OEBench: Investigating Open Environment Challenges in
Real-World Relational Data Streams

Yiqun Diao
National University of Singapore
yiqun@comp.nus.edu.sg

Bingsheng He
National University of Singapore
hebs@comp.nus.edu.sg

ABSTRACT

How to get insights from relational data streams in a timely man-
ner is a hot research topic. Data streams can present unique chal-
lenges, such as distribution drifts, outliers, emerging classes, and
changing features, which have recently been described as open en-
vironment challenges for machine learning. While existing studies
have been done on incremental learning for data streams, their
evaluations are mostly conducted with synthetic datasets. Thus, a
natural question is how those open environment challenges look
like and how existing incremental learning algorithms perform
on real-world relational data streams. To fill this gap, we develop
an Open Environment Benchmark named OEBench to evaluate
open environment challenges in real-world relational data streams.
Specifically, we investigate 55 real-world relational data streams
and establish that open environment scenarios are indeed wide-
spread, which presents significant challenges for stream learning al-
gorithms. Through benchmarks with existing incremental learning
algorithms, we find that increased data quantity may not consis-
tently enhance the model accuracy when applied in open environ-
ment scenarios, where machine learning models can be significantly
compromised by missing values, distribution drifts, or anomalies
in real-world data streams. The current techniques are insufficient
in effectively mitigating these challenges brought by open envi-
ronments. More researches are needed to address real-world open
environment challenges. All datasets and code are open-sourced in
https://github.com/Xtra-Computing/OEBench.
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1 INTRODUCTION

Recently, the concept of open environment learning, where data or
tasks can change over time, has been introduced by Zhou [84]. Four
primary open environment challenges are identified. Firstly, the
data distribution may shift owing to subtle environmental changes.
Secondly, outliers or emerging new classes can occur, like new
viruses or diseases. Thirdly, the feature set can evolve, with new
attributes being added or existing ones being dropped due to factors
such as the installation or breakdown of sensors. Lastly, the machine
learning task itself may transform, e.g., from a focus on accuracy to
computational efficiency. In this work, we focus on the change of
data in real-world relational data streams, covering the first three
challenges mentioned. The change of learning task is much more
complicated and we regard it as future works.

Relational data streams have a lot of applications such as stock
market and sensor data. Thus, various stream learning algorithms
have been developed to obtain the insights from the data streams
timely. Previous stream learning studies generally focus on drift de-
tection, efficiency, and real-time processing [24, 31, 39, 68]. Open en-
vironment learning acknowledges that the environment can change
dynamically and unpredictably over time. It recognizes a series of
open environment challenges, including (1) shifting data distribu-
tions over time, (2) the emergence of outliers or new classes, and
(3) incremental/decremental dimensions in feature space. Open en-
vironment challenges focus more on the model’s adaptability to
these changes and robustness to unforeseen situations. We list some
real-world examples of open environment challenges as follow.

Air quality surveillance. Consider an air quality surveillance
system. (1) Factors such as industrial emissions, vehicular traffic,
and meteorological variations can change unpredictably, which can
cause the challenge of distribution drifts. (2) Unexpected events,
like industrial spills or large-scale fires, can introduce new types
of pollutants or unprecedented pollution levels not present in the
training data, leading to the challenge of outliers or new classes.
(3) Technological advancements lead to newer, more accurate air
quality sensors replacing older ones, causing potential changes in
the metrics or pollutants being monitored. This poses the challenge
of incremental/decremental feature space.

Energy prediction. In the realm of energy usage prediction,
dynamic changes are common. (1) Societal behavior shifts or new
industry practices can modify energy consumption or production
patterns, leading to the challenge of distribution drifts. (2) Rapid
technological adoption, like a surge in electric vehicle usage, or the
launch of a new energy-intensive industry can introduce energy


https://www.acm.org/publications/policies/artifact-review-and-badging-current

patterns not seen during model training, thereby presenting the
problem of outliers or novel classes. (3) The evolution of technology
might introduce new energy sources or retire older ones. This can
bring about changes in the kind of data collected, representing the
challenge of incremental/decremental feature space.

However, there lacks empirical investigation of these scenarios
in real-world relational data streams. Although various incremental
learning algorithms have been developed [14, 52, 81], their evalua-
tions are mostly conducted with manually partitioned datasets. How
do the open environment challenges such as distribution drifts, out-
liers, emerging classes, and changing features look like in real-world
relational data streams? How do these open environment challenges
affect the effectiveness and efficiency of stream learning algorithms?
It calls for a systematic methodology to identify the proposed three
challenges and a comprehensive evaluation of existing incremental
learning algorithms on real-world relational data streams.

In response, this work makes the first attempt to systemati-
cally study and benchmark the open environment challenges in
real-world relational data streams, which narrows down the gap
between the vision paper [84] and real-world scenarios. Specifi-
cally, we investigate 55 real-world relational data streams collected
from public repositories to show that open environment challenges
are widespread. We develop a scalable, open-source benchmark to
quantitatively study the open environment challenges in real-world
relational data streams and evaluate their magnitude. As it is rather
complex to analyze all data streams, and also for the simplicity
of benchmark design, we select a small number of representative
datasets, according to three different open environment aspects.
Then we evaluate 10 existing stream learning and incremental learn-
ing algorithms in real-world data streams. Our collected datasets
cover a much wider range in the three open environment chal-
lenges than previous datasets and benchmarks. Our methodology
of processing and selecting real-world relational data streams can be
easily extended to future new datasets. Our evaluation framework
can be applied to new algorithms.

We verify that the open environment challenges widely exist
in our collected 55 datasets: 90% datasets have over 2% detected
outliers; 80% datasets have over 10% windows where distribution
drifts are detected with its adjacent window. 40% datasets have
over 5% data items with missing values. We also observe that the
model accuracy sometimes degrades significantly at the occurrence
of open environment challenges. Despite the ubiquity of open envi-
ronment challenges in real-world relational data streams, it is still
under explored how to address them.

We further categorize our findings in two categories: similar
findings to previous studies and contrary findings to previous stud-
ies. Similar to previous studies, we verify that (1) more updates
(smaller batch size or more epochs) can generally improve the
model accuracy [36]; (2) large models are prone to overfitting and
lightweight models are recommended in relatively simple relational
data streams [13, 66]; (3) distribution drifts and outliers can severely
harm the accuracy of stream learning models [32]. Note that, pre-
vious studies are mostly based on synthetic data streams, or have
limited coverage on real-world datasets but overlook the complex
open environment challenges in different real-world data streams.

