
DAHA: Accelerating GNN Training with Data and Hardware
Aware Execution Planning

Zhiyuan Li
The Hong Kong University of Science

and Technology
zlicw@cse.ust.hk

Xun Jian∗
The Hong Kong University of Science

and Technology
xjian@cse.ust.hk

Yue Wang∗
Shenzhen Institute of Computing

Sciences
yuewang@sics.ac.cn

Yingxia Shao
Beijing University of Posts and

Telecommunications
shaoyx@bupt.edu.cn

Lei Chen
Data Science and Analytics Thrust,

The Hong Kong University of Science
and Technology (Guangzhou)

leichen@cse.ust.hk

ABSTRACT
Graph neural networks (GNNs) have been gaining a reputation for
effective modeling of graph data. Yet, it is challenging to train GNNs
efficiently. Many frameworks have been proposed but most of them
suffer from high batch preparation cost and data transfer cost for
mini-batch training. In addition, existing works have limitations
on the device utilization pattern, which results in fewer opportu-
nities for pipeline parallelism. In this paper, we present DAHA, a
GNN training framework with data and hardware aware execution
planning to accelerate end-to-end GNN training. We first propose a
data and hardware aware cost model that is lightweight and gives
accurate estimates on per-operation time cost for arbitrary input
and hardware settings. Based on the cost model, we further explore
the optimal execution plan for the data and hardware with three
optimization strategies with pipeline parallelism: (1) group-based
in-turn pipelining of batch preparation neural training to explore
more optimization opportunities and prevent batch preparation
bottlenecks; (2) data and hardware aware rewriting for intra-batch
execution planning to improve computation efficiency and create
more opportunities for pipeline parallelism; and (3) inter-batch
scheduling to further boost the training efficiency. Extensive exper-
iments demonstrate that DAHA can consistently and significantly
accelerate end-to-end GNN training and generalize to different
message-passing GNN models.

PVLDB Reference Format:
Zhiyuan Li, Xun Jian, Yue Wang, Yingxia Shao, and Lei Chen. DAHA:
Accelerating GNN Training with Data and Hardware Aware Execution
Planning. PVLDB, 17(6): 1364 - 1376, 2024.
doi:10.14778/3648160.3648176

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/fr8nkL/DAHA.

∗Xun Jian and Yue Wang are the corresponding authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.
doi:10.14778/3648160.3648176

1 INTRODUCTION
Graph Neural Networks (GNNs) [19] have gained great popularity
due to their success in solving problems in graph-structured data
like network embedding [22] and recommendation [31]. Training
GNNs efficiently has long been a challenge and hot research topic.
The most popular approach is the class of mini-batch sampling
GNNs [4–7, 12, 15, 33, 34]. Many dedicated frameworks like PyG [8]
and DGL [28] have been developed for training them on GPUs
because traditional deep learning systems cannot efficiently process
the graph operations in GNNs.

Most of the GNN frameworks share the same device utilization
pattern where CPU is responsible for producing sampled batches
and slicing out the feature vectors while GPU receives the batch
data and performs GNN training. Under such setting, however, a
slow production of sampled batches on CPU can easily block GPU
training [37]. In addition, due to the unique nature of GNNs and
graphs, the CPU-GPU data transfer cost for GNNs is significant [10]
considering the possible neighbor explosion [34] and the large fea-
ture dimension. Many works [10, 16, 21, 24, 26] have also reported
that (1) batch preparation (including sampling) and (2)CPU-GPU
data transfer are the two bottlenecks in GNN training. They can
lead to poor GPU utilization because GPU depends on the batch
preparation and CPU-GPU data transfer to perform its work and
these two bottlenecks block the dependent operation.

To address this, DistDGLv2 [38] and SALIENT [16] propose
novel pipelining strategies to overlap batch preparation and data
transfer with computation to hide the cost. Despite their efforts,
without changing the classic device utilization pattern of CPU-
sample and GPU-train, a slow sampler or a long CPU-GPU data
transfer operation will always block the following dependent GPU
operation. Recent works begin to explore alternative device utiliza-
tion patterns. ByteGNN [37] and GNNLab [32] propose dedicated
optimizations for CPUs and GPUs, respectively. But their utilization
patterns of the other hardware resource are limited, leaving room
for further improvement. Kim et al. [18] propose to perform partial
aggregation of on-device data on both CPU and GPU. However,
it might encounter CPU bottlenecks and it is still limited to CPU-
only sampling. The smallest unit to schedule in most literature
is the entire computation or communication of one batch. They
seldom consider breaking down batch processing into fine-grained

1364

https://doi.org/10.14778/3648160.3648176
https://github.com/fr8nkL/DAHA
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648176
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CPU
Sampling

Graph Topology

CPU

Mini-batch

Mini-batch

Mini-batches

GPU

GPU
Sampling

Intra-batch
EPG Rewriting

Directed Acyclic Graphs (DAGs) of
Dependent Training Operations

Inter-batch
Scheduling

Pipelined Execution of
Model Training

Features

Group-based In-turn Pipelining

GNN Model

Sampling Stage Training Stage

Feature Extraction
Assists

Intra-batch EPG
Rewriting

Inter-batch
Scheduling

Allows

Adaptive
Shuffling

Progressive
Scheduling

Group-based In-turn
Pipelining

Sampling Stage Training Stage

Figure 1: The overview of DAHA with three novel modules: (1) group-based in-turn pipelining; (2) intra-batch execution plan
graph (EPG) rewriting; and (3) inter-batch scheduling. Module 1 sets the overall pipeline style of DAHA with interleaving
sampling and training stages. Module 2 decides the search space for module 3 to optimize for accelerating the training stage.

operations. Hence, they miss optimization opportunities for more
fine-grained pipeline parallelism.

To conclude, we identify the research gap of failure to explore all
possible combinations of device utilization patterns on fine-grained
sets of operations, hence missing opportunities for the combinato-
rial optimization problem of finding the optimal execution plan. We
aim to fill the gap by expanding the efficiency optimization search
space to fully hybrid CPU-GPU, where each fine-grained operation
of a batch can reside on any feasible device, to find the optimal
execution plan based on the input data and hardware like [30].

To begin with, we need to answer a fundamental question, what
operation and data are suitable for what device? Although it is
often assumed that GPU training is faster than CPU, we find GPUs
might be worse when the GPU speedup of computation cannot
offset the additional data transfer cost. To answer the question,
a quantitative cost model is needed to estimate the time of an
operation on arbitrary input data and devices. We build a data and
hardware aware cost model for both data transfer and major GNN
operations, which takes the input of the graph property and model
specifications to output the expected training efficiency based on
the available hardware.

Based on the cost model, we present DAHA, a GNN training
framework with data and hardware aware execution planning to
accelerate end-to-end GNN training. The overview of DAHA is
illustrated in Figure 1. DAHA consists of three modules all guided
by the data and hardware aware cost model. They are designed for
fully hybrid CPU-GPU pipeline parallelism to leverage the hardware
resources efficiently. The three modules are: (1) group-based in-turn
pipelining; (2) intra-batch execution plan graph (EPG) rewriting;
and (3) inter-batch scheduling. When GNN training starts, we first
apply the group-based in-turn pipelining strategy, where DAHA
in turn pipelines the sampling stage first and then switches to the
model training stage. The idea is to group tasks with similar patterns
of data access and device utilization to increase data and device
affinity, amortizing the cost of memory access and kernel launching.
It prevents slow samplers from blocking trainers because samplers

are pipelined together followed by the pipeline of trainers. With
group-based in-turn pipelining, DAHA goes fully hybrid CPU-GPU
on sampling and training stages, diversifying the device utilization
pattern for more optimization opportunities. DAHA also performs
adaptive shuffling and progressive scheduling to efficiently pipeline
the sampling stage. After the sampling stage, DAHA applies the
intra-batch EPG rewriting and inter-batch scheduling optimizations
to accelerate the training stage at a fine-grained operation level with
more optimization opportunities. The cost model helps estimate
the makespan of each operation to find the optimal execution plan.
To this end, we present the comparison of DAHA to literature in
Table 1 to illustrate how DAHA identifies and fills the research gap.

In summary, we make the following contributions in this paper:
(1) Problem exploration. We identify the gap of device utiliza-
tion pattern and hardware selection problem in GNN training and
provide a new perspective to accelerate GNN training with fully
hybrid CPU-GPU pipeline parallelism. (2) Data and hardware
aware cost model. We provide a data and hardware aware cost
model to estimate the time cost of an operation to automatically
help schedule the input (sub)graphs on the available hardware. (3)
GNN training framework with novel execution planning. We
separate the sampling stage and neural training stage and pipeline
them independently to increase data and device affinity, amortizing
the cost of memory access and kernel launching and preventing
sampling from blocking training. Based on this design which opens
up more pipeline parallelism opportunities, we propose a series
of novel intra-batch and inter-batch execution planning strategies
to accelerate GNN training in the hybrid CPU-GPU setting. (4)
Remarkable performance.We perform extensive experiments
to evaluate DAHA to show its significant speedup and ability to
generalize to different data and message-passing GNNs.

The outline of the paper is as follows. Problem statement is in
Section 2. Section 3 covers the detailed description of DAHA and
its modules. We present the experimental results in Section 4 and
related works in Section 5. Section 6 concludes the paper.

