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ABSTRACT
Network Kernel Density Visualization (NKDV) has often been used

in a wide range of applications, e.g., criminology, transportation

science, and urban planning. However, NKDV is computationally

expensive, which cannot be scalable to large-scale datasets and

high resolution sizes. Although a recent work, called aggregate

distance augmentation (ADA), has been developed for improving

the efficiency to generate NKDV, this method is still slow and

does not take the resolution size into account for optimizing the

efficiency. In this paper, we develop a new solution, called LION,

which can reduce the worst-case time complexity for generating

high-resolution NKDV, without increasing the space complexity.

Experiment results on four large-scale location datasets verify that

LION can achieve 2.86x to 35.36x speedup compared with the state-

of-the-art ADA method.
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1 INTRODUCTION
Network Kernel Density Visualization (NKDV) [23] has found ex-

tensive use in various fields, including criminology, transportation

science, and urban planning. Transportation scientists [12, 15, 40,

43, 47, 75, 76] use NKDV to analyze traffic/traffic accident hotspots

in different cities, while criminologists [13, 44, 64, 74] apply it to

detect crime hotspots in different geographical regions. Urban plan-

ners [34, 43, 53, 65, 68, 71, 73, 78] use NKDV to analyze different

types of social phenomena (e.g., human mobility [34, 68, 71]) in

order to inform policy-making. Given the broad applicability of

NKDV, several software suites, including spNetwork [8, 39] (an R
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package) and SANET [6] (a plugin for QGIS [60] and ArcGIS [1]),

have been developed to support this tool.

(a) Location dataset (b) NKDV

ℓ𝑞

Figure 1: Illustration of NKDV for a location dataset (black
points), where the red color and the green color of a lixel de-
note the hotspot region and the coldspot region, respectively.

Figure 1 shows an example to illustrate how domain experts

generate NKDV for a location dataset 𝑃 in a road network𝐺 . Note

that they first divide each road into a set of lixels 𝑞 (i.e., small road

segments with size ℓ).1 Then, they color each lixel 𝑞 based on the

network kernel density function (cf. Equation 1).

F𝑃 (𝑞) =
∑︁
𝑝𝑖 ∈𝑃

𝑤 · 𝐾𝐺 (𝑞, 𝑝𝑖 ) (1)

where𝑤 and 𝐾𝐺 (𝑞, 𝑝𝑖 ) denote the normalization constant and the

kernel function, respectively. A variety of kernel functions can be

used in Equation 1, which is shown in Table 1.

Table 1: Some representative kernel functions, where
𝑑𝐺 (𝑞, 𝑝𝑖 ) and 𝑏 are the shortest path distance and the band-
width parameter, respectively.

Kernel 𝐾𝐺 (𝑞, 𝑝𝑖 ) Ref.

Triangular

{
1 − 1

𝑏
𝑑𝐺 (𝑞, 𝑝𝑖 ) if 𝑑𝐺 (𝑞, 𝑝𝑖 ) ≤ 𝑏

0 otherwise

[17, 47]

Epanechnikov

{
1 − 1

𝑏2
𝑑𝐺 (𝑞, 𝑝𝑖 )2 if 𝑑𝐺 (𝑞, 𝑝𝑖 ) ≤ 𝑏

0 otherwise

[17, 79]

Quartic

{
(1 − 1

𝑏2
𝑑𝐺 (𝑞, 𝑝𝑖 )2 )2 if 𝑑𝐺 (𝑞, 𝑝𝑖 ) ≤ 𝑏

0 otherwise

[47, 76]

1
The size of each lixel is generally fixed, except for those lixels that are the closest to

the nodes. For simplicity, we assume that all lixels have the same size ℓ in this paper.

However, all methods can be easily extended to support this exceptional case.
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Table 2: State-of-the-art methods for generating NKDV, where |𝑉 |, |𝐸 |, 𝑛, 𝐿,𝑇SP, and 𝑆SP denote the number of nodes, the number
of edges, the dataset size, the number of lixels, the time complexity of the shortest path algorithm, and the space complexity of
the shortest path algorithm, respectively.

Method Time complexity Space complexity Ref.

ADA 𝑂

(
|𝐸 |𝑇SP + 𝐿 |𝐸 | log

(
𝑛
|𝐸 |

))
(cf. Theorem 1) 𝑂 ( |𝑉 | + |𝐸 | + 𝑛 + 𝐿 + 𝑆SP ) (cf. Theorem 1) Section 2.2 [23]

LION 𝑂 ( |𝐸 |𝑇SP + 𝑛 |𝐸 | + |𝐸 |2 + 𝐿) (cf. Theorem 2) 𝑂 ( |𝑉 | + |𝐸 | + 𝑛 + 𝐿 + 𝑆SP ) (cf. Theorem 3) Section 3

Despite being a popular spatial analytic tool, generating a single

NKDV is computationally expensive, making it difficult to scale

to large resolution sizes (i.e., large number of lixels) and large-

scale datasets. As an example, consider the Detroit 911-call location

dataset [3] (with 1.931 million location data points) and a fixed

lixel size ℓ = 5m. A naïve algorithm takes more than one day for

generating a single NKDV in the Detroit road network. Therefore,

many domain experts [52, 61, 78] have reported inefficiency issues

when using the NKDV tool.

To overcome this issue, Chan et al. [23] propose the aggregate dis-

tance augmentation (ADA) algorithm, which theoretically reduces

the worst-case time complexity for generating NKDV. Despite this,

ADA only aims to improve the efficiency for supporting large-scale

datasets, which omits the optimization opportunity for another

parameter: the number of lixels in a road network (a.k.a. resolu-

tion). However, in practice, the number of lixels in a road network

can be larger than the number of data points. Consider the Lon-

don traffic accident dataset [5] and the London road network. The

total number of lixels (with ℓ = 5m as the lixel size) in this road

network is 2.95 million, while the total number of data points is

only 0.838 million. Furthermore, domain experts [16, 47, 74] need to

perform exploratory analysis for analyzing hotspots with different

attribute types (e.g., only analyze the crime location data with the

type “possession of weapon” in [74]), which can further increase

the difference between the number of lixels and the number of data

points.

Therefore, we pose a question. Can we develop a theoretically
improved solution for generating high-resolution NKDV (with a large
number of lixels), without increasing the space complexity? To answer
this question, we develop a new solution, called LION, which further

reduces the worst-case time complexity for generating NKDV (cf.

Table 2) compared with the state-of-the-art ADA method given

that the number of lixels 𝐿 is larger than the dataset size 𝑛 (𝐿 >

𝑛). In addition, LION also retains the same space complexity for

generating NKDV (cf. Table 2). Experiment results on four location

datasets demonstrate that LION can achieve 2.86x to 35.36x speedup

compared with the state-of-the-art ADA method.

The rest of the paper is structured as follows. We first formally

state the NKDV problem and discuss the state-of-the-art ADA

method in Section 2. Then, we illustrate our efficient solution, LION,

in Section 3. Next, we show our experiment results in Section 4.

After that, we discuss the related work in Section 5. Lastly, we

conclude this paper in Section 6.

2 PRELIMINARIES
In this section, we first formally define the NKDV problem in Sec-

tion 2.1. Then, we discuss the state-of-the-art solution [23], namely

aggregate distance augmentation (ADA), in Section 2.2.

2.1 Problem Statement
In order to generate NKDV (cf. Figure 1), we need to color each lixel

𝑞 based on the network kernel density function (cf. Equation 1),

which is formally defined in Problem 1.

Problem 1. (NKDV [23]) Given a road network 𝐺 = (𝑉 , 𝐸), 𝐿
lixels, and a location dataset 𝑃 with size 𝑛, where each data point in
𝑃 is on one and only one edge, we need to compute the network kernel
density function F𝑃 (𝑞) (with Epanechnikov kernel) for each lixel 𝑞 in
𝐸, where

F𝑃 (𝑞) =
∑︁
𝑝𝑖 ∈𝑃

𝑤 ·
{
1 − 1

𝑏2
𝑑𝐺 (𝑞, 𝑝𝑖 )2 if 𝑑𝐺 (𝑞, 𝑝𝑖 ) ≤ 𝑏

0 otherwise
(2)

Due to the popularity of Epanechnikov kernel (cf. Table 1), we

adopt this kernel by default. However, all the methods can also be

extended to support other kernel functions in Table 1.

2.2 Aggregate Distance Augmentation (ADA)
Recently, Chan et al. [23] propose the state-of-the-art solution,

called aggregate distance augmentation (ADA), which successfully

reduces the worst-case time complexity for generating NKDV. In

this section, we have an overview of this method.

Here, we first define the point set 𝑃 (𝑒) of each edge 𝑒 in a road

network 𝐺 (cf. Definition 1).

Definition 1. Given an edge 𝑒 in a road network 𝐺 = (𝑉 , 𝐸),
𝑃 (𝑒) is the set of data points in this edge 𝑒 .

Based on Definition 1, the network kernel density function F𝑃 (𝑞)
(cf. Equation 2) can be decomposed into the following expression.

F𝑃 (𝑞) =
∑︁
𝑒∈𝐸
F𝑃 (𝑒 ) (𝑞) (3)

where F𝑃 (𝑒 ) (𝑞) denotes the edge-𝑒 network kernel density function
(which replaces 𝑃 by 𝑃 (𝑒) in Equation 2).