Contrary to findings of prior studies: (1) Previous studies [53, 69]
show that more training data usually improves model accuracy. In
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our study, we find that more training data does not necessarily
improve model accuracy under some open environment settings.
As we observe in case studies, at the point of obvious distribution
drifts or outliers, the test loss surges since old data or unreliable
data harm the model accuracy. (2) Previous studies [41, 56] conclude
that removing outliers helps improve model accuracy. In our study,
it does not always hold in some open environment scenarios, since
it is unknown whether the detected outliers are really outliers in
real-world data streams. (3) Previous studies [70, 83] claim that
larger exemplar storage buffer size or larger ensemble size can help
improve model accuracy. However, we find such conclusion is not
guaranteed in some real-world data streams with open environment
challenges. Under distribution drifts, sometimes old exemplars or
old models may not well adapt to new environments and lead to
biased supervision. Thus, open environment problems bring great
challenges in learning real-world relational data streams.

2 OPEN ENVIRONMENT CHALLENGES

Consider a data stream T. We view it as a sequence of windows
T={TN,1,.., Ty ..}. The window size is a tunable parameter. In
each window T, we train a model f;. using only the previous model
fr_1, data of the current window, and a limited number of sam-
ples from previous windows (if available). In an open environment
learning context, the learning objective is that the trained model
can generalize well on the upcoming window T, ;.

Consider the following example. Assume we want to predict
air quality from observed statistics. Suppose the window size is
one day. A model works for one day to perform inference on the
observations. Then we update the model with observations in the
past day. The goal is to maintain a good predictor that can work well
on the near future data, under scenarios where the environments
may change, e.g. climate change, extreme weather, sensor damage,
and etc. This requires the model to well adapt to the following
possible open environment challenges, including distribution drifts,
outliers and incremental/decremental features.

2.1 Distribution Drifts

In discussing distribution drifts, we adhere to the definitions in
Souza et al. [68]. Denote the feature and label of window k as X
and Y. Distribution drifts can be categorized into three main types:

e Prior probability drift occurs when P(Y;|X;) = P(Y;|X;)
and P(Y;) # P(Y}). It happens exclusively in Y — X prob-
lems (the features are dependent on the labels).

o Covariate drift occurs when P(Y;|X;) = P(Yj|X;) and P(X;) #
P(Xj) . It only happens in X — Y problems (the labels are
dependent on the features).

e Concept drift occurs when P(Y;|X;) # P(Y;|X;).

Distribution drifts are challenging since they can cause some
historical data to be misleading for current windows. For example,
an environment predictor trained on statistics during summer may
not generalize well in winter. A possible solution is to apply drift
detectors and re-train the model after drift alerts.

2.2 Outliers or New Classes

Another challenge encountered in open environment learning is
the emergence of outliers or new classes. In this context, an outlier



refers to an observation that deviates significantly from the other
observations, often due to measurement error or an exception in
the data. Meanwhile, a new class refers to a novel category or label
that is not present in the previous windows.

The appearance of outliers or new classes can substantially harm
the model accuracy. For example, an abnormal value of the target
can lead to very high loss of the specific element, which could
greatly affect the model parameters and lead to poor accuracy. To
effectively manage this challenge, the learning model needs to
be capable of identifying these outliers or new classes and adapt
accordingly, in an online fashion under possible open environment
challenges [85].

2.3 Incremental/Decremental Features

Traditional machine learning methodologies are based on the as-
sumption that all samples reside in the same feature space. Open
environment learning challenges this assumption, considering in-
stead a dynamic feature space that may incrementally expand or
decrementally shrink. In other words, new data may come with
additional features (incremental features) or lack some of the previ-
ously observed features (decremental features).

Many existing studies have addressed the issue of missing values
in machine learning, yet they often operate under the assumption
that the entire feature space is known. This is not the case in open
environment learning, where incremental or decremental features
in the data stream are unexpected. This difference creates a chal-
lenge, as the model trained on previous data would have been based
on a different feature space.

Decremental features can be addressed by filling missing val-
ues. However, incremental features are difficult to address since
the model does not account for the incoming feature. One simple
approach to dealing with incremental features is to discard them,
although this strategy leads to an under-utilization of potentially
valuable information. An alternative solution is to retrain the model
to incorporate the new features, at the risk of causing the model to
forget previously acquired knowledge.

3 RELATED WORKS

3.1 Incremental Learning Algorithms

Most previous studies on incremental learning [14, 52, 81] can be
formulated as learning on a data stream T divided into a sequence of
windows T = {11, T, ..., Tp, ...}. All windows are non-overlapping
with different classes. In each window T, the task is to train a
model f;. using only the previous model fi_;, data of the current
window, and a limited number of exemplars (if available). The goal
of incremental learning is to learn a good model f; working well
on seen classes in 11, T, ..., Tg.

However, incremental learning methods may not be suited to
the open environment context, as the goal of open environment
learning is to work well for near future window Ty, ; where unpre-
dictable changes can happen. Such changes could render old data
unsuitable for a new environment.

From the perspective of regularization, EWC [37] penalizes the
change in crucial parameters based on the Fisher Information Ma-
trix. LwF [42] integrates the prediction of the previous model, which
reduces the over-confidence towards seen classes of the current
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window. From the perspective of storing exemplars, iCaRL [61]
selects exemplars that are close to the mean representation of each
class. From the perspective of parameter isolation, PackNet [50]
prunes the neural network for new windows while keeping impor-
tant parameters frozen. More detailed discussions are in Appendix
A.2 of our full version [17].

A summary of incremental learning works is in Table 1. As we
can see, none of these incremental learning algorithms are designed
to tackle changing feature spaces or outliers. Some algorithms are
even inapplicable to real-world relational data streams due to the
specific design for image, requiring auxiliary datasets or no scalabil-
ity towards infinite streams. Therefore, prior incremental learning
algorithms can hardly address open environment challenges in
real-world relational data streams.

Table 1: Summary of incremental learning works and dif-
ficulties in adapting to real-world relational data streams.
v and X indicate whether the methods consider each open
environment challenge in real-world relational data streams.

Incremental/
Learn from Difficulties decremental | Drifts | Outliers
features
Critical parameters
[2, 14,37, 81] N/A ¥ v X
Prior model
outputs [35, 42, 72] N/A X v X
Prior model Specific for X X X
outputs [16, 67, 77] image data
Prior model No auxiliary
outputs [82] dataset X X X
Stored exemplars | Not designed for X v X
[14, 33, 61, 78, 79] regression tasks
Fixed model Not scalable for X X X
part [3, 50] infinite streams

3.2 Incremental Learning Benchmarks

The evaluation of incremental learning techniques has led to var-
ious benchmarks. For example, Masana et al. [52] compare 13 in-
cremental learning algorithms. They divide the dataset into several
windows by class, and evaluate the average accuracy across all
previously seen classes in each window. Similar settings are widely
adopted by incremental learning works [14, 52, 81].

Besides splitting the datasets, other evaluation methods include
permuting or rotating image datasets to construct drifts or intro-
duce new classes [20, 47, 49]. Real-world video datasets are also pro-
posed for incremental learning [46, 63, 65]. However, these datasets
merely simulate emerging classes and drifts in open environment
challenges, and do not consider relational data streams.