1365

Table 1: Comparison of DAHA and literature

Work CPU util GPU util Result
DGL [28] Sample Train Sampling & data transfer become bottlenecks

DistDGLv2 [38] Async Sample Train Possible sampling bottleneck, coarse-grained pipeline
SALIENT Fast sample Train Possible sampling bottleneck, coarse-grained pipeline

ByteGNN [37] Sample & train N.A. Coarse-grained inter-batch pipelining, no GPU speedup
GNNLab [32] Train Sample & train Coarse-grained inter-batch pipelining, limited CPU utilization
Kim et al. [18] Sample & train Train Possible CPU bottleneck, miss pipeline opportunity

DAHA Sample & train Sample & train Fine-grained intra- & inter-batch pipelining, no blocking bottleneck

2 PRELIMINARIES
We introduce related concepts and give our problem statement.

Graphs. Let 𝐺 = (𝑉 , 𝐸, 𝑋,𝑌) be an undirected, featured and
labelled graph, where 𝑉 is the set of nodes, 𝐸 ⊆ 𝑉 ×𝑉 is the set of
edges, 𝑋 ∈ R𝑛×𝑓 is the set of node features and 𝑌 is the set of node
labels. We also refer to a graph as 𝐺 = (𝑉 , 𝐸).

Graph neural networks. Let𝐴 ∈ R𝑛×𝑛 be the adjacencymatrix
of a graph or a subgraph as a mini-batch 𝐺 = (𝑉 , 𝐸, 𝑋,𝑌), 𝐼 be the
𝑛 × 𝑛 identity matrix, D be the diagonal matrix of modified vertex
degrees, and 𝜎 (·) be the activation function. Let �̂� = 𝐷−

1
2 (𝐴 +

𝐼)𝐷−
1
2 . Then the formula for one forward layer of GCN [19] is

𝐻 𝑙 = 𝜎 (�̂�𝑇𝐻 𝑙−1𝑊 𝑙), (1)

where𝐻 𝑙 is the dense embedding matrix of the nodes and𝑊 𝑙 is the
dense weight matrix at the 𝑙-th layer. 𝐻0 = 𝑋 ∈ R𝑛×𝑓 . The final
representation matrix is 𝐻𝐿 where 𝐿 is the number of GNN layers.
For simplicity, we refer to �̂� as 𝐴 as well.

Problem Statement. In this work, we focus on devising novel
execution planning strategies aware of the nature of the underlying
graph data and hardware to accelerating message-passing GNN
training. We formulate the problem as below:

Given a graph 𝐺 , a GNN model A, a set of batches (jobs) B =

{B1, ...,B𝑛} and available hardware resources (machines) 𝑀 =

{𝑀1, ..., 𝑀𝑚}, determine the optimal execution plan of training A
with input B on devices𝑀 that minimized the makespan.

Full-graph training GNNs also fit in the formulation since the full
graph can be regarded as a batch. We further model the problem
in two stages: the sampling stage and the training stage. In the
sampling stage, our problem can be modeled as a uniform-machines
scheduling problem [3]. In the training stage, we have two levels:
intra-batch and inter-batch. At the intra-batch level, by considering
the dependent graph and neural operations of each batch as a
sequence of directed acyclic graphs (DAG), the problem can be
modeled as an EPG rewriting problem [17]. At the inter-batch level,
we need to arrange the pipeline of multiple mini-batches, which
can be modeled as a flexible job-shop scheduling problem [3].

3 THE DATA AND HARDWARE AWARE
EXECUTION PLANNING

We first elaborate on our data and hardware aware cost model in
Section 3.1. Section 3.2 discusses the three modules of DAHA.

3.1 A Data and Hardware aware Cost Model
DAHA learns a data and hardware aware cost model to measure
(1) the CPU and GPU neural computation time and (2) CPU-GPU
data transfer time of various input data and underlying hardware.

For the neural computation time, since major neural operations
involved in GNNs can typically be classified as dense matrix multi-
plications (mm) and sparse matrix-matrix multiplications (spmm),
it suffices to build the computation cost model with these two neu-
ral operations. Following the abstraction by DGL [28], we regard
each GNN layer as a message flow graph (MFG), which can be
viewed as a special bipartite graph where each directed edge from
the source node to the destination node represents one propagation
in this GNN layer. Then, one batch computation can be regarded
as a list of MFGs, each representing the computation process in
one GNN layer. Based on the abstraction, we identify two vital
variable factors from input data: (1) the number of distinct nodes
in the original graph involved in𝑀𝐹𝐺𝑖 denoted by 𝑛𝑖 ; and (2) the
number of edges in 𝑀𝐹𝐺𝑖 denoted by𝑚𝑖 . Since the major neural
operations involved are spmm and mm whose time complexity is
at most cubic, DAHA abstracts the computation cost model as a
multivariate cubic regression on 𝑛𝑖 and𝑚𝑖 , that is,

𝑐𝑜𝑚𝑝𝐶𝑜𝑠𝑡 (𝑀𝐹𝐺𝑖) = 𝛽0 + 𝛽1𝑛𝑖 + 𝛽2𝑚𝑖 + 𝛽11𝑛𝑖2 + 𝛽22𝑚𝑖
2+

𝛽12𝑛𝑖𝑚𝑖 + 𝛽111𝑛𝑖3 + 𝛽222𝑚𝑖
3 + 𝛽112𝑛𝑖2𝑚𝑖 + 𝛽122𝑛𝑖𝑚𝑖

2 .
(2)

Here in Eq.3, the regression parameters {𝛽 𝑗 } reflect the GNNmodel
parameters including the hidden dimension and the underlying
hardware performance. This data and hardware aware formulation
allows lightweight instantiation of the cost model and swift adap-
tation to various input data and underlying hardware. To estimate
the per-operation computation cost, we just need to learn another
set of regression parameters.

The per-MFG cost model can be generalized to batch-level. The
total computation time of one batch B𝑗 consisting of a list of MFGs
is predicted by the sum of the time cost of these MFGs, that is,

𝑐𝑜𝑚𝑝𝐶𝑜𝑠𝑡 (B𝑗) =
∑︂

𝑀𝐹𝐺𝑖 ∈B𝑗

𝑐𝑜𝑚𝑝𝐶𝑜𝑠𝑡 (𝑀𝐹𝐺𝑖) . (3)

For the data transfer time, DAHA follows the similar approach
with some special amendments. We find that the first CPU-GPU
data transfer operation typically takes amagnitude larger amount of
time than the following rounds, which means there exists a remark-
able fixed initialization cost for this communication operation. This
is evidenced by Figure 2 which reports the CPU-GPU transfer time

1366

0 10 20 30
Round

0.10

0.15

0.20

Ti
m

e
el

ap
se

d
(s

ec
)

(a) M1.

0 10 20 30
Round

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
el

ap
se

d
(s

ec
)

(b) M2.

Figure 2: Communication overhead is significantly larger in
the first round.

of the feature matrix of Reddit for each round (details of machines
M1 and M2 are in Section 4). To highlight this fact, we formulate the
communication cost model in two parts, fixed and variable cost. The
fixed cost is subjected to the hardware environment which can be
captured by launching artificial CPU-GPU data transfer operations.
The variable cost modeling follows the approach in the computa-
tion cost model. It mainly consists of two parts as well, the dense
and sparse matrices. For the dense node and edge features, we use
𝑛 𝑗 ,𝑚 𝑗 , 𝑓𝑛 and 𝑓𝑚 as input variables to the cost model, where 𝑛 𝑗 and
𝑚 𝑗 are the number of nodes and edges in B𝑖 , and 𝑓𝑛 and 𝑓𝑚 are the
dimensions of node and edge features, respectively. For the sparse
adjacency matrix, 𝑛𝑖 and𝑚𝑖 suffice to capture the communication
volume. Hence, DAHA models the variable communication time
cost as a polynomial function on {𝑛 𝑗 ,𝑚 𝑗 , 𝑓𝑛, 𝑓𝑚} and the amortized
communication cost of one MFG is abstracted as

𝑐𝑜𝑚𝑚𝐶𝑜𝑠𝑡 (B𝑗) =
𝛼

𝑁
+ 𝑃𝑜𝑙𝑦𝑑 (𝑛 𝑗 ,𝑚 𝑗 , 𝑓𝑛, 𝑓𝑚) + 𝑃𝑜𝑙𝑦𝑠 (𝑛 𝑗 ,𝑚 𝑗)

=
𝛼

𝑁
+ 𝑃𝑜𝑙𝑦 (𝑛 𝑗 ,𝑚 𝑗 , 𝑓𝑛, 𝑓𝑚),

(4)

where 𝛼 is the fixed initialization cost and 𝑁 is the total number of
batches in the training process. 𝑃𝑜𝑙𝑦𝑑 and 𝑃𝑜𝑙𝑦𝑠 are the polynomial
functions for estimating the variable cost of dense matrices and
sparse matrices, respectively.

With the computation and communication cost models, by learn-
ing a dedicated set of regression parameters for an arbitrary op-
eration on an arbitrary device, DAHA can estimate the cost of an
arbitrary sequence of operations on arbitrary input data of any
level. It guides the execution planning for pipeline parallelism in
the training stage given the batch statistics.

3.2 Hybrid CPU-GPU Optimizations
If the expected GPU execution is faster than CPU, then the GPU
speed gain could compensate for the data transfer cost, thus GPU
should be involved in the optimal execution plan. DAHA presents
three major aspects for hybrid CPU-GPU optimizations.