F𝑃 (𝑒 ) (𝑞) =
∑︁

𝑝𝑖 ∈𝑃 (𝑒 )
𝑤 ·

{
1 − 1

𝑏2
𝑑𝐺 (𝑞, 𝑝𝑖 )2 if 𝑑𝐺 (𝑞, 𝑝𝑖 ) ≤ 𝑏

0 otherwise

(4)

Therefore, the core idea of [23] is to efficiently evaluate F𝑃 (𝑒 ) (𝑞)
in order to reduce the time complexity for computing F𝑃 (𝑞) (gen-
erating NKDV). Figure 2 shows how the ADA method achieves

this goal. Note that this method augments the aggregate distance

values 𝑎
(𝑑𝑒𝑔)
𝑃 (𝑢,𝑝 ) (cf. Equation 5) and 𝑎

(𝑑𝑒𝑔)
𝑃 (𝑣,𝑝 ) (cf. Equation 6) for all

data points 𝑝 in each edge 𝑒 = (𝑢, 𝑣) in advance, where 𝑑𝑒𝑔 denotes

the degree value (e.g., 𝑑𝑒𝑔 = 0, 1, 2 in the Epanechnikov kernel [23]).

𝑎
(𝑑𝑒𝑔)
𝑃 (𝑢,𝑝 ) =

∑︁
𝑝𝑖 ∈𝑃 (𝑢,𝑝 )

𝑑𝐺 (𝑢, 𝑝𝑖 )𝑑𝑒𝑔 (5)

𝑎
(𝑑𝑒𝑔)
𝑃 (𝑣,𝑝 ) =

∑︁
𝑝𝑖 ∈𝑃 (𝑣,𝑝 )

𝑑𝐺 (𝑣, 𝑝𝑖 )𝑑𝑒𝑔 (6)
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where 𝑃 (𝑢, 𝑝) and 𝑃 (𝑣, 𝑝) denote the sets of data points from node

𝑢 to 𝑝 and from node 𝑣 to 𝑝 , respectively.

𝑞
𝑥 𝑦

𝑢 𝑣

𝑎𝑃(𝑢,𝑝)
(𝑑𝑒𝑔)

𝑎𝑃(𝑣,𝑝)
(𝑑𝑒𝑔)

𝑝

Figure 2: Illustration of the ADA method.

Based on the aggregate distance values 𝑎
(𝑑𝑒𝑔)
𝑃 (𝑢,𝑝 ) and 𝑎

(𝑑𝑒𝑔)
𝑃 (𝑣,𝑝 ) , Chan

et al. [23] show that they can compute F𝑃 (𝑒 ) (𝑞) in 𝑂 (log |𝑃 (𝑒) |)
time (instead of 𝑂 ( |𝑃 (𝑒) |) time) once the shortest path distances

𝑑𝐺 (𝑞,𝑢) and 𝑑𝐺 (𝑞, 𝑣) (cf. the black dashed arrows in Figure 2) are

available. Consider the case 𝑑𝐺 (𝑞,𝑢) ≤ 𝑏 and 𝑑𝐺 (𝑞, 𝑣) > 𝑏 as

an example. Note that the ADA method adopts the binary search

approach (with𝑂 (log |𝑃 (𝑒) |) time) to find 𝑝∗ such that (1)𝑑𝐺 (𝑢, 𝑝∗)
is the largest and (2) 𝑑𝐺 (𝑢, 𝑝∗) ≤ 𝑏 − 𝑑𝐺 (𝑞,𝑢). With this 𝑝∗, they
have:

F𝑃 (𝑒 ) (𝑞) =
∑︁

𝑝𝑖 ∈𝑃 (𝑢,𝑝∗ )
𝑤 ·

(
1 − 1

𝑏2
𝑑𝐺 (𝑞, 𝑝𝑖 )2

)
which can be computed in𝑂 (1) time using the following expression.

F𝑃 (𝑒 ) (𝑞) = 𝑤
(
1−𝑑𝐺 (𝑞,𝑢)

2

𝑏2

)
𝑎
(0)
𝑃 (𝑢,𝑝∗ )−

2𝑤 · 𝑑𝐺 (𝑞,𝑢)
𝑏2

𝑎
(1)
𝑃 (𝑢,𝑝∗ )−

𝑤

𝑏2
𝑎
(2)
𝑃 (𝑢,𝑝∗ )

As a remark, the ADA method can be further extended to sup-

port three other cases, namely (i) 𝑑𝐺 (𝑞,𝑢) ≤ 𝑏 and 𝑑𝐺 (𝑞, 𝑣) ≤ 𝑏,
(ii) 𝑑𝐺 (𝑞,𝑢) > 𝑏 and 𝑑𝐺 (𝑞, 𝑣) ≤ 𝑏, and (iii) 𝑑𝐺 (𝑞,𝑢) > 𝑏 and

𝑑𝐺 (𝑞, 𝑣) > 𝑏, for computing F𝑃 (𝑒 ) (𝑞) in 𝑂 (log |𝑃 (𝑒) |) time based

on the binary search approach and the aggregate terms (cf. Equa-

tion 5 and Equation 6).

Due to the lower time complexity for computing F𝑃 (𝑒 ) (𝑞), Chan
et al. [23] further show that the time complexity for generating

NKDV is 𝑂
(
|𝐸 |𝑇SP + 𝐿 |𝐸 | log

(
𝑛
|𝐸 |

) )
. In addition, since this method

needs to access the road network, all data points, and all lixels, and

adopt the shortest path algorithm, Chan et al. [23] also show that

the space complexity of the ADAmethod is𝑂 ( |𝑉 | + |𝐸 | +𝑛+𝐿+𝑆SP).
Theorem 1 summarizes the theoretical results of this method.

Theorem 1. [23] Given a road network 𝐺 = (𝑉 , 𝐸), 𝐿 lixels, and
a location dataset 𝑃 with size 𝑛, the ADA method takes 𝑂

(
|𝐸 |𝑇SP +

𝐿 |𝐸 | log
(
𝑛
|𝐸 |

) )
time and 𝑂 ( |𝑉 | + |𝐸 | + 𝑛 + 𝐿 + 𝑆SP) space to generate

NKDV.

Although the ADA method lowers the worst-case time complex-

ity for generating NKDV, this time complexity still depends on the

term 𝐿 |𝐸 |, which can still be slow if the number of lixels 𝐿 is large

(i.e., generate a high-resolution NKDV).

3 OUR SOLUTION: LION
To further reduce the time complexity for generating high-

resolution NKDV (with 𝐿 > 𝑛), we propose the new solution, called

LION. In this section, we first discuss two core ideas of LION, which

are (1) the new expression of F𝑃 (𝑞) (cf. Section 3.1) and (2) influ-

ence regions of a data point (cf. Section 3.2). Based on these two

core ideas, we then illustrate LION and analyze its time complexity

in Section 3.3. Lastly, we discuss the space complexity of LION in

Section 3.4.

3.1 New Expression of F𝑃 (𝑞)
Consider any lixel 𝑞 in the edge �̂� = (𝑥,𝑦). We can decompose the

location dataset 𝑃 into two parts, which are the data points in the

edge �̂� , namely 𝑃 (�̂�), and outside the edge �̂� , namely 𝑃 = 𝑃\𝑃 (�̂�).
Therefore, F𝑃 (𝑞) can be represented by the following expression.

F𝑃 (𝑞) = F𝑃 (𝑒 ) (𝑞) + F𝑃 (𝑞) (7)

Since the first component F𝑃 (𝑒 ) (𝑞) in Equation 7 only depends

on those data points in the same edge �̂� as the lixel 𝑞, generating

NKDV based on F𝑃 (𝑒 ) (𝑞) for all lixels 𝑞 is equivalent to solving the
one-dimensional kernel density visualization problem (the special

case of [25]) in each edge �̂� (cf. Figure 3).

𝑥
𝑦𝑞

Figure 3: Generating NKDV using F𝑃 (𝑒 ) (𝑞) (all lixels 𝑞 lie in
the same edge �̂� = (𝑥,𝑦).) is equivalent to solving the one-
dimensional kernel density visualization problem.

In Lemma 1, we show that the time complexity for using the

first component F𝑃 (𝑒 ) (𝑞) of the network kernel density function

to generate NKDV is 𝑂 (𝑛 + 𝐿).

Lemma 1. Given a road network 𝐺 = (𝑉 , 𝐸), generating NKDV
based on the network kernel density function F𝑃 (𝑒 ) (𝑞), where each
lixel 𝑞 lies in the same edge �̂� , takes 𝑂 (𝑛 + 𝐿) time.

Proof. In previous work, Chan et al. [25] have shown that gen-

erating kernel density visualizationwith the resolution size𝑋×𝑌 for

a two-dimensional location dataset 𝐿 = {p1, p2, ..., p𝑚} based on the
kernel density function 𝐷𝐿 (q) (cf. Equation 8) takes 𝑂 (𝑌 (𝑋 +𝑚))
time.