For real-world relational data streams, there are few prior bench-
marks. Bifet et al. [10] proposes a stream learning system MOA,
but it only has five real-world stream datasets. Souza et al. [68] pro-
poses to conduct experiments on insects and alter the temperature
to simulate drifts. Both balanced and imbalanced insect classes are
designed, and raw data are recorded to form new data streams. The
metric is prequential accuracy, which means first testing and then
training each window of data.



We summarize the data streams used in previous incremental
learning works in Table 2. As we can see, none of prior works
consider all the three aspects of open environment challenges in
real-world relational data streams. The first two rows are incre-
mental learning benchmarks on computer vision datasets, which
consider neither relational datasets nor incremental/decremental
feature space challenges. USP DS Repository [68] proposes real-
world relational data streams, however it only explores the distri-
bution drift challenge. Our OEBench considers three categories of
open environment challenges in real-world relational data streams
and covers a total of 55 datasets, which will be introduced in detail
in the following section.

Table 2: Summary of the datasets explored in various incre-
mental learning works.

Paper #Datasets Rez.il—world Outliers | Drifts Changing
relational data feature space
[20, 47, 49, 52, 81] 16 X X v/ X
[46, 63, 65] 3 X v v x
[68] 27 v x v x
Ours 55 v v v v

4 DESIGN OF OEBENCH

4.1 Design Goals

Our OEBench is crafted according to the four benchmark design
principles posited by Gray [27].

Relevance. Our benchmark covers a broad range of open en-
vironment challenges including distribution drifts, outliers, and
feature space evolution. We have selected 55 real-world relational
data streams from diverse sources, including UCI Datasets, Kaggle
Datasets, and the USP DS Repository [68]. These datasets cover a
variety of contexts on real-time stream learning, including environ-
ment surveillance, sales prediction, fraud detection, and etc.

Simplicity. With an aim to identify typical open environment
patterns and eliminate redundant testing, we choose five represen-
tative datasets for our benchmark. We first extract statistics on the
three perspectives of the open environment challenges. Then we
apply clustering and select the datasets nearest each cluster center
to conduct further experiments.

Portability. Our benchmark is applicable to new relational data
streams. The pipeline for extracting open environment statistics
and evaluating stream learning algorithms can be easily invoked
or adapted in new systems.

Scalability. The benchmark incorporates real-world relational
data streams of diverse sizes (Table 3) and varying open environ-
ment contexts (Figure 3). This allows for the simulation of multiple
incoming data sizes and evolving patterns. Through this variation,
we can test the performance of different algorithms under varying
open environment conditions.

4.2 Overview

Based on the design goals, we build our benchmark as depicted in
Figure 1. It composes of six parts: dataset collection, preprocessing,
extracting open environment statistics, visualization, representative
dataset selection and incremental learning algorithm evaluation.
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Figure 1: Open environment benchmark flowchart.

Dataset collection. We first search the candidate datasets in
public relational dataset resources including the UCI Machine Learn-
ing Repository, Kaggle, and the USP DS Repository [68]. Then we
keep the datasets with enough rows, columns and meaningful real-
world scenarios. We finally keep a total of 55 datasets.

Preprocessing. We record dataset metadata, discard textual
features, sort the datasets by time, normalize each feature, and set
the target and window size to assign a machine learning task for
each dataset. This aims to transfer raw datasets into structured
relational data streams for further processing.

Extracting open environment statistics. We design criteria
to evaluate the extent of three open environment challenges in each
dataset. Specifically, statistics related to distribution drifts, outliers,
and missing values are calculated. Since there are no ground truth
label for drifts and outliers in the real-world datasets, we apply
ensemble of drift detectors or outlier detectors to estimate their
ratios.

Visualization. To help data scientists to easily understand the
open environment challenges in real-world relational data streams,
we conduct visualization based on our extracted open environment
statistics. Visualization also serves as a validation of detected drifts
and outliers due to the lack of ground truth. Data distributions are
plotted in scatter plots to illustrate distribution drifts and outliers.
High-dimensional features are reduced to 2-D space by t-SNE [73]
for visualization.

Representative dataset selection. As 55 real-world datasets
are too many for further experiments, we propose a clustering
approach to select a limited number of representative datasets.
Specifically, based on the extracted open environment statistics and
dataset metadata statistics, we conduct K-means clustering on these
information. Inside each cluster, the dataset closest to each center
is selected as the representative dataset for the cluster.

Incremental learning algorithm evaluation. Based on the
selected representative datasets, we evaluate the effectiveness and
efficiency of 10 incremental learning algorithms under different
open environment scenarios. We also evaluate factors such as win-
dow size, batch size, epochs, model size on incremental learning
under open environment challenges.

4.3 Dataset Collection

In order to thoroughly investigate open environment learning sce-
narios on real-world relational data streams, we select the datasets
with the following criteria.



Table 3: Histogram information of the collected datasets.

Size 5,000-20,000 | 20,001-50,000 | 50,001-200,000 | >200,000
#Datasets (USP DS) 1 2 4 9
#Datasets (ours) 13 17 13 12
#Features 5-10 11-20 21-50 >50
#Datasets (USP DS) 3 0 12 1
#Datasets (ours) 15 23 14 3

o The sample size must exceed 5,000.

o The features should be relational data streams (excluding
text data such as emails) with at least 5 features. The feature
dimension should not exceed 1,000 after one-hot encoding.
This prevents huge computational burdens.

e The stream learning scenario should be meaningful. For
instance, we exclude the PokerHand dataset as the random-
ness of each hand undermines meaningful stream analysis.

Upon applying these selection criteria to potential datasets from
sources including the UCI Machine Learning Repository, Kaggle,
and the USP DS Repository [68], we get a collection of 55 publicly
available real-world relational data streams that fulfill all the re-
quirements. As shown in Table 3, our collection covers a vast range
in terms of data size and feature size. Notably, we have over three
times the number of real-world relational data streams compared
to the qualified datasets in USP DS Repository, which holds the
record for the most comprehensive benchmark with its collection
of real-world relational data streams. Detailed dataset descriptions
are listed in Appendix C of our full version [17].

4.4 Extracting Open Environment Statistics

Real-world relational data streams display a variety of formats,
feature spaces, and scales. To extract open environment statistical
features from them, we implement the following preprocessing
procedures:

(1) Document dataset metadata, such as task, feature type, tar-
get, window size, and null indicators.

Order instances by time, then remove time-related attributes
to maintain the temporal context without interfering with
the dataset’s statistical characteristics.

Employ one-hot encoding to convert categorical features
into numerical format.

Utilize KNNImputer to fill in missing values, due to its
generally reasonable and bounded predictions. The default
value of k is set to 2.

Normalize each feature within the dataset.

Partition the dataset into non-overlapping windows to fa-
cilitate temporal analysis. The size of these windows is
determined based on the time span and specific character-
istics of each dataset.

