contention. Range query
performance is important not only for standard scan operations,
but also for the fact that FluidKV requires range scans of the whole
index when flushing FastStore data to BufferStore (§4.4 and §5.4).

Valid

0 bit 1

LSN
key
size

32

value
size

48 64

key value

128

padding

256 bits

Valid

0 bit 1

LSN
key
size

32

value
size

48 64

variable key and value padding
Aligned to 512

bits (64 Bytes)

Cacheline 0

32-Byte
entry

32-Byte
entry

Cacheline 1 Cacheline 2

Variable-sized entry

KV-grained range index

orkey value

0 bit 64

Valid LSN LogPtr

0 bit 65 88 128 bits128

key

64

DRAM

PM

Per-thread log …

Figure 8: Data structures of the volatile index and thread-
exclusive log in FastStore.

1

1 2 3 4

5 9 9

5 6 7 8 9 10 11 11

Range index
1~11 12~20 21~32DRAM

PM

Indexblock 1

Datablock 1 Datablock 2 Datablock 3

Logical Sorted Table Manifest

{indexblock_ptr;
max_key;
min_key;
seq_no; …}

v v v v v v v v v v v v

Figure 9: Data structures in StableStore.

Thread-exclusive logging. As mentioned in §2.2.2, the root
cause of poor write parallelism of LSM-tree is the contention among
multiple user threads for the same shared log endings. To im-
prove the concurrency of log writes for GO1, we propose a thread-
exclusive logging mechanism. Instead of sharing a single log, Fast-
Store allocates an exclusive per-thread log for each user thread to
mitigate I/O contention. This enables FastStore to fully utilize the
I/O parallelism of PM.

Coarse-grained allocator. FluidKV employs a coarse-grained
PM allocator to allocate/recycle log space for each write thread.
The allocator partitions the PM space into fixed-sized chunks (e.g.,
4 MB) and maintains the allocation states of the chunks with a
persistent bitmap. When a thread writes new data to the PM, the
allocator exclusively assigns a free PM chunk to the corresponding
thread, thus avoiding write contention between multiple threads.
This mechanism facilitates not only the parallel logging in FastStore,
but also the PM-block writing in BufferStore and StableStore.

4.3 StableStore: Memory-Efficient Indexing
StableStore is designed to achieve a competitive read performance at
a lowmemory footprint. StableStore is designed as a PM+DRAM hy-
brid structure, consisting of a volatile B+-tree and persistent sorted
blocks, to index the largest portion of KVs in FluidKV. The small-
scale upper-level B+-tree provides sufficient parallelism and the
large-scale sorted blocks effectively reduce the memory footprint
of upper-level indexes with data locality. Meanwhile, StableStore
adjusts the size of persistent blocks based on I/O affinity to further
optimize read performance.

Logical Sorted Table. As shown in Figure 9, the volatile B+-tree
builds indexes for persistent objects named Logical Sorted Tables

1381

Table 1: Read latency (us) of PM with different I/O sizes.

I/O size 64B 128B 256B 512B 1024B 2048B 4096B
4 PMs 0.687 0.727 0.731 0.768 0.932 1.292 1.598
6 PMs 0.655 0.688 0.695 0.741 0.897 1.256 1.529

(LST). Each LST consists of an index block and the multiple data
blocks it indexes. Each data block stores a set of sorted KVs, and the
key and value of an index entry in the index block are the minimum
key of its indexed data blocks and the address of the data block,
respectively. When key-value separation is enabled, the value for
a key in the data block is a pointer to the corresponding PM-log
record. Empty entries at the end of an index block are filled with
the last valid entry in the block to facilitate binary search (the same
goes for a data block). The maximal number of KVs stored in each
LST is the product of the number of entries in an index block and
the number of entries in a data block. For example, if we use 512-
byte-sized blocks, i.e., one block stores 32 entries (8+8 bytes). Then
the DRAM consumption of StableStore’s volatile indexes is reduced
to 1/1024 that of a KV-grained index like FastStore.

I/O friendly PM block. As mentioned in §2.2.1, while most
persistent indexes leverage the byte-addressability of PM to perform
fine-grained (e.g., 8-byte pointer) accesses, StableStore chooses 512
bytes as the size of both index and data blocks because of the I/O
affinity of PM. As shown in Table 1, the random access latency of
PM remains roughly the same in the I/O size range of 64B to 512B,
and then rises significantly with increasing I/O size, due to the 256-
byte XPBuffer inside the PM [23, 50]. Therefore, when querying
the index of StableStore, at most two PM accesses with minimum
read latency are required in the critical path.

In addition to the stable read latency and low memory footprint,
the hybrid structure of StableStore also simplifies crash recovery.
Rather than rebuilding a huge KV-grained index, StableStore only
needs to recover the volatile B+-tree with LST metadata persisted
in Manifest (detailed in §5.5), while the LSTs are persistently stored
on the PM and do not need to be recovered.

4.4 BufferStore: Dynamic Data Migration
BufferStore between FastStore and StableStore is responsible for
seamlessly fast migrating the KV data from memory-intensive
FastStore into memory-efficient StableStore, enabling FluidKV to
achieve the advantages of high concurrent write, stable read latency,
and low memory footprint simultaneously.

In BufferStore, key-value data are indexed by multiple buffer-
trees structurally identical to StableStore. When FastStore reaches
its capacity (determined by memory constraints), the volatile index
will be converted into a buffer-tree to quickly release memory
resources by the flush operation. Then one or more buffer-trees
are sorted and merged into StableStore when the number of buffer-
trees reaches a certain threshold, through the compaction operation,
which is a time-consuming process. The detailed workflows of flush
and compaction are described in §5.4. The flush and compaction
operations are performed concurrently and do not block the front-
end processing of user requests, fully leveraging the parallelism
of multi-core CPUs and ultra-fast storage to accelerate the data
flowing from FastStore to StableStore.

index
flush compaction index

LSTs LSTs
index

Lo
g

Lo
g

Lo
g

Lo
g

FastStore BufferStore StableStore

Write-intensive

mode (RA:2~6)

Read-intensive

mode (RA:2)

index

LSTs

buffer-tree threshold:4

buffer-tree threshold:1

… index

LSTs

switch based on workloads

index

Lo
g

Lo
g

Lo
g

Lo
g

Read-only

mode (RA:1)

index

LSTsbuffer-tree threshold:1Aggressive flush

Figure 10: Load-awareness by adjusting the threshold for the
number of buffer-trees. RA denotes read amplification.

Dynamic load-awareness. Rather than maintaining KV data
distributed across multiple levels with exponentially increasing
data capacity like LSM-tree, which helps reduce write amplification
[GO3], BufferStore adopts a different data migration strategy at
runtime, adapting to the workload dynamics. FluidKV calculates the
read/write ratio (R:W) of the workload by profiling requests from
user threads. As shown in Figure 10, under read-intensive work-
loads (e.g., R:W > 1), FluidKV triggers flush and compaction more
aggressively to reduce the number of indexes and thus alleviate read
amplification. Any buffer-tree in BufferStore will be opportunis-
tically merged into StableStore via compaction (i.e., threshold=1).
Moreover, under read-only workloads, FluidKV even ignores the
threshold on the FastStore capacity to trigger flush for merging
FastStore data to the later stages. On the contrary, under write-
intensive workloads, FluidKV temporarily tolerates more buffer-
trees in BufferStore to improve write performance, and triggers
compaction when the number of buffer-trees reaches a high thresh-
old (e.g., 4). This is because the write amplification of compaction
is determined by the capacity ratio of BufferStore and StableStore.
Therefore, enlarging the BufferStore capacity reduces write am-
plification at the cost of read amplification. In summary, FluidKV
dynamically balances read and write performances by adjusting
the relative spaces and processing capacities of its three stages.

5 IMPLEMENTATION
In this section, we provide the prototype implementation details of
key operations in FluidKV. We implemented a FluidKV prototype
with over 5,000 lines of original code and employed libraries such
as Masstree and RocksDB thread pool.