𝐷𝐿 (q) =
∑︁
p𝑖 ∈𝐿

𝑤 ·
{
1 − 1

𝑏2
𝑑𝑖𝑠𝑡 (q, p𝑖 )2 if 𝑑𝑖𝑠𝑡 (q, p𝑖 ) ≤ 𝑏

0 otherwise

(8)

where 𝑤 and 𝑑𝑖𝑠𝑡 (q, p𝑖 ) are the normalization constant and the

Euclidean distance, respectively.

Note that generating one-dimensional kernel density visualiza-

tion for the edge �̂� = (𝑥,𝑦) (cf. Figure 3) is the special case of the
above problem based on the following settings.

• Set the x-coordinate and y-coordinate of p𝑖 to be 𝑑𝐺 (𝑥, 𝑝𝑖 )
in our problem and 0, respectively.

• Set 𝑋 to be |𝐿(�̂�) | (|𝐿(�̂�) | denotes the number of lixels in �̂� .).

• Set 𝑌 to be 1.

• Set𝑚 to be |𝑃 (�̂�) |.
As such, computing network kernel density function values for all

lixels 𝑞 in �̂� is𝑂 ( |𝐿(�̂�) |+ |𝑃 (�̂�) |) time. Since there are |𝐸 | edges in the
road network, we conclude that the time complexity for generating
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NKDV in all edges �̂� based on the network kernel density function

F𝑃 (𝑒 ) (𝑞) is

𝑂

(∑︁
𝑒∈𝐸
( |𝐿(�̂�) | + |𝑃 (�̂�) |)

)
= 𝑂 (𝑛 + 𝐿)

□

Consider the second component in Equation 7, which depends

on those data points that are outside the edge �̂� = (𝑥,𝑦). In Figure 4,

note that each lixel 𝑞 in �̂� can have two possible routes 𝑞 → 𝑥 → 𝑝

(blue dashed line) and 𝑞 → 𝑦 → 𝑝 (pink dashed line) to reach the

data point 𝑝 . Moreover, only those data points 𝑝 with 𝑑𝐺 (𝑞, 𝑝) ≤ 𝑏
can contribute to the second component of network kernel density

function F
𝑃
(𝑞) (cf. Equation 7). Based on these two concepts, we

consider two sets of data points 𝑅𝑥 (𝑞) (cf. Equation 9) and 𝑅𝑦 (𝑞) (cf.
Equation 10), which cover those data points such that the shortest

path from 𝑞 to each of these data points 𝑝 only passes through the

node 𝑥 (i.e., the blue dashed line in Figure 4) and the node 𝑦 (i.e.,

the pink dashed line in Figure 4), respectively, and its shortest path

distance must be within the range 𝑏 (i.e., 𝑑𝐺 (𝑞, 𝑝) ≤ 𝑏).

𝑅𝑥 (𝑞) = {𝑝 ∈ 𝑃 : 𝑑𝐺 (𝑞, 𝑥) + 𝑑𝐺 (𝑥, 𝑝) ≤min(𝑑𝐺 (𝑞,𝑦) + 𝑑𝐺 (𝑦, 𝑝), 𝑏)} (9)

𝑅𝑦 (𝑞) = {𝑝 ∈ 𝑃 : 𝑑𝐺 (𝑞,𝑦) + 𝑑𝐺 (𝑦, 𝑝) ≤min(𝑑𝐺 (𝑞, 𝑥) + 𝑑𝐺 (𝑥, 𝑝), 𝑏)} (10)

𝑥

𝑢 𝑣

𝑦

𝑝

𝑑𝐺(𝑞, 𝑥)

𝑞

Figure 4: There are two possible routes (i.e., blue dashed line
and pink dashed line) from the lixel 𝑞 in the edge �̂� = (𝑥,𝑦)
to the data point 𝑝 in the edge 𝑒 = (𝑢, 𝑣).

With these two sets of data points, the second component of

network kernel density function F
𝑃
(𝑞) can be expressed as follows.

F
𝑃
(𝑞) =

∑︁
𝑝∈𝑅𝑥 (𝑞)

𝑤 ·
(
1 − 1

𝑏2
(𝑑𝐺 (𝑞, 𝑥) + 𝑑𝐺 (𝑥, 𝑝))2

)
+

∑︁
𝑝∈𝑅𝑦 (𝑞)

𝑤 ·
(
1 − 1

𝑏2
(𝑑𝐺 (𝑞,𝑦) + 𝑑𝐺 (𝑦, 𝑝))2

)
= 𝑤

(
1 − 1

𝑏2
𝑑𝐺 (𝑞, 𝑥)2

)
𝛼
(0)
𝑅𝑥 (𝑞) −

2𝑤

𝑏2
𝑑𝐺 (𝑞, 𝑥)𝛼 (1)𝑅𝑥 (𝑞) −

𝑤

𝑏2
𝛼
(2)
𝑅𝑥 (𝑞)

+ 𝑤
(
1 − 1

𝑏2
𝑑𝐺 (𝑞,𝑦)2

)
𝛼
(0)
𝑅𝑦 (𝑞) −

2𝑤

𝑏2
𝑑𝐺 (𝑞,𝑦)𝛼 (1)𝑅𝑦 (𝑞) −

𝑤

𝑏2
𝛼
(2)
𝑅𝑦 (𝑞)

where 𝛼
(𝑑𝑒𝑔)
𝑅𝑥 (𝑞) and 𝛼

(𝑑𝑒𝑔)
𝑅𝑦 (𝑞) (𝑑𝑒𝑔 = 0, 1, 2) are the aggregate terms for

the lixel 𝑞.

𝛼
(𝑑𝑒𝑔)
𝑅𝑥 (𝑞) =

∑︁
𝑝∈𝑅𝑥 (𝑞)

𝑑𝐺 (𝑥, 𝑝)𝑑𝑒𝑔 and 𝛼
(𝑑𝑒𝑔)
𝑅𝑦 (𝑞) =

∑︁
𝑝∈𝑅𝑦 (𝑞)

𝑑𝐺 (𝑦, 𝑝)𝑑𝑒𝑔

(11)

Therefore, once we can efficiently maintain the aggregate terms,

we can also efficiently evaluate F
𝑃
(𝑞). In this paper, we focus on

generating NKDV using F
𝑃
(𝑞), which is the more challenging case.

3.2 Influence Regions of a Data Point
Observe from Figure 4 that we can compute the shortest path dis-

tances 𝑑𝐺 (𝑥, 𝑝) (cf. Equation 12) and 𝑑𝐺 (𝑦, 𝑝) (cf. Equation 13) in

𝑂 (1) time if we have obtained the shortest path distances (e.g.,

𝑑𝐺 (𝑥,𝑢), 𝑑𝐺 (𝑥, 𝑣), 𝑑𝐺 (𝑦,𝑢), and 𝑑𝐺 (𝑦, 𝑣)) from the node 𝑥 and the

node 𝑦 to other nodes (e.g., node 𝑢 and node 𝑣) in 𝐺 .

𝑑𝐺 (𝑥, 𝑝) = min

{
𝑑𝐺 (𝑥,𝑢) + 𝑑𝐺 (𝑢, 𝑝)
𝑑𝐺 (𝑥, 𝑣) + 𝑑𝐺 (𝑣, 𝑝)

(12)

𝑑𝐺 (𝑦, 𝑝) = min

{
𝑑𝐺 (𝑦,𝑢) + 𝑑𝐺 (𝑢, 𝑝)
𝑑𝐺 (𝑦, 𝑣) + 𝑑𝐺 (𝑣, 𝑝)

(13)

With these shortest path distances 𝑑𝐺 (𝑥, 𝑝) and 𝑑𝐺 (𝑦, 𝑝), we can
use 𝑂 (1) time to obtain the influence regions of this data point 𝑝

from the node 𝑥 and the node 𝑦 in the edge �̂� = (𝑥,𝑦) (cf. Defini-
tion 2).

Definition 2. Given a road network 𝐺 = (𝑉 , 𝐸), two edges �̂� =
(𝑥,𝑦) and 𝑒 = (𝑢, 𝑣), and a data point 𝑝 in the edge 𝑒 , the influence
region of the data point 𝑝 from the node 𝑥 (node𝑦) denotes those lixels
𝑞 where each of the corresponding sets 𝑅𝑥 (𝑞) (𝑅𝑦 (𝑞)) covers the data
point 𝑝 , i.e., 𝑝 ∈ 𝑅𝑥 (𝑞) (𝑝 ∈ 𝑅𝑦 (𝑞)).

Figure 5 shows the influence regions of the data point 𝑝 from

the node 𝑥 (i.e., the blue lixels) and the node 𝑦 (i.e., the pink lixels).

𝑝

𝑦
𝑥

𝑢 𝑣

𝑞𝑟 𝑞𝑙

Figure 5: The blue and pink lixels in �̂� = (𝑥,𝑦) represent the
influence regions of the data point 𝑝 from the node 𝑥 and the
node 𝑦, respectively.

Based on the above concept, there are four possible cases for the

influence regions of the data point 𝑝 from the node 𝑥 and the node

𝑦.

Case 1 (𝑑𝐺 (𝑥, 𝑝) > 𝑏 and 𝑑𝐺 (𝑦, 𝑝) > 𝑏): Since we have 𝑑𝐺 (𝑞, 𝑝) >
min(𝑑𝐺 (𝑥, 𝑝), 𝑑𝐺 (𝑦, 𝑝)) > 𝑏 (cf. Figure 4) in this case, none of the

lixels 𝑞 in the edge �̂� = (𝑥,𝑦) can be influenced by the data point 𝑝 .