(2)

(3)

For datasets consisting of multiple tables, we focus solely on the
main table as integrating multiple tables significantly complicates
the analysis. For instance, in the fraud detection dataset [34], many
transaction records lack associated client identity information. Sim-
ilarly, in loan risk prediction [54], some clients may have no prior
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loan applications, while others may have multiple application his-
tories. These cases can lead to data items possessing highly varied
feature sizes. We leave these complex cases as future works.

Upon completion of preprocessing, we compute the statistics
related to distribution drifts, outliers, and missing values for each
dataset, in accordance with the open environment challenges pro-
posed in Zhou [84]. Both global and per-window statistics are doc-
umented. For per-window statistics, we record both the maximum
and average values across all windows as open environment statis-
tics of the dataset.

Distribution Drifts. We detect data drifts using HDDDM [18],
KdqTree [15], CDBD [44], PCACD [60] and the Kolmogorov-Smirnov
(KS) test. We apply these methods since they are implemented in
an open-source library Menelaus and easy to use. KS statistic is
selected because it has statistical guarantee about the drift. While
HDDDM and KdqTree are applicable to multi-dimensional datasets,
the remaining three methods must be applied to each dimension
separately. We document the results of all methods as open en-
vironment statistics. By default, we utilize the first two principal
components in PCACD and set p = 0.05 for the KS test. Elaborations
on drift detectors are in Appendix A.3 of our full version [17].

For each algorithm, we document the drift and warning percent-
ages. The average and maximum percentages are stored as a global
feature for each dataset. For one-dimensional drift detectors, we
note the average and maximum percentages across all columns.

Regarding concept drifts, we employ DDM [22], EDDM [6], AD-
WIN accuracy [8], and PERM [30]. Similarly, the first three algo-
rithms can be called from Menelaus library. PERM [30] is addition-
ally selected since it is applicable to regression tasks. Following the
examples in Menelaus, we use Gaussian Naive Bayes for classifi-
cation tasks and linear regression models for regression tasks. In
each window, the predictions are compared with the ground truth
to detect concept drifts. Upon the detection of a drift, the model is
retrained with the most recent data slices. Similarly, we store the
drift and warning percentages as open environment statistics.

Outliers. There are a lot of outlier detection algorithms in AD-
Bench [29]. We follow the recommendation in ADBench [29] to
choose ECOD [43] and IForest [45] to detect outliers. ECOD [43]
estimates the underlying distribution of input data to detect outliers
in tail probabilities in each dimension. IForest [45] randomly selects
an attribute and makes a binary split. The binary tree partition pro-
cess is conducted recursively to identify easily-isolated data points
as outliers. Within each window, we detect outliers by setting the
threshold at three standard deviations above the mean score. We
then calculate the average and maximum anomaly ratios within
each window as open environment statistics of the dataset.

Missing Values. We compute the following statistics about miss-
ing values.

(1) Ratio of data items with missing values: This measures
the completeness of the data items for each row.

(2) Ratio of missing columns: This measures the complete-
ness of the feature dimensions for each column.

(3) Ratio of empty cells: This measures the completeness of
cells within the dataset for the entire table.



Validation. The statistics for missing values are straightforward.
To validate the statistics for drifts and outliers, we use generated
datasets with different levels of drifts and outliers. We generate a
data stream of 50,000 samples and partition it into 100 windows. By
default, each sample contains three dimensions fi, f2, f3 sampled
uniformly in (0,10).

For concept drifts, we use the SEA concept generator [9]. We
divide the dataset into 4, 8 or 16 blocks with different concepts
fi + f2 < 0, with binary classification threshold 6 € {9,8,7,9.5}.
For 8 blocks, the threshold values are {9,8,7,9.5,9,8,7,9.5}, and
similarly for 16 blocks, we repeat the threshold values for four times.
Our average concept drift statistics for 4, 8, 16 different concepts
are 0.000114, 0.000229, 0.000263 respectively, which complies with
the frequency of concept drifts.

For data drifts, similarly, we divide the dataset into 4, 8 or 16

blocks, each with features generated in (0, ¢) where ¢ € {10,9,11,7}.

Our average data drift statistics for 4, 8, 16 different blocks are 0.289,
0.322, 0.356 respectively, which is in accordance with the frequency
of data drift.

For outliers, we randomly change 400, 800 or 1600 data samples to
outliers in the stream, by randomly adding or deducting 20 in their
feature values. Our average anomaly statistics for 400, 800, 1600
outliers are 0.0088, 0.0161, 0.0320 respectively, which conforms to
the expected order. The above experiments verify that our extracted
statistics are reasonable.

4.5 Selection of Representative Datasets

Since it is expensive to evaluate existing algorithms on all collected
55 datasets, we pick up representative datasets for further explo-
ration. To select representative datasets, we first normalize all open
environment statistics and dataset metadata statistics to the same
scale. Then for each category of statistics (dataset basic information,
missing values, data drifts, concept drifts, outliers), we transform
them into 3-D space using Principal Component Analysis (PCA).
This transformation ensures that each category is represented with
the same number of statistics. We then apply K-means clustering to
partition the datasets into five distinct clusters to group the datasets
with similar characteristics. The datasets nearest to each cluster
center are selected as representative datasets.

Figure 2 visualizes the clustering results on three open environ-
ment dimensions. Missing value ratio can be directly calculated
by counting the ratio of missing items. Drift ratio is calculated by
the ratio of both data drifts and concept drifts detected between
consecutive two windows. Anomaly ratio is calculated by the ratio
of detected anomalies among each window. Both drift and anomaly
do not have ground truth and are calculated through ensemble of
detectors.

As we can see, red, purple and cyan represent high missing value
ratio, high drift ratio and high anomaly ratio respectively. Blue
and green seems mixed, but blue represents datasets of commercial
field while green represents datasets of nature science field, since
we also take the task, field, dataset size into consideration when
clustering. Table 4 provides details of the five selected datasets, each
showcasing unique characteristics.

We use the results of K-means clustering due to its popularity and
simplicity. Besides K-means, we also try other clustering algorithms
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Figure 2: Visualization of clustering results on three open
environment dimensions. Large points are selected datasets.
Square represents classification task and triangle represents
regression task.

including spectral clustering [74], agglomerative clustering [55],
and Gaussian mixture model (GMM) [62]. The number of clusters
remains five. We find out that Beijing Air Quality (Shunyi), Room
Occupancy and Electricity Prices appear in the selected datasets by
at least three out of four clustering algorithms. Besides, the results
of all four algorithms contain one of the INSECTS dataset. The
consensus of different clustering algorithms indicate that those
datasets are representative.

