
Breathing New Life into An Old Tree: Resolving Logging
Dilemma of 𝐵+-tree on Modern Computational Storage Drives

Kecheng Huang
The Chinese University of Hong Kong

kchuang21@cse.cuhk.edu.hk

Zhaoyan Shen∗
Shandong University

shenzhaoyan@sdu.edu.cn

Zili Shao
The Chinese University of Hong Kong

shao@cse.cuhk.edu.hk

Tong Zhang
Rensselaer Polytechnic Institute

ScaleFlux Inc.
tzhang@ecse.rpi.edu

Feng Chen
Louisiana State University

fchen@csc.lsu.edu

ABSTRACT
Having dominated databases and various data management systems
for decades,𝐵+-tree is infamously subject to a logging dilemma: One
could improve 𝐵+-tree speed performance by equipping it with a
larger log, which nevertheless will degrade its crash recovery speed.
Such a logging dilemma is particularly prominent in the presence of
modern workloads that involve intensive small writes. In this paper,
we propose a novel solution, called per-page logging based 𝐵+-tree,
which leverages the emerging computational storage drive (CSD)
with built-in transparent compression to fundamentally resolve
the logging dilemma. Our key idea is to divide the large single log
into many small (e.g., 4KB), highly compressible per-page logs, each
being statically bounded with a 𝐵+-tree page. All per-page logs
together form a very large over-provisioned log space for 𝐵+-tree
to improve its operational speed performance. Meanwhile, during
crash recovery, 𝐵+-tree does not need to scan any per-page logs,
leading to a recovery latency independent from the total log size.We
have developed and open-sourced a fully functional prototype. Our
evaluation results show that, under small-write intensiveworkloads,
our design solution can improve 𝐵+-tree operational throughput by
up to 625.6% andmaintain a crash recovery time of as low as 19.2 ms,
while incurring a minimal storage overhead of only 0.5-1.6%.

PVLDB Reference Format:
Kecheng Huang, Zhaoyan Shen, Zili Shao, Tong Zhang, and Feng Chen.
Breathing New Life into An Old Tree: Resolving Logging Dilemma of
𝐵+-tree on Modern Computational Storage Drives. PVLDB, 17(2): 134 - 147,
2023.
doi:10.14778/3626292.3626297

PVLDBArtifact Availability: The source code, data, and/or other artifacts
have been made available at https://github.com/ericaloha/pBtree.

1 INTRODUCTION
Since the 1970s, the 𝐵+-tree index has gained widespread adoption
and becomes the dominant data indexing structure in a wide range

∗Corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 2 ISSN 2150-8097.
doi:10.14778/3626292.3626297

of data-centric applications, serving as a cornerstone in databases,
search engines, file systems, web caches, andmany other systems [6,
8, 11, 27, 34, 36, 42, 45, 49, 54, 57, 59, 62, 65, 68, 69, 75, 79].𝐵+-tree has
many important and highly desirable merits, such as the efficient
sequential traversal operations by keeping all keys in the sorted
order, a hierarchical structure that minimizes the number of random
reads during lookup operations, partially filled data blocks that can
speed up insertions and deletions, and a recursive algorithm that
ensures the index structure remains balanced even with frequent
changes. These features make 𝐵+-tree a highly efficient, scalable,
and performant structure for indexing large datasets and enabling
fast queries [17, 32, 46, 61, 74, 85].

However, in recent years, the emergence of modern Internet-
based services and web applications has presented unprecedented
challenges for the classic 𝐵+-tree structure. One of the most critical
challenges is its frequently-criticized inability to handle workloads
that involve a large amount of small-sized writes (less than 100
bytes) [3, 19, 43, 46, 85], which is unfortunately often the case in
today’s Internet workloads. As a result, many application systems
are abandoning the once-successful 𝐵+-tree structure, despite its
many well-established and recognized merits.

1.1 Critical Issues
The limitations of 𝐵+-tree are deeply rooted in its basic structural
design. As a multi-tier balanced tree structure, 𝐵+-tree stores data
in leaf nodes and keeps data strictly sorted, which enables quick
locating of the target data. However, such an indexing structure has
an inherent limitation—the data records must be updated in place,
which leads to a sequence of critical issues that make it difficult for
𝐵+-tree to handle workloads with intensive small writes.

Issue #1: I/O amplification. In a typical 𝐵+-tree-based system,
data records are stored in pages, which are often much larger than
a data record. When a record (e.g., 100 bytes) is updated, the entire
data page (e.g., 16 KB) must be first loaded from storage, updated
in memory, and then written back to persist the change on stor-
age. This process, known as “read-modify-write”, can cause severe
I/O amplification problems [46, 68, 81, 85], resulting in a storm of
random I/Os with unnecessary data transfer. Moreover, since most
𝐵+-trees tend to retain a low fill factor (the ratio of valid data to
node size) to reduce the number of index node splits, most of these
data pages contain only half a page of meaningful data, which is a
further waste of both I/O time and memory.

134

https://doi.org/10.14778/3626292.3626297
https://github.com/ericaloha/pBtree
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3626292.3626297
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Issue #2: Underutilized buffer pool. In an attempt to address
the aforementioned I/O amplification issues, most 𝐵+-tree-based
systems incorporate a large buffer pool to temporarily hold updated
data in memory and delay costly flush operations as long as possi-
ble. However, since each in-memory page is strictly mapped to a
corresponding data page on storage, it requires significant space
to accommodate dirty data pages in memory, even if only a few
records are updated. As time elapses, much of the buffer pool space
is wasted on buffering dirty pages, rather than effectively serving
as a cache for speeding up data retrievals. The limited buffer pool
resources are thus wasted, resulting in poor performance.

Issue #3: Logging dilemma. Buffering dirty data in memory
poses another issue, data persistency. In order to ensure data in-
tegrity in the event of system failures, 𝐵+-tree based systems tem-
porarily store each updated record in a change log rather than solely
in the volatile buffer pool to avoid costly flush operations that are re-
quired to persist data immediately to storage [26, 31, 43, 51, 58, 71].
Although it converts “in-place updates” to more efficient “out-of-
place appending”, upon system failures, the change log must be
replayed to recover the lost data. An undesirable result is that the
log, besides occupying significant storage space, also lengthens the
recovery period, resulting in long system downtime and service
outages. In order to limit the log size, periodic checkpointing is neces-
sary to enforce the flush of dirty data pages, so that the correspond-
ing records in the log space can be reclaimed promptly [26, 43, 51].
On the other hand, frequent checkpointing incurs many small and
random I/Os, negatively impacting system performance. Eventually
it creates a difficult trade-off between runtime performance, buffer
pool and storage space usage, and recovery speed, resulting the
logging dilemma in 𝐵+-tree-based systems.

In this paper, we aim to revisit the design of the classic 𝐵+-tree
and fundamentally address the critical issues that have limited its
effectiveness in the modern age. Our goal is to breathe new life into
the decade-old𝐵+-tree structure byminimizing its I/O amplification,
optimizing its use of the buffer pool and storage space, and enabling
near-instant recovery.

1.2 Our Solution
All of the aforementioned issues essentially stem from the fact that
record data in 𝐵+-tree must be updated in place, directly in the
leaf node. Although each update is appended in the change log for
data persistency in the event of system failures, such updates are
“temporary” until they are properly indexed by the 𝐵+-tree index
structure. In other words, these in-log changes are not persistently
locatable until they are reflected in the original data pages dur-
ing the checkpointing process. Simply extending the log size only
postpones the need for “read-modify-write” operations for in-place
updates, and it exacerbates the need for a large buffer pool and
results in an unbearably long recovery time.

In this paper, we propose a novel solution, called per-page logging
based 𝐵+-tree or p𝐵+-tree, to address the challenges in traditional
𝐵+-tree structures. Our key idea is to create a “virtualized” data
page for each leaf node, which consists of the original data page and
a small append-only region, called per-page log. In-place updates
to a data page are then converted to “in-place appending”, with all
changes recorded in the per-page log. As each virtual page is ad-
dressable by the 𝐵+-tree index structure, all updates are effectively

persistent, completely eliminating the need for a large change log
and enabling near-instant recovery upon system failures.

This solution essentially breaks down the huge global log into
many small per-page logs and disperses them to each data node.
It leverages the indexing structure of the existing 𝐵+-tree to make
updates in the log quickly persistent and index-addressable. This
approach transforms expensive in-place writes to much lower-cost
appending operations while removing the need for in-memory
buffering and a large change log. It ultimately eliminates the cause
of checkpointing-induced performance issues and shortens recov-
ery time, thus freeing us from the difficult logging dilemma. How-
ever, this solution also poses a critical problem—a huge storage
capacity waste due to the pre-allocated per-page logs.

Our solution is made possible by the emerging computational
storage drives (CSD), which offers transparent on-device compres-
sion capability [1, 18, 72, 73, 86]. This new hardware technology
provides a virtualized storage space and transparently compresses
data on the I/O path. It enables us to create a large, over-provisioned
“virtual” page for each node without wasting physical storage on
reserved space for partially filled per-page logs. This is essential to
our solution, as it allows us to fully realize the benefits of our pro-
posed approach at a minimal storage cost. We have implemented a
fully functional prototype of p𝐵+-tree and conducted experiments
on a commercially available CSD from ScaleFlux [73]. To demon-
strate its effectiveness, we have compared its performance with a
conventional 𝐵+-tree-based system with an ARIES-style logging
mechanism [58]. Our evaluation results show that per-page logging
and our proposed solution can significantly improve the run-time
performance by up to 625.6%, with minimal physical space overhead
and near-instant recovery.

The rest of this paper is organized as follows. Section 2 presents
the background. Section 3 and Section 4 introduce the proposed
design solution and evaluation, respectively. Section 5 discusses
the related work. Section 6 concludes the paper.

2 BACKGROUND
2.1 𝐵+-tree-based Storage Engine
𝐵+-tree-based storage engines are widely used and play a vital role
in enterprise and customer applications [27, 46, 54, 57, 59, 61, 62,
65, 68, 75, 85]. Figure 1(a) illustrates the architecture of a typical 𝐵+-
tree, which consists of three major components: a persistent data
store based on 𝐵+-tree, an in-memory buffer pool, and a logging
component [26, 31, 43, 51, 58, 71].

𝐵+-tree structure. A 𝐵+-tree is an m-ary tree with a large num-
ber of children per node [26, 27]. It consists of three types of nodes:
root, internal, and leaf. Data items are stored in leaf nodes, while in-
ternal nodes maintain the indexes of their children. By default, each
node is allocated a fixed-sized page (e.g., 16KB) [59, 62]. To insert
a record into the 𝐵+-tree, the tree is first searched to find the leaf
node that the new record should go into. If the node has sufficient
space to accommodate the new record, the data is directly added to
the node. Otherwise, the split operation is triggered, during which
the original node is split into two nodes, and its data (data or index
items) are evenly separated and put into the two new nodes. The
indexes for the two nodes are inserted into their parent node. The
split operation is recursively conducted for the involved sub-trees
until all the nodes are under their size limit.

135

In-memory
Buffer Pool

Persistent
Data space

Persistent
Log space

B A DLRU

FLU

A B C D EA B C D E

...

PUT(km ,v) GET(kn)

C_id

Mapping
Table

C
... ...

A_id A

R1 R2 Rp...

C

A B C D EA B C D E ...

...

A B C D E ...

...

1.miss

2. load and
update

3. append
logging

1.missE_id E

2. load and
update

E

D AC

log record

Index nodedata node
data node
logical copy

Persistent Data space

FLU

...

Least
updated

Last
updated

checkpointing!

......

In-memory Buffer Pool

1. flush pages

2. persist checkpoint

Persistent Log space

... ...200

invalid valid

log recordlog record

data nodedata node

checkpointcheckpoint

flushed nodeflushed node

LSNlast 310 228 210 200 180 110

LSN 20 … 201 … 380

LSNleast 130 … 190 ... 230 …

LSNleast 310 268 240 230 190 130
...
...

...

...

(a) 𝐵+-tree-based system (b) Logging and checkpointing

User Apps
 & OS

NAND
flash

Flash
control

SSD

Controller

PCIe

HWSW

Compressed
data

Compressed
data

0 ...

Transparent
compression

4 KB

LBA space can be utilized
(e.g., 32 TB)

NAND flash
(e.g., 4 TB)

FTL with transparent
compression

LPN PPN
0 3
1 3
2 3
3 4

Page 00
Page 01
Page 02
Page 03 (A)(B)(C)

Page 04

B
lo

ck
 0

1

...

...

...