5.1 Volatile Index
In the FluidKV prototype, we implement the volatile indexes of
FastStore, BufferStore, and StableStore based on Masstree [38], a
volatile B+-tree variant2. Our reasons for choosing Masstree are as
follows. First, B+-tree is optimized for the scan operation, which
facilitates iterating through all KVs of FastStore during flush op-
erations. Second, Masstree offers a high level of concurrency and
performance. Furthermore, the Masstree code is easy to modify, and
its slab-based memory allocator helps us further control the DRAM
usage. We reimplement the memory recycling mechanism in the
destructor of Masstree to fast recycle all of its memory footprint
2Masstree is a trie where each node is a B+-tree, inheriting the advantages of both
B+-tree and trie. In this paper, we consider it to be a B+-tree because with 8-byte keys
it degrades to only one trie node, i.e., a B+-tree

1382

Algorithm 1 Put operation (KV-separation is enabled).
1: function Put(𝑘, 𝑣)
2: 𝑙𝑠𝑛 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 [ℎ𝑎𝑠ℎ (𝑘) mod 256] + + ⊲ Get LSN
3: 𝑙𝑜𝑔_𝑝𝑡𝑟 ←𝑊𝑟𝑖𝑡𝑒𝐿𝑜𝑔𝑅𝑒𝑐𝑜𝑟𝑑 (𝑘, 𝑣, 𝑙𝑠𝑛)
4: 𝑖𝑛𝑑𝑒𝑥 .𝑃𝑢𝑡𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑘, 𝑙𝑠𝑛, 𝑙𝑜𝑔_𝑝𝑡𝑟)
5: return
6: functionMasstree::PutValidate(k,lsn,log_ptr)
7: 𝑝 ← 𝑡𝑟𝑒𝑒.𝐹𝑖𝑛𝑑𝐴𝑛𝑑𝐿𝑜𝑐𝑘 (𝑘) ⊲ Find the position for the inserted key and

lock the node
8: if the target key already exists then
9: 𝑣𝑎𝑙𝑢𝑒 ← 𝑝.𝑣𝑎𝑙𝑢𝑒

10: if 𝑣𝑎𝑙𝑢𝑒.𝐿𝑆𝑁 > 𝑙𝑠𝑛 then
11: 𝑈𝑛𝑙𝑜𝑐𝑘 ()
12: return
13: 𝑝.𝑣𝑎𝑙𝑢𝑒 ← {𝑉𝑎𝑙𝑖𝑑 : 1, 𝐿𝑆𝑁 : 𝑙𝑠𝑛, 𝐿𝑜𝑔𝑃𝑡𝑟 : 𝑙𝑜𝑔_𝑝𝑡𝑟 }
14: 𝑈𝑛𝑙𝑜𝑐𝑘 ()
15: return

in batch, since FluidKV deletes the entire index frequently during
flush and compaction. Also, we add a validation mechanism for
consistency (see §5.2).

We also evaluated Bwtree [34], a lock-free B+-tree, and HOT
[4], a concurrent trie, but did not use them. Bwtree underperforms
Masstree in both read and write [51]. HOT achieves better read
performance but slightly worse write and scan performance than
Masstree. However, since it does not recycle memory during delete
operations, it is not efficient for StableStorewhich frequently deletes
the index entries due to compactions.

5.2 Write
Put operation. The Put operation is shown in Algorithm 1. First,
an LSN is generated by a global incremental counter (line 2) to
distinguish the global order of log records in multiple per-thread
logs during crash recovery. Since sharing a single global counter
causes significant synchronization overheads of concurrent user
threads, each Put request uses one of multiple (e.g., 256) separate
counters by hashing its key. Therefore, the order of the log records
for the same key can still be distinguished by the LSNs. Second,
FluidKV builds a log record with the key-value pair and LSN and
persists it into the per-thread log (line 3). Finally, the volatile index
is updated using the log record address and the LSN as value (line
4).

Because log writing and index updating are not locked, multi-
threaded updates for the same key may cause the value in the index
to be inconsistent with the latest log. To solve this problem with-
out adding an inefficient coarse-grained lock, we add a validation
mechanism in the write operation of Masstree. The writing process
of Masstree involves first searching the target node that needs to
be updated, then locking that node (line 7) and updating it (line 13),
and finally unlocking it (line 14). When Masstree finds the target
key in the first step, the proposed validation will read the value
of the target key to get its LSN and compare it with the LSN of
the record to be written. If the value is newer, the node will not be
updated and will be returned (lines 8~12). This validation works for
most concurrent indexes because of their similar update processes
and induces no overhead when the target key does not exist in
the index. Accordingly, FastStore ensures the consistency between
volatile index and persistent logs while guaranteeing linearizability
under high concurrency.

Algorithm 2 Get operation (KV-separation is enabled).
1: function Get(key)
2: ⊲ Get from active and immutable FastStores ⊳

3: for all𝑚𝑒𝑚_𝑖𝑛𝑑𝑒𝑥 from 𝐹𝑎𝑠𝑡𝑆𝑡𝑜𝑟𝑒𝑠 do
4: 𝑣𝑎𝑙𝑢𝑒 ←𝑚𝑒𝑚_𝑖𝑛𝑑𝑒𝑥 .𝐺𝑒𝑡 (𝑘𝑒𝑦)
5: if 𝑣𝑎𝑙𝑢𝑒 ≠ 𝑁𝑈𝐿𝐿 then
6: if 𝑣𝑎𝑙𝑢𝑒.𝑖𝑛𝑣𝑎𝑙𝑖𝑑 () then
7: return NOT_FOUND
8: return 𝑅𝑒𝑎𝑑𝐿𝑜𝑔𝐹𝑜𝑟𝑉𝑎𝑙𝑢𝑒 (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒.𝑙𝑜𝑔_𝑝𝑡𝑟) ;
9: ⊲ Get from trees in BufferStore ⊳

10: for all𝑚𝑒𝑚_𝑖𝑛𝑑𝑒𝑥 ∈ 𝑡𝑟𝑒𝑒𝑠 from 𝐵𝑢𝑓 𝑓 𝑒𝑟𝑆𝑡𝑜𝑟𝑒 do
11: 𝐿𝑆𝑇 _𝑖𝑑 ←𝑚𝑒𝑚_𝑖𝑛𝑑𝑒𝑥.𝑠𝑐𝑎𝑛 (𝑘𝑒𝑦, 1) ⊲ ’1’ is the scan size
12: 𝐾𝑉 ← 𝑆𝑒𝑎𝑟𝑐ℎ𝐾𝑉𝐹𝑟𝑜𝑚𝐿𝑆𝑇 (𝑘𝑒𝑦, 𝐿𝑆𝑇 _𝑖𝑑)
13: if 𝐾𝑉 ≠ 𝑁𝑈𝐿𝐿 then
14: return 𝑅𝑒𝑎𝑑𝐿𝑜𝑔𝐹𝑜𝑟𝑉𝑎𝑙𝑢𝑒 (𝑘𝑒𝑦,𝐾𝑉 .𝑣𝑎𝑙𝑢𝑒)
15: ⊲ Get from StableStore ⊳

16: 𝐿𝑆𝑇 _𝑖𝑑 ← 𝑆𝑡𝑎𝑏𝑙𝑒𝑆𝑡𝑜𝑟𝑒.𝑚𝑒𝑚_𝑖𝑛𝑑𝑒𝑥.𝑠𝑐𝑎𝑛 (𝑘𝑒𝑦, 1)
17: if 𝐾𝑉 ≠ 𝑁𝑈𝐿𝐿 then
18: return 𝑅𝑒𝑎𝑑𝐿𝑜𝑔𝐹𝑜𝑟𝑉𝑎𝑙𝑢𝑒 (𝑘𝑒𝑦,𝐾𝑉 .𝑣𝑎𝑙𝑢𝑒)
19: return NOT_FOUND

5.3 Read
Get operation. In a get operation (as shown in Algorithm 2), the
user threadmay access the active FastStore, the immutable FastStore
that is being flushed, buffer-trees in BufferStore (from newest to
oldest), and StableStore in order. In FastStore, the existence of the
target key can be determined only by the index. In buffer-trees or
StableStore, FluidKV first scans the in-memory index for an LST
and then checks if the target key is in the LST. Only when the
target key is found at a certain stage can the search be finished.
At this point, if the found key is valid, FluidKV reads the address
of its corresponding value to return the value data; if it is invalid,
FluidKV notifies that the key does not exist.