Figure 3 presents a box plot of open environment statistics from
four data sources: six popular synthetic datasets (SEA, STAGGER,
Rotating Hyperplane, RBF, LED, and Waveform) in prior stream
learning works [9], the USP DS Repository [68], our collected
datasets, and our selected representative datasets. As shown in
Figure 3, our 55 collected datasets OE-All cover a much broader spec-
trum of open environment statistics than prior synthetic datasets
and the real-world benchmark USP DS Repository. It is particularly
evident in the aspect of missing values, where synthetic datasets
and USP DS Repository do not explore. Further, OEBench represen-
tative datasets emulate the distribution of the 55 OE-All datasets,
which also span a diverse range of open environment scenarios.

Anomaly ratio Drift ratio Missing value ratio
0.10 0.4
0.3 0.2
0.05 0.2 01
; 0.1 T
0.00 0.0l — — —
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Figure 3: Statistical distribution of synthetic datasets, USP DS
Repository and our datasets. We denote all 55 datasets as OE-
All and the selected five datasets as OEBench. In missing value
ratio, 1 out of the 5 datasets in OEBench contains missing
values, which is the individual circle in the box plot.



Table 4: Five selected representative datasets. The levels of three open environment challenges are determined by the extracted
statistics compared with the average statistics of all 55 datasets.

Dataset Default window size | Instances | Features Type Task Missing value ratio | Drift ratio | Anomaly ratio
Room Occupancy Estimation 2 hours 10,129 6 Others Classification Low Medium high High
Electricity Prices 2 weeks 45,312 7 Commerce | Classification Low Medium high | Medium high
INSECTS-incremental-reoccurring (balanced) 100 items 79,986 33 S&T Classification Low Medium low | Medium high
Beijing Multi-Site Air-Quality Shunyi 30 days 35,064 11 Ecology Regression High Low Medium low
Power Consumption of Tetouan City 15 days 52,417 7 Power Regression Low High Medium low
4.6 Selected Incremental Learning Algorithms PADE A Bl ko i - O I J 4
We select representative incremental learning algorithms from the - v | 3 o
. . . . . - W 24
perspectives of regularization and experience replay. Besides, we ¥ g
also explore tree-based and ensemble-based algorithms for real- = e w . .
world relational data stream learning. 5 7 ;
Regularization. We implement Elastic Weight Consolidation " R 5 3 Sl IS B I
(EWC) [37] and Learning without Forgetting (LwF) [42], consider- 7| & i

ing their popularity and ease of implementation.

Experience replay. We implement iCaRL [61] since it is popular
and can be extended to infinite data streams.

Tree model. We apply the Adaptive Random Forest (ARF) [25].
In this approach, each tree is trained with a subset of features and
is subjected to drift detection. After drift is identified, a background
tree is trained to replace the current tree.

Ensemble. We choose the Streaming Ensemble Algorithm (SEA)
[70]. SEA maintains an ensemble and replaces older models with
current models of better quality.

5 CASE STUDIES OF OPEN ENVIRONMENT
SCENARIOS

In this section, we visualize and analyze some real-world relational
data streams. Through these cases, we study how the open envi-
ronment challenges look like in real-world relational data streams,
and provide a deeper understanding of their implications.

5.1 Distribution Drifts

Distribution drifts can be classified into two categories: data drifts
and concept drifts. Data drifts refer to changes in the distribution
of the feature set. Given the dynamic nature of most real-world
data, such drifts are common. Figure 4 provides a clear illustration
of cyclical data drift of air quality surveillance, occurring approx-
imately on an annual basis. This cyclical pattern aligns with the
inherent seasonality of the dataset. Similar patterns are observed
across other air quality datasets as well.

On the other hand, concept drifts imply changes in the environ-
ment. For example, the decision boundaries of different months
clearly differ in Figure 4, probably due to different weathers in
different seasons.

Impact of distribution drifts. In Figure 4, we observe that distribu-
tion drifts happen around window 7, 11, 19, 23, 32, 35. To investigate
the impact of drifts on incremental learning on real-world data
streams, we train a decision tree on (1) the first 11 windows, and (2)
window 7 to 11 of the air quality dataset in Tiantan. Both models are
tested on the next window 12. The test loss of training on all first
11 windows is 0.347, while only 0.299 for training on window 7 to
11. Considering the distribution drifts at around window 7, we can
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Figure 4: T-SNE visualization of air quality dataset in Tiantan,
Beijing. Each line spans a year and each sub-figure represents
a month. Data items are labelled according to 6 categories of
AQI based on the severity of health concern.

conclude that including historical data with different distributions
harms the model accuracy towards new data distributions, since
memorizing old data cannot well adapt to the new environment.

We also train a decision tree and a neural network on the air
quality dataset in Tiantan. The test loss is shown in Figure 5. We
mark the windows around drift occurrences by vertical lines, where
we can clearly see the sudden increase of test loss. Under distribu-
tion drifts, old knowledge from the past data can have a negative
impact for models to better adapt to the new environment. Such
scenarios contradict with the goal of prior incremental learning
works to perform well on all seen data. This implies that prior in-
cremental learning algorithms may not work well on real-world
open environment learning scenarios.

1.41 e Decision tree
1.21 Neural network

v 1.0 P

< 0.8

o
@ 0.6
0.44
0.24 S
0.01 i i
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Figure 5: Test loss of training a decision tree and a neural
network on Beijing air quality dataset, Tiantan. Vertical lines
denote windows around the happening of distribution drifts.

5.2 Outliers

We conduct case study on the Beijing PM2.5 dataset (from five
Chinese cities PM2.5 dataset). Our analysis of outliers focuses on



two extreme weather events in Beijing: the flood of July 21, 2012,
and the period of intense haze from 2014 to 2015.

Both iForest and ECOD are applied to these datasets, and they
yield similar outcomes, especially in identifying the two extreme
weather events. We present the visualization of the two events in
our full version [17].

Outliers can bring great challenges to data stream learning. In
Figure 6, we locate the mentioned extreme weather situations with
vertical lines. As we can see, after the abnormal situations, the
model test loss increases. Especially in Beijing 2012 flood incident
where the outliers happen in an abrupt way, we can witness a spike
in the test loss (after the left vertical line). As machine learning
models are data-driven, outliers may significantly harm the model
since it can greatly affect the loss.

2.5 e Filling (oracle)

Filling (normal)
Discard i

®

Test loss

L ]

40
Window

10 20

Figure 6: Test loss of training a neural network on the Beijing
PM2.5 Data of Five Chinese Cities dataset. Vertical lines are
extreme weather events. “Filling (oracle)” means filling up
missing values with the knowledge of the whole dataset.
“Filling (normal)” means filling only with the knowledge of
data in its current window. “Discard” means to discard the
three frequently missing features.

The most extreme case in this dataset is the No. 51,278 data,
where the precipitation becomes 999,990. The normal range of
precipitation is 0-100. We are unable to plot this problem in Figure
6 since the test loss of the neural network suddenly becomes very
large or even infinite in the following windows. It illustrates the
vulnerability of neural networks when encountering outliers. On
the decision tree, we also observe a 3x spike of the test loss after the
No. 51,278 data, but it does not crash. Even a single unreliable data
item can corrupt the model. Thus, in open environment scenarios,
it is an important and challenging problem to detect outliers to
reduce their harm to stream learning models.