3.2.1 Group-based in-turn pipelining of the batch preparation stage
and neural training stage. The traditional approach to pipelining
mini-batch GNN training mixes batch preparation stage and neural
training stage by assigning CPU to sampling and GPU to learning,
respectively. DAHA proposes a novel perspective for GNN pipelin-
ing by in turn grouping multiple batch preparation stages with
all available hardware resources and performing neural training
on these batch groups, as illustrated in Figure 3. Batches across

different epochs can also be grouped together in DAHA. Take Fig-
ure 3 as an example. DAHA adopts a group size of two epochs
and schedules the batch preparation for the entire graph for two
epochs with all available CPUs and GPUs followed by the neural
training of these 2-epoch batches. Note that DAHA only stores
the subgraph structural information of the batches at the batch
preparation stage so that the feature information is not duplicated
to avoid redundant memory usage. By grouping tasks with the
same nature, more tasks sharing similar patterns of data access and
device utilization are processed together. This can increase data and
device affinity and amortize the cost of memory access and kernel
launching. As a result, by processing more tasks of the same nature
together, DAHA reduces the per-batch cost due to the amortiza-
tion. This is an analogy to economies of scale which refers to the
unit production cost advantage experienced by a company when it
increases its production level of output. Despite the amortization
effect, when too many tasks are grouped together, which means too
many batches are produced together, it will increase the time cost
to schedule the execution and impose pressure on device capacity
of both storage and computation power, lowering the benefit of
the grouping strategy. This is an analogy to diseconomies of scale
when a company grows so giant that the per-unit cost increases
with the production level.

S0 & S1 T0 T1
GPU

CPU
S2 & S3 T2 T3

Time

Figure 3: Group-based in-turn pipeline. 𝑆𝑖 and 𝑇 𝑖 mean the
sampling and training stages of 𝑖-th epoch, respectively.

In order to effectively leverage all the available hardware to
schedule both the batch preparation and neural training stages,
DAHA needs to estimate the batch preparation (sampling) time and
the statistics of the involved MFGs of an arbitrary batch to distrib-
ute the workloads to different devices. An accurate and efficient
estimation scheme is not trivial due to the randomness brought
by different batch sampling algorithms, the complexity of overlap-
ping neighborhoods of different target nodes, and the uncertainty
of target nodes in a batch rising from shuffling. To address these
challenges, DAHA proposes two strategies: (1) adaptive shuffling
and (2) progressive scheduling.

Adaptive shuffling. Though seldom explored in literature, we
find in experiments that shuffling has a substantial influence on
both the effectiveness of the model and the efficiency of the training
process. Briefly speaking, enabling shuffling could strengthen the
generalization of the model, typically resulting in higher test accu-
racy of more than 1%. Meanwhile, it can slow down the end-to-end
training speed by up to 10%. To strike a balance between effec-
tiveness and efficiency and pave the way for a reliable estimation
scheme of the batch preparation time and statistics of the involved
MFGs, DAHA proposes an adaptive shuffling strategy. Similar to
the idea of transfer learning, DAHA disables shuffling in the initial
epochs, which serves as a pre-training step with better efficiency.
Since shuffling is disabled, the uncertainty of target nodes in a
batch is eliminated so that DAHA can apply forecasting methods

1367

for estimation, as covered in our progressive scheduling strategy.
When the accuracy gain becomes insignificant, DAHA concludes
that a decent “pre-trained model” is retrieved and then switches to
enable shuffling to inherit the stronger generalization ability as a
fine-tuning step. With shuffling, however, it is difficult to saturate
the sampling pipeline with static scheduling due to the uncertainty
of shuffling. As a remedy, DAHA dynamically fills gaps in the sam-
pling pipeline with neural operations whose input data enjoys fine
locality to the idle devices.

To find a proper switching point of the shuffling mode, DAHA
monitors the model convergence plot and automatically detects
the elbow point of the plot, which serves as the switching point. It
strikes a balance between the effectiveness of the “pretrainedmodel”
and the end-to-end efficiency since there will not be significant
accuracy gain after the elbow point. After the switching point, it
just requires a few more epochs to converge with the “pre-trained
model” and “shuffle on” mode.

Progressive scheduling.With “shuffle off” mode, DAHA for-
mulates the estimation of the batch sampling time and statistics of
the involved MFGs as a forecasting problem. Based on the formu-
lation, DAHA proposes a progressive scheduling framework. At
the beginning of GNN training, DAHA splits the sampling requests
evenly on the available devices to obtain the initial observations
of the sampling time and statistics of the involved MFGs for fore-
casting in the following runs. Since the targeted variables typically
vary alongside a median value and no obvious seasonal trend is ob-
served in our experiments, DAHA uses the moving median method
to ensure effective and efficient estimation.

In the first round to obtain the initial observations, since GPU
typically enjoys faster speed and finishes earlier than CPU, DAHA
again dynamically fills in some proper neural operations as in the
“shuffle on” mode to saturate the possible idle devices to achieve a
higher utilization rate.

In later rounds, with the progressively refined estimations ob-
tained from the forecastingmethod, DAHAperforms the scheduling
of the sampling workloads on the CPU and GPU workers. We de-
fine the problem as follows. We are given 𝑛 batches to sample to
be scheduled on either CPU or GPU and their processing time is
given by the forecasting estimates. Assume that GPU sampling
speed is uniformly faster than CPU, that is, there exists a speed
factor 𝑠 such that for an arbitrary batch B𝑖 , the sampling time of
B𝑖 on GPU equals its sampling time on CPU divided by 𝑠 . Our
goal is to determine the optimal execution plan that minimizes the
makespan. This problem can be modeled as a uniform-machines
scheduling problem. It has a FPTAS running in𝑂 (𝑛/𝜖2) time which
yields at most 1 + 𝜖 times the optimal makespan [13]. Since DAHA
leverages all available devices, the objective of minimum makespan
also ensures balanced workload and high utilization rates of all
devices because otherwise the makespan can be further shortened
by assigning some additional tasks to the idle devices. Also, because
we have static estimations of the sampling time of the batches, the
inputs to the scheduling problem remain the same. Hence, we just
need to solve it once for all following runs.

3.2.2 Data and hardware aware rewriting rules for intra-batch execu-
tion plan graphs. On top of the novel group-based in-turn pipelining
strategy, DAHA proposes both intra-batch and inter-batch neural

training optimizations to better tailor the hardware to the input
data. Since the entire statistics of the batch are available before
the neural training stage due to the group-based in-turn pipeline,
with the data and hardware aware cost models in Eq.2-4, DAHA
can perform effective and efficient execution planning for both
intra-batch level and inter-batch level scheduling for every epoch.
We first present the intra-batch strategy.

Abstraction as execution plan graph (EPG). As in Section 1,
existing works have some limitations in the roles of hardware with
a tendency to constrain CPUs to graph operations and GPUs to
neural operations. To explore more optimization opportunities by
considering both CPU and GPU as a general-purpose processing
unit, DAHA views the GNN training as matrix multiplications and
a typical forward propagation can be abstracted by

𝑍 𝑙+1 = 𝐴𝐻 𝑙𝑊 𝑙 , 𝐻 𝑙+1 = 𝜎 (𝑍 𝑙+1), (5)

where 𝐴 is the sparse modified adjacency matrix, 𝐻 𝑙 is the dense
node embedding matrix and𝑊 𝑙 is the dense weight matrix at the
𝑙-th layer. DAHA then abstracts the execution of the matrix mul-
tiplication as an execution plan graph (EPG) which is a directed
acyclic graph (DAG) capturing the dependency of the intra-batch
computation. In an EPG, each node represents an operation and
each edge captures the dependency of the operations.

For example, the EPG of the classic pure GPU execution is shown
in Figure 4a. For simplicity of illustration, only the execution plan
of 𝑍 𝑙+1 = 𝐴𝐻 𝑙𝑊 𝑙 is shown. The three nodes at the top whose in-
degree is zero are the roots of the DAG. They represent the inputs
for execution. They are then transferred to GPU for further pro-
cessing, represented by the “to GPU” nodes. Since the actual inputs
are needed before the data transfer, there exists an edge from each
input node to the corresponding “to GPU” node, representing the
dependency. Similarly, the matrix 𝐴 and 𝐻 need to be transferred
to GPU before their multiplication on GPU can be executed, rep-
resented by the area of the dashed rectangle. Finally, the desired
output is retrieved by the bottom node.

To better illustrate the device utilization of the classic pure-GPU
execution plan, Figure 4c gives a per-device execution plot. Since
the spmm of 𝑇 = 𝐴𝐻 is the first dependent GPU operation, the
PCIE bandwidth for CPU-GPU data transfer places a higher priority
on the matrix𝐴 and𝐻 than𝑊 . After𝐴 and𝐻 are ready in GPU, the
spmm of 𝑇 = 𝐴𝐻 can start along with transferring𝑊 . After both
finish, GPU can then perform the mm of 𝑍 = 𝑇𝑊 . As shown in
Figure 4c, such an execution plan has poor efficiency on intra-batch
device utilization since only the relatively lightweight operation of
transferring𝑊 can be pipelined with the spmm of 𝑇 = 𝐴𝐻 .

Neural training with hybrid processing units (HybridPU).
By rewriting the EPG, various candidate execution plans with hy-
brid utilization patterns of both CPU and GPU can be explored for
optimization. Based on the EPG abstraction, the available batch
statistics as well as our data and hardware aware cost model, DAHA
proposes a novel HybridPU strategy that rewrites the pure-GPU
EPG to retrieve an efficient execution plan of the neural training
operations with a hybrid CPU-GPU setting and renders more op-
portunities for pipeline parallelism.