Scan operation. The Scan operation of FluidKV is implemented
in a similar way to compaction, i.e., iterating the minimum element
on all stages in the target key-range with a priority queue. In the
current implementation, we use LSN and seq_no(introduced in
§5.5) as a timestamp to build a consistent snapshot for a scan. The
obsolete index deleting steps of flush and compaction are postponed
to keep the snapshots that are being scanned.

5.4 Flush and Compaction
The workflows of Flush and Compaction are shown in Algorithm 3
and performed with a dedicated background thread respectively.
Both of them only read the read-only structures (e.g., immutable
index and LSTs) from the previous stage and update the next stage,
thus ensuring consistency and correctness.

Flush. To avoid contention between flush and front-end writes,
FluidKV allows two FastStores simultaneously during a flush oper-
ation (immutable Flatstore for flush and active Flatstore for writes).
FluidKV first creates a new active FastStore structure including
volatile index and thread-exclusive logs for the subsequent writes
(line 2~4). The background Flush thread switches FastStore by mod-
ifying a global atomic semaphore which indicates the active Fast-
Store. The user threads check the semaphore before each write to
get the index and PM logs to write. After waiting for a timeout (e.g.,
100ms), the Flush thread scans the index of the immutable FastStore
for all of its KV data to generate LSTs and builds a new correspond-
ing buffer-tree. Finally, when the buffer-tree is ready and can be
read by user threads, FluidKV deletes the index of the old FastStore

1383

Algorithm 3 Flush and compaction operations
1: function Flush
2: 𝑛𝑒𝑤_𝑖𝑛𝑑𝑒𝑥 ← new range index (e.g., Masstree)
3: 𝑜𝑙𝑑_𝑖𝑛𝑑𝑒𝑥 ← 𝐹𝑎𝑠𝑡𝑆𝑡𝑜𝑟𝑒.𝑚𝑒𝑚_𝑖𝑛𝑑𝑒𝑥
4: 𝐹𝑎𝑠𝑡𝑆𝑡𝑜𝑟𝑒.𝑚𝑒𝑚_𝑖𝑛𝑑𝑒𝑥 ← 𝑛𝑒𝑤_𝑖𝑛𝑑𝑒𝑥
5: 𝑊𝑎𝑖𝑡 () ⊲ Wait for user threads to finish operations on the old index
6: ⊲ Covert FastStore index into LSTs ⊳

7: 𝑇𝑟𝑒𝑒 ← new range index (e.g., Masstree)
8: for all 𝑘, 𝑣 ∈ 𝑜𝑙𝑑_𝑖𝑛𝑑𝑒𝑥 do ⊲ Build volatile index
9: 𝐿𝑆𝑇𝐵𝑢𝑖𝑙𝑑𝑒𝑟 .𝐴𝑑𝑑𝐸𝑛𝑡𝑟𝑦 (𝑘, 𝑣)
10: if new LST is generated then
11: 𝐿𝑆𝑇𝑀𝑒𝑡𝑎 ← 𝐿𝑆𝑇𝐵𝑢𝑖𝑙𝑑𝑒𝑟 .𝐺𝑒𝑡𝐿𝑆𝑇 ()
12: persist 𝐿𝑆𝑇𝑀𝑒𝑡𝑎 in𝑀𝑎𝑛𝑖 𝑓 𝑒𝑠𝑡
13: 𝑇𝑟𝑒𝑒.𝑃𝑢𝑡 (𝐿𝑆𝑇 .𝑚𝑖𝑛_𝑘𝑒𝑦, 𝐿𝑆𝑇 _𝑀𝑒𝑡𝑎)
14: Add𝑇𝑟𝑒𝑒 into BufferStore
15: Delete 𝑜𝑙𝑑_𝑖𝑛𝑑𝑒𝑥
16: return
17: function Compaction
18: ⊲ Pick compaction ⊳

19: for all 𝑡𝑟𝑒𝑒𝑛 ∈ 𝐵𝑢𝑓 𝑓 𝑒𝑟𝑆𝑡𝑜𝑟𝑒 do
20: for all 𝐿𝑆𝑇𝑀𝑒𝑡𝑎 ∈ 𝑡𝑟𝑒𝑒𝑛 do
21: 𝑖𝑛𝑝𝑢𝑡𝑠 [𝑛] .𝑎𝑑𝑑 (𝐿𝑆𝑇𝑀𝑒𝑡𝑎)
22: 𝑖𝑛𝑝𝑢𝑡𝑠 [𝑡𝑟𝑒𝑒_𝑛𝑢𝑚 + 1] ← all 𝐿𝑆𝑇𝑀𝑒𝑡𝑎 of overlapped LSTs in StableStore
23: ⊲ Run compaction ⊳

24: Merge-sort the KVs from 𝑖𝑛𝑝𝑢𝑡𝑠 to generate new LSTs in parallel.
25: 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ← all 𝐿𝑆𝑇𝑀𝑒𝑡𝑎 of new LSTs
26: ⊲ Clean compaction ⊳

27: for all 𝐿𝑆𝑇𝑀𝑒𝑡𝑎 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡 do
28: Persist 𝐿𝑆𝑇𝑀𝑒𝑡𝑎 in𝑀𝑎𝑛𝑖𝑓 𝑒𝑠𝑡
29: 𝑆𝑡𝑎𝑏𝑙𝑒𝑆𝑡𝑜𝑟𝑒.𝑚𝑒𝑚_𝑖𝑛𝑑𝑒𝑥 .𝑝𝑢𝑡 (𝐿𝑆𝑇𝑀𝑒𝑡𝑎.𝑓 𝑖𝑟𝑠𝑡𝑘𝑒𝑦, 𝐿𝑆𝑇𝑀𝑒𝑡𝑎)
30: for all 𝐿𝑆𝑇𝑀𝑒𝑡𝑎 ∈ 𝑖𝑛𝑝𝑢𝑡𝑠.𝑏𝑎𝑐𝑘 () do
31: Delete 𝐿𝑆𝑇𝑀𝑒𝑡𝑎 from 𝑆𝑡𝑎𝑏𝑙𝑒𝑆𝑡𝑜𝑟𝑒.𝑚𝑒𝑚_𝑖𝑛𝑑𝑒𝑥
32: Free the PM space of index block and data blocks with 𝐿𝑆𝑇𝑀𝑒𝑡𝑎
33: Delete obsolete index trees and LSTs from BufferStore
34: return

to free its occupied memory space. With the key-value separation
enabled, the PM-logs will remain to store variable-length values.

Compaction. A Compaction operation consists of three con-
secutive steps, i.e., pick compaction, run compaction, and clean
compaction.

In the pick compaction step (line 19~22), FluidKV first scans all
buffer-trees to read the metadata of their associated LSTs and then
scans the StableStore index to determine LSTs that have overlapped
key ranges with BufferStore’s LSTs.

Then in the run compaction step (line 24~25), FluidKV merge-
sorts all input LSTs into new LSTs and builds the corresponding
metadata. Specifically, in our implementation, we use a priority
queue as a min-heap to perform this merge-sort. It is worth men-
tioning that when FluidKV finds LSTs not overlapped with other
input LSTs in the merge-sorting step, the LSTs need not be changed
and are inserted into StableStore to reduce write amplification [49].
Since the efficiency of compaction will be lower than flush when
StableStore becomes larger, we employ a parallel compaction mech-
anism to fully leverage PM bandwidth and CPU cores to accelerate
compactions. FluidKV partitions the input LSTs based on the key
range and assigns a thread to each partition to perform merge-sorts
in parallel. In our prototype, the default number of partitions is 8.

Finally, the clean compaction step (line 27~33) first inserts output
LSTs into the StableStore index after persisting them in Manifest,
then deletes the obsolete LST data and metadata from StabeStore,
and finally deletes BufferStore and frees its DRAM/PM space. Be-
cause we use a concurrent B+-tree (e.g., Masstree) as the StableStore
index, the index update process also does not require locking.