5.3 Incremental/Decremental Features

Incremental or decremental features is widespread in real-world
relational data streams, especially in ecology datasets where sensors
are deployed to collect data. For instance, all the air quality datasets
in our study have incremental or decremental features, due to the
malfunction, repair, removal, or installation of sensors.

Figure 7 shows the ratio of missing values of two features in the
Beijing PM2.5 dataset (from five Chinese cities PM2.5 dataset). The
appearance of filled missing values is associated with an incremen-
tal feature space, while missing values in an attribute correspond
to a decremental feature space.
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Figure 7: Ratio of missing values per window in the air quality
data in Beijing, PM2.5 Data of Five Chinese Cities dataset.

Prior missing value filling studies [19, 59] mainly focus on cases
like the orange line, where the model knows the existence of the
feature and the ratio of missing values is small. However, open envi-
ronment challenges include scenarios like the blue line. In the first
40 windows, the model is unaware of the existence of such feature.
The sudden appearance of the feature leads to incremental feature
space, which is rarely considered in prior works. Such scenarios
can result from installing new sensors. This is more challenging
due to the unpredictable changes.

To further explore the impact of incremental and decremental
features on data stream learning, we train a neural network on
the dataset with different methods of processing the incremental
and decremental features. The setups are elaborated in Section
6.1. As shown in Figure 6, we observe an interesting phenomenon
that discarding these always-missing features have similar test loss
compared with filling them up, which shows that more data does
not necessarily lead to better model accuracy in some real-world
data streams.

In reality, if a sensor always fails to record values, its recorded
values are more likely to be unreliable. Unreliable data can harm the
model accuracy, which is also discussed in Section 5.2. Due to these
complex scenarios in real-world data streams, open environment
machine learning tasks are quite challenging.

6 EXPERIMENTS

6.1 Setups

Models. We adopt a multi-layer perceptron (MLP) as our default
neural network (NN) architecture, which includes three hidden
layers consisting of 32, 16, and 8 neurons respectively with ReLu
activation. For tree-based models, we adopt decision tree or GBDT
with an ensemble of five trees by default. For advanced models on
relational datasets, we test TabNet [5] and ARM-Net [12].

Hyper-parameters. For each window, we train NN for 10 local
epochs with batch size 64 and learning rate 0.01. The buffer size is set
to 100. For EWC, we observe that regularization factors below 103
yield results akin to naive NN, while factors exceeding 10° can lead
to loss explosions. Therefore, we tune the factor in {103, 104, 10°}.



For LwF, since the regularization loss is in the similar order of mag-
nitude with the naive NN loss, we tune the regularization factor in
{0.01,0.1, 1}. Missing values are handled by employing the KNNIm-
puter with k = 2. We use an ensemble of five models by default for
ARF and SEA.

Algorithm implementations. Given that real-world data streams
may be infinite, it is unfeasible to keep models from all windows
in EWC and LwF. As an alternative, we employ the model from
the most recent window to perform regularization. Additionally,
LwF and iCaRL are originally designed for classification tasks. To
adapt them to regression tasks, we substitute the LwF regularizer
with mean square error (MSE) loss and consider all data items as a
single class for iCaRL. To normalize each feature, we use the mean
and variance of the first window to rescale each dataset dimension.
The purpose is to simulate the real-world scenarios where only the
statistics of early samples are available to get started.

Metrics. Our evaluation methodology employs a test-then-train
paradigm within each window. Aside from the initial warm-up
window, we test the model on the data of each window, followed by
training on these data to update the model. We calculate the error
rate for classification tasks and MSE loss for regression tasks. The
final error rate or MSE loss is determined by averaging the results
across all windows.

Hardware setups. All experiments run on a machine with 64
Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, 376 GB memory, and
we use 2.7 TB hard disk as storage. The OS is Ubuntu 22.04.3 LTS.

6.2 Evaluating Existing Algorithms on

Real-World Relational Data Streams
Finding (1): There is no silver bullet that performs well in
all cases of open environment challenges. Therefore, open
environment challenges are difficult to deal with and previous
algorithms are not specifically designed to address them.

We compare the model accuracy of existing algorithms on real-
world relational data streams as shown in Table 5. Besides the five
representative datasets, we also experiment on the other 50 datasets
of our benchmark to enhance our assessment of the strengths of
these algorithms. The full results are shown in Appendix B.1 of
our full version [17]. From the results, it is evident that no single
algorithm consistently outperforms the others across all cases of
open environment challenges. Based on the results of all 55 datasets,
we synthesize our recommendations for different contexts into a
decision tree, which can be viewed in Figure 8.

In terms of effectiveness, tree models are generally recommended
in classification tasks with low anomalies and regression tasks with
high missing values. NN models are recommended in regression
tasks with low missing values. Another work [66] also verifies that
tree models work better than NN models in classification tasks
on tabular datasets. NN models are generally over-parameterized
than tree models, which results in NN models prone to overfit-
ting in simple tasks like tabular dataset classification. Regression
tasks generally require the model to learn more complex functions
compared with learning decision boundaries in classification tasks,
which is probably the reason why over-parameterized NN models
have better accuracy in regression tasks with low missing values.
However, NN models are sensitive to the variations of input data
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[26, 40], therefore tree models are recommended if there are many
missing values. When time or memory constraints are tight, tree
models are better suited due to their efficiency, as discussed in the
following section.

Among NN-based methods, naive NN and iCaRL typically out-
perform other NN-based techniques in classification tasks with
high drifts. ICaRL is designed for classification tasks to store exem-
plars of each class, and it has the advantage of alleviating forgetting
when the drift is relatively high. It also works well on regression
tasks with high missing values. For data streams with relatively
low drifts, we recommend naive NN. For regression tasks with low
missing values, naive NN and SEA-NN tend to outperform other
methods.

Among tree-based methods, GBDT and SEA-GBDT yield the
best accuracy under high drifts. When the drifts are relatively low,
SEA-DT is recommended. SEA-DT also works well in classification
tasks with high drifts.

6.3 Time and Memory Consumption

On efficiency, we compare the throughput in Table 6 and memory
consumption in Table 7. Decision trees have much higher through-
put and lower memory costs than NN-based methods. ARF is very
bad since it detects drifts in the background, which takes too much
computation and memory. Therefore, we recommend to use DT or
GBDT when time or memory constraints are tight.

When considering both effectiveness and efficiency, EWC, LwF
and ARF can be excluded as suitable choices for these explored real-
world data streams. EWC and LwF have marginal improvement on
training a naive NN while doubling the computational costs, which
illustrates that simply applying incremental learning algorithms
does not necessarily work well in open environment learning tasks.
AREF incurs significantly longer computation time, ranging from
30 to 1,000 times longer than other tree-based algorithms, without
delivering a significant boost in accuracy. Therefore, these methods
are not well-suited to real-world relational data streams.

