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ABSTRACT
Centralised data management systems (e.g., data lakes) support
queries over multi-source heterogeneous data. However, the query
results from multiple sources commonly involve between-source
conflicts, which makes query results unreliable and confusing and
degrades the usability of centralised data management systems.
Therefore, resolving the between-sourced conflicts is one of the
most important problems for centralised data management systems.
To solve it, many batch data fusion-based methods have been pro-
posed, which require traversing all the data in the centralised data
management systems and cause scalability and flexibility issues.

To address these issues, this paper explores the problem of on-
demand fusion queries, where the between-sourced conflicts are
solved with only the query-related data; moreover, we propose an
efficient on-demand fusion query framework, FusionQuery, which
consists of a query stage and a fusion stage. In the query stage,
we frame the heterogeneous data query problem as a knowledge
graph matching problem and present a line graph-based method
to accelerate it. In the fusion stage, we develop an Expectation
Maximization-style algorithm to iteratively updates data veracity
and source trustworthiness. Furthermore, we design an incremental
estimation method of source trustworthiness to address the lack of
sufficient observations. Extensive experiments on two real-world
datasets demonstrate that FusionQuery outperforms state-of-the-
art data fusion methods in terms of both effectiveness and efficiency.
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1 INTRODUCTION
Localised data management systems cannot meet the needs of man-
aging rapidly growing multi-source heterogeneous data, such as
structured, semi-structured, and unstructured data from different
organizations. Accordingly, centralised data management systems
(e.g., data lakes [39]) have emerged and provide a proper solution
for multi-source heterogeneous data management. When submit-
ting queries in centralised data management systems, we can obtain
richer information from multiple sources, which can facilitate vari-
ous downstream applications, such as question answering [2, 45]
and knowledge reasoning [5, 13]. However, dirty and erroneous
data widely exist in centralised data management systems, which in-
curs serious between-source conflicts among the query results from
different sources. Such conflicts make query results unreliable and
confusing, significantly degrading the performance of downstream
applications. Therefore, resolving between-source conflicts in the
query results is one of the most important problems for centralised
data management systems.

To address this problem, many methods have been proposed.
However, all these methods rely on batch data fusion before query
processing [9, 11, 16–18, 31, 32, 36, 37, 40, 50, 55], which traverses
all data within a centralised data management system and resolves
all conflicts at once. Batch data fusion-based methods face three
following dilemmas. 1) Poor scalability. Enterprises today store
million-scale data (or even larger scale) in their centralised data
management systems. Conducting data fusion on such a large scale
data at once is time-consuming and even infeasible in practice. 2)
Slow response to data updates. In scenarios where data updates
frequently, such as centralised data management systems for stock
data, the prolonged batch data fusion can lead to data staleness,
resulting in outdated information. 3) Binding with data match-
ing. Typically, data fusion is regarded as the last step of a data
integration pipeline [10, 19, 34], when the schemas of different data
sources have been unified [15, 29] and the records across sources
referring to the same data item have been detected [21, 35, 47].
The processes before data fusion are collectively termed as (across-
source) data matching. Without accurate data matching, one cannot
find matched data values describing the same attribute of an entity,
let alone perform effective data fusion and find out truths from
candidate values.
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Please generate a table regarding "united states house of representatives elections, 
2004 in Ohio", the attributes are ["district", "incumbent", "first elected", "candidates"]. 
and the values under "district" column are ["Ohio's_1st_congressional_district", 
"Ohio's_2nd_congressional_district“, "Ohio's_3rd_congressional_district"]. The values 
under other columns are missing, which you should fill in with your knowledge.

District Incumbent First 
Elected Candidates

Ohio's_1st_congressi
onal_district

Steve Chabot 
(R) 1994 Steve Chabot (R), Emily 

Johnson (D), Alex Smith (I)

Ohio's_2nd_congressi
onal_district

Rob Portman 
(R) 1993 (special) Rob Portman (R), Sarah 

Davis (D), James White (I)

Ohio’s_3rd_congressi
onal_district

Mike Turner 
(R) 2002 (special) Mike Turner (R), Jennifer 

Lee (D), Robert Green (I)

Party Candidate Votes %

Republican Steve Chabot 173,430 59.83

Democratic Greg Harris 116,235 40.10

Independent Rich Stevenson 198 0.07

Ohio's 1st Congressional District election, 2004

Ohio's 2nd Congressional District election, 2004

Party Candidate Votes %

Republican Rob Portman 227,102 71.70

Democratic Charles W. Sanders 89,598 28.29

Independent James J. Condit, Jr. 60 0.02

(a) ChatGPT for table generation (b) Retrieved relevant data for verification

2004 United States House of Representatives 
Elections in Ohio

Figure 1: (a) ChatGPT generates values in tuples; (b) FusionQuery retrieves relevant data from third-party sources for verification
and aggregates conflicts to provide reliable data.

To avoid the above dilemmas, this paper proposes the on-demand
fusion query, which resolves the between-source conflicts with
only the query-related data and avoids accessing all the data in a
centralised data management system. The advantages of the on-
demand fusion query could be concluded in three aspects. (I) Real-
time data fusion. It only utilizes the query-related data, which
commonly makes up only a small proportion of the data in a cen-
tralised data management system and can be processed in real-time.
(II) Adaptive to data updates. Both the query step and data fusion
step in the on-demand fusion query can be completed in real-time;
thus, it can be adaptive to frequent data updates. (III) Free of data
matching. By matching data from various sources with users’ in-
tents (i.e., queries), on-demand fusion queries effectively sidestep
the need for explicit across-source data matching. The advantages
include: (1) well-defined query constraints provide clear match crite-
ria; (2) many-to-many comparisons in across-source data matching
are reduced to one-to-many comparisons, taking less time com-
plexity. Despite the progress made by a few studies [23, 42, 51],
two challenges have still existed in developing on-demand fusion
queries over heterogeneous multi-source data.

Challenge I: How to support unified queries across multi-source
heterogeneous data? Due to the data type heterogeneity (i.e., struc-
tured, semi-structured, and unstructured data) and the semantic
heterogeneity (i.e., different sources involve different vocabularies)
of heterogeneous multi-source data, there is still no proven solution
for unified queries across multi-source heterogeneous data.

To solve data type heterogenity, we convert heterogeneous data
into knowledge graphs and formulate it as a knowledge graph
matching problem. Due to the richness of semantic information on
both nodes and edges, knowledge graph matching is much more
complex than plain graph matching. Specifically, the search space
of the knowledge graph matching is exponential to the scale of
the knowledge graph. Given a query graph with |𝑉𝑞 | nodes and
|𝑅𝑞 | edges, a data graph with |𝑉𝑑 | nodes and |𝑅𝑑 | edges, taking
the simplest solution BFS as an example, the time complexity is
𝑂 (( |𝑉𝑞 | + |𝑅𝑞 |) ( |𝑉𝑑 | + |𝑅𝑑 |)) in the best case, which is infeasible
in practice. To speed up knowledge graph matching, we introduce

knowledge line graph transformation to decouple semantic infor-
mation from graph structure, reducing the time complexity of graph
matching to 𝑂 ( |𝑅𝑞 | |𝑅𝑑 |). To solve semantic heterogeneity, we fo-
cus on approximate matching in semantic information encoded by
pre-trained language models, which excel in capturing semantic
relations between words. For example, it can capture similar mean-
ings for different terms, such as "spouse", "wife" and "husband";
meanwhile it can also identify different meanings for the similar
words like "Apple Inc" and "Big Apple".

Challenge II: How to perform high-quality data fusion in the
on-demand setting? The performance of data fusion is highly de-
pendent on data-hungry probability estimations. In the on-demand
setting, we only have a small amount of query-related data; thus,
it is necessary to cope with the data starvation of data fusion and
develop a novel on-demand data fusion method.

To this end, we develop an Expectation Maximization (EM)-style
learning strategy that consists of two steps. (i) The data veracity
estimation learns the probability that a data item is a correct an-
swer to the query and (ii) the source trustworthiness estimation
learns the probability that a data source provides the correct data.
The two steps are repeated iteratively until convergence. Besides,
considering that observed data is limited, we propose an incremen-
tal estimation for source trustworthiness based on the historical
estimate and the current query results. Furthermore, to improve
the effectiveness and efficiency of data fusion, we design an au-
tonomous semantic matching threshold update mechanism to strike
a balance between retrieval precision and recall.

Incorporating optimization strategies addressing challengesmen-
tioned above, we propose FusionQuery, an efficient framework for
on-demand fusion queries over heterogeneous data.

1.1 Motivating Example
There are several potential applicatioins for FusionQuery, such as
retrival-based data cleaning [3, 12] and verified generative AI [43].
Here, we reinforce the motivations for FusionQuery by illustrating
a real-world application in the realm of the verified generative AI.
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Generative AI has made a significant stride, yet concerns about
the accuracy and reliability of its outputs continue to grow. In par-
ticular, large language models (LLMs) sometimes make stuff up that
either doesn’t make sense or doesn’t match the information it was
given, which is known as LLM hallucinations. Figure 1 showcases
a real application where a user asks ChatGPT to generate a table,
but the synthesized table is unreliable due to LLM hallucinations
and does harm to downstream analytical tasks. In this case, the
FusionQuery emerges as an effective tool for regulating genera-
tive AI from a data management perspective. It searches relevant
data from third-party sources for value verification and discovers
truths from conflicts to provide more reliable data. This real-world
case demonstrates the potential of FusionQuery in advancing the
responsible and trustworthy use of generative AI.

1.2 Contribution
The contributions of this paper are summarized as follows:
• A framework for on-demand fusion queries.We propose Fusion-

Query, an efficient framework for on-demand fusion queries over
heterogeneous multi-source data. To the best of our knowledge,
this is the first work to present the on-demand fusion query over
heterogeneous multi-source data.

• An efficient knowledge graph matching framework. We convert
heterogeneous data into knowledge graphs and cast heteroge-
neous data queries as knowledge graph matching. Moreover, we
introduce the knowledge line graph transformation to decouple
the semantic information from the graph structure to speed up
knowledge graph matching.