5.5 Crash Recovery and Consistency
As mentioned in §4.2 and 5.2, the volatile index of FastStore can be
recovered with thread-exclusive logs. Because each log record has
a globally unique LSN, FluidKV first merges all the logs in the LSN
order and then replays them during the recovery. For the crash re-
covery of volatile indexes in the last two stages, FluidKV stores the
metadata of LSTs in a separate PM space called Manifest (LST meta-
data of BufferStore and StableStore are stored separately). Therefore,
the corresponding volatile tree indexes are reconstructed according
to the metadata in Manifest. As shown in Figure 9, the metadata of
an LST contains the following main fields: indexblock_ptr points
to the index block; min_key and max_key indicate the key range;
seq_no is a self-incrementing version number which is used to im-
plement a basic Multi-Version Concurrency Control (MVCC) for
crash consistency. Specifically, in BufferStore, LSTs of the same
buffer-tree share the same seq_no. FluidKV persists the valid seq_no
ranges in the manifest (updated after each flush and compaction).
During crash recovery, the outdated or overrun LSTs can be cleaned
up based on the seq_no.

During a flush, all associated per-thread logs need to be deleted
atomically for otherwise it will cause inconsistencies during crashes
(only appear when KV separation is disabled). To solve this problem,
FluidKV records the addresses of associated log chunks on PM
before log recycling and clears them at the end of flush. During
recovery, the PM chunks need to be recycled again based on the
persisted addresses.

Although flush or compaction needs to change a lot of meta-
data of LSTs, any temporary intermediate state can only inroduce
redundant data in two stages without the risk of missing data,
because the operations always write new data before deleting obso-
lete data. Thus, read operations can be efficiently concurrent with
background operations while ensuring consistency.

6 EVALUATION
6.1 Experiment Setup
Test platform. All experiments are conducted on a Linux 5.1.0
machine with an Intel Xeon Gold 5218 CPU (32 cores, 2.3GHz) and
64GB DDR4 memory. The experiments are performed on 6×128GB
Intel Optane DC PM 100s configured in AppDirect Mode. We use
our modified version of PiBench [33] to test and statistically mea-
sure the performance of various KVSs. PiBench is a benchmarking
framework that targets PM-based indexes and has been widely used
in prior studies [17–19]. We extended it to support more KVSs.

Baselines.We compared FluidKV against state-of-the-art PM-
aware KVSs including Fast&Fair B+-tree (FFTree) [20], PacTree [31],
NBTree [63], LB+-Tree [35], DPTree [65] and ListDB [30]. Since the
baselines. with the exception of ListDB, are only indexes rather than
full-feature KVSs (only support 8+8 byte items), we integrate the
indexes with Flatstore[9] to support full KVS functionalities such
as variable-length values and recovery by storing variable-sized
values in PM-logs. Flatstore enhances the overall performance with
parallel PM-logs and I/O batching mechanisms so that it does not
become a bottleneck in the KVSs. For reference, we also evaluate
Flatstore withMasstree [38], serving as a performance upper bound
of PM-aware KVS by using a DRAM-only index instead of a per-
sistent index. FFTree, NBTree, and LB+-tree are persistent B+-Tree

1384

25 50 100 200 400 800 1600 3200 6400
Number of KVs (×106)

0

5

10

15

20

Th
ro
ug

hp
ut

(M
O
PS

)

FluidKV FFTree ListDB PacTree

1
(a) Write performance

25 50 100 200 400 800 1600 3200 6400
Number of KVs (×106)

0

5

10

15

20

Th
ro
ug
hp
ut
(M

O
PS

)

NBTree LBTree DPTree Masstree

1
(b) Read performance

25 50 100 200 400 800 1600 3200 6400
Number of KVs (×106)

0

20

40

60

M
em

.u
sa
ge

(G
B)

Available DRAM
Swap

1
(c) DRAM consumption

25 50 100 200 400 800 1600 3200 6400
Number of KVs (×106)

0

200

400
PM

us
ag
e
(G
B)

1
(d) PM consumption

Figure 11: KVS performance with varying dataset sizes.

variants. PacTree is based on a persistent radix tree and B+-tree-like
linked leaf nodes. DPTree and ListDB are both based on multi-stage
indexes. DPTree uses volatile B+-trees as the index of the first two
stages and a volatile trie with persistent leaf nodes as the last stage
index. ListDB is composed of persistent skiplists in each stage.

Workloads and FluidKV configurations. To focus on the
indexingmechanism rather than logging, all workloads use 8+8 byte
KV size unless mentioned otherwise. To be fair with the baselines
that use Flatstore, FluidKV enables key-value separation so that all
requests also need to read/write the PM log. By default, the capacity
of FastStore is of 40M records and the threshold for the number of
buffer-trees to trigger compaction is 4, but it can be adjusted to 1
dynamically under read-heavy workloads.

6.2 Micro-Benchmarks
6.2.1 Data Volume Scalability. To verify that FluidKV achieves our
three performance goals as mentioned in § 3, we perform 10M read
and write operations with 24 parallel user threads after loading
different sizes of datasets. We measure the request throughputs and
DRAM/PM consumptions to evaluate the performance of different
KVSs in terms of write, read, and memory efficiency.

Write. As shown in Figure 11a, FluidKV exhibits a consistently
high write performance under various data volumes, just slightly
lower than the ideal DRAM-only Masstree at small/middle-scale
datasets. For large-scale datasets, FluidKV outperforms all KVSs,
30% higher than the second highest, LBTree. This is because Fast-
Store can quickly persist KVs and the asynchronous compaction
and flush operations do not affect front-end writes. Whereas, the
single-stage indexing KVSs suffer from significant performance
degradation as the size of the index increases. The performance of
Masstree and NBTree drops sharply when the data volume exceeds
800M and 3200M respectively, because they use up all the DRAM
and start using swap space.

Read. Figure 11b shows that FluidKV’s read performance is still
competitive with other single-stage indexing KVSs. ListDB and
PacTree have particularly significant performance degradation at
large data volumes. In multi-stage indexing KVSs, ListDB performs
worst due to read amplification and low parallelism of skiplists,

1 4 8 16 24 32
Thread Count

0

5

10

15

20

25

Th
ro
ug

hp
ut

(M
O
PS

)

FluidKV FFTree ListDB PacTree

1
(a) Random write

1 4 8 16 24 32
Thread Count

0

5

10

15

20

Th
ro
ug
hp
ut
(M

O
PS

)

NBTree LBTree DPTree Masstree

1
(b) Random read

Figure 12: Write/read throughput scalability (200M dataset).

while DPTree performs slightly better than FluidKV by up to 20%.
This is because DPTree tends to buffer KVs in the first few stages,
making full use of the DRAM-only indexes, rather than merging
data into the persistent last stage proactively as FluidKV. Therefore,
its read performance is close to that of Masstree under small-scale
datasets but its write performance is only 25% of FluidKV due to
the write stalls during migrations.

DRAM consumptions. Figure 11c illustrates that Masstree,
ListDB, NBTree, and DPTree have much larger memory footprints
than other baselines and finally run out of DRAM when data vol-
ume increases. The reasons for their huge DRAM consumption
are different. Masstree and DPTree use large DRAM to store the
KV-grained index. NBTree stores inner nodes and metadata of leaf
nodes on DRAM. ListDB uses a lazy memory recycling technique
that cannot release memory immediately after a flush. The DRAM
consumptions of the remaining KVSs are acceptable, among which
FluidKV is the second lowest, less than 10% of the data volume.
LBTree and FFTree as hybrid indexes have a DRAM footprint of
about 15% of the data volume, while PacTree as a PM-only index
utilizes almost no memory.

PM consumptions. As shown in Figure 11d, FluidKV and most
baselines have similar PM consumptions, about 2-3× of the data
amount. This is because both the PM-logs and the persistent index
contain all the KV records (key-value in log and key-pointer in
index) and several additional fields such as record lengths. Masstree
without persistent index cuts PM consumptions in half compared
to other KVSs. NBTree consumes 30% more PM space with large
data volumes possibly due to its inefficient PM-space recycling.

6.2.2 Parallel Scalability. To compare the performance scalability
of FluidKV with the baselines with sufficient DRAM, we perform
200M random writes and reads on the KVSs respectively with a
varying number of user threads.

As shown in Figure 12a, FluidKV achieves the best write scalabil-
ity among the KVSs using persistent indexes. With 32 threads, the
write throughput of FluidKV is 1.2×~9× that of the baselines. This
manifests that FluidKV’s FastStore absorbs write-intensive work-
loads with highly parallelized index and thread-exclusive logging.