Take the execution of 𝑍 𝑙+1 = 𝐴𝐻 𝑙𝑊 𝑙 as example again, Fig-
ure 4b and 4d show a candidate rewriting rule. It performs the mm
of𝑇 = 𝐻𝑊 on CPU pipelined with the data transferring of 𝐴. After

1368

A
to GPU

H
to GPU

W
to GPU

T = AH
(GPU)

Z = TW
(GPU)

A
(input)

H
(input)

W
(input)

(a) EPG: pure GPU.

A
to GPU

T = HW
(CPU)

Z = AT
(GPU)

A
(input)

H
(input)

W
(input)

T
to GPU

(b) EPG: HybridPU.

A H W

T=AH Z=TW

PCIE

GPU

CPU
Time

(c) Device: pure GPU.

A

Z=AT

T=HW

TPCIE

GPU

CPU
Time

(d) Device: HybridPU.

Figure 4: Pure GPU vs HybridPU.

the mm finishes, it transfers the mm output to GPU for the spmm
of 𝑍 = 𝐴𝑇 to follow. Since the neural transformation involving the
weight matrix𝑊 is performed on CPU ahead of others, we call it
the pre-transformation rewriting rule. The advantages of such
a HybridPU strategy are twofold. Firstly, it renders more oppor-
tunity for pipeline parallelism. As shown in Figure 4d, although
the execution of the mm operation is slower on CPU than GPU, it
can be well pipelined with CPU-GPU data transfer of 𝐴, hiding the
communication cost behind the computation cost. Secondly, not
only the number of operations but also the communication volume
is reduced. The reason is that the pre-transformation on CPU just
needs to transfer the mm output to GPU instead of the two input
matrices and the size of the mm output 𝑇 = 𝐻0𝑊 0 is often smaller
than the input feature matrix 𝐻0 since the hidden dimension is
typically smaller than the feature dimension. As a result, the pre-
transformation rewriting rule serves as a quality candidate. The
pre-transformation is especially effective for forward propagation.
Hence, it also helps accelerate inference.

Another candidate performs the spmm of 𝑇 = 𝐴𝐻 on CPU
followed by the mm 𝑍 = 𝑇𝑊 on GPU, which we call the pre-
aggregation rewriting rule. Pre-aggregation is typically outper-
formed by pre-transformation if we only consider the execution of a
single batch or sequential execution of multiple batches. The reason
is that pre-aggregation performs the more computation-intensive
spmm operation on CPU while GPU speedup for spmm is typically
muchmore significant than mm, as shown later in Table 6. However,

when we consider scheduling and pipelining multiple batches later,
various rewritten EPGs can be useful in different cases because
different resources can be idle at different periods. For example,
in Figure 4d, after the mm 𝑇 = 𝐻𝑊 on CPU of batch 1 finishes,
batch 2 can use pre-aggregation so the spmm 𝑇 = 𝐴𝐻 of batch 2
can continue on CPU without waiting for gradient update.

To decide whether a rewriting rule should be adopted and how
much acceleration is expected, DAHA leverages the batch statistics
and our data and hardware aware cost model to estimate the time
cost. Notably, this intra-batch level optimization can be applied to
full-graph training like GCN since the full-graph could be regarded
as a batch. This concludes the data and hardware aware intra-batch
EPG rewriting module of DAHA.

3.2.3 Inter-batch scheduling optimizations. DAHA combines its
intra-batch optimization with inter-batch scheduling to boost de-
vice utilization and improve end-to-end training efficiency.

Problem formulation. Given a set of batches, available CPU
workers, GPU workers, and PCIE bandwidth for CPU-GPU data
transfer. Each batch consists of a series of dependent operations
that can be processed in any order if the dependency is not broken.
Each computation operation in a batch can be processed on any
CPU or GPU worker. Each communication operation consumes the
PCIE bandwidth. Given the per-operation estimates from the cost
model, our goal is to determine the schedule of the operations on
the available hardware that yields the minimum makespan.

This formulation takes into consideration the intra-batch EPG
rewriting as well because the intra-batch operations can take place
in an arbitrary order that does not break the dependency. Thus, the
inter-batch scheduling optimizations of DAHA naturally inherit
the benefits of its intra-batch strategies. Besides, there is few risk of
GPU waiting due to synchronization because DAHA can automat-
ically allocate the idle GPU resources to suitable operations and
bounded staleness is applied for more pipeline opportunities.

Hardness of the problem. DAHA’s scheduling problem can be
reduced from a variant of the flexible job-shop scheduling problem
(FJSP) which is NP-Hard [2]. The inputs to FJSP are a set of jobs
and a set of machines. Each job consists of a sequence of opera-
tions processed in such an order that one precedes another. Each
operation can be processed on any machine of a given type and
the duration is known. The goal of the problem is to determine the
schedule that gives the minimum makespan. It is well known that
FJSP is not only NP-Hard but also intractable as it is considered one
of the most computationally stubborn problems [2] and existing
approximation solutions might also fail to have a logarithmic per-
formance guarantee [3, 11]. The possibly many intra-batch EPGs
further add to the hardness of the problem.

Proof of hardness.We prove that FJSP is reducible to our prob-
lem. Consider a FJSP with three input machines namely CPU, PCIE,
and GPU. Each job consists of three operations, CPU computation,
PCIE communication and GPU computation. These three opera-
tions should be processed in the above order on the stated machine.
Then if there exists an solution to DAHA’s inter-batch scheduling
problem, then we can just fix the intra-batch EPG as CPU-PCIE-
GPU and give the scheduling plan. This will minimize the FJSP’s
makespan as well. This finishes the proof.

1369

Algorithm 1 Bi-level EM-based Scheduling Algorithm.
Input :M = {M1, ...,M𝑚}: available processing units;

B = {B1, ...,B𝑛}: batches to schedule; {R1, ...,R𝑟 }: EPG
rewriting rules; 𝑐𝑜𝑚𝑝𝐶𝑜𝑠𝑡𝑀𝑖

(·) and 𝑐𝑜𝑚𝑚𝐶𝑜𝑠𝑡 (·):
computation and communication cost models; 𝜇∗: a
parameter in (0, 1) controlling the grouping quality; 𝛼 : a
rate controlling the increase of grouping quality; 𝛽 :
maximum size of a batch group; 𝜏 : maximum iterations.

Output :An execution plan of the batches on the processing units.
1 Initiate a grouping G = {G𝑖 } randomly that partitions B;
2 𝑓 ← a list of zeros with length |G|;
3 𝜇, 𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 ← 0;
4 while 𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 < 𝜏 and 𝜇 < 𝜇∗ do
5 𝜇 ← 𝜇 + 𝛼 ; 𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 ← 𝑖𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 + 1;
6 foreach G𝑖 ∈ G do
7 𝑓 [𝑖] ← 0;
8 Apply the candidate EPG rewriting rules {R1, ...,R𝑟 } to G𝑖

to list the feasible execution plans of the group;
9 Apply 𝑐𝑜𝑚𝑝𝐶𝑜𝑠𝑡𝑀𝑖

(·) and 𝑐𝑜𝑚𝑚𝐶𝑜𝑠𝑡 (·) to estimate the
makespan of each execution plan;

10 Determine the execution plan P𝑖 that minimizes the
makespan and the minimum makespan C𝑖 ;

11 if C𝑖 > (1 − 𝜇) ·
∑︁
B𝑗 ∈G𝑖 𝑐𝑜𝑠𝑡P𝑖 (B𝑗) then

12 𝑓 [𝑖] ← 1;
13 ΔB ← {B𝑗 : B𝑗 ∈ G𝑖 𝑎𝑛𝑑 𝑓 [𝑖] = 1};
14 foreach B𝑗 ∈ ΔB do
15 𝑘 ← argmin

𝑖
𝑐𝑜𝑠𝑡𝑅𝑖 (B𝑗);

16 𝑦 𝑗 ←
𝑐𝑜𝑚𝑝𝐶𝑜𝑠𝑡𝑅𝑘 (B𝑗)
𝑐𝑜𝑚𝑚𝐶𝑜𝑠𝑡𝑅𝑘 (B𝑗) ;

17 ΔG∗ ← argmin
ΔG

max
ΔG𝑖
| log(∏︁B𝑗 ∈ΔG𝑖 𝑦 𝑗) | under the constraint

that |ΔG𝑖 | ≤ 𝛽 for ∀ΔG𝑖 ∈ ΔG, where ΔG = {ΔG𝑖 } is a
grouping that partitions ΔB and |ΔG𝑖 | is the number of
batches in the group ΔG𝑖 ;

18 G ← {G𝑖 : 𝑓 [𝑖] = 0} ∪ ΔG∗;
19 Determine the execution plan P𝑖 that minimizes the makespan for

each G𝑖 ;
20 return G = {G𝑖 } and {P𝑖 };

Algorithm overview. To plan the intra-batch and inter-batch
execution efficiently online, DAHA proposes in Algorithm 1 a
heuristic bi-level EM-based strategy leveraging the grouping idea [9].
The idea behind is that, due to resource limitation and task switch-
ing cost, only a couple batches might be scheduled simultaneously
and interleaving. Hence, we can first focus on planning the exe-
cution of a relatively small number of batches according to the
number of available workers, which is regarded as a batch group,
then switch to another batch group in sequence. This can effectively
reduce the search space. With the motivation, DAHA formulates
the bi-level strategy as below. Denote a set G = {G𝑖 } that partitions
the batches B as a grouping of B. For example, {{𝑎, 𝑏}, {𝑐}} is a
grouping of {𝑎, 𝑏, 𝑐}. At the lower level, since a grouping G is given
and the search space is well reduced, DAHA optimizes the execution
planning of each batch group by leveraging valid EPG rewriting
rules inherited from its intra-batch strategies. At the upper level,

DAHA then evaluates the pipeline efficiency of the optimal execu-
tion plan for each group and optimizes the grouping of the batches
in the inefficient groups. The regrouped batches are then sent to
lower-level optimization, which makes the entire optimization pro-
cess bi-level and recursive like an Expectation-Maximization (EM)
algorithm. The details are in Algorithm 1.