• A convergence-guaranteed unsupervised fusion algorithm. Follow-
ing the on-demand fusion query setting, we provide new esti-
mations for data veracity and source trustworthiness and then
propose an EM-style algorithm, which iteratively updates data
veracity and source trustworthiness. Also, we offer a theoretical
analysis of the convergence of the iterative procedure.

• An autonomous semantic matching threshold update mechanism.
To further boost the effectiveness and efficiency of FusionQuery,
we propose an autonomous threshold update mechanism based
on meta-learning, which controls the quantity and quality of
query results automatically.

• Extensive experiments.We conduct a comprehensive experimen-
tal evaluation on the three real-world datasets. The results demon-
strate the superiority of FusionQuery against the state-of-the-art
batch data fusionmethods in terms of effectiveness and efficiency.

2 PROBLEM STATEMENT
2.1 On-demand Fusion Query
On-demand Fusion Query (OD-FQ) aims to obtain conflict-resolved
query results over multi-source heterogeneous data by only access-
ing to query-related data. Formally, it can be defined as follows.

Definition 1 (On-demand fusion qery). The on-demand fu-
sion query is a kind of conjunctive query which supports on-demand
data fusion.

The on-demand data fusion is defined in Definition 2.

Definition 2 (On-demand data fusion). Given an query 𝑄

issued on a set of heterogeneous sources D = {𝐷𝑖 }𝑛𝑖=1, denoting

the query-related data as 𝐷𝑎𝑡𝑎(𝑄,D), on-demand data fusion aims
to resolve the between-source conflicts among 𝐷𝑎𝑡𝑎(𝑄,D) without
accessing other data except 𝐷𝑎𝑡𝑎(𝑄,D).

The formal definition of term "conflicts" is presented in Defini-
tion 4. Different from batch fusion queries, which resolve all conflicts
within heterogeneous data in its entirety beforehand, on-demand
fusion queries (OD-FQ) resolve conflicts only within query-related
data and emit consistent values. Typically, the size of the query-
related data (i.e., 𝐷𝑎𝑡𝑎(𝑄,D)) is smaller than the size of D, partic-
ularly for large-scale sources. That is, |𝐷𝑎𝑡𝑎(𝑄,D)| ≪ |D|.

This paper divides the procedure of an on-demand fusion query
into two stages: 1) unified queries over heterogeneous data and 2)
on-demand data fusion among the query results. In the following,
we proceed to introduce preliminary definitions in these two stages.

2.2 Queries over Heterogeneous Data
There is still no proven solution for unified queries across het-
erogeneous data. To realize the unified query, this paper converts
heterogeneous data into knowledge graphs and cast unified queries
across heterogeneous data as a knowledge graph matching problem.

Firstly, we represent an on-demand fusion query 𝑄 by a query
graph 𝐺𝑞 = (𝑉𝑞, 𝑅𝑞,𝑇𝑞), where 𝑉𝑞 is the set of entities, 𝑅𝑞 is the
set of relations, and 𝑇𝑞 is the set of triples of the form ⟨𝑣𝑞, 𝑟𝑞, 𝑣𝑞⟩.
Note that there is a special entity 𝑣? ∈ 𝑉𝑞 in the query graph, which
represents an output variable of the query. Our framework can be
extended to queries with any number of output variables, since
multi-valued queries can be reduced into single-valued subqueries.
More discussions can be found in our technical report [1].

Then, we use knowledge graphs D = {𝐺𝑑
𝑖
}𝑛
𝑖=1 to represent

heterogeneous data (termed data graphs). Each data graph 𝐺𝑑 is
defined as 𝐺𝑑 = (𝑉𝑑 , 𝑅𝑑 ,𝑇𝑑 ), where 𝑉𝑑 is the set of entities, 𝑅𝑑 is
the set of relations and𝑇𝑑 is the set of triples ⟨𝑣𝑑 , 𝑟𝑑 , 𝑣𝑑 ⟩. By doing
so, finding a set of entities to answer the query 𝑄 over each source
𝐺𝑑 is cast as a knowledge graph matching problem. The knowledge
graph matching problem is defined as follows:

Definition 3 (Knowledge graph matching). Given a query
graph 𝐺𝑞 and a data graph 𝐺𝑑 , a subgraph 𝑀 ⊆ 𝐺𝑑 is a match if
and only if the following conditions hold:
(1) There is one and only one semantically equivalent 𝑣𝑑 in 𝑀 for

each 𝑣𝑞 in 𝐺𝑞 , denoted by 𝑣𝑑 ≡ 𝑣𝑞 ;
(2) The relation 𝑟𝑑 between 𝑣𝑑 and 𝑣𝑑 is semantically equivalent to

𝑟𝑞 between 𝑣𝑞 and 𝑣𝑞 when 𝑣𝑑 ≡ 𝑣𝑞 and 𝑣𝑑 ≡ 𝑣𝑞 .

Semantic equivalence is determined by the similarity of semantic
information (e.g., entity names, relation names), measured by an
evidence function 𝑓 . Two nodes/edges are considered semantically
equivalent if the similarity calculated by 𝑓 exceeds a predefined 𝜏 .
Notably, the evidence function can take various forms, such as the
similarity of deep learning embeddings. Moreover, note that, for
an undetermined entity 𝑣? with no associated semantic informa-
tion, we consider it semantically equivalent to any entities so as to
prevent the omission of any potential answer candidates.

Hereby, the query-related data from the data source 𝐷 is a set of
entities that satisfy query constraints of𝑄 , denoted by𝐷𝑎𝑡𝑎(𝑄, 𝐷) =
{𝑣 ∈ 𝐷 |𝑣 ≡ 𝑣?}. Naturally, the query-related data from all sources
are denoted by 𝐷𝑎𝑡𝑎(𝑄,D) = {𝑣 | 𝑣 ∈ 𝐷𝑎𝑡𝑎(𝑄, 𝐷), 𝐷 ∈ D}.
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Figure 2: The framework of FusionQuery for on-demand fusion queries.

2.3 On-demand Data Fusion
With the query results 𝐷𝑎𝑡𝑎(𝑄,D) obtained via knowledge graph
matching, we provide a formal definition of "conflicts".

Definition 4 (Conflicts). 𝐷𝑎𝑡𝑎(𝑄,D) is considered in conflict
if there exist entities 𝑣𝑖, 𝑗 ∈ 𝐷𝑎𝑡𝑎(𝑄,D) such that 𝑣𝑖 is semantically
unequivalent to 𝑣 𝑗 , denoted as 𝑣𝑖 ≢ 𝑣 𝑗 .

On-demand data fusion aims to resolve conflicts among𝐷𝑎𝑡𝑎(𝑄,D).
It requires estimating the data veracity and source trustworthiness,
which are defined in Definition 5 and 6 respectively.

Definition 5 (Data veracity). The veracity of a entity 𝑣 , de-
noted by 𝑃𝑟 (𝑣), is the probability that 𝑣 is correct to the query.

Definition 6 (Source trustworthiness). The trustworthiness
of a source 𝐷 , denoted by 𝑃𝑟 (𝐷), is the probability that 𝐷 provides
true values for any query.

Generally, data fusion identifies correct answers via learning
data veracity 𝑃𝑟 (𝑣); meanwhile, it estimates source trustworthiness
𝑃𝑟 (𝐷) that will be used to infer 𝑃𝑟 (𝑣). Different from conventional
data fusion, it takes as input a full-batch dataset D and outputs
a consistent version of the dataset. Given a on-demand data fu-
sion operation 𝑓𝑐𝑟 , it takes as input a set of query-related entities
𝐷𝑎𝑡𝑎(𝑄,D) and returns conflict-resolved results as the answer
to the query 𝑄 , denoted by 𝑄 (D) = 𝑓𝑐𝑟 (𝐷𝑎𝑡𝑎(𝑄,D)) = {𝑣 ∈
𝐷𝑎𝑡𝑎(𝑄,D) | 𝑃𝑟 (𝑣) ≥ threshold}.

3 METHODOLOGY
In this section, we overview the framework of FusionQuery, fol-
lowed by the details on each component.

3.1 Overview
FusionQuery consists of two stages, unified queries and on-demand
data fusion, as demonstrated in Figure 2. In the first stage, unified
queries over heterogeneous sources are performed to obtain raw
query results. Then, with the on-demand data fusion, the between-
source conflicts that exist in the raw query results are resolved, and
the final answers for an on-demand fusion query are provided.

In the first stage, we cast the problem of unified queries over
multi-source heterogeneous data as knowledge graph matching;
furthermore, to achieve efficient knowledge graphmatching, this pa-
per proposes a novel line-graph-based knowledge graph matching
method which consists of the following three steps. 1○ Knowledge
line graph transformation. It converts knowledge graphs to line
graphs, which decouples semantic information from graph struc-
ture to facilitate efficient knowledge graph matching. 2○ Semantic
matching. It assigns match scores to node pairs based on semantic
information and only keeps those with match scores above a cer-
tain semantic matching threshold as semantically aligned nodes. 3○
Structure matching. It eliminates nodes that violate the graph iso-
morphism principle from semantically aligned nodes. After the
above steps, the remaining nodes form the candidate answers,
which satisfy both the semantic and structural requirements of
the query graph.

On-demand data fusion aims to filter out the conflicts by the
veracity scores of the raw query results. This stage also comprises
three steps. 4○ Source trustworthiness estimation. It incrementally
calculates the source trustworthiness based on historical trustwor-
thiness and current observations. 5○ Data veracity estimation. It
computes the data veracity by providing the lower bound of the
data veracity. The estimations of source trustworthiness and data
veracity update iteratively until convergence. 6○ Threshold update.
This step adjusts the semantic matching threshold automatically
using meta-learning [4], which strikes a balance between retrieval
precision and recall by controlling the quantity and quality of can-
didate answers.

In the following, we present the detailed techniques and steps in
these two stages, respectively.