Mapping table Flash area

Write(0,A)
Write(1,B)
Write(2,C)

(a) Architecture overview

(b) Workflow

(c)

(d)

C
o

m
p

re
ss

io
n

en

gi
n

e

Compression &
Decompression

Valid user data

(c) CSD with built-in transparent compression

Figure 1: Illustrations of a 𝐵+-tree-based system, logging and checkpointing, and CSD with built-in transparent compression.
In real-world deployment, 𝐵+-tree nodes often suffer from sig-

nificant under-utilization of the allocated space. Prior studies show
that the average fill factor, i.e., the ratio of valid data to node size,
is typically only around half of the node size [35, 41, 82, 83]. Our
own experiments also show that the average fill factor is around
51.2% after a 90-minute random read/write workload. To address
this space overhead, current enterprise 𝐵+-tree solutions adopt
software-based compression [9, 21, 28, 64, 86] or condensed data
format [55, 77], but such approaches complicate the application
design significantly and also introduce extra computation overhead.
The new computational storage drive provides hardware support by
offloading compression to the device without performance penalties.
More details will be discussed in Section 2.3.

Memory buffer pool. 𝐵+-tree-based storage engines often in-
corporate an in-memory buffer pool for two main purposes: caching
frequently accessed pages and buffering updated (a.k.a., dirty) pages.
Cached data pages are managed through an LRU (Least Recently
Used) list. Dirty pages that have been modified in the buffer pool
are tracked using two monotonically increasing Log Sequence Num-
bers (LSNs): 𝐿𝑆𝑁𝑙𝑎𝑠𝑡 records the oldest revision of the page and
𝐿𝑆𝑁𝑙𝑒𝑎𝑠𝑡 records the newest revision of the page. To keep track of
these dirty pages, a FLU (Flush) list stores pointers to these pages
based on their 𝐿𝑆𝑁𝑙𝑎𝑠𝑡 . Once the buffer pool reaches a threshold, a
flush operation is triggered to write the dirty pages from the FLU
list to the storage in LSN order. It follows the write-ahead logging
protocol [51, 59, 62, 71], which ensures that changes made to the
pages are durable and recoverable in the event of system failures.

As illustrated in Figure 1(a), upon a write operation, the buffer
pool is first queried to determine whether the corresponding data
page is present in it or not. If true, the data item is updated directly
in memory. Otherwise, the data page must first be loaded from stor-
age into it before the update can be applied. Similarly, for read query
operations, the buffer pool is also checked first. If the corresponding
data page is found there, the data is returned. Otherwise, the data
page needs to be loaded from storage into the buffer pool before
the data is returned. The buffer pool serves write requests using
an in-place update method, which requires loading the target data
page from the slow persistent storage if it is not already present in
the buffer pool. This operation, known as “read-modify-write”, se-
verely amplifies the I/O volume and introduces unpredictable, slow
random I/Os, resulting in inefficiencies in 𝐵+-tree-based systems,
especially in handling intensive small writes.

2.2 Checkpoint-based Logging
The logging component is responsible for ensuring crash consis-
tency by logging 𝐵+-tree page updates and temporarily caching

them in the buffer pool. This alleviates the performance impact of
read-modify-write and random I/Os incurred by update operations.
In the case of a system crash, 𝐵+ can reconstruct all the not-yet-
persisted dirty pages by replaying the updates in the change log. To
reduce the crash recovery latency, a checkpointing process [43, 63]
periodically flushes cached dirty data pages from the buffer pool
to persistent storage according to the FLU and releases the corre-
sponding space in the log.

Figure 1(b) illustrates an example of the checkpoint-based log-
ging scheme. In the buffer pool, a FLU list keeps track of the up-
dated data pages according to their corresponding 𝐿𝑆𝑁𝑙𝑎𝑠𝑡 . Once
the checkpointing process is triggered (e.g., due to too many dirty
pages in the buffer pool or high log space occupation), a certain
number of dirty pages (e.g., 100) at the end of the FLU list are
selected and flushed from the buffer pool to storage. After this
operation, the corresponding log records can be safely discarded.
For instance, after the flush operation, if the 𝐿𝑆𝑁𝑙𝑎𝑠𝑡 of the dirty
page at the end of the FLU is 200, then the log records with LSNs
smaller than 200 can be safely released. During recovery after a
system crash, only log records after the latest checkpoint needs to
be replayed to recover the involved data pages and reconstruct the
database states, such as rebuilding the in-memory buffer pool. This
process reduces the time required for recovery, as only a limited
number of log records need to be processed.

Logging dilemma. Although checkpoint-based logging pro-
vides system crash consistency, the periodic flush operations it
incurs can bring a heavy I/O burden and severely degrade system
runtime performance. While reducing the checkpointing frequency
or eliminating it completely may seem like an intuitive solution to
decrease the involved I/O overhead and interference, it would result
in occupying a huge (or infinite) log space and an unacceptably
long recovery time upon system failures, since all the records in
the change log must be replayed one by one. On the other hand,
although frequent checkpointing operations reduce the log space
usage as well as recovery time, the constantly happening check-
pointing can also interfere with and degrade the performance of the
foreground services. This creates a logging dilemma, for which there
are currently no perfect solutions. This work shows that the emerg-
ing CSD with built-in transparent compression brings a unique
opportunity to fundamentally address this logging dilemma.

2.3 In-Storage Transparent Compression
Generally speaking, CSD refers to any storage drives that can per-
form certain computational tasks beyond their core storage duties.
In this work, we focus on one special type of CSD that provides

136

built-in transparent data compression capability. As shown in Fig-
ure 1(c.a), CSD controller chip integrates a hardware engine to com-
press and decompress each 4KB data block on the I/O path, and the
Flash Translation Layer (FTL) is responsible for managing the stor-
age of post-compression variable-length data blocks in NAND flash
memory. Compared with host-side compression [9, 55, 64, 77, 86],
such in-storage transparent compression completely relieves host
CPU from compressing and decompressing data as well as manag-
ing the storage of post-compression variable-length data blocks.

With a specifically designed ASIC as its hardware compression
engine, the CSD with transparent compression achieves competi-
tive performance, even compared with conventional commercial
SSDs [40, 56, 70]. For example, the ScaleFlux CSD-3310 SSD, which
is used in this work, achieves 1,020K IOPS under the sustained
70/30 random 4KB read/write workload with 2:1 compressible data,
which is 191.4% and 240% higher than that of Samsung PM9A3 [70]
and Micron 7450Pro [56] SSDs without in-storage compression,
respectively. Additionally, since the intra-CSD per-4KB data com-
pression is transparent to the host, CSD is 100% compliant with
standard I/O interfaces, such as NVMe, which greatly simplifies its
real-world deployment.

Figure 1(c.b) illustrates the data mapping inside CSD with trans-
parent compression. Because NAND flashmemory does not support
in-place data update, any flash-based storage drives must internally
maintain a mapping table to record the indirection mapping be-
tween logical page number (a.k.a., LPN) and physical page number
(a.k.a., PPN). In traditional SSDs without built-in transparent com-
pression [29, 30, 87], each incoming 4KB data block is directly
written into one 4KB physical page, hence one LPN maps to one
distinct PPN. In CSD with built-in transparent compression, each
incoming 4KB data block is compressed before being written to
NAND flash memory. As a result, multiple LPNs could map to one
PPN, as illustrated in Figure 1(c.b): for the write operations updating
logical pages 0, 1, and 2 with data A, B, and C, after compression,
such three logical pages can be condensed into physical page 3 and
then programmed to flash memory Block 01 for persistence.

CSDwith built-in transparent compression offers two interesting
properties. Firstly, as shown in Figure 1(c.c), it exposes a virtualized
logical space that can be much larger than its physical storage ca-
pacity, conceptually similar to thin provisioning [23, 60, 67, 68]. This
allows users to provision more logical storage capacity than that
being physically available. Secondly, since repeated data patterns
such as all-zero data are highly compressible, CSD allows users to
pack sparse data inside each 4KB data block without sacrificing the
physical storage cost, as shown in Figure 1(c.d). These two prop-
erties of CSD enable decoupling of user-perceived logical space
from physical storage space. This is essential to our solution, as
it allows data management software, such as the 𝐵+-tree-based
storage engines, to intentionally over-provision space for creating a
sparse data structure in the logical storage space without sacrificing
the physical storage capacity.

3 DESIGN
This section presents a novel design, called p𝐵+ tree, to funda-
mentally address the inherent problems with the traditional 𝐵+
tree-based storage engine. Leveraging the vast, virtualized logical
space provided by CSD, we maintain distributed per-page logs to

Read-favored buffer pool

Read-favored LRU

DRAM

CSD

e.g.,16KB e.g.,4KB

P
er

-p
ag

e
lo

g

P
er

-p
ag

e
lo

g

Linear address space
Data space

Global log

Sealed segment

Data
page

Data
page

...

Virtual page

Minor compaction

Major compaction

Virtual page

...

B
+ -

tr
e

e
 in

d
ex

in
g

<K1,V1>
<K2,V5>
<K4,V4>

<K3,V3>

Open segment
…, Put(K7,V6), Put(K4,V7)

<K1,V1>
<K2,V2>
<K4,V4> <K

2
,V

5
>

<K
3
,V

3
> Data

page
Data
page

...

log recordlog recorddata pagedata page

p

b

...

Persistent data space

... ...

Global log
...

Sealed segments

Open segment

...

Linear address space

Minor compaction

a b c

d e f

g h

a b

d e

Merge sort

Major compaction

per-page log

Foreground log append

m a b p

m

a

(a) 𝐵+-tree with per-page logging (b) An example of the per-page logging

Figure 2: An illustration of the architecture and workflow of
the 𝐵+-tree-based database system with per-page logging.

achieve both high runtime performance and near-instant recovery.
We desire to achieve three important goals:

(1) Runtime and recovery efficiency. Compared with the tradi-
tional 𝐵+-tree implementation, our solution should significantly
reduce I/O amplifications under small-write intensive work-
loads and meanwhile ensure fast crash recovery.

(2) Data persistence and correctness. Our solution should not
affect data integrity. Data persistence and correctness should
remain identical to the traditional 𝐵+-tree implementation.

(3) High space utilization. Our solution should not cause sig-
nificant physical storage cost in comparison with traditional
𝐵+-tree implementation.

We developed a set of design solutions to achieve the above-said
design goals, and accordingly implemented and open-sourced a
fully functional prototype based on real CSD hardware with built-
in transparent compression. In the following sections, we will first
introduce the overall design and then elaborate on each component.

3.1 Overview
As illustrated in Figure 2(a), our solution modifies the 𝐵+-tree im-
plementation from the on-disk storage and in-memory caching
perspectives. While the data nodes are similar to those in the origi-
nal 𝐵+-tree, our proposed p𝐵+-tree maintains a global log and a set
of distributed per-page logs. The global log is a small, append-only
space used to batch small-sized and random updates, similar to the
log in traditional implementation. The per-page logs, in contrast,
are distributed over the storage space. Each 𝐵+-tree page is attached
with a per-page log, acting as a small and private log that keeps
track of changes made to the records of this page. Thus, it can be
regarded as a “delta” to the data page.

The memory part of p𝐵+ tree includes a read-favored buffer pool
and an in-memory global log index. To minimize access latency
and improve runtime performance, the read-favored buffer pool
maintains a set of virtual pages that store copies of the valid data
of hot data nodes in memory, based on their LRU sequence. Each
virtual page is an in-memory copy of the most recent version of
data records, which may reside in the data pages, the per-page
logs, or the global log on persistent storage. The global log index
maintains a small in-memory indexing structure for quick locating
of target data in the global log.

137

3.2 Per-page Logging
To address the dilemma of logging, we leverage the large logical
space provided by CSD to create a sparse data structure on stor-
age, called per-page logs. Essentially, each per-page log is a small,
over-provisioned logical space that contains updates made to its
corresponding data page. As the per-page log is part of the data
node, it represents a small in-place patch to the data records, mak-
ing updates “index-addressable” by the 𝐵+ tree index structure. As
a result, the global log can be small, which allows us to decou-
ple the trade-off between system performance and recovery time,
fundamentally eliminating the root cause of the logging dilemma.

However, realizing the idea of per-page logging is non-trivial due
to several challenges: (1) As per-page logs are distributed over stor-
age space, directly appending each update to separate per-page logs
individually would lead to massive small, random writes. As such
operations reside on the critical path, slow random I/Os can directly
impact foreground services and delay the response of requests. (2)
As the delta to the data page, log records must be retrieved as well
upon data requests, which could increase the latency and delay
read operations. (3) Although CSD enables us to over-provision
a virtualized logical space for accommodating per-page logs, its
physical capacity is still limited. We must have a mechanism to
ensure sufficient reserved space for continuous services.
• Organization of Logs. We propose a per-page logging design
with a two-phase logging approach. In the first phase, we ingest
incoming log writes in an append-only way to a small-sized global
log. This avoids the immediate random writes to the distributed
per-page logs, which would have a significant impact on foreground
workloads. In the second phase, log records in the global log are
asynchronously applied to the corresponding per-page logs in the
background, moving I/Os from the critical path and leveraging the
CSD’s high I/O bandwidth.