6.4 Challenges of Distribution Drifts

Finding (2): Distribution drifts significantly degrade the effec-
tiveness of stream learning algorithms. NN-based algorithms
can better adapt to drifts than tree-based algorithms.

In this section, we explore the challenges of distribution drifts by
comparing the accuracy of stream learning algorithms on drifted
datasets and non-drifted datasets. The non-drifted datasets are
constructed by randomly shuffling the original datasets. We test
the recommended algorithms on the ROOM and AIR dataset, and
results are shown in Figure 9. Drifted datasets lead to spikes in the
test loss, while we can witness steady loss decrease in non-drifted
datasets. This illustrates the great challenges of the distribution
drifts in real-world data streams.

A difficulty to address distribution drifts in real-world data
streams is that there is no ground truth of the drift occurrences.
Therefore, it is challenging to compare among drift detectors on
real-world data streams. In our study, we directly compare the test
loss of all windows. A stream learning algorithm handling drifts
well can quickly adapt to new environment to achieve a lower loss.
In Figure 9, we find out that the selected NN-based algorithms can



Table 5: Test loss / test error of stream learning algorithms on different characters of real-world datasets. Lower value indicates

better result. We repeat all experiments for three times with different random seeds.

Dataset Naive-NN EWC LwF iCaRL SEA-NN Naive-DT | Naive-GBDT | SEA-DT SEA-GBDT ARF
ROOM 0.214+0.004 | 0.207+0.003 | 0.207+0.014 | 0.136+0.021 | 0.207+0.037 || 0.198+0.006 | 0.181+0.004 | 0.191+0.004 | 0.151+0.002 | 0.250:0.004
ELECTRICITY | 0.311+0.012 | 0.311£0.012 | 0.311+0.012 | 0.286+0.013 | 0.332+0.022 || 0.272+0.001 | 0.256+0.000 | 0.263+0.009 | 0.264+0.001 | 0.250:0.002
INSECTS 0.269:+0.006 | 0.269:+0.006 | 0.269+0.006 | 0.306+0.005 | 0.321%0.007 || 0.3290.001 | 0.306+0.000 | 0.291+0.004 | 0.291+0.002 | 0.294+0.001
AIR 0.166+0.002 | 0.166+0.002 | 0.166:0.002 | 0.182+0.008 | 0.213+0.023 || 0.263+0.013 | 0.498+0.002 | 0.199+0.010 | 0.519+0.003 N/A
POWER 0.793+0.005 | 0.794+0.004 | 0.779+0.004 | 0.818+0.014 | 0.783+0.015 || 1.278+0.003 | 0.800+0.000 | 0.845+0.007 | 0.835+0.002 N/A
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Figure 8: Recommendations of the (almost) best algorithm in different cases of open environment learning.

Table 6: Throughput of explored stream learning algorithms on selected real-world datasets. All experiments run on 4 CPU

threads. For NN-based methods, we set the default number of epochs as 10.

Dataset Naive-NN | EWC | LwF | iCaRL | SEA-NN || Naive-DT | Naive-GBDT | ARF | SEA-DT | SEA-GBDT
ROOM 8,168 3,376 | 4,646 | 4,185 7,083 202,580 44,039 234 27,375 27,375
ELECTRICITY 8,375 3,437 | 4,800 | 4,572 7,501 266,541 71,923 320 50,912 28,814
INSECTS 6,124 2,630 | 3,692 | 3,372 5,052 55,545 3,146 44 7,180 1,713
AIR 7,861 3,770 | 5,118 | 4,466 7,381 48,032 32,466 N/A | 20,871 15,311
POWER 9,260 4,973 | 6,315 | 5,747 9,006 169,087 134,402 N/A | 119,129 91,959

Table 7: Memory consumption (KB) of explored stream learning algorithms on selected real-world datasets.

Dataset Naive-NN | EWC | LwF | iCaRL | SEA-NN || Naive-DT | Naive-GBDT | ARF | SEA-DT | SEA-GBDT
ROOM 22.7 50.8 | 45.3 23.4 106.6 1.9 6.6 228.1 4.2 20.1
ELECTRICITY 22.7 50.9 | 45.4 23.1 106.6 1.9 6.4 961.4 4.2 19.7
INSECTS 22.7 50.9 | 45.4 23.9 106.6 2.0 6.8 2,223.2 4.3 21.2
AIR 22.7 50.9 | 45.4 22.8 106.6 1.7 6.1 N/A 3.3 18.6
POWER 22.7 50.9 | 45.4 22.8 106.6 1.7 6.0 N/A 3.3 18.6

better adapt to drifts than tree-based algorithms, generally having
lower loss at the drift occurrence points. A possible explanation
is that neural networks are over-parameterized and can quickly
converge to a good solution in the new environment.

6.5 Challenges of Outliers

Finding (3): Among streaming outlier detectors, RShash and
HSTree are recommended in data streams with more anom-
alies, while xStream is recommended in data streams with
fewer anomalies. Removing detected outliers does not neces-
sarily improve accuracy in open environment scenarios.

As discussed in Section 5.2, even a single outlier can destroy the
stream learning model. Therefore, it is crucial to detect and remove
outliers in data streams. However, in real-world data streams, the
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Figure 9: Test loss / error curves on the ROOM and AIR
dataset. Drift means the original dataset, while no drift
means randomly shuffling the dataset to eliminate drifts.

lack of ground truth makes it challenging to compare streaming
outlier detectors. To address this challenge, we mark the outliers
by the ensemble of anomaly detectors on the whole dataset, and
test streaming outlier detectors with the marked ground truth.

To mark the outliers in the whole dataset, we apply the ensemble
of ECOD [43] and IForest [45], as they are recommended by a pop-
ular benchmark [29]. We evaluate the five multivariate streaming
outlier detectors in StreamAD library: xStream [51], RShash [64],
HSTree [71], LODA [58], and RRCF [28]. Results are shown in Table
8. We find that RShash and HSTree work better in data streams
with relatively more anomalies, while xStream is recommended
when the data streams have relatively fewer anomalies. When de-
signing multivariate streaming outlier detectors, it may be good to
consider applying dimensionality reduction or ensemble. Dimen-
sionality reduction helps filter out noisy features and detect the
abnormal features. Ensemble can boost accuracy from models of
different perspectives. A contemporary work [85] proposes METER,
a state-of-the-art method to conduct online outlier detection under
distribution drifts, which will be studied and integrated into our
benchmark in the future.

Table 8: AUROC of streaming outlier detectors.
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Figure 10: Test loss / error on the ROOM and AIR dataset.
ECOD and IForest mean removing outliers with the detector.