𝑝

𝑦
𝑥 𝑞𝑟

𝑢 𝑣

Figure 6: The blue lixels in �̂� = (𝑥,𝑦) represent the influence
region of the data point 𝑝 from the node 𝑥 and there is no
influence region from the node 𝑦.

Case 2 (𝑑𝐺 (𝑥, 𝑝) ≤ 𝑏 and 𝑑𝐺 (𝑦, 𝑝) > 𝑏): In this case, only those lix-

els 𝑞 in �̂� = (𝑥,𝑦) where the shortest path from each 𝑞 to 𝑝 passes
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through the node 𝑥 (cf. the blue dashed curve in Figure 6) can be

possibly influenced by the data point 𝑝 . Since each lixel has the

regular size ℓ (cf. Figure 1b), we can use 𝑂 (1) time to identify the

rightmost lixel 𝑞𝑟 (i.e., 𝑑𝐺 (𝑞𝑟 , 𝑥) is the largest that is smaller than

or equal to 𝑏 − 𝑑𝐺 (𝑥, 𝑝)), and thus the influence region from 𝑥 (i.e.,

the blue lixels in the edge �̂� = (𝑥,𝑦) in Figure 6).

Case 3 (𝑑𝐺 (𝑥, 𝑝) > 𝑏 and 𝑑𝐺 (𝑦, 𝑝) ≤ 𝑏): This case is similar to

Case 2. Observe from Figure 7 that we can use𝑂 (1) time to find the

leftmost lixel 𝑞𝑙 (i.e., 𝑑𝐺 (𝑞𝑙 , 𝑦) is the largest that is smaller than or

equal to 𝑏 − 𝑑𝐺 (𝑦, 𝑝)) and its corresponding influence region from

the node 𝑦 (i.e., the pink lixels in the edge �̂� = (𝑥,𝑦)).

𝑝

𝑦
𝑥 𝑞𝑙

𝑢 𝑣

Figure 7: The pink lixels in �̂� = (𝑥,𝑦) represent the influence
region of the data point 𝑝 from the node 𝑦 and there is no
influence region from the node 𝑥 .

Case 4 (𝑑𝐺 (𝑥, 𝑝) ≤ 𝑏 and 𝑑𝐺 (𝑦, 𝑝) ≤ 𝑏): In this case, the data point

𝑝 can influence the lixels in the edge �̂� = (𝑥,𝑦) from both the node

𝑥 and the node 𝑦, which can be further classified into the following

two cases (i.e., Case 4a and Case 4b).

In Case 4a (i.e., 2𝑏 − 𝑑𝐺 (𝑥, 𝑝) − 𝑑𝐺 (𝑦, 𝑝) < 𝑑𝐺 (𝑥,𝑦)), observe
from Figure 5 that both the blue dashed line and pink dashed line

in the edge �̂� = (𝑥,𝑦) do not intersect with each other. Like Case

2 and Case 3, we can use 𝑂 (1) time to find 𝑞𝑟 and 𝑞𝑙 , respectively,

and identify the corresponding influence regions (i.e., the blue and

pink lixels in Figure 5).

In Case 4b (i.e., 2𝑏 − 𝑑𝐺 (𝑥, 𝑝) − 𝑑𝐺 (𝑦, 𝑝) ≥ 𝑑𝐺 (𝑥,𝑦)), note that
the blue dashed line and the pink dashed line in the edge �̂� = (𝑥,𝑦)
intersect with each other (cf. Figure 8). To correctly identify the

influence regions from the node 𝑥 and the node 𝑦 (cf. Definition 2),

we need to find the rightmost lixel 𝑞𝑟 (i.e., with the largest distance

𝑑𝐺 (𝑞𝑟 , 𝑥)) from the node 𝑥 so that

𝑑𝐺 (𝑞𝑟 , 𝑥) + 𝑑𝐺 (𝑥, 𝑝) ≤ 𝑑𝐺 (𝑞𝑟 , 𝑦) + 𝑑𝐺 (𝑦, 𝑝)
𝑑𝐺 (𝑞𝑟 , 𝑥) + 𝑑𝐺 (𝑥, 𝑝) ≤ (𝑑𝐺 (𝑥,𝑦) − 𝑑𝐺 (𝑞𝑟 , 𝑥)) + 𝑑𝐺 (𝑦, 𝑝)

𝑑𝐺 (𝑞𝑟 , 𝑥) ≤
𝑑𝐺 (𝑥,𝑦) − 𝑑𝐺 (𝑥, 𝑝) + 𝑑𝐺 (𝑦, 𝑝)

2

which can be computed in 𝑂 (1) time. With this 𝑞𝑟 , we can obtain

the right-neighbor lixel 𝑞𝑙 (cf. Figure 8). As such, we can further

obtain the two influence regions from the node 𝑥 and the node 𝑦 of

the data point 𝑝 in 𝑂 (1) time.

Based on these four cases, we have the following two observa-

tions, which are:

• If the lixel 𝑞 is close to the node 𝑥 compared with the lixel

𝑞𝜌 , this lixel 𝑞 is easily influenced by any data point 𝑝 (in

other edges) from the node 𝑥 (i.e., 𝑅𝑥 (𝑞𝜌 ) ⊆ 𝑅𝑥 (𝑞)).
• If the lixel 𝑞 is close to the node 𝑦 compared with the lixel

𝑞𝜆 , this lixel 𝑞 is easily influenced by any data point 𝑝 (in

other edges) from the node 𝑦 (i.e., 𝑅𝑦 (𝑞𝜆) ⊆ 𝑅𝑦 (𝑞)).

𝑝

𝑥

𝑢 𝑣

𝑞𝑟 𝑞𝑙
𝑦

Figure 8: The blue lixels and the pink lixels represent the
influence regions of the data point 𝑝 from the node 𝑥 and the
node 𝑦, respectively.

In Lemma 2, we show that the above observations are true.

Lemma 2. Consider the edge �̂� = (𝑥,𝑦) in a road network 𝐺 =

(𝑉 , 𝐸) and three lixels 𝑞, 𝑞𝜆 , and 𝑞𝜌 in the edge �̂� . If 𝑑𝐺 (𝑞𝜆, 𝑥) ≤
𝑑𝐺 (𝑞, 𝑥) ≤ 𝑑𝐺 (𝑞𝜌 , 𝑥), we have

𝑅𝑥 (𝑞𝜌 ) ⊆ 𝑅𝑥 (𝑞) (14)

𝑅𝑦 (𝑞𝜆) ⊆ 𝑅𝑦 (𝑞) (15)

Proof. In this proof, we focus on showing 𝑅𝑥 (𝑞𝜌 ) ⊆ 𝑅𝑥 (𝑞).
Similar ideas can be adopted for proving 𝑅𝑦 (𝑞𝜆) ⊆ 𝑅𝑦 (𝑞).

Suppose that 𝑝 ∈ 𝑅𝑥 (𝑞𝜌 ), we have (cf. Equation 9)

𝑑𝐺 (𝑞𝜌 , 𝑥) + 𝑑𝐺 (𝑥, 𝑝) ≤ min(𝑑𝐺 (𝑞𝜌 , 𝑦) + 𝑑𝐺 (𝑦, 𝑝), 𝑏)
which implies:

𝑑𝐺 (𝑞𝜌 , 𝑥) + 𝑑𝐺 (𝑥, 𝑝) ≤ 𝑑𝐺 (𝑞𝜌 , 𝑦) + 𝑑𝐺 (𝑦, 𝑝) (16)

and

𝑑𝐺 (𝑞𝜌 , 𝑥) + 𝑑𝐺 (𝑥, 𝑝) ≤ 𝑏 (17)

Consider the left part of Inequality 16. We have

𝑑𝐺 (𝑞𝜌 , 𝑥) + 𝑑𝐺 (𝑥, 𝑝)
≥ 𝑑𝐺 (𝑞, 𝑥) + 𝑑𝐺 (𝑥, 𝑝) (since 𝑑𝐺 (𝑞, 𝑥) ≤ 𝑑𝐺 (𝑞𝜌 , 𝑥)) (18)

Consider the right part of Inequality 16. We have

𝑑𝐺 (𝑞𝜌 , 𝑦) + 𝑑𝐺 (𝑦, 𝑝)
= (𝑑𝐺 (𝑥,𝑦) − 𝑑𝐺 (𝑞𝜌 , 𝑥)) + 𝑑𝐺 (𝑦, 𝑝)
≤ (𝑑𝐺 (𝑥,𝑦) − 𝑑𝐺 (𝑞, 𝑥)) + 𝑑𝐺 (𝑦, 𝑝) (since 𝑑𝐺 (𝑞, 𝑥) ≤ 𝑑𝐺 (𝑞𝜌 , 𝑥))
= 𝑑𝐺 (𝑞,𝑦) + 𝑑𝐺 (𝑦, 𝑝) (19)

Based on Inequalities 18, 19, and 16, we have 𝑑𝐺 (𝑞, 𝑥) + 𝑑𝐺 (𝑥, 𝑝) ≤
𝑑𝐺 (𝑞,𝑦)+𝑑𝐺 (𝑦, 𝑝). In addition, we also have𝑑𝐺 (𝑞, 𝑥)+𝑑𝐺 (𝑥, 𝑝) ≤ 𝑏
(based on Inequalities 18 and 17). Therefore, 𝑑𝐺 (𝑞, 𝑥) + 𝑑𝐺 (𝑥, 𝑝) ≤
min(𝑑𝐺 (𝑞,𝑦) + 𝑑𝐺 (𝑦, 𝑝), 𝑏), which indicates 𝑝 ∈ 𝑅𝑥 (𝑞) =⇒
𝑅𝑥 (𝑞𝜌 ) ⊆ 𝑅𝑥 (𝑞). □

3.3 LION: An Augmentation and Aggregation
Approach

To boost the efficiency for generating NKDV using F
𝑃
(𝑞), we pro-

pose the solution, called LION,which consists of two phases, namely

(1) LIxel augmentatiON and (2) LIxel aggregatiON.