Algorithm detail. DAHA first randomly initiates a grouping
that partitions the batches to be scheduled. It then performs the
lower-level optimization with the help of the candidate EPG rewrit-
ing rules and the cost models to estimate the end-to-end makespan
of each execution plan and choose the optimal intra-batch EPGs
considered together with the inter-batch scheduling. With each
batch group optimized, DAHA identifies the groups that fail to meet
the performance expectation. The criteria for a failed group is that
its optimal makespan is greater than 1 − 𝜇 times the sum of the
optimal makespan of all its belonging batches being pipelined alone.
The criteria justifies that pipelining the batches together cannot har-
vest enough efficiency gain compared to pipelining them separately.
Therefore, the grouping of these batches needs to be re-considered.
Note that with a larger value of 𝜇, DAHA expects to achieve a better
grouping result since the criteria become stricter. Therefore, DAHA
uses an increasing 𝜇 to progressively improve the grouping result.
Another benefit of the adaptive 𝜇 is that it could help break some
local optima by recursively changing the grouping. Further, since
the criteria progressively become stricter, the expected number of
batch groups to be modified is relatively small, which means better
efficiency for the upper level optimization. Now with the target
batches to be re-grouped, DAHA aims to update their grouping with
the objective to balance the computation cost and communication
cost of each group under the constraint that the makespan of each
group is under control. The update objective is to identify batches
that have a high potential to be pipelined efficiently with their
computation cost and communication cost well overlapped. Such
batches are expected to form a quality batch group. The additional
constraint is to control the makespan and size of the batch group for
better efficiency in determining the optimal execution plan at the
lower level. To achieve the update objective under the constraint,
DAHAmaps each batch to𝑦, its ratio of communication cost against
computation cost under the optimal pipelined execution plan. Since
we want a batch group with well-overlapped computation and com-
munication, the desired condition is that the cumulative product
of the 𝑦 values of the batches in the group should be as close as to
1. However, simply using 𝑧 = |1 −∏︁

B𝑗 ∈ΔG𝑖 𝑦 𝑗 | could result in a
bias between over-computation and over-communication because
the range of 𝑧 in terms of over-computation is (0, +∞) while that
of over-communication is (0, 1). Therefore, DAHA adopts the ob-
jective function of 𝑧 = | log(∏︁B𝑗 ∈ΔG𝑖 𝑦 𝑗) |, which has a balanced
range for both cases hence no bias towards any side. To perform the
update, we use a greedy approach for approximation. We maintain
a sorted array of the batches in terms of 𝑦. We then calculate the 𝑧
values of the batches with the maximum and minimum 𝑦 values.
Then we find the batch with 𝑦 value closest to 1

𝑧𝑚𝑎𝑥
and combine

these two batches into a batch group. Regard the batch group as a
new batch, we calculate its 𝑦 value and insert it back to the sorted
array. When the number of batches in a batch group exceeds 𝛽 , we
remove it from the sorted array. The process terminates when the

1370

Table 2: Dataset statistics. “#” means the number of.𝑉𝑜𝑙𝐺 and
𝑉𝑜𝑙𝐹 are the size of the sparse adjacency matrix and dense
feature matrix in MB, respectively.

Dataset #Nodes #Edges #Feat. #Class 𝑉𝑜𝑙𝐺 𝑉𝑜𝑙𝐹

Cora 2708 10556 1433 7 0.403 14.803
Citeseer 3327 9104 3703 6 0.350 46.997
Pubmed 19717 88648 500 3 3.382 38.000
CS 18333 163788 6805 15 3.125 476.000
Physics 34493 495924 8415 5 9.459 1108.000
Arxiv 169343 1166243 128 40 44.898 82.687
Products 2449029 247436304 100 47 4720.000 934.230
Reddit 232965 229231784 602 41 4372.450 534.992

sorted array is empty or the remaining array has 𝑦 values all larger
or smaller than 1. With the upper level optimized, DAHA then goes
to the lower level again, which initiates the recursive EM process.
Finally, when DAHA meets the required pipeline quality or the
maximum limitation on the number of iterations, the optimization
process is terminated and the current batch grouping together with
the execution plan of each group is returned as the output. With the
batch grouping and per batch group execution plan, DAHA further
saturates the pipeline by eagerly starting the next batch group as
early as possible instead of waiting for the previous one to stop
entirely. For example, while the previous batch group finishes its
use of PCIE bandwidth, DAHA can begin transferring the data of
the next batch group from CPU to GPU. DAHA then executes the
batch groups guided by the per-group optimal execution plans and
the eager cross-group optimization.

AlgorithmComplexity. For each iteration, the time complexity
for the upper-level optimization is dominated by the grouping
update. The array sort for𝑦 value of 𝑛 batches takes𝑂 (𝑛 log𝑛) time.
For each batch, it will be processed at most 𝛽 times because after
that, it will be removed from the sorted array. The search for the
batch with the closest𝑦 value to the current group’s reciprocal takes
𝑂 (log𝑛) time. Therefore, the time complexity for each batch is at
most𝑂 (𝛽 log𝑛). Note that this is true for all the batches in the group
with size at most 𝛽 . Therefore, the average time complexity for each
beach is𝑂 (log𝑛) and the total time complexity is 𝑜 (𝑛 log𝑛) for the
grouping update. This shows the time complexity for the upper level
is 𝑂 (𝑛 log𝑛). For the lower level, since we restrict the batch group
size with 𝛽 , the per-group complexity is upper bounded by 𝑂 (𝛽!)
and there are at most 𝑛 groups. Hence, the lower level complexity
is 𝑂 (𝛽! · 𝑛). Therefore, the total time complexity for one iteration
is 𝑂 (𝑛 log𝑛 + 𝛽! · 𝑛). Normally, 𝛽 should be at the magnitude of
available workers. Otherwise the group size becomes too large and
resource contention could occur. In our settings, typically 𝛽 < 10
and 𝑛 < 100. Hence, the complexity is justified and manageable.

This concludes the inter-batch scheduling optimizations of DAHA.

4 EXPERIMENTS
We evaluate the effectiveness and efficiency of DAHA in this section.
The experiment setups are as below.

Environments. The experiments are by default deployed on
a machine “M1” equipped with an Intel i9-12900KF CPU, 32 GB
DDR5 main memory, and an NVIDIA GeForce RTX 3080 Ti GPU

with 12 GB memory. PyTorch v1.12, DGL v0.9 and CUDA v11.6 are
used. We also include “M2” with an Intel(R) Xeon(R) Gold 6240
CPU, a GeForce RTX 2080 Ti GPU and CUDA v10.1 to show the
data and hardware aware ability of DAHA.

Implementation. We implement DAHA based on DGL [28]
using PyTorch [23] backend as the deep learning framework. We
modify the DGL samplers and dataloaders to defer the feature
fetching process in the message flow graph (MFG) of DGL to enable
lightweight storage of only the topology of mini-batches produced
for multiple epochs. To unleash the potential of pipelining and
mitigate the convergence issue, we implement bounded staleness
for gradient updates in DAHA following prior work [10, 24, 26].

Datasets. We evaluate DAHA on the commonly-used [1, 25]
benchmark datasets listed in Table 2. Cora, Citeseer, Pubmed, and
Arxiv (ogbn-arxiv) are citation networks. CS and Physics are coau-
thor networks. Products (ogbn-products) is a product co-purchase
network and Reddit is a post-to-post graph. These datasets are all
publicly available on DGL [28], OGB [14], and PyG [8]. We aim to
select graphs with different sizes, densities, and feature dimensions
to evaluate whether DAHA can tailor different kinds of input data
to consistently accelerate the end-to-end training process.

GNN models. We use three popular message-passing GNN
models for evaluation: (1) GCN [19] with full-graph training, (2)
GraphSAGE [12] with node-level sampling for mini-batch training,
and (3) GraphSAINT [34] with subgraph-level sampling for mini-
batch training. 100 epochs are used for all models by default. For
mini-batch training, we use a batch size of 8192. A budget of 16384
is used for GraphSAINT with node sampler.