Per-page logs are allocated in the granularity of pages. As
shown in Figure 2(a), for each data node in the 𝐵+-tree structure,
p𝐵+-tree allocates a contiguous logical space consisting of two parts:
the data page and a reserved space for the associated per-page log.
Each data node is allocated with a 16KB data page and a 4KB per-
page log, which together form a 20KB virtual data page. This design
brings two benefits. First, by maintaining the per-page log space
immediately after the data page, we do not need to maintain the
extra mapping between them. Second, when accessing a data node,
both its data page and log page can be read from storage together
in one single I/O operation, which reduces the overhead. Per-page
logging offers two important advantages: (1) By appending updates
within its per-page log, read-modify-write operations now can be
minimized. The per-page log accumulates updates as deltas to a
data page, effectively reducing I/O amplification. (2) Benefiting from
CSD’s transparent compression, even partially filled per-page logs
with only a few updates can be efficiently compressed, occupying a
small amount of physical storage capacity. In other words, while
the distributed per-page logs create a logically sparse data layout
on CSD, physical storage space is not wasted.

Global log serves as a small, shared log space for all data nodes,
providing a “staging area” to temporarily accumulate update opera-
tions and quickly persist the changes to storage. The updates in the

global log are periodically flushed to their corresponding per-page
logs in the background, which will be explained later.

The global log consists of an open segment and multiple sealed
segments. An open segment is an active space that accommodates
incoming updates. Once an open segment is filled, it becomes an
immutable, “sealed” segment and waits to be written to the per-page
logs. An in-memory index table is maintained for fast lookup in an
open segment, and can be implemented as a hash-based key-value
mapping table or a small 𝐵+-tree. After a sealed segment is applied
to per-pages logs, its in-memory index can be reclaimed.

The global log brings two benefits. First, as logging is append-
only, it only involves sequential writes, as opposed to randomwrites
that would be incurred if we directly write to per-page logs. Second,
the global log decouples the foreground runtime performance from
per-page logging. A write operation can commit quickly and return
once its operation log is appended to the global log, and the updates
are persisted to the per-page logs later in the background. This
effectively shortens the critical path for writes, allowing the log
records to be asynchronously applied to per-page logs through
parallel and batch I/Os with high bandwidth supported by CSD.
• Log Space Management. Two compaction processes, minor and
major compaction, are responsible for log space management.

Minor compaction. Once an open segment in the global log
becomes full, it transitions into a sealed segment and waits to be
applied to the per-page logs. This process, called minor compaction,
reclaims space from the global log, as illustrated in Figure 2(b). Since
a sealed segment may contain multiple log records that belong to
the same per-page log, applying the log records one by one to their
per-page logs may incur redundant and unnecessary I/Os. Thus we
conduct the compaction process in a batched manner. Specifically,
we (1) scan the sealed segment and retrieve all the involved per-page
logs from storage, (2) apply the log records to update the involved
per-page logs in memory, and (3) flush the updated per-page logs
back to storage. This batched processing exploits the parallelism of
the CSD. In p𝐵+-tree, there may exist multiple seal segments, and
their compaction processes can be performed in parallel.

Major compaction. When the per-page log becomes full, a ma-
jor compaction process is triggered to merge the logged updates
(deltas) to the corresponding data page, and the log space is re-
claimed for accommodating future updates. As shown in Figure 2(b),
once a per-page log exceeds its size limit (e.g., 4 KB), major com-
paction is initiated to (1) load both the log page and data page
into memory in one I/O and merge-sort the key-value pairs, (2)
update the data page with the merge-sorted results, and (3) reset
the per-page log as all-zeros to reclaim the space. If the compacted
data set exceeds the size limit of the data page, such as 16 KB in
our example, a split operation is triggered to divide it into two data
pages, and the tree’s indexing structure (i.e., p𝐵+-tree’s internal
nodes) is updated accordingly.

To configure the frequency of major compaction, we can use a
per-page log fill factor. By default, the fill factor is initially set as
1.0, meaning that the major compaction is triggered only when a
per-page log is completely full. During runtime, we periodically
measure the workload’s read ratio within a time window (e.g., 10
minutes). When the read ratio reaches 80%, 90%, and 100%, we
decrease the fill factor to 0.5, 0.25, and 0, respectively. The rationale
behind this is that read-intensive workloads tend to benefit less

138

 ø PUT(3.a) PUT(4.f) GET(5.m) GET(6.n) Operations

#0

Original
Actions

#1

logging;
update bp (optional);

update G-index;

 reorder
LRU;

#2 #3

logging;
update bp;

 reorder
LRU;

logging;
loading;

update bp;

loading;
flushing;

discarding;

(2)

loading;
discarding only;

In-memory Glog space

n ... a

Index

Read-favored buffer pool

1523 ...

1235 ...

2356

State#1

Persistent data space Persistent Glog space

n ... a

...

1 2 3 4 5 6

B
+-tre

e In
d

ex

f
State#2

f

n

State#3 1

1523 ...State#0

open

seal

seal

...

(1)

......

LRU states

Actions

x

vp-x
vp-y

yx

virtual page as data node

Buffer pool

xx
LRU order

vp-x

Buffer pool

xx
LRU order

vp-y

y

vp-x

vi
rt

u
al

 p
ag

es
 in

 b

u
ff

er
 p

o
o

l

vi
rt

u
al

 p
ag

es
 in

p

er
si

st
en

t
sp

ac
e

Only major compaction
triggers split!

virtual page as data node

data page 1

data page 2

vp-x is full !

glog KV
plog

data page

B+-tree indexB+-tree index

(a) Virtual-page-based 𝐵+-tree structural operation (b) Read-favored buffer pool management

Figure 3: Illustrations of (a) the virtual-page-based 𝐵+-tree structural operation and (b) the read-favored buffer pool.
from per-page logs so we can do compaction earlier to save space
and reduce data access overhead.

Handling updates and queries. The p𝐵+-tree with per-page
logging is optimized for both updates and queries. For an incoming
update operation, the system first checks the in-memory buffer
pool to determine whether its data page is present or not. If yes, the
update is appended to the open segment of the global log, and the
in-memory data page is also updated correspondingly. Otherwise,
the update is directly appended to the open segment of the global
log without reading the data page from storage. This process, which
we call blind update, differs from the original 𝐵+-tree design, as it
avoids the costly read-modify-write updates and consumes limited
buffer pool space. Delete operations are handled as a special type
of updates. When deleting a key, a new record with the key and a
deletion flag as the value is created and inserted into the tree with
an update operation. The space occupied by the deleted record is
reclaimed during compaction operations.

For a query, the system first checks whether its data page exists
in the buffer pool or not. If yes, the required data is directly returned.
Otherwise, we load the valid data of this page from storage. In p𝐵+-
tree, the “valid” data of one node page is the aggregated result of
data in the data page and applied updates from the per-page log
and the global log. Updates found in the global log are considered
more recent than those in the per-page log, which, in turn, are more
recent than the data records in the data page. Hence, it first loads
the data page into memory and then consolidates the data from the
logs as a virtual page, and then returns the data.

The correctness of concurrent updates and queries is guaranteed
by the exclusive execution of operations during compaction and
the strictly defined access order. Instead of blocking the entire
compaction operation, only the compaction results (e.g., the updated
global log, per-page log, and data page) are exclusively applied,
during which accesses to the virtual page is lock-protected. In
addition, the access flow follows the same order as the compaction
operations (i.e., from the global log, per-page log, to the destination
data page one by one, sequentially.). Thus, the concurrent updates
and queries are guaranteed to retrieve the correct version of records.

In the event of a system crash, our per-page logging approach
allows for a much faster recovery process compared to traditional
designs. Instead of replaying a large number of log records (e.g., tens
of GBs) to rebuild the entire buffer pool, we only need to reconstruct
the small in-memory index for the open segment of the global log.
This is possible because the majority of updates are already made
index-addressable in the distributed per-page logs. As a result, we
can achieve near-instant recovery by reconstructing the index for

a small volume of log records (e.g., 100MB), enabling the system to
be restarted immediately to handle incoming requests.

3.3 Virtual Page
The original 𝐵+-tree design adopts a strict “one-to-one” mapping,
where each in-memory data page is mapped to a data node in the
tree, which has a corresponding on-storage copy of the same size.
This ensures that any structural changes to the tree, such as a node
split, can be equally reflected in both copies in a consistent way.

Such a design, however, cannot be directly applied in per-page
logging, because the assumed one-to-one mapping is invalid. In
p𝐵+ tree, the content of a data node is a result of aggregating the
data records in the data page and the updates from the per-page log
and the global log. As a result, the in-memory copy could exceed
the size of the data page on storage, while a node split is not needed
since the indexing is still valid. We need a new approach to handle
page management in the buffer pool.

Virtual page. In p𝐵+-tree, we use virtual page as the basic
caching unit for buffer pool management. A virtual page is a logical
unit that is uniquely indexed by a data node in the 𝐵+-tree struc-
ture. As illustrated in Figure 3(a), each virtual page (denoted as 𝑣𝑝)
maps to a 𝐵+-tree data node and has an in-memory version and an
on-storage version. The two versions are ensured identical.

The on-storage version of a virtual page is a logical group that
consists of data records in the data page, updates in the per-page
log, and unapplied record updates in the global log; The in-memory
version is the aggregated result cached in the buffer pool, being
organized in a list of 4KB pages in memory. If a memory page is
filled, we do not directly split the data page as in the traditional 𝐵+
design. Instead, we simply create a new memory page and insert
it into the list of the virtual page to continue accommodating in-
coming records. Node split only occurs during major compaction,
when the data page can no longer hold new updates and the split
operation must be initiated since the data can no longer be indexed
by a single data node in the tree structure.

Figure 3(a) illustrates split operationwith virtual pages. In this ex-
ample, the virtual page 𝑣𝑝𝑥 becomes full during major compaction.
As the data page cannot accommodate all the data, 𝑣𝑝𝑥 is split into
two new virtual pages, 𝑣𝑝𝑥 and 𝑣𝑝𝑦 , respectively. The new version
of 𝑣𝑝𝑥 and the newly created 𝑣𝑝𝑦 , are then reflected in the buffer
pool. This virtual page split process can be performed iteratively
until achieved at the root node. Since only major compaction can
trigger the split operation, uncoordinated splits can be avoided.

To reduce the frequency of split operations as well as major
compaction, we can selectively flush data pages from the buffer
pool. When a virtual page is evicted from the buffer pool, we check
its fill factor. If the current virtual page contains more than one

139

data page, meaning it is oversized, we can directly conduct the split
operation based on the data records retained in memory, and then
disable and reclaim the records in the per-page log and the global
log for the affected data page in memory. This ensures that the
in-memory and on-storage versions of a virtual page are always
consistent, and that structural correctness is maintained.

3.4 Read-favored Buffer Pool
With per-page logging, read-modify-write operations are no longer
necessary, which eliminates the need to load original data page into
memory. This presents an opportunity for us to redesign the buffer
pool to prioritize reads. We can cache only frequently accessed,
or “hot”, data pages in the buffer pool for efficient reads, while
making all write operations bypass the buffer and directly persist
to the global log (a.k.a. blind update). This read-favored design
can improve system performance by reducing cache pollution with
infrequently accessed data pages, and prioritizing reads over writes.

In our proposed design, the buffer pool only caches hot data
pages for reads, while all write operations bypass the buffer. Only
a read LRU list is maintained to track the in-memory virtual pages.
Whenever a virtual page is retrieved (accessed) from either the
buffer pool or the persistent storage, it is inserted into the head
of the linked list to maintain the LRU order. For the purpose of
better illustration, Figure 3(b) shows an example with detailed LRU
state transitions when serving a set of operations. We compare the
behavior of the system with the ones without per-page logging
or read-favored buffer pool. Initially, the LRU list is in State #0, as
shown in Figure 3(b.1), and the four data pages (page ID 1, 2, 3, 5) are
organized according to their LRU order, 3, 2, 5, and 1, respectively.

When we execute PUT(3.a, value) to insert a new key 𝑎 into
data page 3, the system follows these steps: (1) The record is first
persisted in the global log space and the in-memory index is updated
accordingly; (2) Since node page 3 is already in the buffer pool, it is
directly updated and the LRU list remains unchanged.