Lixel augmentation. In the first phase, we aim to augment the

aggregate terms, 𝛼
(𝑑𝑒𝑔)
𝐵𝑥 (𝑞) and 𝛼

(𝑑𝑒𝑔)
𝐵𝑦 (𝑞) (𝑑𝑒𝑔 = 0, 1, 2), for each lixel 𝑞

(cf. Equation 20 and Figure 9).

𝛼
(𝑑𝑒𝑔)
𝐵𝑥 (𝑞) =

∑︁
𝑝∈𝐵𝑥 (𝑞)

𝑑𝐺 (𝑥, 𝑝)𝑑𝑒𝑔 and 𝛼
(𝑑𝑒𝑔)
𝐵𝑦 (𝑞) =

∑︁
𝑝∈𝐵𝑦 (𝑞)

𝑑𝐺 (𝑦, 𝑝)𝑑𝑒𝑔

(20)
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𝑦

𝛼𝐵𝑥(𝑞)
(𝑑𝑒𝑔)

𝑞𝑟 = 𝑞 (Case 2, Case 4a, and Case 4b)

𝑥 𝑞

𝑝

𝑦

𝛼𝐵𝑦(𝑞)
(𝑑𝑒𝑔)

𝑥 𝑞

𝑝

𝑞𝑙 = 𝑞 (Case 3, Case 4a, and Case 4b)

(a) Influence region from the node 𝑥 (b) Influence region from the node 𝑦

Figure 9: Augment the aggregate terms, 𝛼 (𝑑𝑒𝑔)
𝐵𝑥 (𝑞) (𝛼

(𝑑𝑒𝑔)
𝐵𝑦 (𝑞) ), where 𝑑𝑒𝑔 = 0, 1, 2, for the rightmost (leftmost) lixel 𝑞.

where 𝐵𝑥 (𝑞) and 𝐵𝑦 (𝑞) store all data points 𝑝 which their influence

regions cover 𝑞 as the rightmost lixel (with the largest 𝑑𝐺 (𝑞, 𝑥))
and the leftmost lixel (with the largest 𝑑𝐺 (𝑞,𝑦)), respectively.

Algorithm 1 Lixel Augmentation

1: procedure Augmentation(𝐺 = (𝑉 , 𝐸), 𝑃 , 𝑏)
2: for each edge �̂� = (𝑥,𝑦) ∈ 𝐸 do
3: for each lixel 𝑞 in the edge �̂� do ⊲ Initialization

4: 𝛼
(𝑑𝑒𝑔)
𝐵𝑥 (𝑞) ← 0 (𝑑𝑒𝑔 = 0, 1, 2)

5: 𝛼
(𝑑𝑒𝑔)
𝐵𝑦 (𝑞) ← 0 (𝑑𝑒𝑔 = 0, 1, 2)

6: Find 𝑆𝑃𝐷 (𝑥) and 𝑆𝑃𝐷 (𝑦), where (for each ℎ ∈ 𝑉 )

𝑆𝑃𝐷 (𝑥) .ℎ =

{
𝑑𝐺 (𝑥, ℎ) if 𝑑𝐺 (𝑥, ℎ) ≤ 𝑏
∞ otherwise

(21)

7: for each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸\�̂� do
8: for each 𝑝 ∈ 𝑃 (𝑒) do
9: Compute 𝑑𝐺 (𝑥, 𝑝) ⊲ Equation 12, 𝑂 (1) time

10: Compute 𝑑𝐺 (𝑦, 𝑝) ⊲ Equation 13, 𝑂 (1) time

11: //Core idea 2 (cf. Section 3.2)

12: if Case 2 is true then
13: Obtain 𝑞𝑟

14: Update 𝛼
(𝑑𝑒𝑔)
𝐵𝑥 (𝑞𝑟 ) (𝑑𝑒𝑔 = 0, 1, 2)

15: if Case 3 is true then
16: Obtain 𝑞𝑙

17: Update 𝛼
(𝑑𝑒𝑔)
𝐵𝑦 (𝑞𝑙 )

(𝑑𝑒𝑔 = 0, 1, 2)

18: if Case 4 is true then
19: Obtain 𝑞𝑙 and 𝑞𝑟

20: Update 𝛼
(𝑑𝑒𝑔)
𝐵𝑥 (𝑞𝑟 ) (𝑑𝑒𝑔 = 0, 1, 2)

21: Update 𝛼
(𝑑𝑒𝑔)
𝐵𝑦 (𝑞𝑙 )

(𝑑𝑒𝑔 = 0, 1, 2)

Algorithm 1 shows how we obtain all these aggregate terms (cf.

Equation 20 and Figure 9) in each lixel𝑞. Consider an edge �̂� = (𝑥,𝑦)
in this algorithm (line 2). We first initialize these aggregate terms for

all lixels 𝑞 to be 0 (lines 3 to 5) and then compute the single-source

shortest path distances from the node 𝑥 and the node 𝑦 to other

nodes in 𝑉 (cf. Equation 21 in line 6), which take 𝑂 ( |𝐿(𝑒) | +𝑇SP)
time, where |𝐿(𝑒) | and𝑇SP denote the number of lixels in the edge 𝑒

and the time complexity of the shortest path algorithm, respectively.

Based on these shortest path distances from the node 𝑥 and the

node 𝑦 and different cases of the core idea 2 (cf. Section 3.2), we

can scan each data point 𝑝 in other edges 𝑒 = (𝑢, 𝑣) and use 𝑂 (1)
time to obtain the rightmost lixel 𝑞𝑟 and the leftmost lixel 𝑞𝑙 (cf.

Figure 9). With these 𝑞𝑟 and 𝑞𝑙 , we can update the aggregate terms

by the following approach:

𝛼
(𝑑𝑒𝑔)
𝐵𝑥 (𝑞𝑟 ) ← 𝛼

(𝑑𝑒𝑔)
𝐵𝑥 (𝑞𝑟 ) + 𝑑𝐺 (𝑥, 𝑝)

𝑑𝑒𝑔

𝛼
(𝑑𝑒𝑔)
𝐵𝑦 (𝑞𝑙 )

← 𝛼
(𝑑𝑒𝑔)
𝐵𝑦 (𝑞𝑙 )

+ 𝑑𝐺 (𝑦, 𝑝)𝑑𝑒𝑔

As such, the time complexity of line 7 to line 21 is 𝑂 (𝑛 + |𝐸 |). In
Lemma 3, we show that the time complexity of Algorithm 1 is

𝑂 ( |𝐸 |𝑇SP + 𝑛 |𝐸 | + |𝐸 |2 + 𝐿).

Lemma 3. The time complexity of Algorithm 1 is𝑂 ( |𝐸 |𝑇SP +𝑛 |𝐸 | +
|𝐸 |2 + 𝐿).

Proof. Since line 3 to line 6 take 𝑂 ( |𝐿(𝑒) | +𝑇SP) and line 7 to

line 21 take 𝑂 (𝑛 + |𝐸 |), the time complexity of one iteration in

line 2 is 𝑂 ( |𝐿(𝑒) | +𝑇SP + 𝑛 + |𝐸 |). As such, the time complexity of

Algorithm 1 is∑︁
𝑒∈𝐸

𝑂 ( |𝐿(𝑒) | +𝑇SP + 𝑛 + |𝐸 |) = 𝑂 ( |𝐸 |𝑇SP + 𝑛 |𝐸 | + |𝐸 |2 + 𝐿)

□

Lixel aggregation. In the second phase, we aim to efficiently com-

pute 𝛼
(𝑑𝑒𝑔)
𝑅𝑥 (𝑞) and 𝛼

(𝑑𝑒𝑔)
𝑅𝑦 (𝑞) (cf. Equation 11) based on the aggregate

terms in the first phase (cf. Figure 9) so that we can efficiently

evaluate F
𝑃
(𝑞) for all lixels 𝑞. Here, we claim in Lemma 4 that

only 𝐵𝑥 (𝑞𝜌 ) with 𝑑𝐺 (𝑞, 𝑥) ≤ 𝑑𝐺 (𝑞𝜌 , 𝑥) and only 𝐵𝑦 (𝑞𝜆) with
𝑑𝐺 (𝑞𝜆, 𝑥) ≤ 𝑑𝐺 (𝑞, 𝑥) can contribute to 𝑅𝑥 (𝑞) and 𝑅𝑦 (𝑞), respec-
tively (cf. the black lixels in Figure 10).