Baselines. We compare DAHA with three popular frameworks
and systems, PyTorch [23], DGL [28], DGL+, ByteGNN [37] and
SALIENT [16]. Since we implement DAHA based on PyTorch, it
is natural to measure how much speedup gain is achieved against
PyTorch. DGL is a popular dedicated mini-batch GNN training
framework. We report its classic CPU-sample-GPU-train pattern
as DGL and its pure-GPU execution with GPU sampling and GPU
training as DGL+. Since original ByteGNN uses pure-CPU execu-
tion, we extend it by running its original version on CPU and DGL+
on GPU simultaneously for fair comparison with others since they
share the same available hardware resources. SALIENT is an up-to-
date mini-batch GNN training system work with a pipeline parallel
strategy and a fast sampling implementation. For fair comparison
with DGL, we use the DGL sampler for all the baselines. We test the
GCN model on the small datasets Cora, Citeseer, Pubmed, CS, and
Physics for performance evaluation on full-graph training while
the GraphSAGE and GraphSAINT models on the medium to large
datasets Arxiv, Products, and Reddit for mini-batch training. Since
our focus is on execution planning and pipelining while GNNLab
focuses on caching policy and situations where GPU memory can-
not hold both graph topology and feature data, we do not compare
with it. For DistDGLv2 [38] and the work by Kim et al. [18], their
execution pattern is represented and covered by SALIENT and
ByteGNN, respectively. Hence, we do not compare them to DAHA.

4.1 Overall Performance
We first compare the overall performance of the competitors. We
report the average time elapsed for GNN training (excluding the

1371

Cora Citeseer PubMed0.000

0.005

0.010

0.015

0.020

0.025

Pe
r e

po
ch

 ti
m

e
(s

ec
)

GCN
classic GPU
intra-opt

(a) DGL datasets.

CS Physics0.0

0.1

0.2

0.3

0.4

0.5

Pe
r e

po
ch

 ti
m

e
(s

ec
)

GCN
classic GPU
intra-opt

(b) PyG datasets.

Figure 5: Overall performance for GCN.

Table 3: GraphSAGE accuracy with various shuffling mode.

Dataset Shuffle on Shuffle off Adaptive shuffle
Arxiv 69.58 68.11 69.21

Products 76.76 76.40 76.50
Reddit 96.29 96.22 96.27

model evaluation time) per epoch over a 100-epoch run. For the
GCN model on Cora, Citeseer, Pubmed, and CS, we compare DAHA
with PyTorch to illustrate the computation speedup gained from the
re-written EPGs of DAHA since no batch preparation operation is
involved. For the GraphSAGE and GraphSAINT models on Physics,
Arxiv, Products, and Reddit, we compare DAHA with others to
evaluate the end-to-end pipeline parallel strategies of DAHA. We
also report the accuracy of mini-batch training to show that DAHA
can achieve significant speedup at a negligible cost of accuracy.

4.1.1 GCN speedup. Figure 5 shows the per-epoch training time
of GCN on both DGL and PyG datasets. Each of the two adjacent
bars records the performance of PyTorch (left) and DAHA (right)
on one dataset. DAHA achieves 48.36%, 55.92%, 51.53%, 59.13%, and
58.01% less end-to-end training time compared with the PyTorch
implemented with classic pure GPU execution on the five datasets,
respectively. Because full-graph GCN training does not involve any
batch preparation cost like sampling, this is the pure computation
speedup of DAHA, attributed to the EPG abstraction of DAHA
and the corresponding intra-batch level optimizations like the pre-
transformation in Section 3.2.2. This proves that by going from
pure GPU computation to hybrid CPU-GPU computation, DAHA
explores more optimization opportunities by effectively utilizing
the otherwise idle hardware resources to reduce the training time.
Additionally, the five involved datasets have various sizes, densities,
and feature dimensions, while DAHA can consistently achieve a
similar yet high speedup regardless of the different settings. This
shows that DAHA can adapt to various kinds of input data to
produce a suitable hybrid CPU-GPU execution plan that effectively
utilizes the underlying hardware.

4.1.2 Mini-batch training speedup. Figure 6 reports the per-epoch
training time of GraphSAGE and GraphSAINT on the three datasets,
Arxiv, Products, and Reddit. Each subplot reports a dataset. The left
y-axis of each subplot is the per-epoch time for GraphSAGE while
the right y-axis is the per-epoch time for GraphSAINT. Table 6
shows that DAHA consistently accelerates mini-batch training for
various kinds of input data. The consistent performance on the

two representative GNN models shows the generalization ability of
DAHA to design the execution plan according to the model specifi-
cations. Compared with the default baseline DGL, DAHA achieves
74.94% and 67.23% less training time on Arxiv with GraphSAGE
and GraphSAINT, respectively. The efficiency gain is 80.83% and
78.00% on Products, and 75.37% and 27.80% on Reddit. Compared
with SALIENT, DAHA achieves an efficiency gain of 43.66% and
50.42% on Arxiv, 54.13% and 72.97% on Products, and 64.61% and
9.66% on Reddit, for GraphSAGE and GraphSAINT, respectively.
SALIENT and DAHA achieve better efficiency than DGL due to
their adopted pipeline parallelism. DAHA further beats SALIENT
because (1) the group-based in-turn pipeline strategy achieves a
faster effective sampling time per epoch; (2) the inter-batch level
execution planning further exploits the optimization opportunities
made available by the group-based in-turn pipeline and achieves a
faster effective computation speed. Details will be covered in Sec-
tion 4.2. DAHA also consistently outperforms DGL+with pure-GPU
execution. Since we extend ByteGNN by running its dedicated CPU
scheduling on CPU and DGL+ on GPU simultaneously, ByteGNN
now utilizes both CPU and GPU as both samplers and trainers. But
the process on CPU is independent to the process on GPU. Thus,
it misses inter-device optimization opportunities, which is why
DAHA outperforms it. One exception is the workload of Graph-
SAINT on Products where ByteGNN achieves similar performance
yet is still slower than DAHA. The reason could be that sampling
accounts for the majority of end-to-end time because the sampled
subgraphs are too sparse. This relatively reduces the DAHA’s ef-
fectiveness in inter-batch optimization for training. In addition,
CPU sampling is typically slower than GPU sampling with the
exception of GraphSAINT on Reddit as DGL outperforms DGL+
in this workload. The reason could be the extremely dense con-
nections in Reddit and the sampling mechanism of GraphSAINT.
Thus, SALIENT beats ByteGNN in this workload due to its faster
CPU sampling while ByteGNN beats SALIENT in other workloads.
Despite this, DAHA always achieves the fastest end-to-end time,
showcasing its ability to adapt to various scenarios.

4.1.3 Mini-batch accuracy. Table 3 reports the mini-batch training
accuracy with various shuffling mode. Shuffle on is the common
practice where each epoch shuffles the target nodes to be sampled.
Shuffle off means no shuffling. Adaptive shuffle is DAHA’s strategy
in Section 3.2.1. It shows that shuffle on enjoys the best accuracy
while shuffle off the worst. Shuffle off suffers from an accuracy
drop of nearly 1.5% on Arxiv. Although they converge to a similar
evaluation accuracy, shuffle off typically has poorer generalization
ability which results in its worse test accuracy. This demonstrates
the potential drawback of directly using shuffle off in DAHA. By
leveraging the adaptive shuffling strategy where shuffle off is first
used to get a “pretrained” model and shuffle off is then used to
obtain a fine-grained result, DAHA achieves better test accuracy
than shuffle off and is comparable with shuffle on.

4.2 Breakdown Analysis
We then analyze the effectiveness of each of the three modules
in DAHA: (1) group-based in-turn pipelining; (2) intra-batch EPG
rewriting; and (3) inter-batch scheduling. We also examine the scal-
ability of DAHA and demonstrate the efficiency and effectiveness

1372

0 2 4 6 8

−0.04

−0.02

0.00

0.02

0.04

DGL DGL+ ByteGNN SALIENT DAHA

GraphSAGE GraphSAINT0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pe
r e

po
ch

 ti
m

e
(s

ec
)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Arxiv

(a) Arxiv.

GraphSAGE GraphSAINT0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pe
r e

po
ch

 ti
m

e
(s

ec
)

0.0

0.2

0.4

0.6

0.8

Products

(b) Products.

GraphSAGE GraphSAINT0.0

0.1

0.2

0.3

0.4

0.5

Pe
r e

po
ch

 ti
m

e
(s

ec
)

0

5

10

15

20

25

30
Reddit

(c) Reddit.

Figure 6: Overall performance for mini-batch. The left y-axis is for GraphSAGE and the right y-axis is for GraphSAINT.

0 2 4 6 8

−0.04

−0.02

0.00

0.02

0.04

DGL intra inter H+intra H+inter

GraphSAGE GraphSAINT0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pe
r e

po
ch

 ti
m

e
(s

ec
)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Arxiv

(a) Arxiv.

GraphSAGE GraphSAINT0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pe
r e

po
ch

 ti
m

e
(s

ec
)

0.0

0.2

0.4

0.6

0.8

Products

(b) Products.

GraphSAGE GraphSAINT0.0

0.1

0.2

0.3

0.4

0.5

Pe
r e

po
ch

 ti
m

e
(s

ec
)

0

1

2

3

4

5

6

7
Reddit

(c) Reddit.

Figure 7: Ablation study for mini-batch. Left y-axis is for GraphSAGE and right y-axis is for GraphSAINT.

of our data and hardware aware cost model in this section. First,
we introduce four variants of DAHA.

• “intra”: DGL CPU sampler with intra-batch optimizations;
• “inter”: DGL CPU sampler with both intra- and inter-batch

optimizations;
• “H+intra”: group-based in-turn pipelining with intra-batch

optimizations;
• “H+inter”: group-based in-turn pipelining with both intra-

and inter-batch optimizations (DAHA’s default variant).
Table 4 lists the training time statistics for the workloads of training
GraphSAGE and GraphSAINT on Arxiv, Products and Reddit. Ta-
ble 4 and Figure 7 also serve as an ablation study of DAHA as they
show (1) intra-batch EPG rewriting accelerates the training stage
over DGL as intra outperforms DGL with the same sampling stage;
(2) inter-batch scheduling builds on and improves intra-batch opti-
mizations as inter outperforms intra; and (3) group-based in-turn
pipelining can further boost the efficiency as H+intra outperforms
intra and H+inter outperforms inter.