3.2 Unified Queries
To enable unified queries, we convert the query and heterogeneous
data to knowledge graphs by adopting MRGC [22] and formulate
the problem of unified queries over heterogeneous data as knowl-
edge graph matching. Conceptually, we can view the knowledge
graph matching as an implicit join operation between two tables:
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𝑣1 

𝑣ො3 𝑣ො1 

𝑣ො2 

𝑟1  
𝑟3  

𝑟2  

𝑢3 

𝑢1 

𝑢2 

(a) Original knowledge graph (b) Knowledge line graph

transform

Figure 3: Example of knowledge line graph transformation.

one recording the semantic matches in the data graphs concerning
the query graph and another recording structural matches with
the query graph. In this analogy, the knowledge graph matching
essentially performs an inner join between two tables and returns
nodes that appear in both tables.

FusionQuery adopts the line graph transformation to divide
knowledge graph matching into two independent sub-problems:
node-level semantic matching and graph-level structure match-
ing, which facilitates the fast construction of "tables" of semantic
matches and structural matches. The details of the knowledge line
graph transformation, semantic matching, and structure matching
are introduced as follows.

3.2.1 Knowledge Line Graph Transformation. In this step, the query
graph and data graphs are converted to the query line graph and
data line graphs respectively. The knowledge line graph [20] is
defined in Definition 7.

Definition 7 (Knowledge line graph). Given a knowledge
graph𝐺 and the corresponding knowledge line graph G, the knowl-
edge line graph transformation is a mapping such that
(1) Each node of G represents a triple of 𝐺 ;
(2) Two nodes of G are adjacent if and only if their corresponding

edges share a common endpoint in 𝐺 .

Example 1. Taking Figure 3 as an example, triples in shades of
different colors are mapped to corresponding nodes in the knowledge
line graph, such as ⟨𝑣1, 𝑟1, 𝑣1⟩ → 𝑢1 and ⟨𝑣1, 𝑟2, 𝑣2⟩ → 𝑢2. Since
⟨𝑣1, 𝑟1, 𝑣1⟩ and ⟨𝑣1, 𝑟2, 𝑣2⟩ share the common endpoint 𝑣1, nodes 𝑢1
and 𝑢2 are connected in the line graph. Similarly, the node pairs
(𝑢1, 𝑢3) and (𝑢2, 𝑢3) are also connected.

With knowledge line graph transformation, graph structure and
semantic information are decoupled, and we can process them
independently. For ease of representation, nodes in knowledge line
graphs are denoted by ⟨𝑣, 𝑟, 𝑣⟩ in the following sections.

3.2.2 Semantic Matching. Semantic matching aims to find seman-
tically aligned nodes between query line graphs and data line
graphs. This paper encodes semantic information on triples us-
ing pre-trained language models (e.g., BERT [14], SBERT [41]),
which has demonstrated strong capabilities in handling semantic
heterogeneity. For any node ⟨𝑣𝑑 , 𝑟𝑑 , 𝑣𝑑 ⟩ in a data line graph, we
represent its semantic embedding as ⟨𝐸𝑑𝑣 , 𝐸𝑑𝑟 , 𝐸𝑑𝑣̂ ⟩. Similarly, for any
node ⟨𝑣𝑞, 𝑟𝑞, 𝑣𝑞⟩ in a query line graph, we denote the semantic em-
bedding by ⟨𝐸𝑞𝑣 , 𝐸

𝑞
𝑟 , 𝐸

𝑞

𝑣̂
⟩. Taking the query graph 𝐺𝑞 = ⟨𝑣𝑞, 𝑟𝑞, 𝑣?⟩

as an example, ?𝑣 is an object to be returned by the query, while
𝑣𝑞 and 𝑟𝑞 are query criteria. For a potentially aligned entity 𝑣𝑑 in
the data graph, 𝑣? matches 𝑣𝑑 as long as the query criteria 𝑣𝑞 and

𝑢1
𝑞  

𝑢2
𝑞  

𝑢1𝑑  𝑢2𝑑  𝑢3𝑑  𝑢4𝑑  
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Figure 4: A running example of semantic matching.

𝑟𝑞 match 𝑣𝑑 and 𝑟𝑑 , respectively. Hence, the match score of 𝑣𝑑 ,
denoted by 𝛿 (𝑣𝑑 ), can be calculated as:

𝛿 (𝑣𝑑 ) = 𝑠𝑖𝑚(𝐸𝑞𝑣 , 𝐸𝑑𝑣 ) + 𝑠𝑖𝑚(𝐸
𝑞
𝑟 , 𝐸

𝑑
𝑟 )

2
(1)

where 𝑠𝑖𝑚(∗, ∗) can be any similarity measures, such as cosine
similarity. The design of the match score is based on the intuition
that if 𝑣𝑑 and 𝑟𝑑 match the query criteria 𝑣𝑞 and 𝑟𝑞 , 𝑣𝑑 is more
likely to be an answer to 𝑣?. Data in the data source 𝐷𝑖 whose
match scores are no less than a semantic matching threshold 𝜏 are
regarded semantically aligned, which forms a set of candidates,
i.e., 𝐷𝑖 [𝐺𝑞] = {𝑣𝑑 ∈ 𝐷𝑖 |𝛿 (𝑣𝑑 ) ≥ 𝜏}. The threshold 𝜏 significantly
impacts the quality and quantity of query results. The too-low
threshold would introduce noisy answers into the query results,
while the too-high threshold would reject correct answers. Setting
𝜏 manually is quite tricky. To address it, we introduce an automatic
semantic matching threshold update mechanism in Section 3.3.4.

Example 2. The query "which is the nationality of the American
president Barack Obama" can be transformed into a query line graph
with nodes 𝑢𝑞1 and 𝑢

𝑞

2 , as shown in Figure 4. Node 𝑢𝑞1 is a triple
that represents a query criterion (i.e., Obama is a president of USA),
while 𝑢𝑞2 represents the expected query result (i.e., the nationality of
Obama). The data being queried is transformed into a data line graph
with nodes 𝑢𝑑1 , 𝑢

𝑑
2 , 𝑢

𝑑
3 and 𝑢𝑑4 , where each node represents a piece

of information about Obama. Semantic matching calculates match
scores for each node pairs based on Eq.1. Node pairs whose match
scores are no less than the pre-set matching threshold 𝜏 are regarded
as node alignments in terms of semantics. In this example, if we set 𝜏
to 0.9, we find that the scores of the node pairs (𝑢𝑞1 , 𝑢

𝑑
1 ) and (𝑢

𝑞

2 , 𝑢
𝑑
4 )

are higher than 𝜏 . Thus, they are considered semantically aligned.

Since the numbers of nodes in the query line graph and the
data line graph are |𝑅𝑞 | and |𝑅𝑑 |, respectively, the naive seman-
tic matching takes 𝑂 ( |𝑅𝑞 | |𝑅𝑑 |) time complexity in the worst case.
To accelerate it, we do the following optimizations. Considering
that the kinds of relations are much less than the kinds of enti-
ties, in order to reduce the search space, triples of the data graph
are assigned to different clusters based on the kinds of relations.
Semantic matching takes two steps: it first finds the most similar
relation in the data graph to the one in the query graph and then
finds all entities that meet the condition within the corresponding
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cluster. Moreover, an efficient similarity search tool, Faiss [28], is
also leveraged to accelerate embedding similarity calculation.

3.2.3 Structure Matching. In addition to finding semantic matches
at the node level, knowledge graph matching also must ensure that
thosematches conform to the graph structure. Structurematching is
therefore a critical step in the process of knowledge graphmatching.
It aims to eliminate semantically aligned nodes that violate graph
isomorphism principles.

Example 3. Figure 5 illustrates an example of how structurematch-
ing is essential to ensure the accuracy of query results. Consider a
query that seeks information about the birth year of Sasha Obama,
daughter of the American President Barack Obama. The correspond-
ing query line graph consists of three nodes:𝑢𝑞1 (representing the triple
⟨ B.Obama, president, USA⟩), 𝑢𝑞2 (representing the triple ⟨ B.Obama,
daughter, Sasha Obama ⟩), and 𝑢𝑞3 (representing the triple ⟨ Sasha
Obama, birthyear, 𝑣?⟩). The data line graph contains two nodes𝑢𝑑1 and
𝑢𝑑2 , which match𝑢𝑞1 and𝑢𝑞3 , respectively, due to their literal similarity.
Without structure matching, the query result will likely be incorrect,
returning the birth year of Barack Obama (1961) rather than that
of his daughter. However, with structure matching, this error can be
avoided by identifying the mismatch between the graph structures.
Hence, structure matching is a crucial step in ensuring the accuracy
of knowledge graph queries.

Guaranteed by Whitney isomorphism theorem (see Lemma 1),
in our structure matching, line graph isomorphism is equivalent to
graph isomorphism because our query graphs are acyclic graphs.

Lemma 1 (Whitney isomorphism theorem). Two connected
graphs are isomorphic if and only if their line graphs are isomorphic,
except in the case of the ring graph and the star graph.

Besides, any non-attributed graph matching methods can be
adopted to solve structure matching in our framework. Further-
more, a lot of efficient non-attributed graph matching methods
have been proposed, such as graph matching with well-designed
data structures [6, 7, 24], graph matching on parallel platforms
[30, 52, 53], graph matching on specific hardware [27, 46, 54], etc.
Filtering entities in candidate set 𝐷𝑖 [𝐺𝑞] that violate graph isomor-
phism, the rest of entities forms the query results from source 𝐷𝑖 ,
denoted by 𝐷𝑎𝑡𝑎(𝑄,𝐷𝑖 ).

3.3 On-demand Data Fusion
After obtaining query results 𝐷𝑎𝑡𝑎(𝑄,D), on-demand data fusion
resolves conflicts in 𝐷𝑎𝑡𝑎(𝑄,D) based on data veracity. In the
multi-source setting, the estimation of data veracity relies on the
source trustworthiness which requires to estimate as well. Thus, the
estimation of data veracity and source trustworthiness are closely
intertwined. To accurately estimate data veracity, this paper re-
gards source trustworthiness as a latent variable and designs an
Expectation-Maximization (EM) algorithm to estimate data verac-
ity. The workflow of this EM algorithm includes: (1) initialization
of data veracity and source trustworthiness (see Section 3.3.1); (2)
iterative estimations of data veracity and source trustworthiness
(see Section 3.3.2 and 3.3.3); (3) threshold update (see Section 3.3.4).
The overall workflow is presented in Algorithm 1, and the details
of each component are introduced as follows.