Figure 12b shows that the read throughput of FluidKV is similar
to most single-stage KVSs and up to 3.9× higher than multi-stage
ListDB. Although the multi-stage design causes more overhead
querying multiple stages, FluidKV can dynamically reduce the num-
ber of stages in FastStore and BufferStore by performing aggressive
flush and compaction under read-intensive workloads. Overall, Flu-
idKV’s read performance, while 10% lower thanNBTree andDPTree,

1385

1 4 8 16 24 32
Thread count

0
5

10
15
20

Th
ro
ug

hp
ut
s
(M

O
PS

) FluidKV FFTree

1(a) YCSB Load
(100% write, uniform)

1 4 8 16 24 32
Thread count

0

5

10

15

20

Th
ro
ug

hp
ut
s
(M

O
PS

) ListDB PacTree

1(b) YCSB A (50% write,
50% read, Zipfian)

1 4 8 16 24 32
Thread count

0
5

10
15
20
25

Th
ro
ug

hp
ut
s
(M

O
PS

) NBTree LBTree

1(c) YCSB B (5% write,
95% read, Zipfian)

1 4 8 16 24 32
Thread count

0
5

10
15
20
25

Th
ro
ug

hp
ut
s
(M

O
PS

) DPTree Masstree

1(d) YCSB C
(100% read, Zipfian)

1 4 8 16 24 32
Thread count

0

5

10

15

20

Th
ro
ug

hp
ut
s
(M

O
PS

)

1(e) YCSB D (5% write,
95% read, latest)

1 4 8 16 24 32
Thread count

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro
ug

hp
ut
s
(M

O
PS

)

1(f) YCSB E (5% write,
95% scan, Zipfian)

Figure 13: Performance under YCSB workloads. The proportion and distribution of the workloads are shown in parentheses.
The skewness factor of the Zipfian distribution is 0.99.

1 4 8 16 24 32
Thread count

0

5

10

15

20

Th
ro
ug

hp
ut
s
(M

O
PS

) FluidKV FFTree ListDB PacTree

1(a) Cluster 27 (15% write, 85% read)

1 4 8 16 24 32
Thread count

0

5

10

15

20

Th
ro
ug
hp
ut
s
(M

O
PS

) NBTree LBTree DPTree Masstree

1(b) Cluster 31 (94% write, 6% read)

Figure 14: Performance under Twitter cluster workloads.

is 1.9× and 3.8× higher than their write performance, respectively,
demonstrating a good trade-off between read and write.

6.3 Macro-Benchmarks
We evaluate the performance of each KVS under synthetic work-
loads generated by YCSB as shown in Figure 13. In each group of
experiments, we load 200M KVs and perform 10M operations.

Underwrite-intensive workloads (Load and A), as illustrated
in Figure 13a and 13b, FluidKV outperforms all baselines in through-
put significantly, 1.3x~9.5x under Load and 1.1x~6.6x under A with
32 threads. This shows that highly concurrent indexing and paral-
lelized logging in FluidKV’s FastStore are highly capable of handling
write requests.

Under read-intensive workloads (B and C), as shown in Fig-
ure 13c and 13d, FluidKV, as a multi-stage indexing KVS, demon-
strates comparable performance (0.8~2.2×) to the single-stage base-
lines and superior performance (up to 8×) over the multi-stage
ListDB, because of the read-optimized design of StableStore and the
dynamic load balancing mechanism to reduce the indexes across
its stages under read workloads.

Under hot-data search workload D, as shown in Figure 13e,
multi-stage FluidKV, DPTree, and ListDB can keep the latest-written
hot data in the top-most stage with KV-grained index, thus obtain-
ing performance as good as the single-stage designs. Among the
multi-stage KVSs, the performance of FluidKV, using the faster
Masstree index in FastStore, is significantly higher than that of
ListDB with limited parallelism. By caching more latest data in
DRAM at the expense of write performance, DPTree achieves
12% higher read performance than FluidKV and even outperforms
Masstree which indexes all data with a DRAM-only index.

Under scanworkload E., Figure 13f shows the scan performance
of FluidKV and the baselines except for ListDB and NBTree without
support for scan operation. Note that Masstree does not represent
the ideal performance under workload E since its scan implemen-
tation is suboptimal. Because of the multi-stage designs, FluidKV
needs to search on all stages to perform a scan operation, so its

0 100 200 300 400 500 600 700 800
Number of KVs (×106)

0
10
20
30
40
50
60

C
om

pa
ct
io
n

th
ro
ug
hp
ut
(M
O
PS

)

User write
(ideal)

(a) FastStore size=10M

No BufferStore BufferStore size=40M BufferStore size=80M BufferStore size=160M

0 100 200 300 400 500 600 700 800
Number of KVs (×106)

0
10
20
30
40
50
60

C
om

pa
ct
io
n

th
ro
ug
hp
ut
(M
O
PS

)

User write
(ideal)

(b) FastStore size=20M

0 100 200 300 400 500 600 700 800
Number of KVs (×106)

0
10
20
30
40
50
60

C
om

pa
ct
io
n

th
ro
ug
hp
ut
(M
O
PS

)

User write
(ideal)

(c) FastStore size=40M
1

Figure 15: Compaction efficiency with different FastStore and
BufferStore configurations.

performance is lower than that of single-stage FFTree. However,
FluidKV’s scan performance is still acceptable and scalable.

We also measure the throughput on two realisticTwitter cluster
workloads[58] with different read-write ratios. As Figure 14 shows,
with 32 threads, FluidKV outperforms the baselines by 1.1×~7× and
1.05×~12× for the read-heavy and write-heavy workloads, respec-
tively. These results are largely consistent with the YCSB results.

6.4 Recovery
We evaluate the recovery time of FluidKV after loading 20M and
200M KVs with a single thread respectively. It takes 1.5 and 1.8
seconds, respectively, to scan the persistent logs and Manifest data,
and rebuild the volatile indexes in the three stages. More than 80%
of the recovery time comes from FastStore due to the KV-grained
volatile index. Because FastStore has a typically low capacity limit,
the recovery time of FluidKV is less affected by the amount of data.
For reference, ListDB takes 1.8 seconds to recover 200M KVs, while
PacTree’s recovery time is less than 0.5 seconds because it is a
PM-only index.

6.5 Sensitivity Study
6.5.1 FluidKV trade-offs. FluidKV ensures read/write/DRAM ef-
ficiency simultaneously with multi-stage indexing and fast data
migration. While trade-offs among these three dimensions remain,
they have shifted from user requests to background flush and com-
paction operations. When the background merging (write) is slower
than the user writes, theDRAM footprint continuously increases be-
cause of the increase in FastStore size and the number of buffer-trees
in BufferStore, thus leading to high read amplification. Therefore,
the size of FastStore and BufferStore is the key to trading off read
and memory efficiency for write performance.

Figure 15 shows how FluidKV adjusts this trade-off. Note that
since the throughput of flush is higher than user writes (stable
at 20 MOPS), we only show the impact of compaction. First, the
efficiency of compaction decreases with the increase in data volume
because the write amplification heightens as StableStore enlarges.

1386

0 5 10 15 20 25 30 35 40
Elapsed time (s)

0
2
4
6
8

Th
ro
ug
hp
ut
(M
O
PS

) FS size=1M FS size=2M

1(a) 8 user threads

0 5 10 15 20 25 30 35
Elapsed time (s)

0
2
4
6
8
10
12
14

Th
ro
ug
hp
ut
(M
O
PS

) FS size=5M FS size=10M

1(b) 16 user threads

Figure 16: FluidKV write capability with limited FastStore
capacities (1M, 2M, 5M, and 10M KVs, respectively).

When the compaction throughput falls below the throughput of
user writes (e.g., when data volume reaches 700M), it is hard to
maintain the long-term stability of an ideal write performance
under intensive workloads. Second, with the same FastStore size,
doubling the BufferStore size can approximately double the com-
paction throughput, keeping the ideal write performance under
write-intensive workloads for a longer time, but leading to higher
read amplification due to more buffer-trees in BufferStore. Fortu-
nately, the read amplification can be compensated by increasing
the capacity limit of FastStore at the expense of a corresponding
memory consumption. Similar results in all three figures show that
the FastStore size barely affects the compaction efficiency. There-
fore, we recommend configuring a larger FastStore to trade off
between read and write performances when DRAM is sufficient,
or dynamically increase the capacity of FastStore and BufferStore
with the increasing data volume.