For PUT(4.f, value), there is nomemory copy of the node page
in the buffer pool, so we conduct a “blind update” by persisting the
log record for key 𝑓 in the global log and updating the in-memory
index. The state of the LRU list remains unchanged and is still at
State #1. In contrast, the traditional buffer pool management would
need to load data page 4 for 𝑓 into the buffer pool.

With per-page logging and the read-favored buffer pool, write
operations can be performed without triggering random disk reads
and flush operations when a buffer miss happens. As shown in
Figure 3(b.2), such a blind update approach brings much better
write performance, since random I/Os are eliminated from the write
path. For read operations, the read-favored LRU list is still updated
correspondingly. For example, on the third operation GET(5.m) that
retrieves key𝑚 from node page 5, since the node page is already in
the read-favored buffer pool, value can be directly fetched without
storage access. The LRU list is updated by reinserting page 5 at the
head of the list (State #2), similar to the original buffer pool design.

For the last operation, GET(6.n), the node page is not present in
the buffer pool and must be fetched from storage. Once the page has
been loaded, it is inserted into the head of the LRU list, transitioning
the list to State #3. Assuming the size threshold of the buffer pool
is 4, the least recently used page, which is node page 1 in this case,
would be evicted to make room for the newly fetched page.

Another benefit of the read-favored buffer pool design is the
elimination of eviction costs. During the LRU eviction, the read-
favored buffer pool can directly discard the in-memory copy without
any flush operations. This is because any evicted page already has
a persistent copy on storage, which can be found by aggregating
records in the global log, the per-page log, and its data page, and
the on-storage copy is guaranteed consistent with the in-memory
copy. In other words, the page is “clean”. Therefore, flushing the
page is unnecessary, which saves the system from performing any
random writes during the eviction.

In summary, with the read-favored buffer pool design, write op-
erations are not buffered in the buffer pool, which saves the limited
buffer pool space to better serve read operations. Additionally, since
all data pages are clean, they can be safely evicted without flushing
data back to storage, thus avoiding random I/Os and reducing the
eviction overhead.

4 EVALUATION
To evaluate p𝐵+-tree, we have developed a fully functional proto-
type that incorporates the proposed per-page logging, virtual pages,
and read-favored buffer pool. For comparison, we have also imple-
mented a baseline 𝐵+-tree that uses conventional buffer pool man-
agement with ARIES-based write-ahead logging [58], denoted as
baseline. We also compare withWiredTiger [59], a production-grade
key-value engine based on 𝐵+-tree data structure. All three pro-
totypes provide standard key-value interfaces, such as PUT() and
GET(). We conduct our evaluations on the latest commercially avail-
able ScaleFlux’s CSD with built-in transparent compression [73].

4.1 Experimental Setup
Our experiments are conducted on a server equipped with a 12-
core 2.1GHz Intel Xeon Silver 4310 CPU, 128GB DDR4 DRAM, and
a 3.82TB ScaleFlux CSD-3310 [72, 73]. The server runs Ubuntu
20.04 LTS with Linux Kernel 5.15 and Ext4 file system. We use
the 𝑖𝑜_𝑢𝑟𝑖𝑛𝑔 [38], a Linux kernel system call interface to perform
I/O operations, such as write() and read() in an asynchronous
manner for both the baseline and the 𝑝𝐵+-tree prototype.

The ScaleFlux’s CSD-3310 integrates a hardware-based zlib com-
pression engine that compresses each 4KB block on the internal I/O
path, which is transparent to the host. The engine has a compres-
sion and decompression latency of around 5𝜇s, which is over 10×
shorter than the read latency (>50𝜇s) and much less than write la-
tency (>1𝑚𝑠) of typical TLC/QLC NAND flash memory. Being 100%
compliant with NVMe standard, the drive operates with a PCIe
Gen4 ×4 interface, achieving up to 7.2GB/s and 4.8GB/s sequential
read and write bandwidth, respectively. It can perform 1450K/380K
random 4KB read/write IOPS (I/O per second) over 100% LBA span.
The CSD-3310 drive is already in volume production and has been
deployed in data centers worldwide.

To evaluate the performance of our proposed p𝐵+-tree design
solution and compare it with a baseline 𝐵+-tree, we conduct experi-
ments using Yahoo! Cloud Serving Benchmark (YCSB) [19]. Before
running the benchmark, we first warm up both the baseline 𝐵+-tree
and p𝐵+-tree by sequentially populating each store with 100 GB of
key-value pairs. The key-value pair size varies between 100 bytes
and 200 bytes, with an average of 120 bytes. For each key-value

140

0
40
80

50k

100k

150k

R
ec

o
v

er
y

 T
im

e

(m
s)

0.5% 0.5% 1% 1% 2% 2% 5% 5% 10% 10% 20% 20%

0

1k

2k

3k

20k
40k
60k

R
ec

o
v

er
y

 V
o

lu
m

e

(M
B

)

19.2
ms

12.6s

141.6s

209
MB

1.71GB

42.9GB

0
50

100
150
200

 Baseline B+-tree pB+-treeR
an

d
o

m
S

cr
am

b
le

d

Z
ip

f

S
k

ew
ed

Z
ip

f

0

50

100

150

0

50

100

150

0

100

200

K
O

P
S

0

50

100

150

W
ri

te
 l

at
en

cy
 (

u
s/

o
p

)

0

50

100

R
ea

d
 l

at
en

cy
 (

u
s/

o
p
)

0.5 1 2 5 10 20
0

150

300

450

Buffer Pool Ratio (%)
0.5 1 2 5 10 20

0

25

50

75

Buffer Pool Ratio (%)
0.5 1 2 5 10 20

0
20
40
60

Buffer Pool Ratio (%)
 0.5 1 2 5 10 20

(a) Runtime performance (average throughput and latency) (b) Recovery latency and log replay volume
Buffer Pool Ratio (%)

Figure 4: Comparison of (a) run-time and (b) recovery performance under different workloads.
pair, we generate the key based on YCSB’s distribution to emu-
late real-world applications, and the value is filled with randomly
generated data content. We evaluate the systems using different
read/write ratios and configurations, with a fixed data set size of
100 GB for each test case. Specifically, we used YCSB’s Random
Distribution (denoted as Random), Scrambled Zipfian Distribution
(denoted as Scrambled Zipf), and Skewed Zipfian Distribution (de-
noted as Skewed Zipf) to generate the keys.

4.2 Overall Performance
We first conduct experiments to demonstrate the overall perfor-
mance and crash recovery efficiency of the p𝐵+-tree design. For
both the baseline and p𝐵+-tree, we set the size of a 𝐵+-tree node
page as 16KB. All the non-leaf tree nodes are kept in memory, while
the leaf nodes that contain all the key-value pairs are persistent
on the CSD. The baseline’s buffer pool management employs the
original LRU and FLU lists for flushing, with the flush thresholds
set as 90% and 70%, respectively. The buffer pool size is 1.5GB by
default. For p𝐵+-tree, we set the per-page log size as 4KB and the
size of the open segment in the global log space as 100 MB. The
read-favored buffer pool of the p𝐵+-tree uses the LRU policy similar
to the baseline, which size (plus the size of the global log index) is
similar to the buffer pool size of the baseline.

We evaluate the performance of both the baseline and p𝐵+-tree
using 16 concurrent clients under three workloads with mixed 50%
read and 50% write operations. The impact of the number of clients
and read/write ratios are analyzed in Section 4.3. Figure 4 shows
the overall performance and recovery speed of the baseline and
p𝐵+-tree as we increment the buffer pool ratios (i.e., the ratio of
buffer pool size to the dataset size of 100GB) from 0.5% to 20%.

Overall performance. In Figure 4(a), we can observe that p𝐵+-
tree outperforms the baseline in terms of run-time performance
(throughput and read/write latency) across all workloads. The
largest performance improvements are achieved under the work-
load with random distribution, where the p𝐵+-tree increases the
throughput by up to 63.85% and reduces the write and read latencies
by up to 64.73% and 12.3%, respectively. Under the Skewed Zipf
workload, p𝐵+-tree also exhibits significant performance improve-
ment, increasing the throughput by up to 39.54% and reducing the
write and read latencies by up to 43.46% and 11.85%, respectively.
The benefits are more moderate under the Scrambled Zipf work-
load, where p𝐵+-tree increases the throughput by 34.97% to 58.27%,
and reduces the write and read latencies by 42.36% to 61.2% and
1.43% to 11.22%, respectively. The performance benefits of p𝐵+-tree
can be attributed to two main factors. First, the per-page logging
approach, which performs blind updates, shortens the write path

and reduces system latency. Second, p𝐵+-tree induces far fewer disk
I/Os for minor and major compaction compared to the baseline’s
read-modify-write approach.

As shown in Figure 4(a), the relative advantage of p𝐵+-tree de-
creases as the buffer pool size increases. This is because a larger
buffer pool allows the baseline to accumulate more reads and writes,
while p𝐵+-tree chooses to bypass the buffer pool for writes, and the
consolidations are conducted by the global log, which has much less
space than the buffer pool. Additionally, p𝐵+-tree shows less perfor-
mance improvement under workloads with better localities, such as
the Skewed Zipf. However, even with a large buffer pool, p𝐵+-tree
still substantially outperforms the baseline under all workloads,
when the size ratio increases to 20% of the dataset size.

Crash recovery. An important advantage of p𝐵+-tree is its “in-
stant recovery” enabled by the per-page logging. With the baseline,
while a large buffer pool can improve its run-time performance, it
leads to a long recovery time as a large number of log records need
to be replayed when the system crashes. With the per-page logging
of p𝐵+-tree, only the log entries in the small global log need to be
replayed during recovery, making the recovery process much faster
and more efficient. Figure 4(b) shows the recovery time comparison
between the baseline and p𝐵+-tree with buffer pool sizes varying
from 0.5% to 20%. As the buffer pool size increases, the recovery
time of the baseline 𝐵+-tree also increases significantly, from 12.6s
to 141.6s on average of ten arbitrary system aborts and restarts. This
is because the larger buffer pool size holds more key-value pairs in
memory, resulting in larger log space (increasing from 1.71GB to
42.9GB), which needs to be scanned and replayed during recovery,
causing longer recovery latency.

In contrast to traditional logging approaches where recovery
time is directly proportional to the buffer pool size, p𝐵+-tree’s per-
page logging design decouples recovery concerns from runtime
performance. During recovery, p𝐵+-tree only needs to reconstruct
the in-memory index for the global log, which contains a small
volume of log records (around 209MB on average). After the index
is reconstructed, the system can immediately start serving incoming
requests. On average, p𝐵+-tree achieves a 19.2 ms recovery latency,
which is far less than that of the baseline. These results demonstrate
that p𝐵+-tree achieves near-instant recovery regardless of buffer
pool sizes and outperforms the baseline in terms of recovery latency.

4.3 Analysis on Per-page Logging
This section analyzes the per-page logging design and the effect
of each component of p𝐵+-tree. Specifically, we conduct several
evaluations to explore how p𝐵+-tree’s better bandwidth utilization

141

0

100

200

300

L
at

en
cy

(u
s/

o
p
)

 B+-Write pB+-Write B+-Read pB+-Read B+-KOPS pB+-KOPS

20 40 60 80 100
0

100

200

300

400

0

50

100

150

20 40 60 80 100
0

100

200

300

400

0

30

60

90

20 40 60 80 100
0

200

400

600

T
h
ro

u
g
h
p
u
t

(K
O

P
S
)

0

400

800

1200

R
ea

d
/W

ri
te

 B
an

d
w

id
th

(M
B

/s
)

Write Ratios (%)

 B+-Write pB+-Write B+-Read pB+-Read B+-total pB+-total

Write Ratios (%)Write Ratios (%)Write Ratios (%)

(1) Random (2) Scrambled Zipf (3) Skewed Zipf

20 40 60 80
0

400

800

1200

0

400

800

1200

Write Ratios (%)
20 40 60 80

0

400

800

1200

0

400

800

1200

Write Ratios (%)
20 40 60 80

0

400

800

1200

T
o
ta

l
B

a
n
d
w

id
th

 (
M

B
/s

)

Figure 5: Performance and bandwidth utilization with write ratios from 20% to 100% under different workloads.

20 40 60 80 20 40 60 80 20 40 60 80
0

800

1600

2400

T
o
ta

l
IO

 (
G

B
) B+-I/Os pB+-I/Os

 B+-IOA pB+-IOA

(a) Random (b) Scrambled Zipf (c) Skewed Zipf

Write Ratio (%)

Workload

0

20

40

60

80

100

I/
O

 A
m

p
li

fi
ca

ti
o
n

F
a
ct

o
r

(I
O

A
)

Figure 6: Total I/Os and I/O amplification (IOA) with write
ratios from 20% to 80% under different workloads.
and reduced I/O amplification contribute to the improved perfor-
mance. We also evaluate the concurrent performance of p𝐵+-tree
with various numbers of client threads under different workloads,
and examine the space occupation of per-page logs with the CSD. Fi-
nally, we analyze how the fill factors affect the system performance
with particular workloads, providing a comprehensive understand-
ing of p𝐵+-tree’s design and its implications for database systems.