(a) Notation

(b) Without structure matching

(c) With structure matching

<B.Obama, president, USA>

<B.Obama,daughter,Sasha Obama>

<Sasha Obama,birthyear,     >

<B.Obama,birthyear,1961>

<B.Obama,nationality,USA>

𝑢3
𝑞  

𝑢2𝑑  

𝑢1𝑑  

𝑢1
𝑞  

𝑢2
𝑞  

TriplesNodes

𝑢1
𝑞  

Sementic matching

Return: 1961 (Wrong answer)

𝑢1
𝑞  𝑢3

𝑞  𝑢1𝑑  𝑢2𝑑  
𝑢2
𝑞  

Query line graph Data line graph

≇ 

Graph structures mismatch

𝑢3
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𝑢2
𝑞  

𝑣? 

Figure 5: A toy example of why structure matching matters.

3.3.1 Initialization. Before iterative data veracity and source trust-
worthiness estimations, we have to initialize the source trustwor-
thiness and data veracity. Previous approaches choose to assign
the same initial veracity scores for all entities and the same trust-
worthiness scores for all data sources, which prevents data fusion
methods from efficient learning. To address this issue, we leverage
intrinsic features (i.e., match scores and null value proportions) to
learn data veracity and source trustworthiness effectively and effi-
ciently. Specifically, match scores indicate the degree of alignment
between an entity and the user’s query. Higher match scores sug-
gest a stronger likelihood that the attribute value associated with
the entity is the correct answer to the query. Null value proportions
indicate the information integrity of different sources. Taking the
null value proportion as the initial trustworthiness score of sources
makes estimations converge much quicker.

3.3.2 Data Veracity Estimation. Wemodel the data veracity estima-
tion as maximum likelihood estimation (MLE) since emitted query
results possess high veracity as the observable values. For an entity
𝑣 , its veracity score is estimated as:

log 𝑃𝑟 (𝑣) = arg max
𝑣,𝐷

log
∑︂
𝐷∈D

𝑃𝑟 (𝑣, 𝐷) . (2)

where 𝑃𝑟 (𝑣, 𝐷) is a joint distribution of data veracity and source
trustworthiness. Maximizing Eq. 2 by searching 𝑃𝑟 (𝑣) is infeasible
due to the extremely large search space resulting from the relation-
ship between 𝑃𝑟 (𝑣) and hidden variables 𝑃𝑟 (𝐷). To address this,
we derive the lower bound of the data veracity 𝑃𝑟 (𝑣) and change it
in every iteration. Specifically, we calculate data veracity as:

log 𝑃𝑟 (𝑣) =
∑︂
𝐷∈D

𝑃𝑟 (𝐷 |𝑣) log
𝑃𝑟 (𝑣, 𝐷)
𝑃𝑟 (𝐷 |𝑣)

=
∑︂
𝐷∈D

𝑃𝑟 (𝐷 |𝑣) log
𝑃𝑟 (𝑣 |𝐷)𝑃𝑟 (𝐷)

𝑃𝑟 (𝐷 |𝑣)

(3)

where 𝑃𝑟 (𝐷 |𝑣) and 𝑃𝑟 (𝑣 |𝐷) are two conditional probabilities. The
concrete introduction of 𝑃𝑟 (𝐷 |𝑣) and 𝑃𝑟 (𝑣 |𝐷), including theirmean-
ings and calculations, will be explained later. Besides, the proof of
the lower bound and theoretical analysis of its monotonicity will
be discussed further in Section 4.

The conditional probability 𝑃𝑟 (𝑣 |𝐷) represents the veracity score
of the entity 𝑣 when the source 𝐷 is reliable. Regarding 𝑃𝑟 (𝑣 |𝐷),
consider two circumstances where the data source 𝐷 provides (i.e.,
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emits) the entity 𝑣 as an answer or not. 𝑃𝑟 (𝑣 |𝐷) is designed as:

𝑃𝑟 (𝑣 |𝐷) =
{︄
𝑃𝑟 (𝐷) 𝐷 provides 𝑣,
1 − 𝑃𝑟 (𝐷) otherwise.

(4)

The intuition is grounded in the premise of the source 𝐷 being reli-
able and definitions of 𝑃𝑟 (𝐷) and 𝑃𝑟 (𝑣 |𝐷) firstly proposed in [36].
Specifically, we accept 𝑣 as a correct answer by the probability of
𝐷 providing correct answers (i.e. 𝑃𝑟 (𝐷)) if 𝐷 provides 𝑣 ; otherwise,
we regard 𝐷 makes a mistake and reject it by probability 1− 𝑃𝑟 (𝐷).

To ensure that data veracity falls within the range [0, 1], 𝑃𝑟 (𝑣)
should be normalized. However, normalization methods such as
softmax can smooth out differences in 𝑃𝑟 (𝑣) between different en-
tities, which could have a negative impact on the performance of
data fusion. Thus, inspired by the previous study [50], 𝑃𝑟 (𝑣) is
transformed to − log(1 − 𝑃𝑟 (𝑣)) for normalization. After transfor-
mation, 𝑃𝑟 (𝑣) falls between 0 and +∞, where larger values indicate
higher veracity. Moreover, we also utilize the Gumbel-Softmax [26]
to normalize 𝑃𝑟 (𝑣), which can preserve the differences as much as
possible. In addition, an answer will be more reliable if the majority
of sources provide it for a query. Hence, we introduce a parameter
called the vote count, denoted by 𝜔𝑣 , to adjust data veracity. The
vote count represents the number of sources that provides the entity
𝑣 . To sum up, the data veracity is normalized as follows:

𝑃𝑟 (𝑣) ←
exp ( −𝜔𝑣 ·log(1−𝑃𝑟 (𝑣) )

𝑧 )∑︁
𝑣̄∈𝐷𝑎𝑡𝑎 (𝑄,D) exp ( −𝜔 (𝑣̄) ·log(1−𝑃𝑟 (𝑣̄) )

𝑧 )
(5)

where 𝑧 is a temperature scaling parameter. As 𝑧 approaches 0, the
softmax computation approaches the argmax; while as 𝑧 approaches
+∞, the distribution of normalized data veracity becomes identical
to the uniform distribution.

3.3.3 Source Trustworthiness Estimation. As a latent variable to
infer data veracity, in this section, we introduce how to estimate
source trustworthiness 𝑃𝑟 (𝐷). According to the Law of Total Prob-
ability, the estimation of 𝑃𝑟 (𝐷) could be expanded as:

𝑃𝑟 (𝐷) =
∑︂

𝑣∈𝐷𝑎𝑡𝑎 (𝑄,𝐷 )
𝑃𝑟 (𝐷 |𝑣)𝑃𝑟 (𝑣) (6)

where the conditional probability 𝑃𝑟 (𝐷 |𝑣) represents the trustwor-
thiness score of the source 𝐷 when the entity 𝑣 is a true answer for
the query.

To estimate 𝑃𝑟 (𝐷 |𝑣), we re-define source trustworthiness in
the context of true positive and false positive. Each source emits
entities as true or false predictions for the correct query answers,
and emitted entities are taken as the positive for "the prediction"
because these entities possess high veracity. Therefore, the source
trustworthiness is equivalent to the probability that positive entities
emitted from the source are truly correct. It is estimated by 𝑇𝑃

𝑇𝑃+𝐹𝑃 ,
where 𝑇𝑃 denotes the number of correct answers provided and 𝐹𝑃

represents the number of false answers provided.
However, under the on-demand fusion query setting, we do not

have access to the entire data during the fusion stage. As a result, we
cannot calculate the exact𝑇𝑃 and 𝐹𝑃 of all the sources, let alone the
exact estimation of the source trustworthiness. Despite this, we can
still obtain the historical source trustworthiness and query-related

data for the correct query. Thus, we propose an incremental esti-
mation of 𝑃𝑟 (𝐷 |𝑣) based on historical trustworthiness and current
query-related data.

Assume that the number of entities provided by the data source
𝐷 for all historical queries isH , and query 𝑄-related data from the
source 𝐷 is denoted by 𝐷𝑎𝑡𝑎(𝑄, 𝐷). With prior knowledge that the
entity 𝑣 ∈ 𝐷𝑎𝑡𝑎(𝑄, 𝐷) is one of correct answers to the query 𝑄 ,
other entities in 𝐷𝑎𝑡𝑎(𝑄,𝐷) whose veracity scores are no less than
𝑣 can also be taken as correct. We denote the set of correct answers
as 𝐷𝑣 [𝑄] = {𝑣 ∈ 𝐷𝑎𝑡𝑎(𝑄, 𝐷) |𝑃𝑟 (𝑣) ≥ 𝑃𝑟 (𝑣)}. Then, 𝑃𝑟 (𝐷 |𝑣) can
be estimated as:

𝑃𝑟 (𝐷 |𝑣) = H · 𝑃𝑟ℎ (𝐷)
H + |𝐷𝑎𝑡𝑎(𝑄, 𝐷) | +

∑︁
𝑣̄∈𝐷𝑣 [𝑄 ] 𝑃𝑟 (𝑣)

H + |𝐷𝑎𝑡𝑎(𝑄,𝐷) | (7)

where 𝑃𝑟ℎ (𝐷) represents the latest historical estimate of source
trustworthiness. Since the source trustworthiness represents the
probability that a source provides correct answers, H · 𝑃𝑟ℎ (𝐷)
can represent the expected number of correct answers provided by
the source 𝐷 for historical queries. Similarly, as 𝑃𝑟 (𝑣) represents
the probability that an entity is a correct answer,

∑︁
𝑣̄∈𝐷𝑣 [𝑄 ] 𝑃𝑟 (𝑣)

represents the unbiased estimate for the number of correct an-
swers provided by 𝐷 in the current query. Therefore,H · 𝑃𝑟ℎ (𝐷) +∑︁

𝑣̄∈𝐷𝑣 [𝑄 ] 𝑃𝑟 (𝑣) estimates the number of true positives (𝑇𝑃 ) in 𝐷

and the denominatorH + |𝐷𝑎𝑡𝑎(𝑄, 𝐷) | represents the number of
positive entities provided by 𝐷 , namely 𝑇𝑃 + 𝐹𝑃 , to some extent.