Lemma 4. Given an edge �̂� = (𝑥,𝑦) and the lixel 𝑞 in the edge �̂� ,
we have

𝛼
(𝑑𝑒𝑔)
𝑅𝑥 (𝑞) =

∑︁
𝑞𝜌 :𝑑𝐺 (𝑞𝜌 ,𝑥 )≥𝑑𝐺 (𝑞,𝑥 )

𝛼
(𝑑𝑒𝑔)
𝐵𝑥 (𝑞𝜌 ) (22)

𝛼
(𝑑𝑒𝑔)
𝑅𝑦 (𝑞) =

∑︁
𝑞𝜆 :𝑑𝐺 (𝑞𝜆,𝑥 )≤𝑑𝐺 (𝑞,𝑥 )

𝛼
(𝑑𝑒𝑔)
𝐵𝑦 (𝑞𝜆 )

(23)

Proof. In this proof, we focus on showing Equation 22. By

adopting the same concept, we can also prove Equation 23.
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(𝑑𝑒𝑔)
𝑅𝑥 (𝑞) (b) Compute 𝛼

(𝑑𝑒𝑔)
𝑅𝑦 (𝑞)

Figure 10: Compute the aggregate terms, 𝛼 (𝑑𝑒𝑔)
𝑅𝑥 (𝑞) and 𝛼

(𝑑𝑒𝑔)
𝑅𝑦 (𝑞) (based on 𝛼 (𝑑𝑒𝑔)

𝐵𝑥 (𝑞𝜌 ) (𝑑𝐺 (𝑞, 𝑥) ≤ 𝑑𝐺 (𝑞𝜌 , 𝑥)) and 𝛼
(𝑑𝑒𝑔)
𝐵𝑦 (𝑞𝜆 )

(𝑑𝐺 (𝑞𝜆, 𝑥) ≤
𝑑𝐺 (𝑞, 𝑥)), respectively), in order to evaluate F

𝑃
(𝑞), by scanning all lixels 𝑞 two times in each edge �̂� = (𝑥,𝑦).

Consider any lixels 𝑞𝜆 , 𝑞, and 𝑞𝜌 , where 𝑑𝐺 (𝑞𝜆, 𝑥) ≤ 𝑑𝐺 (𝑞, 𝑥) ≤
𝑑𝐺 (𝑞𝜌 , 𝑥). Note that 𝐵𝑥 (𝑞𝜆) denotes the set of data points where
the rightmost lixel of the influence region of each data point 𝑝 from

the node 𝑥 is 𝑞𝜆 . As such, the influence region cannot cover the

lixel 𝑞. Hence, we have⋃
𝑞𝜆 :𝑑𝐺 (𝑞𝜆,𝑥 )≤𝑑𝐺 (𝑞,𝑥 )

𝐵𝑥 (𝑞𝜆) ⊈ 𝑅𝑥 (𝑞) (24)

Since 𝐵𝑥 (𝑞𝜌 ) ⊆ 𝑅𝑥 (𝑞𝜌 ) ⊆ 𝑅𝑥 (𝑞) (based on Lemma 2) and Equa-

tion 24 holds, we can further conclude that⋃
𝑞𝜌 :𝑑𝐺 (𝑞𝜌 ,𝑥 )≥𝑑𝐺 (𝑞,𝑥 )

𝐵𝑥 (𝑞𝜌 ) = 𝑅𝑥 (𝑞) (25)

Based on Equation 25, we prove that Equation 22 is correct. □

As such, we only need to scan all lixels 𝑞 in each edge �̂� = (𝑥,𝑦)
two times (from𝑦 to 𝑥 in Figure 10a and from 𝑥 to𝑦 in Figure 10b) to

incrementally compute the aggregate terms 𝛼
(𝑑𝑒𝑔)
𝑅𝑥 (𝑞) (cf. Equation 22)

and 𝛼
(𝑑𝑒𝑔)
𝑅𝑦 (𝑞) (cf. Equation 23), which takes 𝑂 ( |𝐿(𝑒) |) time. Based on

the core idea 1 in Section 3.1, we can also compute F
𝑃
(𝑞) for all

lixels 𝑞 in the edge �̂� = (𝑥,𝑦) in 𝑂 ( |𝐿(𝑒) |) time. Algorithm 2 shows

how to compute F
𝑃
(𝑞) for all lixels in a road network𝐺 = (𝑉 , 𝐸).

Algorithm 2 Lixel Aggregation

1: procedure Aggregation(𝐺 = (𝑉 , 𝐸))
2: //𝑑𝑒𝑔 = 0, 1, 2 for the Epanechnikov kernel.

3: for each edge �̂� = (𝑥,𝑦) ∈ 𝐸 do
4: 𝛼

(𝑑𝑒𝑔)
left

← 0 and 𝛼
(𝑑𝑒𝑔)
right

← 0

5: for each lixel 𝑞 from node 𝑦 to node 𝑥 do
6: 𝛼

(𝑑𝑒𝑔)
left

← 𝛼
(𝑑𝑒𝑔)
left

+ 𝛼 (𝑑𝑒𝑔)
𝐵𝑥 (𝑞)

7: 𝛼
(𝑑𝑒𝑔)
𝑅𝑥 (𝑞) ← 𝛼

(𝑑𝑒𝑔)
left

8: for each lixel 𝑞 from node 𝑥 to node 𝑦 do
9: 𝛼

(𝑑𝑒𝑔)
right

← 𝛼
(𝑑𝑒𝑔)
right

+ 𝛼 (𝑑𝑒𝑔)
𝐵𝑦 (𝑞)

10: 𝛼
(𝑑𝑒𝑔)
𝑅𝑦 (𝑞) ← 𝛼

(𝑑𝑒𝑔)
right

11: for each lixel 𝑞 in �̂� do
12: Compute F

𝑃
(𝑞) ⊲ Section 3.1

In Lemma 5, we show that the time complexity of Algorithm 2

is 𝑂 (𝐿).

Lemma 5. The time complexity of Algorithm 2 is 𝑂 (𝐿).

Proof. Note that the internal loops (i.e., line 5, line 8, and line

11) of Algorithm 2 only take 𝑂 ( |𝐿(𝑒) |) time for computing the ag-

gregate terms and evaluating F
𝑃
(𝑞). Therefore, the time complexity

of this algorithm (cf. line 3) is

∑
𝑒∈𝐸 𝑂 ( |𝐿(𝑒) |) = 𝑂 (𝐿). □

LION. Since Algorithm 1 and Algorithm 2 take 𝑂 ( |𝐸 |𝑇SP + 𝑛 |𝐸 | +
|𝐸 |2 + 𝐿) (cf. Lemma 3) and 𝑂 (𝐿) time (cf. Lemma 5), respectively,

we conclude that the time complexity of LION is 𝑂 ( |𝐸 |𝑇SP + 𝑛 |𝐸 | +
|𝐸 |2 + 𝐿) (cf. Theorem 2). We omit the proof of this theorem due to

its simplicity.

Theorem 2. The time complexity of LION is 𝑂 ( |𝐸 |𝑇SP + 𝑛 |𝐸 | +
|𝐸 |2 + 𝐿).

Compared with the state-of-the-art solution, ADA, which takes

𝑂 ( |𝐸 |𝑇SP + 𝐿 |𝐸 | log
(
𝑛
|𝐸 |

)
) time, our solution, LION, theoretically

lowers the worst-case time complexity if the number of lixels 𝐿 is

larger than the number of location data points 𝑛 (i.e., 𝐿 > 𝑛).

3.4 Space Complexity of LION
In this section, we further investigate the space complexity of LION.

Since every algorithm needs to adopt the shortest path algorithm

and access the road network 𝐺 = (𝑉 , 𝐸), all lixels in 𝐺 , and the

location dataset 𝑃 , LION takes at least 𝑂 ( |𝑉 | + |𝐸 | + 𝑛 + 𝐿 + 𝑆SP)
space (where 𝑆SP denotes the space complexity of the shortest path

algorithm). In addition, LION also needs to augment the aggregate

terms 𝛼
(𝑑𝑒𝑔)
𝐵𝑥 (𝑞) and 𝛼

(𝑑𝑒𝑔)
𝐵𝑦 (𝑞) (cf. Equation 20) and evaluate 𝛼

(𝑑𝑒𝑔)
𝑅𝑥 (𝑞) and

𝛼
(𝑑𝑒𝑔)
𝑅𝑦 (𝑞) (cf. Equation 22 and Equation 23, respectively) for all lixels

𝑞, which takes 𝑂 (𝐿) additional space. As such, we conclude that
LION takes 𝑂 ( |𝑉 | + |𝐸 | + 𝑛 + 𝐿 + 𝑆SP) space for generating NKDV
(cf. Theorem 3).

Theorem 3. The space complexity of LION is 𝑂 ( |𝑉 | + |𝐸 | + 𝑛 +
𝐿 + 𝑆SP).