4.2.1 Intra-batch EPG Rewriting. We first analyze the efficiency
gain from the intra-batch EPG rewriting module which introduces
pipeline parallelism to the training stage alone. The effectiveness of

our intra-batch EPG rewriting has already been partially illustrated
in the GCN speedup in Figure 5 since full-graph GCN training can
be regarded as one batch. In Table 4, we further report the average
computation time (excluding the sampling stage) of all batches for
the mini-batch training setting in the column “intraT”. It can be re-
garded as the standalone time for the neural training stage. Similar
to the full-graph GCN case, DAHA achieves significant speedup for
all the tested datasets and sampling-based mini-batch GNN models.
Although intra does not pipeline the sampling stage as for DGL, in-
tra can achieve much faster end-to-to training time than DGL. Since
the underlying sampler is both DGL’s version, the speedup against
DGL all comes from the computation. This proves that intra can
leverage the otherwise idle CPU to effectively accelerate the neural
computation and hide the communication cost. This serves as an
ablation study on the intra-batch EPG rewriting module of DAHA.
Notably, intra even outperforms SALIENT which pipelines both
sampling and training stages when training GraphSAGE on Reddit.
The reason could be that this workload is extremely computation-
intensive (sampling-light), so the computation speedup of intra has
a great impact on the entire end-to-end training process. For other
workloads, however, since intra wastes hardware resources at the
sampling stage, it still fails to beat SALIENT.

1373

Table 4: Breakdown of DAHAmodules and comparison with others on mini-batch training. The records here are per-100-epoch.
“sample” means the sampling time given the default DGL sampler. “intraT” and “interT” mean the computation time (training
stage only, excluding sampling stage) using DAHA’s intra-batch and inter-batch optimizations, respectively. “DGL” reports
CPU-sample-GPU-train time and “DGL+” reports pure-GPU time of DGL. The last four columns are variants of DAHA.

Dataset GNN sample intraT interT DGL DGL+ ByteGNN SALIENT intra inter H+intra H+inter
Arxiv GraphSAGE 4.40 2.63 1.10 14.26 7.60 5.43 6.34 7.03 5.50 5.10 3.57
Arxiv GraphSAINT 10.24 3.47 1.61 16.32 7.68 6.36 10.79 13.71 11.85 7.21 5.35

Products GraphSAGE 10.38 7.63 3.15 35.00 20.11 14.03 14.63 18.00 13.52 11.19 6.71
Products GraphSAINT 67.38 7.45 3.15 83.60 20.95 18.59 68.06 74.83 70.52 22.70 18.39
Reddit GraphSAGE 8.14 8.82 5.57 52.26 34.41 21.66 36.37 16.96 13.71 16.13 12.87
Reddit GraphSAINT 551.59 85.81 40.81 702.74 3024.34 846.21 561.64 637.40 592.40 552.36 507.36

4.2.2 Inter-batch Execution Planning. We then analyze the inter-
batch execution planning module, which is unique for the mini-
batch training setting. Since DAHA considers intra-batch EPG
rewriting aswell in its inter-batch execution planning, interT should
be faster than intraT and inter should outperform intra, as evi-
denced by the “interT” column in Table 4 which records the av-
erage computation time with DAHA’s inter-batch optimizations.
This serves as an ablation study on the inter-batch scheduling
module of DAHA. Despite the remarkable efficiency gain of the
intra-batch EPG rewriting module, the inter-batch execution plan-
ning further boosts the computation speed against intra by 58.14%,
53.59%, 58.75%, 57.78%, 36.88%, 52.44% for the six workloads in Ta-
ble 4, respectively. This shows that with intra-batch optimization
alone, a substantial amount of hardware resources are idle. With the
help of DAHA’s inter-batch execution planning, the unsaturated
computation pipeline is filled by effectively utilizing the otherwise
idle hardware resources. As a result, the “inter” variant of DAHA
even outperforms SALIENT on three GraphSAGE workloads out of
the total six workloads listed in Table 4. Since we have exhausted
the optimization space with inter-batch scheduling, it is vital to
emphasize pipelining of the sampling stage as well.

4.2.3 Group-based In-turn Pipelining. Recall that the group-based
in-turn pipelining lays the foundation for DAHA since it provides
novel optimization opportunities for intra-batch and inter-batch
scheduling. The DAHA variants intra and inter also follow the
group-based in-turn pipeline to get accurate time estimates for
scheduling with the exception that they do not perform pipeline
parallelism at the sampling stage. To unleash the full power of
DAHA, pipelining of the sampling stage with all available hardware
resources is vital. As a result, Table 4 shows that the DAHA variant
H+intra outperforms its base version intra by 27.40%, 47.42%, 37.84%,
69.66%, 4.92%, 13.34% for the six tested workloads, respectively. The
DAHA variant H+inter also outperforms its base version inter by
35.03%, 54.85%, 50.38%, 73.92%, 6.08%, 14.36%. This serves as an abla-
tion study on the group-based in-turn pipelining module of DAHA.
The speedup for training GraphSAGE on Reddit is limited while for
training GraphSAINT on Products is significant. The reason is that
the former workload is extremely computation-intensive while the
latter is extremely sampling-intensive. The different bottlenecks in
the pipeline result in different end-to-end speedups. Despite this,
DAHA consistently accelerates the end-to-end training time with a
remarkable average speedup by enabling pipelining in the sampling

1 2 3 4 5 6 7 8
Replication

0.2

0.4

0.6

0.8

1.0

Ti
m

e
pe

r e
po

ch
 (s

ec
)

Figure 8: Scalability of DAHA on replicated Products dataset.

Table 5: Preprocessing time in seconds for cost model.

Machine Data collection Regression
M1 37.8564 0.0205
M2 64.2065 0.2793

stage. Now DAHA outperforms SALIENT on all the six workloads
even with H+intra. This showcases that the group-based in-turn
pipelining strategy of DAHA not only prevents slow production of
sampled batches from blocking fast consumption but also opens up
a diverse space for optimization opportunities.

4.2.4 Scalability. To evaluate the effect of data size, we replicate
the Products dataset from 𝑛 = 2 to 8. We extend DAHA to treat
each replication as a different subgraph to mimic the condition
where the GPU memory cannot hold the entire graph adjacency
(assume only one replication can reside in GPU), so frequent swaps
in and out of subgraphs are needed. Figure 8 reports the per-epoch
time. Note 𝑛 = 1 means the original result. It shows that DAHA
hides the CPU-GPU transfer cost of the graph adjacency behind
other operations with its pipeline execution planning and achieves
a near-linear growth of end-to-end time.

4.2.5 Data and hardware aware cost model. We also demonstrate
the efficiency and effectiveness of our data and hardware aware
cost model. Table 5 reports the data collection and regression time
to retrieve the cost model. We use 10 data points to fit the regression
model and each comes from a random subgraph of Pubmed. Table 6
lists the true and predicted time cost of various operations on vari-
ous datasets, devices and machines. The operation of data transfer
consists of transferring both the sparse adjacency matrix and the
dense feature matrix. DAHA consistently gives accurate estimates

1374

Table 6: Comparison of true and predicted time cost (in seconds). The statistics are per 100 epoch. Data transfer involves both
the sparse adjacency matrix and the dense feature matrix.

Machine
Operation spmm mm Data transfer
Dataset Pubmed CS Physics Pubmed CS Physics Pubmed CS Pyhsics
Device CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU PCIE PCIE PCIE

M1 Truth 5.8000 0.5000 68.8993 6.2001 243.9285 17.3027 0.3001 0.1000 1.0000 0.1001 2.4999 0.2000 0.6000 6.0110 13.8314
Prediction 5.7397 0.4994 69.2511 5.5836 235.2394 17.6340 0.3061 0.0945 0.9029 0.0988 2.4201 0.2044 0.5434 5.9200 13.6227

M2 Truth 4.8111 0.2213 57.3462 1.8583 231.3737 6.1514 0.0209 0.0147 0.8864 0.2030 2.2079 0.3689 0.9971 10.9417 25.2243
Prediction 4.8857 0.2224 58.1973 1.7921 276.5741 6.3681 0.0216 0.0142 0.9073 0.1890 2.2909 0.3719 0.9793 11.0075 22.1922

on the three datasets of various sizes, densities and feature dimen-
sions for different devices. Notably, the GPU speedup for the spmm
operation is typically much more significant than the mm operation.
This also justifies the design of the pre-transformation strategy in
our intra-batch EPG rewriting module. We just need to preprocess
each machine once for the cost model in advance of model training
and its performance is satisfying for various datasets. This shows
the hardware and data awareness of DAHA to adapt to different
hardware and input data. Since the preprocessing is once-for-all
and fast, we exclude it from the end-to-end training time. The cost
model takes 0.005 seconds for 100 predictions, thus, the validation
overhead during training is trivial.

Summary of experiments. (1) DAHA consistently outperforms
the tested baselines in terms of end-to-end training efficiency; (2)
The group-based in-turn pipelining strategy of DAHA diversifies
the optimization opportunities to accelerate end-to-end training;
(3) The intra-batch EPG rewriting module and the inter-batch ex-
ecution planning module of DAHA consistently and significantly
accelerates the GNN computation.