3.3.4 Threshold Update. This paper finds that semantic matching
threshold 𝜏 matters the trustworthiness scores of data sources.
Furthermore, 𝜏 is source-wise, and setting the value of 𝜏 depends
on the source trustworthiness. Based on source trustworthiness
estimates, this paper proposes an autonomous 𝜏 update mechanism,
which learns to update 𝜏 by means of a meta-learning paradigm.
Meta-learning [4], which follows the thoughts of learning-to-learn,
can automatically update hyperparameters based on the gradient
of the learning objective. This paper set the learning objective
to optimize the source trustworthiness w.r.t 𝜏 , and automatically
update 𝜏 according to the gradient ∇𝜏𝑃𝑟 (𝐷).

However, computing the gradient ∇𝜏𝑃𝑟 (𝐷) is challenging for
the estimation of 𝑃𝑟 (𝐷) is dependent on 𝑃𝑟 (𝑣) rather than directly
dependent on 𝜏 . Consequently, computing the gradient ∇𝜏𝑃𝑟 (𝐷) is
not a straightforward task. To overcome this challenge, we intro-
duce a "virtual" gradient, which links 𝑃𝑟 (𝐷) and 𝜏 by means of a
straightforward transformation applied to 𝑃𝑟 (𝑣).

As discussed in Section 3.2, each entity 𝑣 has to satisfy the condi-
tion 𝑃𝑟 (𝑣) ≥ 𝜏 to be considered as an answer to the query. Applying
a simple transformation, we can derive:

𝑃𝑟 (𝑣) ≥ 𝜏 ⇔ 𝑃𝑟 (𝑣) = 𝜏 + 𝜖𝑣 (𝜖𝑣 ≥ 0) (8)

where 𝜖𝑣 is a positive constant for each entity 𝑣 . This equation
creates a "virtual" connection between 𝑃𝑟 (𝐷) and 𝜏 . Substituting
Eq. 8 into Eq. 6, we can obtain an equation with respect to 𝑃𝑟 (𝐷)
and 𝜏 . Further, we can derive the "virtual" meta-gradient of trust-
worthiness with respect to 𝜏 , given by:

∇𝜏𝑃𝑟 (𝐷) =
𝜕
∑︁

𝑣∈𝐷𝑎𝑡𝑎 (𝑄,𝐷 ) 𝑃𝑟 (𝐷 |𝑣)𝑃𝑟 (𝑣)
𝜕𝜏

= |𝐷𝑎𝑡𝑎(𝑄, 𝐷) | +
∑︂

𝑣∈𝐷𝑎𝑡𝑎 (𝑄,𝐷 )

𝑃𝑟 (𝑣) · |𝐷𝑣 [𝑄] |
H + |𝐷𝑎𝑡𝑎(𝑄,𝐷) |

(9)
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Algorithm 1: FusionQuery
Input: a query 𝑄 in form of a graph 𝐺𝑞 , a data source set

D = {𝐷𝑖 }
Output: Answers to the query with veracity {(𝑣, 𝑃𝑟 (𝑣))}

1 initialize the query-related data 𝐷𝑎𝑡𝑎(𝑄,D) ← ∅
2 for each 𝐷𝑖 in D do
3 convert 𝐷𝑖 to knowledge graphs 𝐺𝑑

𝑖
using MRGC

4 transform 𝐺𝑑
𝑖
into knowledge line graph G𝑑

𝑖

5 transform 𝐺𝑞 into knowledge line graph G𝑞

6 for each 𝐺𝑑
𝑖
in data graph set do

7 apply semantic matching to G𝑑
𝑖
with the semantic

matching threshold 𝜏
8 apply structure matching to G𝑑

𝑖
to generate

query-related data 𝐷𝑎𝑡𝑎(𝑄, 𝐷𝑖 )
9 add 𝐷𝑎𝑡𝑎(𝑄, 𝐷𝑖 ) to 𝐷𝑎𝑡𝑎(𝑄,D)

10 initialize a trustworthiness score for each source
11 initialize data veracity for each entity in 𝐷𝑎𝑡𝑎(𝑄,D)
12 while divergence do
13 for each 𝐷 in D do
14 update 𝑃𝑟 (𝐷 |𝑣) ←− Eq. 7
15 update 𝑃𝑟 (𝐷) ←− Eq. 6
16 for each 𝑣 in 𝐷𝑎𝑡𝑎(𝑄,D) do
17 update 𝑃𝑟 (𝑣) ←− Eq. 3
18 normalize 𝑃𝑟 (𝑣) ←− Eq. 5

19 update threshold 𝜏 based on Eq. 9 and Eq. 10
20 return Query answers (𝑣, 𝑃𝑟 (𝑣))

Having derived the "virtual" meta-gradient ∇𝜏𝑃𝑟 (𝐷), 𝜏 can be
updated via back-propagation. Here, we leverage a gradient descent
algorithm [8], which is widely used in the deep learning domain.
The update of 𝜏 is presented as:

𝜏 = 𝜏 − 𝜃𝑠𝑔𝑛(Δ𝑃𝑟 (𝐷)) · ∇𝜏𝑃𝑟 (𝐷) (10)

whereΔ𝑃𝑟 (𝐷) is the change of 𝑃𝑟 (𝐷) during iterations, 𝑠𝑔𝑛(Δ𝑃𝑟 (𝐷))
is a sign function that indicates the direction of the change (i.e.,
increase or decrease), and 𝜃 is a hyperparameter that controls the
speed of parameter update, also known as the learning rate.

Automatic adjustment of 𝜏 ensures that when source trustwor-
thiness decreases, the threshold 𝜏 increases to improve the quality
of candidate answers generated in the unified queries. When the
source trustworthiness increases, the threshold 𝜏 is lowered to
maintain high recall.

In conclusion, the whole workflow of FusionQuery is presented
in Algorithm 1. It takes as inputs a query𝑄 in the form of a graph𝐺𝑞 ,
a set of data source D = {𝐷𝑖 }, and outputs the query answers with
data veracity {(𝑣, 𝑃𝑟 (𝑣))}. FusionQuery initializes query-related
data 𝐷𝑎𝑡𝑎(𝑄,D) as empty (lines 1). Then, it converts data sources
to knowledge graphs and transforms them into knowledge line
graphs (lines 2-4). Next, the query graph is also transformed into
the knowledge line graph (line 5). In the sequel, for each data
line graph, the algorithm applies semantic and structure matching
to generate query-related data from each source and add them
to 𝐷𝑎𝑡𝑎(𝑄,D) (lines 6-9). Then, source trustworthiness and data

Table 1: Statistics of the datasets used in experiments.

Datasets Format #num. #ent (avg.) #rel (avg.) Query

Movie
JSON (J) 4 19,701 45,790

210KG (K) 5 100,229 264,709
CSV (C) 4 70,276 184,657

Book
JSON (J) 3 3,392 2,824

100CSV (C) 3 2,547 1,812
XML (X) 4 2,054 1,509

Flight
CSV (C) 10 48,672 100,835 260JSON (J) 10 41,939 89,339

Stock
CSV (C) 10 7,799 11,169 100JSON (J) 10 7,759 10,619

veracity are initialized at the beginning of iterative estimations
(lines 10-11). Thereafter, a while-loop is performed to estimate
data veracity and source trustworthiness (lines 12-18). For source
trustworthiness estimation, it calculates the conditional probability
𝑃𝑟 (𝐷 |𝑣) and updates source trustworthiness based on Eq. 7 and
Eq. 6 respectively (lines 13-15). For data veracity estimation, it
calculates 𝑃𝑟 (𝑣) based on Eq. 3 and normalizes 𝑃𝑟 (𝑣) according
to Eq. 5 (lines 16-18). Finally, the algorithm updates the semantic
matching threshold 𝜏 based on Eq. 9 and Eq. 10 (line 19), and returns
entities with veracity scores as answers to the query (line 20).

4 THEORETICAL ANALYSIS
In this section, we provide the theoretical analysis of the conver-
gence of the data fusion algorithm and the time complexity of the
entire workflow of FusionQuery.
Convergence Analysis. Data fusion converges as long as data
veracity is proven to be convergent in iterations. According to the
Monotone convergence theorem, the data veracity 𝑃𝑟 (𝑣) is convergent
if and only if it is bounded and monotonic. The boundness of 𝑃𝑟 (𝑣)
is easy to prove according to its definition. The following lemma
establishes the monotonicity of 𝑃𝑟 (𝑣).

Lemma 2 (Monotonicity of data veracity). If the majority of
data sources provide the entity 𝑣 as an answer, 𝑃𝑟 (𝑣) is monotonically
increasing since the lower bound of 𝑃𝑟 (𝑣) is monotonically increasing
in iterations.

Proof. Please refer to Section 5 of the technical report [1]. □

Time Complexity. The time complexity of knowledge graph
matching is 𝑂 ( 𝑛𝑝 |𝑅

𝑞 | |𝑅𝑑 |) where 𝑛 is the number of sources, 𝑝
is the number of kinds of relations in the data graph and |𝑅𝑞 | (resp.
|𝑅𝑑 |) is the number of nodes in the query (resp. data) line graph.
The time complexity of data fusion is 𝑂 (𝐼𝑚2𝑛) where 𝐼 is iteration
rounds, 𝑛 is the number of sources and𝑚 is the size of query-related
data. More details are presented in our technical report [1].

5 EXPERIMENTS
In this section, we compare our FusionQuery with several batch
and on-demand data fusion baselines respectively. Additionally, we
conduct extensive experiments to evaluate the effectiveness and
efficiency of the techniques used in our method.
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Table 2: Comparison with on-demand and batch data fusion baselines w.r.t. effectiveness and efficiency.