In addition, we evaluate the efficiency of compacting data di-
rectly from FastStore to StableStore without BufferStore. The results
show that the configuration without BufferStore is the worst in all
configurations due to its hight write amplification.

DRAM/write trade-off: FastStore size. We evaluate the write
throughput of FluidKV under write workloads with a limited capac-
ity of FastStore. The number of buffer-trees is fixed at 4 to ensure
an almost constant read performance. As shown in Figure 16, Flu-
idKV maintains stable high write throughputs for 16, 18, and 32
seconds (under 8 threads), 7, 14, and 24 seconds (under 16 threads)
at FastStore capacities of 1M, 2M, and 5MKVs, respectively. The per-
formance is more stable when FastStore size is larger. In the figure,
the slight performance fluctuations come from the flush operations
while the larger dips are due to BufferStore being full. Because the
capacity of BufferStore also depends on the capacity of FastStore
(i.e., the size of buffer-tree), a larger FastStore provides better buffer-
ing for stable performance. Note that under high-intensity writes,
even though the throughput fluctuates sometimes, it still returns
to a normal performance level after the flush and compaction oper-
ations are completed. These results indicate that under workloads
with fixed intensity or limited burst time, suitable FastStore size
can achieve a sensible balance between stable write performance
and reasonable memory footprint.

Write/read trade-off: dynamic stage-merging. Figure 17
demonstrates FluidKV’s ability to be aware of and thus able to
dynamically adjust according to the workload (8 user threads are
used). As shown in Figure 17a, we executed 200M write requests
and immediately converted the workload to read-only. When Flu-
idKV detects the workload change, it accelerates stage merging
by aggressively triggering flush and compaction to improve read

0 10 20 30 40 50 60 70 80
Elapsed time (s)

0
2
4
6
8

10

Th
ro
ug

hp
ut

(M
O
PS

)

Workload changed
Put Get

1(a) W:R changes from 1:0 to 0:1

0 20 40 60 80 100
Elapsed time (s)

0
1
2
3
4
5

Th
ro
ug

hp
ut

(M
O
PS

)

Workload changed
Put Get

1(b) W:R changes from 4:1 to 1:4

Figure 17: FluidKV performance through workload changes.

Table 2: Random read latency (us) of StableStore.

Data block
Index block 256B 512B 1024B

256B 1.254 1.246 1.352
512B 1.217 1.227 1.294
1024B 1.327 1.346 1.302

16 32 64 128 256 512
KV size (bytes)

0.0
0.5
1.0
1.5
2.0

La
te
nc

y
(u
s)

FluidKV FlatStore-NBTree

1
(a) Write latency (lower is better)

16 32 64 128 256 512
KV size (bytes)

0.0
0.5
1.0
1.5
2.0

La
te
nc

y
(u
s)

FluidKV FlatStore-NBTree

1
(b) Read latency (lower is better)

16 32 64 128 256 512
KV size (bytes)

0
5

10
15

Th
ro
ug

hp
ut

(M
O
PS

)
FluidKV FlatStore-NBTree

1
(c) Write throughput (higher is better)

16 32 64 128 256 512
KV size (bytes)

0
5

10
15

Th
ro
ug

hp
ut

(M
O
PS

)

FluidKV FlatStore-NBTree

1
(d) Read throughput (higher is better)

Figure 18: Write/read performance with different KV sizes.

performance. Under a mixed workload (80% write, 20% read) in
Figure 17b, the initial buffer-tree threshold to trigger compaction is
4 to accommodate the major write requests. When the proportion
of read requests becomes higher (20% write, 80% read), FluidKV
adjusts the threshold to 1, reducing read amplification to better
serve the read requests. These dynamic threshold adjustments flex-
ibly trade off between read and write performances according to
workload characteristics.

Read/DRAM trade-off: LST block size. To validate the effi-
ciency of the 512-byte PM block size, we load 100M 8+8 byte KVs
into StableStores with different sizes of index and data block re-
spectively, and evaluate the random read latency of StableStore
as shown in Table 2. For reference, the read latency of Masstree
is 1.1us. The results show that the LST with 512-byte index block
and 512-byte data block, which are the default configurations of
FluidKV, achieves a good trade-off, trading an 11% read latency
penalty for a 1024× (mentioned in §4.3) DRAM footprint reduction.

6.5.2 Different KV size. Although variable-sized KV is not our
focus, we also evaluate the single-thread latencies and 16-thread
throughputs of FluidKV and NBTree under workloads with different
KV sizes (8-byte key with variable-sized value). The dataset size for
all workloads is 3 GB. Note that variable-sized KVs are supported
by the Flatstore implementation and irrelevant to the indexes, and
the indexes on Flatstore behave similarly to NBTree. We do not
evaluate ListDB that does not support variable-sized KVs.

1387

As shown in Figure 18, due to the high bandwidth of PM, the
latencies of both KVSs are slightly impacted by the KV length.
FluidKV exhibits similar read latency to and 50%~60% less write
latency than Flatstore. The write throughputs of FluidKV and Flat-
store decrease with increasing KV size because of the larger PM
I/Os. FluidKV’s write throughput with 16-byte KVs is less than
that with 32-byte KVs. This is because 16-byte KV causes 32-byte
logging I/O, which is PM-unfriendly due to the misalignment with
cacheline. Flatstore as a single-stage indexing KVS has a stable
read throughput. In contrast, since there are fewer KVs under the
same size dataset when KV size increases, more reads hit FluidKV
FastStore thus improving the read throughput. In summary. the
results indicate that FluidKV’s optimizations remain effective for
large-sized KVs.

7 DISCUSSION AND FUTUREWORK
Transaction support is also an important feature required for
KVSs [47]. Although FluidKV implements a basic MVCC to ensure
concurrency and crash consistency of read/write/flush/compaction
operations, it needs more modifications to support transactions. For
example, we need to use a globally consistent timestamp as the LSN
of the log record and give the same LSN to log records from the same
transaction. Also, the uncommitted records should not be flushed to
BufferStore to avoid losing the LSN. Note that transaction support
does not affect the fairness of evaluation because the baselines also
do not support transactions.

CXL-based SSD. Compared to Intel Optane PM which was dis-
continued in 2022, the latest CXL-based memory-semantic SSDs
[25, 60] have higher bandwidth and capacity at a lower cost. As
the storage capacity increases, DRAM-only indexes incur a larger
DRAM footprint for larger datasets. In contrast, the hybrid-index
architecture of FluidKV effectively constrains the DRAM footprint
without significant performance degradation. Because the CXL pro-
tocol is based on PCIe with a longer I/O path than Optane, our
optimizations aimed at reducing PM accesses will become poten-
tially more important for and beneficial to the CXL-based SSDs.
Even so, FluidKV still needs to be adjusted and optimized for the
new devices. For example, considering the characteristics of flash
media, the sizes of the index and data block need to be increased
(e.g., 4 KB). Also, storing large KV pairs in the data blocks instead of
using KV separation also helps reduce random small reads, which
are inefficient on the flash devices.

8 RELATEDWORK
Single-stage indexing KVS for PM. As mentioned in §2.2.1,
single-stage indexing KVS with DRAM-only indexes such as Flat-
store [9] and KVell [32], aim for extreme performance at the ex-
pense of a huge memory footprint. Viper [3] and Halo [18] both
use volatile hash indexes to achieve higher performance, but sacri-
fice range query functionality. Prism [46] builds KVS on PM with
PacTree and employs caches onDRAM to accelerate read operations.
While the performance and memory footprint can be statically bal-
anced by using PM-only [20, 31, 39] or hybrid indexes [35, 65],
FluidKV can achieve a dynamic balance to cope with increasing
data volumes.