5 RELATEDWORK
We examine the related work and identify a research gap here.

The efficiency issue of GNNs attracts many research interests
to apply DB4AI techniques to accelerate GNN training and many
works have been published on top database conferences [20, 24, 27,
29, 35–37, 39]. The CPU-sample-GPU-train execution in the popular
GNN frameworks like DGL [28] faces high batch preparation cost
and CPU-GPU data transfer cost [16], which can result in device
under-utilization and poor efficiency. There are mainly two classes
of optimizations that could help.

Pipeline parallelism. To address the data transfer bottleneck,
Dorylus [26] breaks down the forward and backward passes into
fine-grained tasks to identify pipeline parallelism opportunities.
However, the system is designed for the serverless scenario, which
differs greatly from the commonCPU-GPUmachines. SALIENT [16]
leverages a faster sampling approach and novel pipelining strategies
to offset the influence of batch preparation and data transfer cost.
DistDGLv2 [38] proposes an asynchronous mini-batch preparation
pipeline for the distributed setting to overlap batch preparation and
data transfer with batch computation. However, limited by their
device utilization pattern, slow sampling could still block the follow-
ing operations and the pipeline might not be effective. In addition,
the smallest unit in the pipeline is the computation or communica-
tion of one entire batch, ignoring operation-level optimization. The
limited hardware utilization pattern and coarse-grained pipeline
limits the optimization opportunities.

Device utilization pattern. GNNLab [32] suggests a new com-
puting paradigm better leveraging the GPUs. It aims to alleviate
the GPU underutilization problem by proposing a factored system
for a single-machine multi-GPU setup where some GPUs are dedi-
cated to sampling and others to training. Despite the speed gain on
sampling and the high GPU utilization rate, it involves few CPU
workloads, leaving room for improvement by diversifying the role
of CPU cores. Kim et al. [18] perform partial aggregation of on-
device data on both CPU and GPU. But it might encounter CPU
bottleneck when CPUs are overloaded. CPU is limited to sampling
alone and the task division is still coarse-grained as there is no
further breakdown of the aggregation operation.

Despite their efforts, they do not explore all possible device
utilization patterns, hence missing opportunities for optimizing the
execution plan. We aim to fill the gap by expanding the search space
to full combinations of different operations on different devices.

6 CONCLUSION
In this paper, we present DAHA, a data and hardware aware frame-
work that optimizes GNN execution planning at a fine-grained
operation-level. DAHA devises a novel pipeline strategy that in
turn processes the sampling and training stages with all hardware
resources. Along with intra-batch execution plan graph rewriting,
DAHA allows all fine-grained operations in GNN computation to
be executed on all valid hardware. Hence, DAHA explores more
opportunities for optimizing the execution plan. DAHA further
proposes an efficient solution to the optimization problem of inter-
batch scheduling. Extensive experiments show DAHA can effec-
tively accelerate GNN training. An interesting further direction is
to incorporate caching in DAHA.

ACKNOWLEDGMENTS
Yue Wang is partially supported by China NSFC(No.62002235).
Yingxia Shao’s work is supported by the National Natural Science
Foundation of China (Nos. 62272054, 62192784), Beijing Nova Pro-
gram (No. 20230484319), and Xiaomi Young Talents Program. Lei
Chen’s work is partially supported by National Science Founda-
tion of China (NSFC) under Grant No. U22B2060, the Hong Kong
RGC GRF Project 16213620, RIF Project R6020-19, AOE Project
AoE/E-603/18, Theme-based project TRS T41-603/20R, CRF Project
C2004-21G, China NSFC No. 61729201, Guangdong Basic and Ap-
plied Basic Research Foundation 2019B151530001, Hong Kong ITC
ITF grantsMHX/078/21 and PRP/004/22FX,Microsoft Research Asia
Collaborative Research Grant and HKUST-Webank joint research
lab grants.

1375

REFERENCES
[1] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard

Alarcón. 2021. Computing graph neural networks: A survey from algorithms to
accelerators. ACM Computing Surveys (CSUR) (2021).

[2] David Applegate andWilliam Cook. 1991. A computational study of the job-shop
scheduling problem. ORSA Journal on computing 3, 2 (1991), 149–156.

[3] Bo Chen, Chris N Potts, and Gerhard J Woeginger. 1998. A review of machine
scheduling: Complexity, algorithms and approximability. Handbook of Combina-
torial Optimization: Volume1–3 (1998), 1493–1641.

[4] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In ICLR.

[5] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convo-
lutional Networks with Variance Reduction. In ICML.

[6] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In SIGKDD.

[7] Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. 2020.
Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph
Neural Networks. In SIGKDD.

[8] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. http://arxiv.org/abs/1903.02428

[9] Aleksei V Fishkin, Klaus Jansen, and Monaldo Mastrolilli. 2008. Grouping tech-
niques for scheduling problems: Simpler and faster. Algorithmica 51, 2 (2008),
183–199.

[10] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed Deep Graph
Learning at Scale. In OSDI.

[11] Leslie Ann Goldberg, Mike Paterson, Aravind Srinivasan, and Elizabeth Sweedyk.
2001. Better approximation guarantees for job-shop scheduling. SIAM Journal
on Discrete Mathematics 14, 1 (2001), 67–92.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS.

[13] Ellis Horowitz and Sartaj Sahni. 1976. Exact and Approximate Algorithms for
Scheduling Nonidentical Processors. J. ACM 23, 2 (apr 1976), 317–327. https:
//doi.org/10.1145/321941.321951

[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. In NIPS.

[15] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive
sampling towards fast graph representation learning. In NIPS.

[16] Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos, Tao
Schardl, Charles E Leiserson, and Jie Chen. 2022. Accelerating training and
inference of graph neural networks with fast sampling and pipelining. InMLSys.

[17] Qifa Ke, Michael Isard, and Yuan Yu. 2013. Optimus: a dynamic rewriting frame-
work for data-parallel execution plans. In EuroSys.

[18] Taehyun Kim, Changho Hwang, KyoungSoo Park, Zhiqi Lin, Peng Cheng,
Youshan Miao, Lingxiao Ma, and Yongqiang Xiong. 2021. Accelerating gnn
training with locality-aware partial execution. In Proceedings of the 12th ACM
SIGOPS Asia-Pacific Workshop on Systems. 34–41.

[19] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[20] Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. 2023. Zebra: When
Temporal Graph Neural Networks Meet Temporal Personalized PageRank. In
PVLDB.

[21] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. Pagraph:
Scaling gnn training on large graphs via computation-aware caching. In SoCC.

[22] Zekun Lu, Qiancheng Yu, Xia Li, Xiaoning Li, and Qinwen Yang. 2023. Learning
Weight Signed Network Embedding with Graph Neural Networks. Data Science

and Engineering 8, 1 (2023), 36–46.
[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In NIPS.

[24] Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong
Cao. 2022. Sancus: sta le n ess-aware c omm u nication-avoiding full-graph
decentralized training in large-scale graph neural networks. In PVLDB.

[25] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[26] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, and Guoqing Harry
Xu. 2021. Dorylus: Affordable, Scalable, and Accurate GNN Training with Dis-
tributed CPU Servers and Serverless Threads. In OSDI.

[27] Xinchen Wan, Kaiqiang Xu, Xudong Liao, Yilun Jin, Kai Chen, and Xin Jin. 2023.
Scalable and Efficient Full-Graph GNN Training for Large Graphs. In SIGMOD.

[28] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[29] Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and
Ge Yu. 2022. NeutronStar: Distributed GNN Training with Hybrid Dependency
Management. In SIGMOD.

[30] Yongji Wu, Matthew Lentz, Danyang Zhuo, and Yao Lu. 2022. Serving and
Optimizing Machine Learning Workflows on Heterogeneous Infrastructures. In
PVLDB.

[31] Shuo Xiao, Dongqing Zhu, Chaogang Tang, and Zhenzhen Huang. 2023. Com-
bining Graph Contrastive Embedding and Multi-head Cross-Attention Transfer
for Cross-Domain Recommendation. Data Science and Engineering 8, 3 (2023),
247–262.

[32] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen,
Wenyuan Yu, and Jingren Zhou. 2022. GNNLab: A Factored System for Sample-
Based GNN Training over GPUs. In EuroSys.

[33] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD.

[34] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive LearningMethod.
In ICLR.

[35] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song,
Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. 2020. AGL: A Scalable
System for Industrial-Purpose Graph Machine Learning. In PVLDB.

[36] Xin Zhang, Yanyan Shen, Yingxia Shao, and Lei Chen. 2023. DUCATI: A Dual-
Cache Training System for Graph Neural Networks on Giant Graphs with the
GPU. In SIGMOD.

[37] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,
Changji Li, James Cheng, Hao Yang, and Shuai Zhang. 2022. ByteGNN: efficient
graph neural network training at large scale. In PVLDB.

[38] Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George Karypis.
2022. Distributed hybrid CPU and GPU training for graph neural networks on
billion-scale heterogeneous graphs. In SIGKDD.

[39] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network
Platform. In PVLDB.

1376

http://arxiv.org/abs/1903.02428
https://doi.org/10.1145/321941.321951
https://doi.org/10.1145/321941.321951

	Abstract
	1 Introduction
	2 Preliminaries
	3 The Data and Hardware Aware Execution Planning
	3.1 A Data and Hardware aware Cost Model
	3.2 Hybrid CPU-GPU Optimizations

	4 Experiments
	4.1 Overall Performance
	4.2 Breakdown Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