Per-page logging. Figure 5 shows the performance and I/O
bandwidth utilization of p𝐵+-tree and the baseline under different
read/write ratios, revealing the significant benefits brought by the
per-page logging.We can see that p𝐵+-tree outperforms the baseline
in terms of throughput (KOPS) and average latency in all cases.

Firstly, as the write ratio increases, p𝐵+-tree demonstrates in-
creasing overall throughput, while the baseline’s overall throughput
decreases. The throughput improvements of p𝐵+-tree over the base-
line range from 51.4% to 625.6%, 24.6% to 410.3%, and 38% to 228.2%
for the workloads of Random, Scrambled Zipf, and Skewed Zipf,
respectively. Secondly, the latency of p𝐵+-tree remains stable as the
write ratio increases, whereas the latency of the baseline continues
to increase. In particular, the write latency reductions range from
85.2% to 87.4%, 77.2% to 82.2%, and 57.7% to 72.7%, for the three
workloads respectively; and the read latency reductions range from
18.3% to 35.5%, 12.2% to 26.9%, and 3.3% to 22.2%, respectively. These
results demonstrate that per-page logging significantly improves
the performance and reduces the latency of the database system,
particularly when the workload involves a higher write ratio.

The lower part of Figure 5 provides further insights into the
reasons why p𝐵+-tree outperforms the baseline. First, the per-page
logging of p𝐵+-tree allows blind updates and separates foreground
service from background I/O operations. This leads to better uti-
lization of the high bandwidth provided by the CSD, resulting in
better overall throughput and lower write latency compared to the
baseline. On average, p𝐵+-tree demonstrates 19%, 12.3%, and 4%
higher bandwidth utilization than the baseline for the Random,
Scrambled Zipf, and Skewed Zipf workloads, respectively.

Second, the per-page logging design of p𝐵+-tree results in less
I/O amplification compared to the baseline. The severe I/O am-
plification of the baseline (especially write amplification) leads to
significant read/write contention, requiring the baseline to allo-
cate more bandwidth for writes (53%, 30.2%, and 17% on average
over p𝐵+-tree for the three workloads). As a result, fewer band-
widths (30.6%, 24.1%, and 17% on average less than p𝐵+-tree for the
three workloads) can be provided for reads, leading to longer read
latencies in the baseline as compared to p𝐵+-tree.

In Figure 6, we further analyze the total I/Os and I/O amplifica-
tion of p𝐵+-tree and the baseline. The I/O amplification is calculated
as the ratio of CSD’s total physical read/write to the host’s issued
total read/write. The results show that the baseline generates more
I/Os than p𝐵+-tree across all three workloads, with I/Os that are
112.6%, 21.9%, and 13.7% higher than p𝐵+-tree, respectively. The I/O
amplification of the baseline over p𝐵+-tree also follows the same
trend. It shows that per-page logging and the read-favored buffer
pool significantly reduce I/O amplification, which contributes to
the improved system performance of p𝐵+-tree.

Concurrency performance. Figure7 shows the concurrency
performance of p𝐵+-tree, in terms of the system throughput and av-
erage latency under different numbers of client threads. For system
throughput, as the number of client threads increases, the improve-
ments of p𝐵+-tree over the baseline increases from 116.4% to 241.8%,
127.6% to 137.1%, and 97.6% to 115% for the three workloads, re-
spectively. As for the latency, with the increasing concurrency,
the average latencies of p𝐵+-tree remains stable while the base-
line shows an increasing trend. Specifically, the p𝐵+-tree’s average
write latencies are 81.7% to 85.2%, 78.9% to 83.4% and 55.9% to 67.1%
shorter than the baseline’s for the three workloads, respectively;
and the average read latencies are 4.1% to 27.2%, 4.9% to 36.7%, 1.2%
to 27% shorter for the three workloads, respectively.

The improvements come from two aspects. (1) p𝐵+-tree’s blind
update can better take advantage of the CSD’s high bandwidth. Con-
solidated I/Os accumulated by blind updates and compaction oper-
ations can build a deeper NVMe queue, which in turn contributes
to higher system throughput with more concurrent requests. (2)
p𝐵+-tree can better control I/O amplification. Taking advantage of
blind update and the read-favored buffer pool design, the potential
I/O contention can be reduced, so p𝐵+-tree exhibits shorter latency.

Space consumption. We further evaluate the space usage of the
p𝐵+-tree and the baseline under different dataset sizes, ranging from
50GB, 100GB to 200GB. In each experiment, the dataset is randomly

142

1 2 4 8 16 32
0

100

200

300

L
at

en
cy

 (
u
s/

o
p

)

 B+-Write pB+-Write B+-Read pB+-Read B+-KOPS pB+-KOPS

0

100

200

300

1 2 4 8 16 32
0

50

100

150

200

No.of.Client ThreadsNo.of.Client Threads

0

100

200

300

1 2 4 8 16 32
0

20

40

60

80

No.of.Client Threads

0

200

400

600

800

K
O

P
S

(1) Random (2) Scrambled Zipf (3) Skewed Zipf

Figure 7: Throughput and latency under different workloads with the number of clients from 1 to 32.

56.7

156.8

218.7

71.1

194.3

274

50 100 200
0

50

100

150

200

250

300

S
p

ac
e

O
cc

u
p

at
io

n
 (

G
B

)

Dataset (GB)

 B+-logical

 pB+-logical

 B+-physical

 pB+-physical

8
1
.3

8
1
.7 1

1
2
.2

1
1
3
.4

3
0
.4

3
0
.9

B P2 P4 Pr4
0

50

100

150

200

250
A

v
er

ag
e

la
te

n
cy

 (
u
s/

o
p

)

Prototypes

 Write Latecy Read Latency Buffer Pool Read Hits Ratios (%)

0

5

10

15

20

25

0

50

100

150

B P2 P4 Pr4
0

10

20

30

40

50

Prototypes

0

20

40

60

80

B P2 P4 Pr4
0

20

40

60

80

R
ea

d
 H

it
s

(%
)

Prototypes

(a) Logical and physical space occupation (b) Read/write latency and buffer pool hit ratios

B+ B+ B+

(1) Random (2) Scrambled Zipf (3) Skewed Zipf

Figure 8: Comparison of (a) logical/physical space utilization and (b) performance and buffer pool hit ratio comparison between
the baseline and p𝐵+-tree with different configurations.
accessed with a mix of 50% read and 50% write key-value operations.
We set the size of the per-page log for the p𝐵+-tree as 4KB, and
the size of the data page for the p𝐵+-tree and the baseline as 16KB.
Figure 8 (a) compares the total storage usage in terms of logical
storage usage (i.e., before in-storage compression) and physical
flash memory space usage (i.e., after in-storage compression).

In terms of logical space usage, as the per-page logs are sparsely
managed with each of them being partially filled, p𝐵+-tree requires
more logical space than the baseline. Specifically, for the 50GB,
100GB, and 200GB datasets, p𝐵+-tree consumes 25.4%, 23.9% and
25.3% more space than the baseline, respectively. However, in terms
of physical flash memory space, p𝐵+-tree consumes nearly identical
space to that of the baseline, with only a slight increase. For 50GB,
100GB, and 200GB datasets, the extra physical space occupied by
p𝐵+-tree over the baseline is only 1.6%, 0.5% and 1.1%, respectively.
It is because the CSD with built-in transparent compression can
condense the sparse per-page logs before writing to the physical
space. Since most per-page logs are only partially filled (e.g., only
1KB space stores actual data while the rest of the space is filled by
zeros), the over-provisioned logical space requires much smaller
real physical space after transparent compression inside the CSD.

Fill factor. As mentioned in Section 3, the per-page log fill
factor can also affect the performance of p𝐵+-tree and should be
configured according to the runtime workload characteristics. For
example, under read-dominant workloads, read performance can
be improved if the valid data in the global log and per-page log are
timely consolidated to its data pages, for which we should reduce
the per-page log fill factor. On the other hand, under write-intensive
workloads, reducing storage write amplification is more important,
for which we may increase the per-page log fill factor.

In this work, we adopt a simple heuristic to adjust the per-page
log fill factor. We adaptively tune the fill factor of a 4KB per-page
log with a read-favored policy (i.e., Pr4) according to the read ratios
of the incoming requests during a sliding time window. For example,
when a read-dominant workload is detected (e.g., requests are all
read in one minute), we reduce the fill factor of per-page logs by

0

200

400

600

800

T
h

ro
u

g
h

p
u

t

(K
O

P
S

) B4
+ pB+ pB4

+

25 50 75 25 50 75 25 50 75

Random Scrambled Zipf Skewed Zipf

0

20

40

60

I/
O

A
m

p
li

fi
ca

ti
o

n

Figure 9: Performance and I/O amplification under alterna-
tive 𝐵+-tree configurations.

half, meaning that major compaction would be triggered more
aggressively by reclaiming a per-page log.

We have implemented three different versions of the p𝐵+-tree
for comparison: one with 4KB per-page log (referred to as P4), one
with 2KB per-page log (referred to as P2), and one with 4KB per-
page log and dynamically adjusted fill factor (referred to as Pr4).
The results in Figure 8(b) show that dynamically adjusting the fill
factor for 4KB per-page logs can reduce the read latency of Pr4 by
40.44% to 52.67%, 33.06% to 40.73%, and 12.91% to 14.67%, compared
to the baseline, P2 and P4 for the three workloads, respectively. The
read-hit ratios (e.g., ratios of requests cached by the buffer pool)
also show that Pr4 is more efficient than the others.
4.4 Trade-offs of Per-page Logging
• Comparing to alternative 𝐵+-trees. We further evaluate the
performance of the proposed p𝐵+-tree with varying data node sizes.
In Figure 9, 𝐵+4 , p𝐵

+
4 and p𝐵+ refer to the baseline 𝐵+-tree, p𝐵+-tree

with 4KB data page, and p𝐵+-tree with 16KB data page.
As shown, p𝐵+4 outperforms 𝐵+4 in all cases in terms of the system

throughput and I/O amplification. The highest improvements of
p𝐵+4 over 𝐵+4 are achieved under the Random workload (up to 72.0%
and 43.9% for system throughput increment and I/O amplification
reduction); the least improvements are observed under the Skewed
Zipf workload (up to 19.6% and 37.8%, respectively). The benefits
mainly come from the blind update and I/O reduction enabled by
per-page logging and read-favored buffer pool designs, as described
in Section 4.3.

143

With read-intensive workloads (25% write ratio), p𝐵+ with 16KB
data page shows a slight performance loss of 4.05% compared with
𝐵+4 . The reason is that for a query that is not hit in the buffer pool,
p𝐵+ incurs 20KB I/Os (16KB data and 4KB log), while 𝐵+4 only incurs
4KB I/Os. For the same reason, compared with 𝐵+4 , p𝐵

+ triggers
2.62% higher I/O amplification under read-intensive workloads,
which are mainly from foreground I/Os for serving read operations.
As the write ratio increases to 50% and 75%, we can see that p𝐵+
outperforms 𝐵+4 in terms of system throughput and I/O amplifi-
cation across all the workloads. The benefit mainly comes from
the blind update design of p𝐵+ which eliminates the I/O-intensive
checkpointing process (i.e., background I/Os) by compaction op-
erations as described in Section 4.2. It is also worth noting that
although adopting a small page size (4KB) seemingly alleviates
the involved I/Os, it leads to multiple negative effects, such as the
large index size and increased lock contention in buffer pool man-
agement, which makes it a less preferable configuration in many
databases [44, 62, 65, 76].
Table 1: Performance of p𝐵+-trees with per-page logs and
data pages stored on separate devices.