Datasets Types
On-demand data fusion baselines Batch data fusion baselines Ours

OL-MV OL-TF OL-LTM OL-DART OL-CASE QS-MV QS-TF QS-LTM QS-DART QS-CASE FusionQuery

F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time

Movie

J/K 0.21 0.07 31.7 36.5 13.2 55.1 8.65 2.85 22.6 4.92 1.77 1399 37.1 9717 41.4 1995 43.2 3809 40.4 4900 51.3 2.64

J/C 0.11 0.13 24.1 38.5 8.01 91.7 4.85 4.32 14.2 5.06 1.72 41.9 41.9 7214 42.9 1884 45.9 3246 42.3 3981 54.0 2.36

K/C 0.09 0.18 24.2 51.3 13.4 118.0 4.30 6.49 14.9 5.99 3.68 1397 37.8 2199 41.2 1576 37.6 2027 39.4 1699 48.3 4.40

J/K/C 0.13 0.19 44.7 67.5 7.71 201.1 5.76 9.57 21.7 8.80 1.79 1400 36.6 11225 40.8 2346 41.5 5151 42.1 5480 54.3 10.8

Book

J/C 1.13 0.01 38.3 1.98 18.5 4.06 22.5 0.30 24.7 1.84 7.20 34.8 40.2 1017 42.4 195.3 35.2 165.0 41.3 376.6 62.4 0.47
J/X 0.17 0.01 35.5 2.07 11.1 6.32 26.2 0.35 24.7 1.84 8.89 34.9 35.5 1070 35.6 277.7 36.1 200.1 35.5 377.8 60.0 0.56
C/X 0.83 0.01 40.2 0.93 14.0 3.53 32.9 0.25 21.2 1.66 10.0 34.2 43.0 1033 44.1 232.6 42.6 201.4 40.3 811.0 59.6 0.38
J/C/X 0.13 0.01 42.9 2.51 8.76 8.75 27.2 0.51 40.8 1.96 7.36 35.4 37.3 2304 41.0 413.2 40.4 394.1 40.3 811.0 60.3 1.07

Flight C/J 0.06 0.32 27.3 6049 21.3 1846 72.3 20.2 12.0 54.5 67.1 1445 - - 79.1 14786 80.1 73380 - - 72.9 109.9

Stock C/J 55.3 0.01 68.4 2.30 28.0 9.25 64.8 0.33 64.8 2.27 21.1 65.4 20.6 5034 16.7 431.0 19.2 1337 17.4 1366 71.6 0.36

1 The symbol "-" denotes that the method fails to finish within 1 day.
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Figure 6: Efficiency and scalability vs. data amount.

5.1 Experimental Settings
Datasets. The experiments are conducted on the four real-world
benchmark datasets [17, 33, 50]. Table 1 presents the detailed sta-
tistics of the datasets. (i) The Movie dataset contains movie data
collected from 13 sources. In experiments, 210 queries are executed
on the Movie dataset. (ii) The Book dataset contains book data from
10 sources. In experiments, we execute 100 queries on the Book
dataset. (iii) The Flight dataset collects information on over 1200
flights from 20 sources. In experiments, 260 queries are issued on
the Flight dataset. (iv) The Stock dataset collects trading data of
1000 stock symbols from 20 sources. In experiments, 100 queries
are issued over it.
Baselines. In order to demonstrate the superiority of our proposed
FusionQuery, we compare it with the state-of-the-art data fusion
method, DART [36], as well as other baseline methods: a naive
data fusion method MajorityVoter (abbreviated as MV), a classi-
cal iteration-based data fusion method TruthFinder (abbreviated
as TF) [50], a probabilistic data fusion method LTM [55], and an
optimization-based data fusion method CASE [37].
Implementation details. For all baselines, we carefully tune the
parameters according to the original papers in our settings. All the
methods are implemented in Python 3.8. In our method, we use

SBERT [41] as the backbone structure of the semantic matching step
due to its superiority, and the dimension of the embedding vectors is
set to 768. We use the VF2 algorithm to perform structure matching
for its simple implementation. The temperature parameter 𝑧 is set
to 0.5, and the learning rate 𝜃 is set to 3e-5. The number of entities
for historical queriesH is initialized with 50. All the experiments
are conducted on a server with an Intel Xeon(R) E5-2640, 2.40GHz
CPU, an NVIDIA 1080ti 12G GPU, and 128GB memory.
Evaluation metrics. To evaluate effectiveness, following previous
studies [36, 55], we use the F1 score (F1) as the evaluation metric
on data fusion results, which is the harmonic mean of precision
(P) and recall (R) computed as 𝐹1 = 2×𝑃×𝑅

𝑃+𝑅 . In addition, we use
runtime (in seconds) as an evaluation metric to verify efficiency.

5.2 Comparison with On-demand Baselines
Setting. We compare FusionQuery with on-demand data fusion
baselines. For a fair comparison, we replace our data fusion method
with five data fusion baselines in the FusionQuery framework.
Thereby, we obtain five corresponding variants to evaluate their on-
demand fusion query performance, namely, onlineMajorityVoter
(OL-MV), online TruthFinder (OL-TF), online LTM (OL-LTM), on-
line DART (OL-DART), and online CASE (OL-CASE). Table 2 sum-
marizes the data fusion performance (i.e., F1 score and total fusion
time) of FusionQuery and baselines on three datasets.
Effectiveness. Table 2 indicates that FusionQuery outperforms
all competitors on all datasets. Statistically, it achieves almost 1.5×
and 2× higher F1-score than TruthFinder and CASE, and achieves
much better performance than other baselines.MV achieves poor
performance on all datasets. The reason is thatMV can only return
a single answer for the query, which cannot fit in the situation that
there usually are multiple values for a query. For instance, a movie
or a book generally has multiple directors or authors. LTM, DART,
and CASE do not perform well on all datasets. This is because they
learn data veracity from large data, which is unavailable in the
online setting. TF achieves higher F1-scores compared to other
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Figure 7: Performance of FusionQuery with Threshold update and without Threshold update vs. matching threshold 𝜏 .

Table 3: Removing the line graph and incremental estimates.

Datasets Types FusionQuery -incremental -line graph
F1 QT FT F1 QT FT F1 QT FT

Movie

J/K 51.3 25.7s 2.64s 41.4 24.8s 0.73s 12.2 2783s 0.28s
J/C 54.0 12.7s 2.36s 48.4 11.7s 0.40s 49.1 1882s 0.29s
K/C 48.3 31.6s 4.40s 44.7 29.7s 0.70s 45.5 4233s 0.29s
J/K/C 54.3 39.2s 10.8s 32.2 40.7s 0.28s 50.4 4437s 0.32s

Book

J/C 62.4 0.19s 0.47s 48.5 0.18s 0.10s 57.1 11.9s 0.17s
J/X 60.0 0.22s 0.56s 46.1 0.20s 0.10s 59.3 11.7s 0.17s
C/X 59.6 0.16s 0.38s 49.4 0.16s 0.10s 55.3 8.39s 0.16s
J/C/X 60.3 0.31s 1.07s 47.2 0.30s 0.12s 57.2 15.8s 0.18s

Flight C/J 72.9 29.8s 109.9s 63.0 28.8s 31.1s 75.2 13.2h 0.50s
Stock C/J 71.6 0.72s 0.36s 36.1 0.55s 0.12s 69.6 450.8s 0.19s

baselines because the data veracity learning process of TF does not
heavily rely on the size of observed data.
Efficiency. FusionQuery achieves the best or comparable perfor-
mance in most cases. Note that, we do not count MajorityVoter
due to its naive idea and bad performance. For each query, Fusion-
Query only takes 0.24s, 0.01s, 0.54s, and 0.04s to execute the entire
workflow on Movie, Book, Flight, and Stock respectively, which are
shorter than an update interval of most real-world data lakes. More-
over, even in scenarios where the data update interval is shorter
than the execution time of FusionQuery, our framework still has a
high probability of not being impacted by data updates. Because
the query-related data remains unchanged in data updates, given
the high probability that data updates only affect irrelevant data.

5.3 Comparison with Batch Baselines
Setting. Prior to conducting batch data fusion, it is required to
detect the records referring to the same entities. Here, we use SIF

[44] with pre-trained SBERT to identify relevant entities, whose
benefits are free from the model training, fast execution, and high
recall. According to the statistics of our datasets, there are on aver-
age three latent true answers for each query. Therefore, we select
top-3 values with the highest veracity scores as the fusion results
to generate consistent data. In addition, we measure the accuracy
of query answering over the generated data via the F1-score. We
distinguish these query-supported variants of batch data fusion
baselines by prefixing them with "QS". Table 2 lists the performance
of our method and baselines on three datasets.
Effectiveness. FusionQuery achieves the best effectiveness and
outperforms batch data fusion baselines by around 10 points in
F1-score. The main reason is that the performance of batch data
fusion extremely relies on high-quality entity matching, which is
still unresolved, especially in the case of the multi-sourced hetero-
geneous circumstance. Low-quality entity matching will introduce
a lot of noise into data fusion, which leads to poor query quality.
In contrast, FusionQuery finds out entities referring to the same
real-world objects in the meantime of query processing. Thus, Fu-
sionQuery is able to support fast and accurate detection of relevant
entities without complex data matching.
Efficiency. FusionQuery dominates other batch data fusion meth-
ods. FusionQuery is completed in seconds while the batch data
fusion methods are completed in minutes, or even in hours. The
reasons can be concluded in two aspects. On the one hand, entity
matching has inherently quadratic complexity, which is time con-
suming as a preprocessing step. On the other hand, batch data fusion
updates source trustworthiness using entire data in all sources once
data veracity updates, which takes much more time, especially on
large-scale data. In contrast, FusionQuery performs data fusion on
the query-related data on demand during query processing, which
eliminates irrelevant data so as to speed up the iterative process.
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Figure 8: Performance evaluation vs. initial Trustworthiness.