In this section, we explore various missing value filling meth-
ods on the AIR dataset. We experiment with KNN imputer (k =
2, 5,10, 20), regression imputer, filling with average and filling with
zero. Figure 11 reveals that KNN imputer generally outperforms
other methods in terms of accuracy. Moreover, different values of
k for the KNN imputer do not significantly influence the accuracy.
Considering that a smaller k can save computation, we recommend
using the KNN imputer with k = 2 as a default setting.
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Figure 11: Test loss with respect to different missing value
filling methods on the AIR dataset. K means KNN. Reg means
regression imputer. Avg means filling with average.

We also compare the test loss on whether to remove detected
outliers or not before training. We experiment on the ROOM and
AIR dataset using recommended algorithms. Results are shown
in Figure 10. As we can see, removing outliers improves accuracy
in the AIR dataset, but it is ineffective in the ROOM dataset. This
illustrates that addressing outliers in real-world data streams is a
challenging topic and requires further researches.

6.6 Challenges of Missing Values

Finding (4): KNN imputer is generally more effective than
regression imputer, filling with average and filling with zero.
This indicates that missing values can usually be effectively
estimated from nearby samples in real-world data streams.
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Anomaly statistic Dataset xStream | RShash | HSTree | LODA | RRCF
High ROOM 0941 | 0.967 | 0948 | 0.214 | 0.592
Medium high | ELECTRICITY | 0.675 | 0.862 | 0.851 | 0.632 | 0.667 .
Medium high INSECTS 0842 | 0.927 | 0.965 | 0.807 | 0.678 6.7 Experiments on Advanced Models
Medium low AR 0.884 | 0707 | 0.649 | 0.562 | 0.599 Finding (5): Advanced and complex models may easily overfit
Medium low POWER 0879 | 0.784 | 0829 | 049 | 0.570 in open-environment regression tasks, creating a demand

for models capable of learning generalizable knowledge for
streaming data.

To explore the effectiveness and efficiency of advanced models
for relational dataset, we test TabNet [5] and ARM-Net [12]. TabNet
[5] combines neural network with decision tree to achieve end-to-
end learning with interpretability. ARM-Net [12] learns adaptive
feature interaction in the exponential space to capture cross feature
information, which can help filter noisy or irrelevant features.

We use their public codes with default settings. To be consistent,
the number of epochs is set as 10. Results are shown in Table
9. As we can see, ARM-Net has clear accuracy improvement on
classification tasks (the first three rows). However, both TabNet and
ARM-Net cannot work well in open environment regression tasks.
As shown in Figure 12, we observe that the test loss is much higher



than train loss in TabNet and ARM-Net, due to the overfitting of
complex models. Considering that the running time of TabNet and
ARM-Net is over 20x than three-layer naive NN, both models may
not be suitable to time-sensitive open environment learning in
relational data streams. More results are shown in Appendix B.3 of
our full version [17].

Table 9: Test loss of advanced models on relational datasets.

Dataset Naive-NN TabNet ARM-Net
ROOM 0.214+0.004 | 0.213+0.011 | 0.204+0.010
ELECTRICITY | 0.311+0.012 | 0.340+0.006 | 0.293+0.009
INSECTS 0.269+0.006 | 0.507+0.007 | 0.249+0.000
AIR 0.166+0.002 | 1.942+0.074 | 0.408+0.014
POWER 0.793+0.005 | 1.578+0.102 | 0.958+0.007
7 1 ; k .
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Figure 12: Train and test loss on the AIR dataset.

6.8 Investigating Synthetic Datasets

Finding (6): Synthetic datasets have limited coverage on open
environment challenges. Conclusions drawn from experiments
on synthetic datasets are much biased from experiments on
our OEBench.

We investigate six popular synthetic data streams summarized
in a highly cited work [9]: SEA (used in [1, 11, 21, 48, 75, 76]),
STAGGER (used in [4, 7, 21, 80]), Rotating Hyperplane (used in
[1, 7, 11, 21, 38, 75, 80]), RBF (used in [1, 4, 38]), LED (used in
[1,4, 11, 21, 23,57, 76]), and Waveform (used in [11, 21, 23]). Among
the six datasets, SEA and STAGGER create abrupt concept drifts
by suddenly changing the decision rules at certain points. Rotating
Hyperplane and RBF create incremental drifts by continuously
altering the parameters of the decision boundaries. LED generates
drifts by swapping features, and it also includes many irrelevant
features. Waveform focuses on simulating noisy and irrelevant
attributes.

These synthetic datasets do not cover regression task and have
no missing values. Besides, as shown in Figure 3, the anomaly ratio
of synthetic datasets is significantly lower than that of our collected
real-world datasets. Among the three open environment challenges,
these synthetic datasets only simulate the drifts, while ignoring
the other two challenges of outliers and missing values. Moreover,
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synthetic datasets have very narrow range of drift statistics, and
their drift ratios are also relatively low compared to our collected
real-world data streams.

We also evaluate stream learning algorithms on these synthetic
datasets. According to previous recommendations, we test naive
NN, iCaRL, naive GBDT, SEA-DT, SEA-GBDT and ARM-Net. Results
on SEA and LED are shown in Figure 13. More results are shown
in Appendix B.1 of our full version [17]. As we can see, GBDT or
SEA-GBDT can work well on these synthetic datsets. ARM-Net
can help tackle irrelevant features and achieve better results in the
LED dataset. This is in contrast with our findings in Section 6.2.
Thus, as these synthetic datasets have limited coverage on open
environment challenges, the conclusions drawn from experiments
on synthetic datasets are much biased from experiments on our
OEBench. Algorithms that can handle synthetic datasets well may
not work well on real-world data streams.

0.351 et naive-NN - SEA-DT 0.90{ -+ naive-NN 4. SEADT
0.30 iCaRL —+— SEA-GBDT 0.85 iCaRL —+— SEA-GBDT
50.25{ -=- naive-GBDT ~ —— ARM-Net S -=- naive-GBDT = —— ARM-Net

0 80 100 0 20 40 60 80 100
Window Window
(a) SEA (b) LED

Figure 13: Test error on synthetic datsets.

7 CONCLUSION

In this paper, we explore real-world relational data streams consid-
ering the recently proposed open environment challenges [84]. We
propose a benchmark OEBench consisting of six stages: dataset col-
lection, preprocessing, extracting open environment statistics, visu-
alization, representative dataset selection and incremental learning
algorithm evaluation. Specifically, we study 55 diverse real-world
relational data streams, select five representative datasets based
on the open environment statistics, and evaluate the performance
of 10 existing incremental learning algorithms. We also conduct
case studies with visualizations to explore how open environment
challenges look like and their impacts on real-world relational data
stream learning. The results highlight the inadequacy of current
methods in effectively addressing these challenges in real-world
relational data streams. Further researches are encouraged towards
more effective and efficient approaches to data stream learning
under open environment challenges.
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