Multi-stage indexing KVS for PM. SLM-DB [26], NoveLSM
[28], and MatrixKV [61] build additional indexes or buffers on
PM to accelerate SSD-based LSM-tree. ChameleonDB [64] builds
LSM-tree in PM with PM-friendly I/Os. Different from FluidKV,
ChameleonDB uses hash-based sharding which deprives it of the
range query capability and builds in-memory auxiliary indexes
for data on PM to reduce I/O amplification, which causes a high
memory footprint. ListDB [30] uses persistent skiplists to build
LSM-tree on PM and employs NUMA-aware optimizations to im-
prove scalability across multiple NUMA nodes, but is limited by
its complex indexing on PM. MioDB [13] also employs persistent
skiplists for good tail latency and does not achieve a good write
throughput scalability, limited by the LSM-tree structure. FluidKV
proposes a StableStore structure that is more suitable for PM and
a highly concurrent FastStore with optimizations for parallelism
to achieve higher scalability and flexibility, achieving significant
performance improvement beyond traditional LSM-tree.

Dynamic index transition. Monkey [10] and Dostoevsky [11]
explore the dynamic tuning for read-write trade-offs of traditional
LSM-tree, e.g., switching between tiering and leveling structures.
Idreos et al. [21] analyze the performance characteristics of B+-tree
and LSM-tree, and show the potential of transitions between the
indexes with a theoretical model. FluidKV is the first to design and
implement a practical system to combine the benefits of single-stage
and multi-stage indexes through fast stage-merging by utilizing
ultra-fast storage.

Key-value separation. WiscKey [37] first proposes key-value
separation to solve the high write-amplification problem caused by
large values in the LSM-tree. HashKV [7] and NovKV [45] further
solve the garbage collection problem of key-value separation by
methods such as hot-cold separation. Pacman [48] optimizes the
efficiency of garbage collection on PM through techniques such
as reverse indexing. FluidKV also uses the key-value separation to
store long KVs. Because garbage collection optimization is not our
focus, FluidKV leverages these existing techniques to implement
and optimize garbage collection.

9 CONCLUSION
FluidKV proposes a new multi-stage KVS architecture for ultra-
fast storage, which achieves high performance and low memory
footprint by exploiting the high processing capabilities and par-
allelism of modern computer hardware efficiently. It dynamically
and seamlessly migrates data across three stages, including a par-
allelized FastStore for fast persistence, a transitional BufferStore
to control memory footprint in time, and a StableStore providing
memory-efficient indexing. Our evaluation shows that FluidKV
achieves higher performance while maintaining a lower memory
footprint than the state-of-the-art PM-aware KVSs. We believe that
FluidKV’s design principles and key techniques can be applied to
other ultra-fast storage devices such as CXL-based SSDs.

ACKNOWLEDGMENTS
This work was supported by NSFC No.62172175 and No.61821003,
Key Research and Development Project of Hubei No.2022BAA042,
and the US National Science Foundation grant CNS-2008835 and
CCF-2226117.

1388

REFERENCES
[1] Minseon Ahn, AndrewChang, Donghun Lee, Jongmin Gim, Jungmin Kim, Jaemin

Jung, Oliver Rebholz, Vincent Pham, Krishna T. Malladi, and Yang-Seok Ki. 2022.
Enabling CXL Memory Expansion for In-Memory Database Management Sys-
tems. In International Conference on Management of Data, DaMoN 2022, Philadel-
phia, PA, USA, 13 June 2022. 8:1–8:5.

[2] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti
Tang, Daniel Lottis, Kiseok Moon, Xiao Luo, Eugene Chen, Adrian Ong, Alexan-
der Driskill-Smith, and Mohamad Krounbi. 2013. Spin-transfer torque magnetic
random access memory (STT-MRAM). ACM J. Emerg. Technol. Comput. Syst. 9, 2
(2013), 13:1–13:35.

[3] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: An Efficient
Hybrid PMem-DRAM Key-Value Store. Proc. VLDB Endow. 14, 9 (2021), 1544–
1556.

[4] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2018.
HOT: A Height Optimized Trie Index for Main-Memory Database Systems. In
Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018. 521–534.

[5] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020. Characteriz-
ing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook.
In 18th USENIX Conference on File and Storage Technologies (FAST 20). Santa Clara,
CA, 209–223.

[6] Yunpeng Chai, Yanfeng Chai, Xin Wang, Haocheng Wei, Ning Bao, and Yushi
Liang. 2019. LDC: A Lower-Level Driven Compaction Method to Optimize
SSD-Oriented Key-Value Stores. In 35th IEEE International Conference on Data
Engineering, ICDE 2019, Macao, China, April 8-11, 2019. 722–733.

[7] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and Yinlong Xu. 2018. HashKV:
Enabling Efficient Updates in KV Storage via Hashing. In 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018. 1007–
1019.

[8] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. 𝜇Tree:
a Persistent B+-Tree with Low Tail Latency. Proc. VLDB Endow. 13, 11 (2020),
2634–2648.

[9] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, YangWang, and Jiwu Shu. 2020.
FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent
Memory. In ASPLOS ’20: Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, March 16-20, 2020. 1077–1091.

[10] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal
Navigable Key-Value Store. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May
14-19, 2017. 79–94.

[11] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs
for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous
Merging. In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018. 505–520.

[12] Zhuohui Duan, Jiabo Yao, Haikun Liu, Xiaofei Liao, Hai Jin, and Yu Zhang. 2023.
Revisiting Log-Structured Merging for KV Stores in Hybrid Memory Systems. In
Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023,
Vancouver, BC, Canada, March 25-29, 2023. 674–687.

[13] Zhuohui Duan, Jiabo Yao, Haikun Liu, Xiaofei Liao, Hai Jin, and Yu Zhang. 2023.
Revisiting Log-Structured Merging for KV Stores in Hybrid Memory Systems. In
Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023,
Vancouver, BC, Canada, March 25-29, 2023. 674–687.

[14] Facebook. 2022. RocksDB. https://rocksdb.org/ (last aceessed at 2-17-2024).
[15] Google. 2014. LevelDB. https://github.com/google/leveldb (last aceessed at

2-17-2024).
[16] Shukai Han, Dejun Jiang, and Jin Xiong. 2020. SplitKV: Splitting IO Paths for

Different Sized Key-Value Items with Advanced Storage Devices. In 12th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 20).

[17] Yuliang He, Duo Lu, Kaisong Huang, and Tianzheng Wang. 2022. Evaluating
Persistent Memory Range Indexes: Part Two. Proc. VLDB Endow. 15, 11 (2022),
2477–2490.

[18] Daokun Hu, Zhiwen Chen, Wenkui Che, Jianhua Sun, and Hao Chen. 2022. Halo:
A Hybrid PMem-DRAM Persistent Hash Index with Fast Recovery. In SIGMOD
’22: International Conference on Management of Data, Philadelphia, PA, USA, June
12 - 17, 2022. 1049–1063.

[19] Daokun Hu, Zhiwen Chen, Jianbing Wu, Jianhua Sun, and Hao Chen. 2021.
Persistent Memory Hash Indexes: An Experimental Evaluation. Proc. VLDB
Endow. 14, 5 (2021), 785–798.

[20] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018.
Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In
16th USENIX Conference on File and Storage Technologies, FAST 2018, Oakland,
CA, USA, February 12-15, 2018. 187–200.

[21] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew
Ross, James Lennon, Varun Jain, Harshita Gupta, David Li, and Zichen Zhu. 2019.
Design Continuums and the Path Toward Self-Designing Key-Value Stores that

Know and Learn. In 9th Biennial Conference on Innovative Data Systems Research,
CIDR 2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.

[22] Intel. 2021. Pmem-RocksDB. https://github.com/pmem/pmem-rocksdb (last
aceessed at 2-17-2024).

[23] Intel. 2022. Intel® Optane™ Persistent Memory. https://www.intel.com/content/
www/us/en/architecture-and-technology/optane-dc-persistent-memory.html.

[24] Brian Myungjune Jung. 2022. Controller Design Considerations for Samsung’s
Memory-Semantic SSD. Flash Memory Summit 2022.

[25] Myoungsoo Jung. 2022. Hello bytes, bye blocks: PCIe storage meets compute
express link for memory expansion (CXL-SSD). In HotStorage ’22: 14th ACM
Workshop on Hot Topics in Storage and File Systems, Virtual Event, June 27 - 28,
2022. 45–51.

[26] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and Young ri
Choi. 2019. SLM-DB: Single-Level Key-Value Store with Persistent Memory. In
17th USENIX Conference on File and Storage Technologies (FAST 19). Boston, MA,
191–205.