4 EXPERIMENTAL EVALUATION
In this section, we first discuss the experiment settings in Section 4.1.

Then, we compare the time and space efficiency of different meth-

ods in Section 4.2. Next, we conduct the efficiency experiments for

other kernels, including triangular kernel and quartic kernel (cf. Ta-

ble 1), in Section 4.3. Lastly, we conduct two case studies, which are

(1) using NKDV to analyze hotspots with different attribute values

in two location datasets, namely London traffic accident dataset
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and Detroit 911-call dataset, and (2) investigating the visualization

quality of NKDVs in the Chicago traffic accident dataset with re-

spect to different lixel sizes, in Section 4.4. Due to space limitations,

some additional experiments can be found in the technical report

of this paper (cf. Appendix in [31]).

4.1 Experiment Settings
We adopt four large-scale location datasets with three categories,

namely crime events, traffic accidents, and 911 calls, for conducting

our experiments (cf. Table 3). For each location dataset, we first

extract the corresponding road network and then map each location

data point into it using the famous OSMNx python library [14].

Table 3: Datasets.
Dataset |𝑉 | |𝐸 | 𝑛 Category Ref.

Gainesville 5,352 7,522 193,795 Crime events [4]

Seattle 12,030 20,369 241,599 Traffic accidents [7]

Chicago 40,428 69,219 719,372 Traffic accidents [2]

Detroit 57,029 92,646 1,931,000 911 calls [3]

In our experiments, we compare our method, LION, with dif-

ferent NKDV methods, which are summarized in Table 4. Range-

query-based solution (RQS) [54, 75] computes the network kernel

density function F𝑃 (𝑞) for each lixel 𝑞 based on the range query

set which covers all data points that are within the bandwidth 𝑏

from 𝑞. Shortest path sharing solution (SPS) [61] improves the effi-

ciency of generating NKDV by sharing the shortest path distances.

Aggregate distance augmentation (ADA) [23] is the state-of-the-art

method for generating NKDV. We follow [23] and choose the de-

fault bandwidth parameter 𝑏 (cf. Table 1) to be 1000m. In addition,

since domain experts [40, 75, 76] normally adopt 10m as the lixel

size ℓ (cf. Figure 1), we follow the same setting in this paper. As a

remark, the numbers of lixels with the default lixel size ℓ = 10m for

all datasets, Gainesville, Seattle, Chicago, and Detroit, are 208,548,

398,134, 1,184,187, and 2,563,436, respectively, which are larger than

the corresponding numbers of data points 𝑛 (cf. Table 3).

Table 4: Comparisons of different methods for generating
NKDV.

Method RQS SPS ADA LION

Ref. [54, 75] [61] [23] (cf. Section 2.2) Section 3

We adopted the C++ implementation of existingmethods
2
in [23]

(i.e., RQS, SPS, and ADA in Table 4), implemented our method using

C++
3
, and conducted experiments on an Intel i7 3.19GHz PC with

32GB memory. In this paper, we report the response time (sec)

and the memory space (MB)
4
for testing the time efficiency and

space efficiency of each method, respectively, and omit the results

of response time that are more than 14,400 sec (i.e., 4 hours).

4.2 Efficiency of Generating NKDV
In this section, we compare both the time efficiency and space

efficiency of our method, LION, with different methods in Table 4

by conducting the following experiments.

2
The implementation of existingmethods can be found in the Github link https://github.

com/edisonchan2013928/Network-Kernel-Density-Visualization-NKDV-Code.

3
The implementation of our method, LION, can be found in the Github link https:

//github.com/edisonchan2013928/LION.

4
We adopt the standard C++ function, getrusage(), for measuring the space consump-

tion of each method.

Response time of all methods with different lixel sizes. In this

experiment, we vary the lixel size (ℓ in Figure 1) from 20m to 1m

and test the response time of different methods. In Figure 11, once

we reduce the lixel size ℓ (i.e., increase the number of lixels in

the road networks), each method needs to compute more density

values, which results in higher response time. With the lower time

complexity for generating NKDV, both ADA and LION achieve

better efficiency performance compared with the RQS and SPS

methods. Since LION is more scalable to the number of lixels 𝐿 (i.e.,

small lixel size ℓ), this method can achieve 2.86x to 34.55x speedup

compared with the state-of-the-art ADA method.

Response time of all methods with different dataset sizes. To
conduct this experiment, we first randomly sample each dataset

with different percentages, 25%, 50%, 75%, and 100% (original one),

and then measure the response time of all methods in these reduced

datasets. Figure 12 shows the results of all methods. Since ADA

and LION have the lower time complexity for generating NKDV,

these two methods have the smaller response time compared with

the RQS and SPS methods. In practice, our method, LION, further

achieves 3x to 6.73x speedup compared with the existing ADA

method.

Response time of all methods with different bandwidth param-
eters 𝑏. Here, we further investigate how the bandwidth parameter

𝑏 affects the efficiency of all methods. In Figure 13, observe that all

methods take larger response time for generating NKDV once we

increase the bandwidth parameter 𝑏. The main reason is that each

method needs to process more data points with the larger band-

width 𝑏. Note that the best method, LION, can further achieve up to

13.03x speedup compared with the state-of-the-art ADA method.

Space consumption of all methods with different dataset sizes.
We proceed to investigate how the dataset size can affect the mem-

ory space consumption of each method. To conduct this experiment,

we first randomly sample each dataset with four ratios, i.e., 25%, 50%,

75%, and 100% (original one), and then measure the memory space

consumption of all methods for each reduced dataset. Figure 14

shows the results of all methods. Since both ADA and LION need to

augment additional information (e.g., the aggregate terms in Equa-

tion 20) in a road network, these two methods need to consume

larger memory space compared with the RQS and SPS methods.

Recall that ADA and LION augment 2 × 𝑑𝑒𝑔 aggregate terms for

each data point (cf. Equation 5 and Equation 6) and each lixel (cf.

Equation 20), respectively, in a road network and the number of

lixels is larger than the number of data points (i.e., 𝐿 > 𝑛). There-

fore, once we vary the dataset size for each dataset, ADA consumes

smaller memory space (with smaller number of aggregate terms

in total) compared with LION in practice. Despite this, LION does

not incur high space overhead for generating NKDV (i.e., retains

in MB level) since this method has the same space complexity (cf.

Theorem 3) compared with other methods (cf. Table 2).

4.3 Other Kernels
In this section, we proceed to investigate the efficiency performance

of all methods for generating NKDV using other kernel functions

in Table 1, including triangular kernel and quartic kernel. Due to

space limitations, we only choose the Seattle and Chicago datasets

for testing.
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Figure 11: Response time for generating NKDV, varying the lixel size.
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Figure 12: Response time for generating NKDV, varying the dataset size.

 0.1

 1

 10

 100

 1000

 10000

500 1000 2000 5000 10000

Ti
m

e 
(s

ec
)

Bandwidth (m)

RQS
SPS
ADA

LION
 0.1

 1

 10

 100

 1000

 10000

500 1000 2000 5000 10000

Ti
m

e 
(s

ec
)

Bandwidth (m)

 0.1

 1

 10

 100

 1000

 10000

500 1000 2000 5000 10000

Ti
m

e 
(s

ec
)

Bandwidth (m)

 0.1

 1

 10

 100

 1000

 10000

500 1000 2000 5000 10000

Ti
m

e 
(s

ec
)

Bandwidth (m)

(a) Gainesville (b) Seattle (c) Chicago (d) Detroit

Figure 13: Response time for generating NKDV, varying the bandwidth parameter 𝑏.
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Figure 14: Memory space consumption (MB) for generating NKDV, varying the dataset size.

Response time of all methods with different lixel sizes. In this

experiment, we first choose five lixel sizes, which are 1m, 2m, 5m,

10m, and 20m, and test the response time of each method with

these lixel sizes using the default bandwidth value 𝑏 = 1000m. In

Figure 15, note that our method, LION, achieves 3.32x to 35.36x

speedup compared with the state-of-the-art ADA method. Like the

previous experiment in Section 4.2, all methods have the similar

trends of response time (e.g., Figure 15a and Figure 15c) compared

with the Epanechnikov kernel function (e.g., Figure 11b).

Response time of all methods with different dataset sizes.We

proceed to examine how the dataset size affects the response time

of each method. Here, we follow the same settings in Section 4.2

to measure the response time of each method for these reduced

datasets with different sampling percentages, which are 25%, 50%,

75%, and 100% (original one), using the same bandwidth value

𝑏 = 1000m. In Figure 16, observe that our method, LION, can

achieve 3.61x to 6.83x speedup compared with the existing method,

ADA, regardless of which kernel function we choose.

Space consumption of all methods with different dataset sizes.
Here, we further investigate the memory space consumption of

all methods for triangular kernel and quartic kernel with respect

to different dataset sizes (i.e., sampling percentages). Figure 17

shows the results of all methods. Like the previous experiments in

Figure 14, both ADA and LION need to consume higher memory

space comparedwith RQS and SPS nomatter which kernel functions

we adopt. Despite this, LION does not significantly incur huge space

overhead due to the fact that this method does not increase the

worst-case space complexity for generating NKDV.
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Figure 15: Response time for generating NKDV in two datasets, which are Seattle ((a) and (c)) and Chicago ((b) and (d)), using
the triangular kernel ((a) and (b)) and the quartic kernel ((c) and (d)), with different lixel sizes.
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Figure 16: Response time for generating NKDV in two datasets, which are Seattle ((a) and (c)) and Chicago ((b) and (d)), using
the triangular kernel ((a) and (b)) and the quartic kernel ((c) and (d)), with different dataset sizes.
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Figure 17: Memory space consumption (MB) for generating NKDV in two datasets, which are Seattle ((a) and (c)) and Chicago
((b) and (d)), using the triangular kernel ((a) and (b)) and the quartic kernel ((c) and (d)), with different dataset sizes.