Prototype Throughput
(KOPS)

Average Write
Latency (us/op)

Average Read
Latency (us/op)

p𝐵+-tree 287.4 25.41 101.3
(p)𝐵+-tree 277.8 21.14 107.7

• Separating per-page log from data page. To explore the fea-
sibility of storing the log and data in separate storage devices for
handling disk failures, we expand the standard design of p𝐵+-tree
to a version storing per-page logs and data pages in two ScaleFlux
CSD-3310 devices separately, denoted as (p)𝐵+-tree. As shown in
Table 1, under the 50/50 Random read/write workload, the aver-
age read latency of (p)𝐵+-tree is 6.31% longer than that of p𝐵+-tree,
since a read to the virtual page is now divided into two separate and
synchronous I/O operations to two storage devices. However, (p)𝐵+-
tree shows 16.8% write latency reduction. It is because p𝐵+-tree
performs blind update for write operations, and the asynchronous
and batched compaction can better utilize the doubled bandwidth
(provided by two storage devices). The overall throughput of (p)𝐵+-
tree is slightly (3.3%) lower than that of p𝐵+-tree.
• Effects of global log. We also evaluate the performance and I/O
effects by varying the segment size of the global log. Based on the
results, as the segment size increases from 50MB to 100MB, both
throughput (from 147.6 KOPS to 197.7 KOPS) and total I/Os (from
202.5 GBs to 144.3 GBs) show significant improvements (reductions).
However, when the segment size exceeds 100MB, the throughput
and I/O show little further improvement (no more than 204.5KOPS
and no less than 140.3GB, respectively). Meanwhile, as the segment
size increases from 50MB to 500MB, the recovery time and volumes
sharply grow from 4.4ms to 152.4ms and 74.7MB to 1024.3MB,
correspondingly.
• Effects of clients. To saturate the bandwidth of the storage de-
vice and explore the potential interference between asynchronous
threads, we initiate 64 to 256 clients to constantly perform random
read/write operations to p𝐵+-tree with write ratios ranging from
80% to 100%. The results show that the performance stops climbing
and begins to decrease with 128 clients under 90% write case, which
is caused by the severe interference as the thread contention and
storage bandwidth become system bottlenecks.

0

200

400

600

K
O

P
S

 B+-tree WiredTiger B -tree LeanStore pB+-tree

0

120

240

A
v

er
ag

e
W

ri
te

L
at

en
cy

 (
u

s/
o

p
)

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Random Scrambled Zipf Skewed Zipf

0

50

100

150

A
v

er
ag

e
R

ea
d

L
at

en
cy

 (
u

s/
o

p
)

Ɛ

Figure 10: Performance comparison of the baseline 𝐵+-tree,
WiredTiger, 𝐵𝜀-tree, LeanStore and p𝐵+-tree.

• Comparing to p𝐵+-tree without per-page log. To illustrate
the performance and I/O impact of per-page log, we further disable
the 4KB per-page log of p𝐵+-tree with 16KB or 4KB data pages by
configuring the size of all per-page logs to 0, which forces minor
compaction to directly flush the records in the global log to data
pages. We issue the Random mixed read/write workloads to com-
pare the performance and I/O amplification of p𝐵+-tree with and
without per-page log. The storage device is a 1TB Western Digital
SN570 NVMe SSD, which has no compression capability.

After disabling per-page logs, p𝐵+-tree with 16KB data pages
shows non-trivial throughput degradation (up to 36.3%) and I/O am-
plification (up to 31.8%) compared to p𝐵+-tree with 4KB per-page
logs and 16KB data pages. It is because after disabling per-page
logs, each minor compaction directly rewrites a 16KB data page,
introducing severe write amplification. Although the global log
decouples foreground services from background compaction, the
amplified background compaction still causes interference to the
foreground service operations and results in performance degrada-
tion. In addition, p𝐵+-tree with 4 KB per-page logs and 16KB data
pages show 21.2% lower throughput and 30.1% higher I/O ampli-
fication compared to p𝐵+-tree with 4KB data pages and without
per-page logs. It is because p𝐵+-tree with 4KB data pages intro-
duces less read amplification than p𝐵+-tree with 4 KB per-page logs
and 16KB data pages. However, considering that large data page
size reduces index management overhead, allocating a small-size
per-page log for each data page can take advantage of blind updates
and reduce the involved I/O amplification, which is considered a
more beneficial choice overall.

4.5 Comparison with State-of-the-arts
In this section, we compare the performance of p𝐵+-tree with two
state-of-art 𝐵+-tree-based systems, WiredTiger [59], LeanStore [2,
44] and 𝐵𝜀-tree [7]. We conduct experiments using a mixed work-
load lasting for one hour with varying read/write ratios for all the
prototypes. Similar to prior experiments, the workloads are based
on YCSB’s Random, Scrambled Zipf, and Skewed Zipf distributions.

Figure 10 shows the results in terms of average throughput, write
and read latency. Comparing the baseline 𝐵+-tree with WiredTiger,
we can find that our implementation of the baseline achieves robust
performance similar to that of the production-level 𝐵+-tree-based

144

storage engine. In addition, we can see that our p𝐵+-tree outper-
forms both the baseline 𝐵+-tree and WiredTiger across the board.
Specifically, p𝐵+-tree achieves improvements ranging from 25.13%
to 625.59%, 57.73% to 86.22%, and 3.33% to 46.28% compared to the
baseline, and 23.78% to 599.48%, 58.54% to 86.1%, and 2.02% to 32.29%
compared to WiredTiger, in terms of throughput (KOPS), average
write and read latency (𝜇s/op) under the three workloads.

Moreover, comparing with the state-of-art optimizations for 𝐵+-
tree-based implementations, 𝐵𝜀-tree and LeanStore, our p𝐵+-tree
also shows substantial performance improvements. Specifically,
p𝐵+-tree outperforms 𝐵𝜀-tree by 23.4% to 516.9%, 56.26% to 85.86%
and 2.81% to 27.65%, and outperforms LeanStore by 14.25% to 58.34%,
21.42% to 64.65% and 0.02% to 25.3% in terms of throughput, average
write and read latency, respectively. We also measure the total I/Os
issued by p𝐵+-tree, LeanStore and 𝐵𝜀-tree during the period of
ingesting 20GB random writes. The results in Table 2 show that 𝐵𝜀-
tree and LeanStore issue 81.35% and 71.63% more I/Os compared to
p𝐵+-tree, and the corresponding write amplifications of LeanStore
and 𝐵𝜀-tree are 1.81x and 1.72x of p𝐵+-tree.

Table 2: Physical I/Os for ingesting 20GB random writes.
Prototype Physical I/Os (GB) Physical Write Amplification
p𝐵+-tree 467.1 23.36
LeanStore 847.1 42.36
𝐵𝜀-tree 801.7 40.09

This experiment well demonstrates that the p𝐵+-tree design
achieves substantial performance improvement even compared
with the production-level implementation of the traditional 𝐵+-tree
and the state-of-art B-tree optimizations.

5 RELATEDWORK
𝐵+-tree-based data systems have been heavily studied. Prior works
have been conducted on various aspects to improve the database
performance, storage efficiency, and data reliability, etc.

Structural optimization for 𝐵+-tree. Many structure-related
techniques have been proposed to optimize the efficiency and per-
formance of 𝐵+-tree-based database systems [10, 12, 16, 26, 27, 37,
46, 47, 50, 68, 80, 81]. Bw-tree [46, 81] is a representative design
adapting 𝐵+-tree to modern multi-core CPU architecture with fast
SSDs. The Bw-tree organizes each 𝐵+-tree logical node as “base
plus deltas”, which enables latch-free operations for better utilizing
multi-core CPUs, and reduces write amplification and write stalls
by persisting pages and deltas with a log-structured store. However,
their solution still follows the “read-modify-write” principle and re-
quires extra indirect mappings. Many works also optimize 𝐵+-tree
for persistent memory [5, 20, 22, 33, 37, 45]. For instance, SLM-
DB [37] proposes to leverage persistent memory by combining the
indexing efficiency of the 𝐵+-tree and the write efficiency of LSM-
tree [13, 48, 66, 78, 84], such that both the fast lookup/ingestion can
be realized. These proposed techniques are orthogonal to our per-
page logging, and thus can be applied together to further improve
the efficiency of the 𝐵+-tree-based database system.

Logging optimization for 𝐵+-tree. ARIES [58] has been the
de facto standard for logging and recovery in 𝐵+-tree-based and
many other systems. It provides a mechanism including write-
ahead logging and checkpointing to enable crash recovery as well
as native support for indexes and space management. Many works

have been proposed to optimize the efficiency of ARIES [4, 24–
26, 31, 39, 43, 51, 52, 74]. For example, Haubenschild et al. [31] pro-
pose several techniques, such as parallel logging, optimized commit
protocol and checkpointing mechanism, to exploit the potential of
ARIES with fast storage devices and many-core architecture. Lee
et al. [43] and Magalhaes et al. [51] propose to maintain indexes
for log records and conduct the checkpointing for indexed logs
to achieve instant recovery for memory-optimized cloud-native
𝐵+-tree databases and purely in-memory 𝐵+-tree databases, respec-
tively. These solutions, which aim to boost either the logging or
recovery process, are specially tailored to particular components.
Unlike these prior works, our per-page logging divides and dis-
tributes the log records in a sparse data layout on storage, which
enhances the 𝐵+-tree structure to naturally enable blind update and
instant recovery, fundamentally addressing the logging inefficiency
for 𝐵+-tree-based database systems with ARIES logging.

𝐵+-tree on CSD. Qiao et al. [68] show that CSD with built-in
transparent compression is beneficial for 𝐵+-trees. Such devices
can expose a virtualized logical address space that is much larger
than the actual physical storage capacity of the device, which is
realized by implementing compression directly on device with the
help of FTL. By leveraging the sparse logical address space, the I/O
amplification issues inherent in the 𝐵+-tree design can be mitigated
with various techniques, such as page shadowing and optimized
logging, etc. Other attempts [1, 14, 15, 18, 53], such as directly
building 𝐵+-trees on flash devices [1], also show the potentials
of 𝐵+-tree in many domains. Our per-page logging approach is
built atop CSD with transparent compression. Our studies well
demonstrate that with proper designs and assistance from new
hardware, 𝐵+-trees can efficiently serve modern workloads with
high performance and low cost.

6 CONCLUSION
This paper presents a simple yet effective design that leverages
the emerging CSD with built-in transparent compression to funda-
mentally resolve the logging dilemma of 𝐵+-tree implementations.
Besides improving data storage efficiency, a unique advantage of
CSD is to allow data management software to deliberately create
sparse data structures on storage without sacrificing its physical
capacity. Leveraging this property, we propose a per-page logging
based 𝐵+-tree design to seamlessly decouple the crash recovery la-
tency from the log size. Its effectiveness has been well demonstrated
through extensive experiments and comparison on a commercially
available CSD with built-in transparent compression.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback
and insightful comments. The work described in this paper was
partially supported by the grants from the Research Grants Coun-
cil of the Hong Kong Special Administrative Region, China (GRF
14219422 and GRF 14202123), Direct Grant for Research, The Chi-
nese University of Hong Kong (Project No. 4055151), the National
Science Foundation under Grants CNS-2006617, CCF-2210754, and
CCF-2210755, the National Natural Science Foundation of China un-
der Grant 62272271, and Key Research and Development Program
of Shandong Province under Grant 2023CXPT002.

145

REFERENCES
[1] Ahn, Jung-Sang and Kang, Dongwon and Jung, Dawoon and Kim, Jin-Soo and

Maeng, Seungryoul. 2012. 𝜇*-Tree: An Ordered Index Structure for NAND Flash
Memory with Adaptive Page Layout Scheme. IEEE Trans. Comput. 62, 4 (2012),
784–797.

[2] AdnanAlhomssi and Viktor Leis. 2023. Scalable and Robust Snapshot Isolation for
High-Performance Storage Engines. Proc. VLDB Endow. 16, 6 (2023), 1426–1438.
https://www.vldb.org/pvldb/vol16/p1426-alhomssi.pdf

[3] Alibaba. 2022. Alibaba Block Trace. https://github.com/alibaba/block-traces.
[4] Antonopoulos, Panagiotis and Byrne, Peter and Chen, Wayne and Diaconu,

Cristian and Kodandaramaih, Raghavendra Thallam and Kodavalla, Hanuma
and Purnananda, Prashanth and Radu, Adrian-Leonard and Ravella, Chaitanya
Sreenivas and Venkataramanappa, Girish Mittur. 2019. Constant Time Recovery
in Azure SQL Database. Proceedings of the VLDB Endowment 12, 12 (2019),
2143–2154.