Scalability. To evaluate the scalability of data fusion methods on
large-scale data, we repeat sampling data from the dataset to aug-
ment it. Figure 6 depicts the scalability of FusionQuery compared
to batch data fusion baselines when varying the size of datasets.
When the data amount scales up to 10 million, only LTM and Fu-
sionQuery complete to return answers to queries. TF, DART, and
CASE fail because of time limits (1 day) or storage limits. In addition,
FusionQuery takes shorter time to finish query processing than
LTM, especially on the larger dataset. This efficiency in handling
data fusion operations further supports the framework’s ability to
operate effectively in scenarios with frequent data updates.

5.4 Ablation Study
Threshold update.We conduct an ablation study to evaluate the
effect of threshold update on the performance of FusionQuery.
Figure 7 illustrates the results of the ablation study. We can find
several observations: (1) FusionQuery is sensitive to the seman-
tic matching threshold 𝜏 , especially on the Book dataset, since the
semantic matching threshold 𝜏 controls the quality and quantity
of the candidate answer set. (2) FusionQuery with threshold up-
date outperforms FusionQuery without threshold update on two
datasets. The reason is that the automatic adjustment of 𝜏 helps
FusionQuery strike a balance between precision and recall.
Line graph.We conduct an ablation study where the line graph-
based search proposed in our work is replaced with Node-First-
Framework (NFF) search [25], which is the most efficient method
for natural language answering over KGs to our best knowledge.
The study measures query efficiency in terms of query time (QT)
in seconds. Table 3 showcases the superior query efficiency (i.e.,
100× acceleration) achieved by FusionQuery with the line graph
transformation compared to the NFF-based search method.

Incremental estimation.We compare FusionQuery with incre-
mental estimations with a non-optimized version that lacks these
incremental components. The findings reveal that FusionQuery
with incremental source trustworthiness estimations outperforms
the non-optimized version by approximately 10 points in F1 score.
While there is a trade-off in data fusion efficiency (as indicated by
FT), the overall improvement in data fusion quality reinforces the
effectiveness of FusionQuery.

5.5 Parameter Sensitivity
Initial trustworthiness. We then explore the impact of initial
trustworthiness on the performance of FusionQuery, by varying
the initial trustworthiness from 0.95 to 0.75. As shown in Figure 8,
the setting of the initial trustworthiness would not seriously affect
the F1-score, which shows the robustness of FusionQuery to the
initialization. Moreover, we find that FusionQuery shows stronger
robustness on the smaller dataset (i.e. Book). The reason can be that
FusionQuery needs fewer queries to obtain the stable estimates of
source trustworthiness on a smaller dataset.
Additional results. We conduct more experiments on the conver-
gence process of FusionQuery to verify the theoretical convergence
analysis. We find that the theoretical analysis is consistent with the
experimental results, which is reported in our technical report [1].

6 CASE STUDY
We present a case of applying FusionQuery to real-world hetero-
geneous data. Firstly we leverage MRGC [22] to transform (semi-
)structured data to knowledge graphs (KGs) and an LLM (Vicuna-
13B)-based information extraction (IE) method [38] to convert tex-
tual data (i.e., Wikidata) into KGs. Then, we apply FusionQuery to
process queries over aforesaid KGs.
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Query: Who is the director of the movie Crazy Eights? 
(Ground truth: Jimi Jones)
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Fail to extract 
related data.

Audition Tape
Director: Cole Bankston
Matching score: 0.93

Audition Material
Director: Gjorče Stavreski
Matching score: 0.90

Auditioning Fanny
Director: Mia Kate Russell
Matching score: 0.81

Outputs: Cole Bankston (with a veracity score of 0.42)
Explanation: the movie Audition is not present in data 
sources.

Outputs: Jimi Jones (with a veracity score of 0.53)
Explanation: IMDb is a high-quality movie data source, 
possessing higher trustworthiness.

Figure 9: An real-world case of FusionQuery.
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Explanation: IMDb is a high-quality movie data source, 
possessing higher trustworthiness.

Figure 10: An extreme case of FusionQuery.

Applicability. In the case study, we apply FusionQuery to a set of
real-world heterogeneous data, including textual data (e.g., wiki-
data) and structural data (e.g., CSVs from IMDb). Figure 9 presents a
case of evaluating FusionQuery over multiple sources to find direc-
tors of the movie "Crazy Eights". In this scenario, query-related data
collected by FusionQuery exhibits conflicts, with only IMDb pro-
viding "Jimi Jones" as the answer while other movie data sources all
provide "James K. Jones". Leveraging the evaluation of data veracity,
FusionQuery emits "Jimi Jones" as the answer with a veracity score
of 0.53. The decision is based on recognizing IMDb as a high-quality
movie data source with higher trustworthiness.
Limitations. Considering an extreme case where there is a total ab-
sence of suitable KGs, FusionQuery faces challenges in identifying
relevant data to form query-related data, resulting in its inability
to generate reliable answers for a given query. Figure 10 illustrates
the simulated scenario, where FusionQuery is applied to retrieve
information about movies. In this example where the movie "Audi-
tion" is not present in the data sources, FusionQuery attempts to
form query-related data by collecting movies with names prefixed
by "audition". This introduces irrelevant data and consequently
FusionQuery fails to return correct answers.

7 RELATEDWORK
Existing works that apply batch data fusion to resolve conflicts
across sources could be generally divided into three categories.
Iterative methods [17, 18, 36, 50] calculate the trustworthiness
of data sources and veracity of data items iteratively. Specifically,
TruthFinder [50] is the first work to formulate the data fusion
problem, and builds a heuristic algorithm that iteratively infers data
veracity and source trustworthiness. EMRGMM [49] proposes an
EM-like data fusion method with a theoretical guarantee. However,
it only solves the data fusion problem on numeric data, which is
greatly different from our problem setting. Optimization-based
methods [9, 11, 32, 37] minimize the distance between data items
and their corresponding groundtruth. Specifically, CrowdFusion
[11] models the data fusion problem as an optimization problem
and makes use of the crowd to realize high-quality data fusion.
CASE [37] predicts false data items via learning embeddings of
data sources and data items with an optimization goal. However,
these studies heavily rely on human annotation. Probabilistic
methods [16, 31, 40, 55] model a joint distribution of data items
and data sources based on groundtruth, andmaximize the likelihood.
Specifically, LTM [55] applies a probabilistic graphical model to
infer the joint probability of data items and data sources. MBM
[48] presents an integrated Bayesian approach and takes auxiliary
features into account. However, their performance highly depends
on hyperparameters. In addition, as stated in Section 1, batch data
fusion suffers from poor scalability, slow response to data updates,
and complex data matching. To address these, we propose the on-
demand fusion query, which is more efficient and flexible.

Several efforts have been devoted to the on-demand fusion query.
FuseM [51] is the first pipeline designed for query-centric data fu-
sion on web markup data, which first adopts the BM25 model to
retrieve entities and then uses supervised ML classifiers to realize
data fusion. PolyFuse [23] classifies the incoming data based on
its data type and then calls the corresponding processor to realize
data fusion. BrewER [42] supports SQL SP queries on dirty rela-
tional tables, achieving entity resolution and conflict resolution
on-demand. Nonetheless, None of them supports solving conflicts
across heterogeneous data. In view of this, we explore on-demand
fusion queries over heterogeneous multi-source data.

8 CONCLUSIONS
In this paper, we propose FusionQuery, an efficient framework for
on-demand fusion queries over heterogeneous data. It includes a
query stage and a fusion stage. At the query stage, query-related
data is identified via knowledge graph matching. At the fusion
stage, an incremental data fusion method is performed on the query-
related data. Comprehensive experiments demonstrate the superi-
ority of FusionQuery. In the future, we plan to further enhance the
effectiveness of the on-demand fusion query.

ACKNOWLEDGMENTS
This work was supported in part by the National Key Research and
Development Program of China under Grant No. 2021YFC3300303,
theNSFC under Grants No. (62102351, 62025206, 62302436, U23A20296),
Ningbo Science and Technology Special Projects under Grant No.
2023Z212. Lu Chen is the corresponding author of the work.

1348



REFERENCES
[1] 2023. FusionQuery: full version. https://github.com/JunHao-Zhu/FusionQuery/

blob/main/technical_report.pdf.
[2] Guy Aglionby and Simone Teufel. 2022. Faithful Knowledge Graph Explanations

in Commonsense Question Answering. In EMNLP. 10811–10817.
[3] Mohammad Shahmeer Ahmad, Zan Ahmad Naeem, Mohamed Y. Eltabakh,

Mourad Ouzzani, and Nan Tang. 2023. RetClean: Retrieval-Based Data Cleaning
Using Foundation Models and Data Lakes. CoRR abs/2303.16909 (2023).

[4] Yoshua Bengio. 2000. Gradient-Based Optimization of Hyperparameters. Neural
Comput. 12, 8 (2000), 1889–1900.

[5] Prajjwal Bhargava and Vincent Ng. 2022. Commonsense Knowledge Reasoning
and Generation with Pre-trained Language Models: A Survey. In AAAI, Vol. 36.
12317–12325.

[6] Bibek Bhattarai, Hang Liu, and H. Howie Huang. 2019. CECI: Compact Embed-
ding Cluster Index for Scalable Subgraph Matching. In SIGMOD. 1447–1462.

[7] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient
Subgraph Matching by Postponing Cartesian Products. In SIGMOD. 1199–1214.

[8] Léon Bottou et al. 1991. Stochastic gradient learning in neural networks. Pro-
ceedings of Neuro-Nımes 91, 8 (1991), 12.

[9] Klaus Broelemann, Thomas Gottron, and Gjergji Kasneci. 2017. LTD-RBM:
Robust and Fast Latent Truth Discovery Using Restricted Boltzmann Machines.
In ICDE. 143–146.

[10] Gabrielle Karine Canalle, Ana Carolina Salgado, and Bernadette Farias Lóscio.
2021. A survey on data fusion: what for? in what form? what is next? J. Intell.
Inf. Syst. 57, 1 (2021), 25–50.