[27] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. 2018. Redesigning LSMs for Nonvolatile Memory with
NoveLSM. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston,
MA, 993–1005.

[28] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. 2018. Redesigning LSMs for Nonvolatile Memory with
NoveLSM. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston,
MA, 993–1005.

[29] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaibhav Gogte,
and Ronald G. Dreslinski. 2021. Improving Performance of Flash Based Key-
Value Stores Using Storage Class Memory as a Volatile Memory Extension. In
2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16, 2021.
821–837.

[30] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun Park, Young ri Choi, Alan
Sussman, and Beomseok Nam. 2022. ListDB: Union of Write-Ahead Logs and
Persistent SkipLists for Incremental Checkpointing on Persistent Memory. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI
22). Carlsbad, CA, 161–177.

[31] Wook-Hee Kim, Madhava Krishnan Ramanathan, Xinwei Fu, Sanidhya Kashyap,
and Changwoo Min. 2021. PACTree: A High Performance Persistent Range Index
Using PAC Guidelines. In SOSP ’21: ACM SIGOPS 28th Symposium on Operating
Systems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021. 424–439.

[32] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell:
the design and implementation of a fast persistent key-value store. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville,
ON, Canada, October 27-30, 2019. 447–461.

[33] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating Persistent Memory Range Indexes. Proc. VLDB
Endow. 13, 4 (2019), 574–587.

[34] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In 29th IEEE International Conference on
Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013. 302–313.

[35] Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+-Trees: Optimizing Persis-
tent Index Performance on 3DXPoint Memory. Proc. VLDB Endow. 13, 7 (2020),
1078–1090.

[36] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable
Hashing on Persistent Memory. Proc. VLDB Endow. 13, 8 (2020), 1147–1161.

[37] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2016. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In 14th USENIX Conference on File and Storage Technolo-
gies (FAST 16). Santa Clara, CA, 133–148.

[38] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In European Conference on Computer Systems,
Proceedings of the Seventh EuroSys Conference 2012, EuroSys ’12, Bern, Switzerland,
April 10-13, 2012. 183–196.

[39] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beomseok Nam.
2019. Write-Optimized Dynamic Hashing for Persistent Memory. In 17th USENIX
Conference on File and Storage Technologies, FAST 2019, Boston, MA, February
25-28, 2019. 31–44.

[40] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.
The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351–
385.

[41] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016. 371–386.

[42] Rekha Pitchumani. 2022. Next-Gen SystemArchitectures withMemory-Semantic
SSDs. Flash Memory Summit 2022.

[43] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.
PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge
Trees. In Proceedings of the 26th Symposium on Operating Systems Principles,

1389

https://rocksdb.org/
https://github.com/google/leveldb
https://github.com/pmem/pmem-rocksdb
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

Shanghai, China, October 28-31, 2017. 497–514.
[44] Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, and Manos Athanassoulis.

2021. Constructing and Analyzing the LSM Compaction Design Space. Proc.
VLDB Endow. 14, 11 (2021), 2216–2229.

[45] Chen Shen, Youyou Lu, Fei Li, Weidong Liu, and Jiwu Shu. 2020. NovKV: Efficient
Garbage Collection for Key-Value Separated LSM-Stores. In 36th Symposium on
Mass Storage Systems and Technologies, MSST 2020, Santa Clara, CA, USA, Oct
29-30, 2020. 38–50.

[46] Yongju Song,Wook-Hee Kim, Sumit KumarMonga, ChangwooMin, and Young Ik
Eom. 2023. Prism: Optimizing Key-Value Store for Modern Heterogeneous
Storage Devices. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023. 588–602.

[47] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. 2020. Cobra:
Making Transactional Key-Value Stores Verifiably Serializable. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). 63–80.

[48] Jing Wang, Youyou Lu, Qing Wang, Minhui Xie, Keji Huang, and Jiwu Shu. 2022.
Pacman: An Efficient Compaction Approach for Log-Structured Key-Value Store
on Persistent Memory. In 2022 USENIX Annual Technical Conference, USENIX
ATC 2022, Carlsbad, CA, USA, July 11-13, 2022. 773–788.

[49] XiaoliangWang, Peiquan Jin, Bei Hua, Hai Long, andWei Huang. 2022. Reducing
Write Amplification of LSM-Tree with Block-Grained Compaction. In 38th IEEE
International Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia,
May 9-12, 2022. 3119–3131.

[50] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2021. Characterizing and Modeling Nonvolatile Memory Systems.
IEEE Micro 41, 3 (2021), 63–70.

[51] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,
Michael Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes
More Than Just Buzz Words. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018. 473–488.

[52] H.-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg,
Bipin Rajendran, Mehdi Asheghi, and Kenneth E. Goodson. 2010. Phase Change
Memory. Proc. IEEE 98, 12 (2010), 2201–2227.

[53] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index
Key-Value Store for DRAM-NVM Memory Systems. In 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017.
349–362.

[54] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022.
Characterizing the performance of intel optane persistent memory: a close look
at its on-DIMM buffering. In EuroSys ’22: Seventeenth European Conference on

Computer Systems, Rennes, France, April 5 - 8, 2022. 488–505.
[55] Baoyue Yan, Xuntao Cheng, Bo Jiang, Shibin Chen, Canfang Shang, Jianying

Wang, Kenry Huang, Xinjun Yang, Wei Cao, and Feifei Li. 2021. Revisiting the
Design of LSM-tree Based OLTP Storage Engine with Persistent Memory. Proc.
VLDB Endow. 14, 10 (2021), 1872–1885.

[56] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In 18th USENIX Conference on File and Storage Technologies, FAST 2020,
Santa Clara, CA, USA, February 24-27, 2020. 169–182.

[57] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-based Single
Level Systems. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST 2015, Santa Clara, CA, USA, February 16-19, 2015. 167–181.

[58] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis of
hundreds of in-memory cache clusters at Twitter. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2020, Virtual Event, November
4-6, 2020. 191–208.

[59] J. Joshua Yang and R. Stanley Williams. 2013. Memristive devices in computing
system: Promises and challenges. ACM J. Emerg. Technol. Comput. Syst. 9, 2
(2013), 11:1–11:20.

[60] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin yong Choi,
Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S. Kim. 2023. Overcoming
the Memory Wall with CXL-Enabled SSDs. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23). Boston, MA, 601–617.

[61] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. In
2020 USENIX Annual Technical Conference (USENIX ATC 20). 17–31.

[62] Jinghuan Yu, Sam H. Noh, Young ri Choi, and Chun Jason Xue. 2023. ADOC:
Automatically Harmonizing Dataflow Between Components in Log-Structured
Key-Value Stores for Improved Performance. In 21st USENIX Conference on File
and Storage Technologies (FAST 23). Santa Clara, CA, 65–80.

[63] Bowen Zhang, Shengan Zheng, Zhenlin Qi, and Linpeng Huang. 2022. NBTree:
a Lock-free PM-friendly Persistent B+-Tree for eADR-enabled PM Systems. Proc.
VLDB Endow. 15, 6 (2022), 1187–1200.

[64] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021.
ChameleonDB: a key-value store for optane persistent memory. In EuroSys
’21: Sixteenth European Conference on Computer Systems, Online Event, United
Kingdom, April 26-28, 2021. 194–209.

[65] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
Differential Indexing for Persistent Memory. Proc. VLDB Endow. 13, 4 (2019),
421–434.

1390

	Abstract
	1 Introduction
	2 Background and Analysis
	2.1 Ultra-Fast Storage
	2.2 Key-value Store Indexing

	3 Motivation and opportunity
	4 FluidKV Design
	4.1 Overview
	4.2 FastStore: Fast and Concurrent Writing
	4.3 StableStore: Memory-Efficient Indexing
	4.4 BufferStore: Dynamic Data Migration

	5 Implementation
	5.1 Volatile Index
	5.2 Write
	5.3 Read
	5.4 Flush and Compaction
	5.5 Crash Recovery and Consistency

	6 Evaluation
	6.1 Experiment Setup
	6.2 Micro-Benchmarks
	6.3 Macro-Benchmarks
	6.4 Recovery
	6.5 Sensitivity Study

	7 Discussion And Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