4.4 Case Studies
In this section, we further conduct two case studies, which are (1)

NKDV-based exploratory analysis and (2) quality analysis of NKDV

with different lixel sizes.

NKDV-based exploratory analysis. In the first case study, we aim

to analyze hotspots with different attribute values with respect to

two location datasets. As a remark, we set the bandwidth parameter

𝑏 and the lixel size to be 1000m and 10m (i.e., the default values),

respectively.

In the London traffic accident dataset [5], we first select the

attribute “number of vehicles”, which indicates the number of ve-

hicles that are involved in each traffic accident event, and then

choose three values for this attribute, which are 1, 2, and 3. For each

attribute value (e.g., number of vehicles = 2), we generate NKDV

for those traffic accident events that have the same attribute value.

Figure 18 shows the visualization results with respect to different

numbers of vehicles. Once we choose “one vehicle” and “three ve-

hicles”, the hotspots are mainly in the right part and the left part,

respectively, of the Lower Richmond Road. In addition, the whole

“Lower Richmond Road” is the hotspot region if we choose “two

vehicles” for analysis.

In the Detroit 911-call dataset (cf. Table 3), we first select the

attribute “priority”, which indicates the priority for each 911 call,

and then choose three values for this attribute, which are 1 (highest

priority), 2 (middle priority), and 3 (smallest priority). We further

generate NKDV for those data points with respect to each attribute

value. Observe from Figure 19 that the roads that are near the

Perrien Park have high density of 911 calls with the middle priority

and the smallest priority (i.e., the hotspot regions), while they have

low density of 911 calls with the highest priority (i.e., the coldspot

regions). This phenomenon may indicate that these roads do not

have many serious crime events.

These results show that different attribute values can signifi-

cantly affect the interpretations for the geographic properties (e.g.,

is it a dangerous region or a safe region?) of a given location. There-

fore, domain experts need to adopt the filtering operation to focus

on some parts (e.g., with different attribute values) of a location

dataset. In order to obtain better efficiency performance for generat-

ing multiple NKDVs with the filtering operation, we need to adopt

our method, LION, which can further achieve 4.03x-4.74x speedup

compared with the state-of-the-art ADA method (cf. Figure 20).
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(a) One vehicle (b) Two vehicles (c) Three vehicles

Figure 18: Generate NKDVs for the London traffic accident dataset, where we zoom in to the Putney Lower Common region, by
selecting different values of the attribute “number of vehicles”.

(a) 911 calls with the highest priority (b) 911 calls with the middle priority (c) 911 calls with the smallest priority
Figure 19: Generate NKDVs for the Detroit 911-call dataset, where we zoom in to the Perrien Park region, by selecting different
values of the attribute “priority”.
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Figure 20: Response time for generating NKDVs with different attribute values in London traffic accident dataset and Detroit
911-call dataset.

(a) 10m (b) 20m (c) 30m

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Figure 21: Generate NKDVs for the Chicago traffic accident dataset with respect to three lixel sizes, namely 10m, 20m, and 30m,
where we zoom in to the Old Chicago Water Tower District. The differences between (a) and (b) and the differences between (b)
and (c) are highlighted with the pink dashed circles in (a) and the black dashed circles in (b), respectively.
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Quality analysis of NKDVs with different lixel sizes. In the

second case study, we aim to analyze the visualization quality of

NKDVs with respect to different lixel sizes. Here, we adopt the

Chicago traffic accident dataset (cf. Table 3) and the default band-

width parameter 𝑏 = 1000m for testing. Note that NKDV can be

more sensitive to density variation, which can capturemore detailed

changes of a visualization, when we choose a small lixel size (i.e.,

a large number of lixels). Comparing Figure 21b with Figure 21c,

NKDVwith 20m as the lixel size can discover one additional hotspot

in (iii), uncover one additional coldspot in (iv), and identify (v) and

(vi) as non-hotspot regions. Once we further reduce the lixel size

to be 10m (cf. Figure 21a), we can discover one additional hotspot

in (i) and one additional coldspot in (ii).

5 RELATEDWORK
Network Kernel Density Visualization (NKDV) has been widely

used in many application domains, including crime hotspot de-

tection [44, 64], traffic/traffic accident hotspot detection [15, 40],

and urban planning [34, 78]. However, generating NKDV is time-

consuming, which cannot be scalable to large-scale datasets (i.e.,

large 𝑛) and high resolution sizes (i.e., large 𝐿). In this section, we

review three camps of research studies, namely (1) efficient algo-

rithms for kernel density visualization and its variants, (2) efficient

shortest path algorithms, and (3) efficient algorithms for spatial

queries in a road network, which are closely related to this work.

Efficient algorithms for kernel density visualization and its
variants. Recently, many research studies have been proposed to

improve the efficiency for generating kernel density visualization

(KDV) and its variants [18–25, 57–59, 81, 82]. Although all these re-

search studies can successfully reduce the worst-case time complex-

ity for solving these problems, most of them [18–22, 24, 25, 29, 57–

59, 81, 82] focus on the Euclidean space, which cannot be extended

for supporting our NKDV problem. Among most of these research

studies, Chan et al. [23] propose the state-of-the-art solution, called

aggregate distance augmentation (ADA), which can reduce the

worst-case time complexity for generating NKDV. Despite this, this

work does not consider the optimization opportunity of the lixel

size. Therefore, unlike our LION method, the ADA method cannot

be scalable to large 𝐿. However, domain experts may adopt some fil-

tering operations for using NKDV to perform hotspot analysis (e.g.,

generating NKDV for those 911 calls with the highest priority in

Figure 19a). Therefore, it is likely to have the case 𝐿 > 𝑛 in practice,

which is more suitable for using our LIONmethod. As a remark, this

is the first work that considers the new concept, called influence

region of a data point (cf. Section 3.2), and analyzes its property

(cf. Lemma 2), in order to develop the new LION method, which is

technically different from the ADA method (based on augmenting

the aggregate distance values for each data point in Figure 2).

Efficient shortest path algorithms. To generate NKDV, all ex-

isting methods (cf. Table 4) and our LION method also need to

compute the shortest path distances from each node to all other

nodes (e.g., line 6 in Algorithm 1 of our LION method). Although

many types of shortest path algorithms, including shortest path

caching [46, 72], hub labeling [11, 42, 48, 62], and hierarchical in-

dexing [38, 84], have been proposed in the literature, most of them

(e.g., shortest path caching algorithms and hub labeling algorithms)

only boost the efficiency of solving single-source-single-destination

queries, which cannot be used for improving the efficiency of NKDV.

Furthermore, note that the main bottleneck of generating NKDV is

to process the lixels and data points, using efficient shortest path

algorithms cannot significantly boost the efficiency for generating

NKDV. As a remark, since we can easily replace the shortest path

algorithm for every NKDV method, developing efficient shortest

path algorithms is orthogonal to this work.

Efficient algorithms for spatial queries in a road network. In
spatial database communities, many researchers have proposed

efficient algorithms for various queries in a road network, e.g., kNN

queries [10, 41, 45, 55, 66, 69, 83], range queries [32, 49, 56, 70],

skyline queries [35, 36, 51, 67], and keyword queries [9, 33, 37, 50,

63, 77, 80]. However, since all these research studies do not focus on

the complex network kernel density function F𝑃 (𝑞) (cf. Equation 1),
most of them cannot be directly extended to generate NKDV, not to

mention reducing the worst-case time complexity of this operation.

6 CONCLUSION
In this paper, we study network kernel density visualization

(NKDV), which has been extensively used in various geospatial anal-

ysis fields. However, NKDV is computationally expensive, which is

time-consuming (or even infeasible) to support large-scale location

datasets and high resolution sizes. Although a recent work [23]

has proposed the new algorithm, called aggregate distance aug-

mentation (ADA), to improve the efficiency for generating NKDV,

this method is still slow and does not consider the optimization

opportunity for another parameter, i.e., the number of lixels. How-

ever, in practice, it is possible for the number of lixels 𝐿 to be larger

than the number of data points 𝑛 in a location dataset (e.g., domain

experts can perform filtering operations for conducting exploratory

analysis.). To tackle this issue, we develop the new algorithm, called

LION, which can further reduce the worst-case time complexity for

generating NKDV compared with the state-of-the-art ADA method

if 𝐿 > 𝑛. Our experiment results and case studies also verify that

LION can achieve 2.86x to 35.36x speedup compared with exist-

ing methods and show the importance of conducting exploratory

analysis, respectively.

In the future, we will develop the python library (like [30]),

the QGIS plugin, and the ArcGIS plugin based on this method.

Furthermore, wewill investigate how to extend LION for supporting

other types of interpolation tasks in a road network, e.g., network

inverse distance weighting [54] and network kriging [54]. Moreover,

we will also develop efficient algorithms for handling other GIS

tasks [26, 27] (e.g., network K-function [28]).
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