[5] Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Åke Larson. 2018.
BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory.
Proc. VLDB Endow. 11, 5 (2018), 553–565. https://doi.org/10.1145/3187009.3164147

[6] Muhammad A. Awad, Saman Ashkiani, Rob Johnson, Martin Farach-Colton, and
John D. Owens. 2019. Engineering a high-performance GPU B-Tree. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP).
ACM, New York, 145–157. https://doi.org/10.1145/3293883.3295706

[7] Michael A. Bender, Martin Farach-Colton, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and Yang Zhan. 2015. An
Introduction to B𝜖-trees and Write-Optimization. login Usenix Mag. 40, 5 (2015).
https://www.usenix.org/publications/login/oct15/bender

[8] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar,
Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and
Gregory R. Ganger. 2020. The CacheLib Caching Engine: Design and Experiences
at Scale. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI). USENIX Association, CA, 753–768. https://www.usenix.org/conference/
osdi20/presentation/berg

[9] Peter A. Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: Fast Random
Access String Compression. Proc. VLDB Endow. 13, 11 (2020), 2649–2661. http:
//www.vldb.org/pvldb/vol13/p2649-boncz.pdf

[10] Gerth Stølting Brodal and Rolf Fagerberg. 2003. Lower bounds for external
memory dictionaries. In Annual ACM-SIAM Symposium on Discrete Algorithms.
ACM/SIAM, Baltimore, 546–554. http://dl.acm.org/citation.cfm?id=644108.
644201

[11] Cha, Hokeun and Nam, Moohyeon and Jin, Kibeom and Seo, Jiwon and Nam,
Beomseok. 2020. B3-tree: Byte-addressable Binary B-tree for Persistent Memory.
ACM Transactions on Storage (TOS) 16, 3 (2020), 1–27.

[12] Subarna Chatterjee, Meena Jagadeesan, Wilson Qin, and Stratos Idreos. 2021.
Cosine: A Cloud-Cost Optimized Self-Designing Key-Value Storage Engine. Proc.
VLDB Endow. 15, 1 (2021), 112–126. https://doi.org/10.14778/3485450.3485461

[13] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. 2021. SpanDB:
A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage. In USENIX
Conference on File and Storage Technologies (FAST). USENIX Association, CA,
17–32. https://www.usenix.org/conference/fast21/presentation/chen-hao

[14] Xubin Chen, Ning Zheng, Shukun Xu, Yifan Qiao, Yang Liu, Jiangpeng Li, and
Tong Zhang. 2021. KallaxDB: A Table-less Hash-based Key-Value Store on Storage
Hardware with Built-in Transparent Compression. In International Workshop
on Data Management on New Hardware (DaMoN). ACM, China, 3:1–3:10. https:
//doi.org/10.1145/3465998.3466004

[15] Zongzhi Chen, Xinjun Yang, Feifei Li, Xuntao Cheng, Qingda Hu, Zheyu Miao,
Rongbiao Xie, Xiaofei Wu, KangWang, Zhao Song, Haiqing Sun, Zechao Zhuang,
Yuming Yang, Jie Xu, Liang Yin, Wenchao Zhou, and Sheng Wang. 2022. Cloud-
Jump: Optimizing Cloud Databases for Cloud Storages. Proc. VLDB Endow. 15,
12 (2022), 3432–3444. https://www.vldb.org/pvldb/vol15/p3432-chen.pdf

[16] Chen, Youmin and Lu, Youyou and Fang, Kedong and Wang, Qing and Shu, Jiwu.
2020. uTree: a persistent B+-tree with low tail latency. VLDB Endowment 13, 12
(2020), 2634–2648.

[17] Douglas Comer. 1979. The Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (1979),
121–137. https://doi.org/10.1145/356770.356776

[18] Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton,
Richard P. Spillane, Amy Tai, and Rob Johnson. 2020. SplinterDB: Closing
the Bandwidth Gap for NVMe Key-Value Stores. In USENIX Annual Technical
Conference (ATC). USENIX Association, CA, 49–63. https://www.usenix.org/
conference/atc20/presentation/conway

[19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. InACM Symposium
on Cloud Computing (SoCC). ACM, Indiana, 143–154. https://doi.org/10.1145/
1807128.1807152

[20] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, flexible, and comprehen-
sive bug detection for persistent memory programs. In ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, New York, 503–516. https://doi.org/10.1145/3445814.3446744

[21] Jens Dittrich, Joris Nix, and Christian Schön. 2021. The next 50 Years in Database
Indexing or: The Case for Automatically Generated Index Structures. Proc. VLDB
Endow. 15, 3 (2021), 527–540. https://doi.org/10.14778/3494124.3494136

[22] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. 2019. Per-
formance and protection in the ZoFS user-space NVM file system. In ACM
Symposium on Operating Systems Principles (SOSP). ACM, Canada, 478–493.
https://doi.org/10.1145/3341301.3359637

[23] John K. Edwards, Daniel Ellard, Craig Everhart, Robert Fair, Eric Hamilton,
Andy Kahn, Arkady Kanevsky, James Lentini, Ashish Prakash, Keith A. Smith,
and Edward R. Zayas. 2008. FlexVol: Flexible, Efficient File Volume Virtualiza-
tion in WAFL. In USENIX Annual Technical Conference (ATC). USENIX Associa-
tion, Boston, 129–142. http://www.usenix.org/events/usenix08/tech/fullpapers/
edwards/edwards.pdf

[24] Goetz Graefe. 2010. A Survey of B-tree Locking Techniques. ACMTrans. Database
Syst. 35, 3 (2010), 16:1–16:26.

[25] Goldstein, Jonathan and Abdelhamid, Ahmed and Barnett, Mike and Burckhardt,
Sebastian and Chandramouli, Badrish and Gehring, Darren and Lebeck, Niel
and Meiklejohn, Christopher and Minhas, Umar Farooq and Newton, Ryan and
others. 2020. Ambrosia: Providing Performant Virtual Resiliency for Distributed
Applications. Proceedings of the VLDB Endowment 13, 5 (2020), 588–601.

[26] Graefe, Goetz. 2012. A survey of B-tree Logging and Recovery Techniques. ACM
Transactions on Database Systems (TODS) 37, 1 (2012), 1–35.

[27] Graefe, Goetz and others. 2011. Modern B-tree techniques. Foundations and
Trends® in Databases 3, 4 (2011), 203–402.

[28] Greg Roelofs, Mark Adler. 2022. Zlib compression library. https://zlib.net/.
[29] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand Sivasubrama-

niam. 2011. Leveraging Value Locality in Optimizing NAND Flash-based SSDs. In
USENIX Conference on File and Storage Technologies (FAST). USENIX, CA, 91–103.
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Gupta

[30] Kyuhwa Han, Hyukjoong Kim, and Dongkun Shin. 2020. WAL-SSD: Address
Remapping-Based Write-Ahead-Logging Solid-State Disks. IEEE Trans. Comput-
ers 69, 2 (2020), 260–273.

[31] Michael Haubenschild, Caetano Sauer, Thomas Neumann, and Viktor Leis. 2020.
Rethinking Logging, Checkpoints, and Recovery for High-Performance Storage
Engines. In International Conference on Management of Data (SIGMOD). ACM,
Portland, 877–892. https://doi.org/10.1145/3318464.3389716

[32] Pedro Holanda, Stefan Manegold, Hannes Mühleisen, and Mark Raasveldt. 2019.
Progressive Indexes: Indexing for Interactive Data Analysis. Proc. VLDB Endow.
12, 13 (2019), 2366–2378. https://doi.org/10.14778/3358701.3358705

[33] Kaisong Huang, Yuliang He, and Tianzheng Wang. 2022. The Past, Present and
Future of Indexing on Persistent Memory. Proc. VLDB Endow. 15, 12 (2022),
3774–3777. https://www.vldb.org/pvldb/vol15/p3774-wang.pdf

[34] Shehbaz Jaffer, Stathis Maneas, Andy A. Hwang, and Bianca Schroeder. 2019.
Evaluating File System Reliability on Solid State Drives. In USENIX Annual
Technical Conference (ATC). USENIX Association, WA, 783–798. https://www.
usenix.org/conference/atc19/presentation/jaffer

[35] Theodore Johnson and Dennis E. Shasha. 1989. Utilization of B-trees with Inserts,
Deletes and Modifies. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems. ACM Press, USA, 235–246. https://doi.org/10.1145/73721.
73745

[36] Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2019. A special-
ized B-tree for concurrent datalog evaluation. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), Jeffrey K. Hollingsworth
and Idit Keidar (Eds.). ACM, WA, 327–339. https://doi.org/10.1145/3293883.
3295719

[37] Olzhas Kaiyrakhmet, Songyi Lee, BeomseokNam, SamH. Noh, and Young-ri Choi.
2019. SLM-DB: Single-Level Key-Value Store with Persistent Memory. In USENIX
Conference on File and Storage Technologies (FAST). USENIX Association, USA,
191–205. https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet

[38] Linux Kernel. 2019. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf.
[39] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun Park, Young-ri Choi, Alan

Sussman, and Beomseok Nam. 2022. ListDB: Union of Write-Ahead Logs and
Persistent SkipLists for Incremental Checkpointing on Persistent Memory. In
USENIX Symposium on Operating Systems Design and Implementation (OSDI).
USENIX Association, CA, 161–177. https://www.usenix.org/conference/osdi22/
presentation/kim

[40] KIOXIA CD8-V Specification. 2023. KIOXIA. https://www.kioxia.com.cn/zh-
cn/business/ssd/data-center-ssd/cd8-v.html.

[41] Andreas Kipf, Damian Chromejko, Alexander Hall, Peter A. Boncz, and David G.
Andersen. 2020. Cuckoo Index: A Lightweight Secondary Index Structure. Proc.
VLDB Endow. 13, 13 (2020), 3559–3572. https://doi.org/10.14778/3424573.3424577

[42] Bradley C. Kuszmaul, Matteo Frigo, Justin Mazzola Paluska, and Alexan-
der (Sasha) Sandler. 2019. Everyone Loves File: File Storage Service (FSS) in Oracle
Cloud Infrastructure. In USENIX Annual Technical Conference (ATC). USENIX
Association,WA, 15–32. https://www.usenix.org/conference/atc19/presentation/
kuszmaul

[43] Lee, Leon and Xie, Siphrey and Ma, Yunus and Chen, Shimin. 2022. Index
checkpoints for instant recovery in in-memory database systems. Proceedings of
the VLDB Endowment 15, 8 (2022), 1671–1683.

146

https://www.vldb.org/pvldb/vol16/p1426-alhomssi.pdf
https://github.com/alibaba/block-traces
https://doi.org/10.1145/3187009.3164147
https://doi.org/10.1145/3293883.3295706
https://www.usenix.org/publications/login/oct15/bender
https://www.usenix.org/conference/osdi20/presentation/berg
https://www.usenix.org/conference/osdi20/presentation/berg
http://www.vldb.org/pvldb/vol13/p2649-boncz.pdf
http://www.vldb.org/pvldb/vol13/p2649-boncz.pdf
http://dl.acm.org/citation.cfm?id=644108.644201
http://dl.acm.org/citation.cfm?id=644108.644201
https://doi.org/10.14778/3485450.3485461
https://www.usenix.org/conference/fast21/presentation/chen-hao
https://doi.org/10.1145/3465998.3466004
https://doi.org/10.1145/3465998.3466004
https://www.vldb.org/pvldb/vol15/p3432-chen.pdf
https://doi.org/10.1145/356770.356776
https://www.usenix.org/conference/atc20/presentation/conway
https://www.usenix.org/conference/atc20/presentation/conway
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3445814.3446744
https://doi.org/10.14778/3494124.3494136
https://doi.org/10.1145/3341301.3359637
http://www.usenix.org/events/usenix08/tech/fullpapers/edwards/edwards.pdf
http://www.usenix.org/events/usenix08/tech/fullpapers/edwards/edwards.pdf
https://zlib.net/
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Gupta
https://doi.org/10.1145/3318464.3389716
https://doi.org/10.14778/3358701.3358705
https://www.vldb.org/pvldb/vol15/p3774-wang.pdf
https://www.usenix.org/conference/atc19/presentation/jaffer
https://www.usenix.org/conference/atc19/presentation/jaffer
https://doi.org/10.1145/73721.73745
https://doi.org/10.1145/73721.73745
https://doi.org/10.1145/3293883.3295719
https://doi.org/10.1145/3293883.3295719
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://kernel.dk/io_uring.pdf
https://www.usenix.org/conference/osdi22/presentation/kim
https://www.usenix.org/conference/osdi22/presentation/kim
https://www.kioxia.com.cn/zh-cn/business/ssd/data-center-ssd/cd8-v.html
https://www.kioxia.com.cn/zh-cn/business/ssd/data-center-ssd/cd8-v.html
https://doi.org/10.14778/3424573.3424577
https://www.usenix.org/conference/atc19/presentation/kuszmaul
https://www.usenix.org/conference/atc19/presentation/kuszmaul

[44] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In International
Conference on Data Engineering (ICDE). IEEE Computer Society, France, 185–196.
https://doi.org/10.1109/ICDE.2018.00026

[45] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell:
the design and implementation of a fast persistent key-value store. In ACM
Symposium on Operating Systems Principles (SOSP). ACM, Canada, 447–461. https:
//doi.org/10.1145/3341301.3359628