[11] Yunfan Chen, Lei Chen, and Chen Jason Zhang. 2017. CrowdFusion: A Crowd-
sourced Approach on Data Fusion Refinement. In ICDE. 127–130.

[12] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. 2015. KATARA: A Data Cleaning System Powered by Knowledge
Bases and Crowdsourcing. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015. ACM, 1247–1261.

[13] Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay Yoon
Lee, Lizhen Tan, Lazaros Polymenakos, and AndrewMcCallum. 2021. Case-based
Reasoning for Natural Language Queries over Knowledge Bases. In EMNLP. 9594–
9611.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018).

[15] Hong-Hai Do and Erhard Rahm. 2002. COMA—a system for flexible combination
of schema matching approaches. In VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases. Elsevier, 610–621.

[16] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin
Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: a web-scale approach to probabilistic knowledge fusion. In SIGKDD. 601–
610.

[17] Xin Luna Dong, Laure Berti-Équille, and Divesh Srivastava. 2009. Integrating
Conflicting Data: The Role of Source Dependence. Proc. VLDB Endow. 2, 1 (2009),
550–561.

[18] Xin Luna Dong, Evgeniy Gabrilovich, Kevin Murphy, Van Dang, Wilko Horn,
Camillo Lugaresi, Shaohua Sun, and Wei Zhang. 2015. Knowledge-Based Trust:
Estimating the Trustworthiness of Web Sources. Proc. VLDB Endow. 8, 9 (2015),
938–949.

[19] Xin Luna Dong and Divesh Srivastava. 2015. Big Data Integration. Morgan &
Claypool Publishers. https://doi.org/10.2200/S00578ED1V01Y201404DTM040

[20] Valeria Fionda and Giuseppe Pirrò. 2020. Learning Triple Embeddings from
Knowledge Graphs. In AAAI, Vol. 34. 3874–3881.

[21] Yunjun Gao, Xiaoze Liu, JunyangWu, Tianyi Li, PengfeiWang, and Lu Chen. 2022.
ClusterEA: Scalable Entity Alignment with Stochastic Training and Normalized
Mini-batch Similarities. In SIGKDD. 421–431.

[22] Congcong Ge, Pengfei Wang, Lu Chen, Xiaoze Liu, Baihua Zheng, and Yunjun
Gao. 2021. CollaborER: A Self-supervised Entity Resolution Framework Using
Multi-features Collaboration. CoRR abs/2108.08090 (2021).

[23] Michael N. Gubanov. 2017. PolyFuse: A Large-Scale Hybrid Data Fusion System.
In ICDE. 1575–1578.

[24] Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin
Han. 2019. Efficient Subgraph Matching: Harmonizing Dynamic Programming,
Adaptive Matching Order, and Failing Set Together. In SIGMOD. 1429–1446.

[25] Sen Hu, Lei Zou, Jeffrey Xu Yu, Haixun Wang, and Dongyan Zhao. 2018. An-
swering Natural Language Questions by Subgraph Matching over Knowledge
Graphs. IEEE Trans. Knowl. Data Eng. 30, 5 (2018), 824–837.

[26] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization
with Gumbel-Softmax. In ICLR. https://openreview.net/forum?id=rkE3y85ee

[27] Xin Jin, Zhengyi Yang, Xuemin Lin, Shiyu Yang, Lu Qin, and You Peng. 2021.
FAST: FPGA-based Subgraph Matching on Massive Graphs. In ICDE. 1452–1463.

[28] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity
Search with GPUs. IEEE Trans. Big Data 7, 3 (2021), 535–547.

[29] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsi-
fodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery.
In ICDE. 468–479.

[30] Longbin Lai, Zhu Qing, Zhengyi Yang, Xin Jin, Zhengmin Lai, Ran Wang,
Kongzhang Hao, Xuemin Lin, Lu Qin, Wenjie Zhang, Ying Zhang, Zhengping
Qian, and Jingren Zhou. 2019. Distributed Subgraph Matching on Timely
Dataflow. Proc. VLDB Endow. 12, 10 (2019), 1099–1112.

[31] Qi Li, Yaliang Li, Jing Gao, Lu Su, Bo Zhao, Murat Demirbas, Wei Fan, and Jiawei
Han. 2014. A Confidence-Aware Approach for Truth Discovery on Long-Tail
Data. Proc. VLDB Endow. 8, 4 (2014), 425–436.

[32] Qi Li, Yaliang Li, Jing Gao, Bo Zhao, Wei Fan, and Jiawei Han. 2014. Resolv-
ing conflicts in heterogeneous data by truth discovery and source reliability
estimation. In SIGMOD. 1187–1198.

[33] Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava.
2012. Truth Finding on the Deep Web: Is the Problem Solved? Proc. VLDB Endow.
6, 2 (2012), 97–108.

[34] Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan, and Jiawei
Han. 2015. A Survey on Truth Discovery. SIGKDD Explor. 17, 2 (2015), 1–16.

[35] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB
Endow. 14, 1 (2020), 50–60.

[36] Xueling Lin and Lei Chen. 2018. Domain-Aware Multi-Truth Discovery from
Conflicting Sources. Proc. VLDB Endow. 11, 5 (2018), 635–647.

[37] Shanshan Lyu,Wentao Ouyang, YongqingWang, Huawei Shen, and Xueqi Cheng.
2021. Truth Discovery by Claim and Source Embedding. IEEE Trans. Knowl. Data
Eng. 33, 3, 1264–1275.

[38] Nandana Mihindukulasooriya, Sanju Tiwari, Carlos F. Enguix, and Kusum Lata.
2023. Text2KGBench: A Benchmark for Ontology-Driven Knowledge Graph
Generation from Text. CoRR abs/2308.02357 (2023).

[39] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (2019), 1986–1989.

[40] Jeff Pasternack and Dan Roth. 2013. Latent credibility analysis. In WWW. 1009–
1020.

[41] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. CoRR abs/1908.10084 (2019).

[42] Giovanni Simonini, Luca Zecchini, Sonia Bergamaschi, and Felix Naumann. 2022.
Entity Resolution On-Demand. Proc. VLDB Endow. 15, 7 (2022), 1506–1518.

[43] Nan Tang, Chenyu Yang, Ju Fan, and Lei Cao. 2023. VerifAI: Verified Generative
AI. CoRR abs/2307.02796 (2023).

[44] Saravanan Thirumuruganathan, Han Li, Nan Tang, Mourad Ouzzani, Yash
Govind, Derek Paulsen, Glenn Fung, and AnHai Doan. 2021. Deep Learning for
Blocking in Entity Matching: A Design Space Exploration. Proc. VLDB Endow.
14, 11 (2021), 2459–2472.

[45] James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel,
and Alon Y. Halevy. 2021. Database reasoning over text. In ACL/IJCNLP. 3091–
3104.

[46] Ha Nguyen Tran, Jung-Jae Kim, and Bingsheng He. 2015. Fast Subgraph Match-
ing on Large Graphs using Graphics Processors. In DASFAA (Lecture Notes in
Computer Science), Vol. 9049. 299–315.

[47] Pengfei Wang, Xiaocan Zeng, Lu Chen, Fan Ye, Yuren Mao, Junhao Zhu, and
Yunjun Gao. 2022. PromptEM: Prompt-tuning for Low-resource Generalized
Entity Matching. Proc. VLDB Endow. 16, 2 (2022), 369–378.

[48] Xianzhi Wang, Quan Z. Sheng, Xiu Susie Fang, Lina Yao, Xiaofei Xu, and Xue Li.
2015. An Integrated Bayesian Approach for Effective Multi-Truth Discovery. In
CIKM. 493–502.

[49] Houping Xiao, Jing Gao, ZhaoranWang, ShiyuWang, Lu Su, and Han Liu. 2016. A
Truth Discovery Approach with Theoretical Guarantee. In SIGKDD. 1925–1934.

[50] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. 2008. Truth Discovery with Multiple
Conflicting Information Providers on the Web. IEEE Trans. Knowl. Data Eng. 20,
6 (2008), 796–808.

[51] Ran Yu, Ujwal Gadiraju, Besnik Fetahu, and Stefan Dietze. 2017. FuseM: Query-
Centric Data Fusion on Structured Web Markup. In ICDE. 179–182.

[52] Ye Yuan, Delong Ma, Zhenyu Wen, Zhiwei Zhang, and Guoren Wang. 2021.
Subgraph Matching over Graph Federation. Proc. VLDB Endow. 15, 3 (2021),
437–450.

[53] Ye Yuan, Delong Ma, Aoqian Zhang, and Guoren Wang. 2022. Consistent Sub-
graph Matching over Large Graphs. In ICDE. 2536–2548.

[54] Li Zeng, Lei Zou, M. Tamer Özsu, Lin Hu, and Fan Zhang. 2020. GSI: GPU-friendly
Subgraph Isomorphism. In ICDE. 1249–1260.

[55] Bo Zhao, Benjamin I. P. Rubinstein, Jim Gemmell, and Jiawei Han. 2012. A
Bayesian Approach to Discovering Truth from Conflicting Sources for Data
Integration. Proc. VLDB Endow. 5, 6 (2012), 550–561.

1349

https://github.com/JunHao-Zhu/FusionQuery/blob/main/technical_report.pdf
https://github.com/JunHao-Zhu/FusionQuery/blob/main/technical_report.pdf
https://doi.org/10.2200/S00578ED1V01Y201404DTM040
https://openreview.net/forum?id=rkE3y85ee

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Contribution

	2 Problem Statement
	2.1 On-demand Fusion Query
	2.2 Queries over Heterogeneous Data
	2.3 On-demand Data Fusion

	3 Methodology
	3.1 Overview
	3.2 Unified Queries
	3.3 On-demand Data Fusion

	4 Theoretical Analysis
	5 Experiments
	5.1 Experimental Settings
	5.2 Comparison with On-demand Baselines
	5.3 Comparison with Batch Baselines
	5.4 Ablation Study
	5.5 Parameter Sensitivity

	6 Case Study
	7 Related work
	8 Conclusions
	Acknowledgments
	References