[46] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-
Tree: A B-tree for new hardware platforms. In IEEE International Conference on
Data Engineering (ICDE). IEEE Computer Society, Australia, 302–313. https:
//doi.org/10.1109/ICDE.2013.6544834

[47] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. LLAMA: A
Cache/Storage Subsystem for Modern Hardware. Proc. VLDB Endow. 6, 10 (2013),
877–888. https://doi.org/10.14778/2536206.2536215

[48] Yongkun Li, Zhen Liu, Patrick P. C. Lee, Jiayu Wu, Yinlong Xu, Yi Wu, Liu
Tang, Qi Liu, and Qiu Cui. 2021. Differentiated Key-Value Storage Management
for Balanced I/O Performance. In USENIX Annual Technical Conference (ATC).
USENIX Association, USA, 673–687. https://www.usenix.org/conference/atc21/
presentation/li-yongkun

[49] Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+-Trees: Optimizing Persis-
tent Index Performance on 3DXPoint Memory. Proc. VLDB Endow. 13, 7 (2020),
1078–1090. https://doi.org/10.14778/3384345.3384355

[50] Mengxing Liu, Jiankai Xing, Kang Chen, and YongweiWu. 2019. Building Scalable
NVM-based B+tree with HTM. In International Conference on Parallel Processing
(ICPP). ACM, Japan, 101:1–101:10. https://doi.org/10.1145/3337821.3337827

[51] Arlino Magalhães, Angelo Brayner, José Maria Monteiro, and Gustavo Moraes.
2021. Indexed Log File: Towards Main Memory Database Instant Recovery. In
International Conference on Extending Database Technology (EDBT). OpenPro-
ceedings.org, Cyprus, 355–360. https://doi.org/10.5441/002/edbt.2021.34

[52] Magalhaes, Arlino and Monteiro, Jose Maria and Brayner, Angelo. 2021. Main
Memory Database Recovery: A survey. ACM Computing Surveys (CSUR) 54, 2
(2021), 1–36.

[53] Darko Makreshanski, Justin J. Levandoski, and Ryan Stutsman. 2015. To Lock,
Swap, or Elide: On the Interplay of Hardware Transactional Memory and Lock-
Free Indexing. Proc. VLDB Endow. 8, 11 (2015), 1298–1309. https://doi.org/10.
14778/2809974.2809990

[54] MariaDB Foundation. 2023. MariaDB. https://mariadb.org/.
[55] Melnik, Sergey and Gubarev, Andrey and Long, Jing Jing and Romer, Geoffrey

and Shivakumar, Shiva and Tolton, Matt and Vassilakis, Theo. 2010. Dremel:
Interactive Analysis of Web-scale Datasets. Proceedings of the VLDB Endowment
3, 1-2 (2010), 330–339.

[56] Micron 7450Pro Specification. 2023. Micron. https://www.micron.com/products/
ssd/product-lines/7450.

[57] Microsoft. 2023. SQL Server. https://www.microsoft.com/en-us/sql-server/.
[58] Mohan, Chandrasekaran and Haderle, Don and Lindsay, Bruce and Pirahesh,

Hamid and Schwarz, Peter. 1992. ARIES: A Transaction Recovery Method
Supporting Fine-granularity Locking and Partial Rollbacks using Write-ahead
Logging. ACM Transactions on Database Systems (TODS) 17, 1 (1992), 94–162.

[59] MongoDB, Inc. 2023. WiredTiger. https://www.mongodb.com/docs/manual/
core/wiredtiger/.

[60] NetApp. 2023. NetApp Thin Provisioning Concept. https://docs.netapp.com/us-
en/ontap/concepts/thin-provisioning-concept.html.

[61] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In Conference on Innovative Data Systems Research
(CIDR). www.cidrdb.org, The Netherlands. http://cidrdb.org/cidr2020/papers/
p29-neumann-cidr20.pdf

[62] Oracle. 2023. MySQL. https://www.mysql.com/.
[63] Oracle. 2023. MySQL Checkpoints. https://dev.mysql.com/doc/refman/5.7/en/

innodb-checkpoints.html.
[64] Oracle. 2023. MySQL Compression. https://dev.mysql.com/doc/refman/8.0/en/

innodb-compression-internals.html.
[65] Oracle. 2023. Oracle database. https://www.oracle.com/.
[66] O’Neil, Patrick and Cheng, Edward and Gawlick, Dieter and O’Neil, Elizabeth.

1996. The Log-structured Merge-Tree (LSM-tree). Acta Informatica 33 (1996),
351–385.

[67] Kai Qian, Letian Yi, and Jiwu Shu. 2011. ThinStore: Out-of-Band Virtualization
with Thin Provisioning. In International Conference on Networking, Architecture,
and Storage (NAS). IEEE Computer Society, China, 1–10. https://doi.org/10.1109/

NAS.2011.39
[68] Yifan Qiao, Xubin Chen, Ning Zheng, Jiangpeng Li, Yang Liu, and Tong Zhang.

2022. Closing the B+-tree vs. LSM-tree Write Amplification Gap on Modern
Storage Hardware with Built-in Transparent Compression. In USENIX Conference
on File and Storage Technologies (FAST). USENIX Association, USA, 69–82. https:
//www.usenix.org/conference/fast22/presentation/qiao

[69] Rodeh, Ohad and Bacik, Josef and Mason, Chris. 2013. BTRFS: The Linux B-tree
Filesystem. ACM Transactions on Storage (TOS) 9, 3 (2013), 1–32.

[70] Samsung PM9A3 Whitepaper. 2023. Samsung. https://semiconductor.samsung.
com/ssd/datacenter-ssd/pm9a3/.

[71] Sauer, Caetano and Graefe, Goetz and Härder, Theo. 2018. FineLine: Log-
structured Transactional Storage and Recovery. Proceedings of the VLDB Endow-
ment 11, 13 (2018), 2249–2262.

[72] Scaleflux. 2023. Computational storage drive with built-in transparent compres-
sion. https://scaleflux.com/.

[73] Scaleflux. 2023. ScaleFlux 3000-series SSDs. https://scaleflux.com/products/csd-
3000/.

[74] Sijie Shen, Rong Chen, Haibo Chen, and Binyu Zang. 2021. Retrofitting High
Availability Mechanism to Tame Hybrid Transaction/Analytical Processing. In
USENIX Symposium on Operating Systems Design and Implementation (OSDI).
USENIX Association, USA, 219–238. https://www.usenix.org/conference/osdi21/
presentation/shen

[75] SQLite. 2023. SQLite. https://www.sqlite.org/.
[76] The PostgreSQL Global Development Group. 2023. PostgreSQL. https://www.

postgresql.org/.
[77] Vohra, Deepak and Vohra, Deepak. 2016. Apache Parquet. Practical Hadoop

Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools (2016),
325–335.

[78] Qiuping Wang, Jinhong Li, Patrick P. C. Lee, Tao Ouyang, Chao Shi, and Lilong
Huang. 2022. Separating Data via Block Invalidation Time Inference for Write
Amplification Reduction in Log-Structured Storage. In USENIX Conference on
File and Storage Technologies (FAST). USENIX Association, USA, 429–444. https:
//www.usenix.org/conference/fast22/presentation/wang

[79] Qiuping Wang, Jinhong Li, Wen Xia, Erik Kruus, Biplob Debnath, and Patrick
P. C. Lee. 2020. Austere Flash Caching with Deduplication and Compression. In
USENIX Annual Technical Conference (ATC). USENIX Association, USA, 713–726.
https://www.usenix.org/conference/atc20/presentation/wang-qiuping

[80] Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-Optimized
Distributed B+Tree Index on Disaggregated Memory. In International Conference
on Management of Data (SIGMOD). ACM, USA, 1033–1048. https://doi.org/10.
1145/3514221.3517824

[81] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,
Michael Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes
More Than Just Buzz Words. In International Conference on Management of Data
(SIGMOD). ACM, USA, 473–488. https://doi.org/10.1145/3183713.3196895

[82] William E Wright. 1985. Some average performance measures for the B-tree.
Acta Informatica 21 (1985), 541–557.

[83] Sai Wu, Dawei Jiang, Beng Chin Ooi, and Kun-Lung Wu. 2010. Efficient B-Tree
Based Indexing for Cloud Data Processing. Proc. VLDB Endow. 3, 1–2 (sep 2010),
1207–1218. https://doi.org/10.14778/1920841.1920991

[84] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. In
USENIX Annual Technical Conference (ATC). USENIX Association, USA, 17–31.
https://www.usenix.org/conference/atc20/presentation/yao

[85] Yu, Geoffrey X and Markakis, Markos and Kipf, Andreas and Larson, Per-Åke
and Minhas, Umar Farooq and Kraska, Tim. 2022. TreeLine: an Update-in-place
Key-value Store for Modern Storage. Proceedings of the VLDB Endowment 16, 1
(2022), 99–112.

[86] Feng Zhang, Weitao Wan, Chenyang Zhang, Jidong Zhai, Yunpeng Chai, Haixi-
ang Li, and Xiaoyong Du. 2022. CompressDB: Enabling Efficient Compressed
Data Direct Processing for Various Databases. In International Conference on
Management of Data, Philadelphia (SIDMOD). ACM, USA, 1655–1669. https:
//doi.org/10.1145/3514221.3526130

[87] You Zhou, Qiulin Wu, Fei Wu, Hong Jiang, Jian Zhou, and Changsheng Xie.
2021. Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to
Eliminate DuplicateWrites. InUSENIX Conference on File and Storage Technologies
(FAST). USENIX Association, USA, 187–202. https://www.usenix.org/conference/
fast21/presentation/zhou

147

https://doi.org/10.1109/ICDE.2018.00026
https://doi.org/10.1145/3341301.3359628
https://doi.org/10.1145/3341301.3359628
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.14778/2536206.2536215
https://www.usenix.org/conference/atc21/presentation/li-yongkun
https://www.usenix.org/conference/atc21/presentation/li-yongkun
https://doi.org/10.14778/3384345.3384355
https://doi.org/10.1145/3337821.3337827
https://doi.org/10.5441/002/edbt.2021.34
https://doi.org/10.14778/2809974.2809990
https://doi.org/10.14778/2809974.2809990
https://mariadb.org/
https://www.micron.com/products/ssd/product-lines/7450
https://www.micron.com/products/ssd/product-lines/7450
https://www.microsoft.com/en-us/sql-server/
https://www.mongodb.com/docs/manual/core/wiredtiger/
https://www.mongodb.com/docs/manual/core/wiredtiger/
https://docs.netapp.com/us-en/ontap/concepts/thin-provisioning-concept.html
https://docs.netapp.com/us-en/ontap/concepts/thin-provisioning-concept.html
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://www.mysql.com/
https://dev.mysql.com/doc/refman/5.7/en/innodb-checkpoints.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-checkpoints.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-compression-internals.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-compression-internals.html
https://www.oracle.com/
https://doi.org/10.1109/NAS.2011.39
https://doi.org/10.1109/NAS.2011.39
https://www.usenix.org/conference/fast22/presentation/qiao
https://www.usenix.org/conference/fast22/presentation/qiao
https://semiconductor.samsung.com/ssd/datacenter-ssd/pm9a3/
https://semiconductor.samsung.com/ssd/datacenter-ssd/pm9a3/
https://scaleflux.com/
https://scaleflux.com/products/csd-3000/
https://scaleflux.com/products/csd-3000/
https://www.usenix.org/conference/osdi21/presentation/shen
https://www.usenix.org/conference/osdi21/presentation/shen
https://www.sqlite.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.usenix.org/conference/fast22/presentation/wang
https://www.usenix.org/conference/fast22/presentation/wang
https://www.usenix.org/conference/atc20/presentation/wang-qiuping
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.1145/3183713.3196895
https://doi.org/10.14778/1920841.1920991
https://www.usenix.org/conference/atc20/presentation/yao
https://doi.org/10.1145/3514221.3526130
https://doi.org/10.1145/3514221.3526130
https://www.usenix.org/conference/fast21/presentation/zhou
https://www.usenix.org/conference/fast21/presentation/zhou

	Abstract
	1 Introduction
	1.1 Critical Issues
	1.2 Our Solution

	2 Background
	2.1 -tree-based Storage Engine
	2.2 Checkpoint-based Logging
	2.3 In-Storage Transparent Compression

	3 Design
	3.1 Overview
	3.2 Per-page Logging
	3.3 Virtual Page
	3.4 Read-favored Buffer Pool

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Performance
	4.3 Analysis on Per-page Logging
	4.4 Trade-offs of Per-page Logging
	4.5 Comparison with State-of-the-arts

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

