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ABSTRACT
ManyGraphNeural Network (GNN) training systems have emerged
recently to support efficient GNN training. Since GNNs embody
complex data dependencies between training samples, the training
of GNNs should address distinct challenges different from DNN
training in data management, such as data partitioning, batch prepa-
ration for mini-batch training, and data transferring between CPUs
and GPUs. These factors, which take up a large proportion of train-
ing time, make data management in GNN training more significant.
This paper reviews GNN training from a data management per-
spective and provides a comprehensive analysis and evaluation of
the representative approaches. We conduct extensive experiments
on various benchmark datasets and show many interesting and
valuable results. We also provide some practical tips learned from
these experiments, which are helpful for designing GNN training
systems in the future.

PVLDB Reference Format:
Hao Yuan, Yajiong Liu, Yanfeng Zhang, Xin Ai, Qiange Wang, Chaoyi
Chen, Yu Gu, and Ge Yu. Comprehensive Evaluation of GNN Training
Systems: A Data Management Perspective. PVLDB, 17(6): 1241 - 1254, 2024.
doi:10.14778/3648160.3648167

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/iDC-NEU/NeutronBench.

1 INTRODUCTION
Graph Neural Networks (GNNs) are a class of Deep Neural Net-
works (DNNs) that can effectively process and analyze graph-structured
data [59], and it is widely used in a variety of graph-related tasks
[13, 41, 47, 65, 69]. With the increasing size of real-world graph data,
it becomes difficult to train a large-scale GNN in a limited memory
space. Distributed sample-based mini-batch GNN training emerges
as a promising solution [12, 18, 25, 26, 31, 44, 62, 67, 72–75]. In this
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Figure 1: GNN training process.

training approach, the distributed environment offers ample com-
putational and storage resources for training. The sampling reduces
the size of the training graph [6, 13, 66], and the mini-batch train-
ing increases the frequency of model update to accelerate model
convergence [74].

In a multi-node CPU and GPU heterogeneous training scenario,
the training process of GNN and DNN can be divided into the fol-
lowing four steps. (1) Data partitioning: The input graph data is
partitioned into multiple parts for distributed training. (2) Batch
preparation: The data assigned to each worker is divided into mul-
tiple batches. (3) Data transferring: The prepared batch data is
transferred to the GPU. (4) NN computation: NN computation is
performed on the GPU side, including forward and backward prop-
agation and parameter update.

Compared with DNNs, GNNs embody complex data dependen-
cies between training samples. These data dependencies pose key
challenges to the management of GNN data. Figure 1 depicts the
end-to-end training process of GNNs from the data management
perspective. Due to the dependence between data samples, GNN
needs to frequently exchange data, which makes parallel GNN
training a bottleneck. In the data partitioning step, since the data
of the DNN is independent, it is only required to divide the data
evenly into multiple partitions. However, for GNN training, the
vertices need to access their multi-hop neighbor vertices, and the
distribution of these neighbor vertices directly affects GNN training
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performance. In the batch preparation step, DNN only randomly
divides the data samples into batches because of no dependency
between data samples. GNN generates the training subgraphs by
sampling for each batch. Complex data dependencies between data
samples increase the sampling overhead. In the data transferring
step, the low PCIe bandwidth between CPU and GPU results in high
transfer overheads for both GNN and DNN. Compared to DNN,
there are a large number of duplicate vertices and edges across
different batches [25] due to the complex dependencies between
vertices. Transferring such redundant vertices and edges wastes
bandwidth resources severely [18, 25, 62], bringing opportunities
for data transfer optimizations.

To illustrate the impact of handling data dependencies, Figure 2
shows a step-level time breakdown in both GNN and DNN training.
For GNN training, we use a two-layer GCN [21] with a two-layer
multi-layer perceptron model (MLP). For DNN training, to ensure
fairness, we use a two-layer MLP with the same parameter settings
as that in GCN. Since data partitioning is a preprocessing task per-
formed only once before training, its runtime is ignorable. We can
observe that the NN computation step consumes the majority of
the runtime in DNN training, while the training in GNN only takes
up a small portion. Furthermore, the overhead of the data manage-
ment steps in GNN training (data partitioning, batch preparation,
and data transferring) is notably higher than that in DNN train-
ing. Compared to DNN training, GNN training involves processing
large-scale graph data. The data samples in GNN (i.e., graph ver-
tices) exhibit complex dependencies, making the data management
steps of GNN training more intricate and time-consuming than
those of DNN training. Therefore, efficient data management is
very important for GNN training.

Many GNN training systems have recently emerged to support
efficient GNN training [4, 5, 11, 12, 17, 25, 26, 44, 45, 48, 50, 54, 55,
62, 63, 71–73]. These systems differ greatly in their targeted ap-
plication scenarios and optimization techniques, especially from a
data management perspective. The importance of data management
in GNN training and the recent emergence of various data man-
agement techniques motivate us to study the impact of different
optimizations and parameters in GNN training. In this paper, we
review the training process of GNN from the data management
perspective and provide a comprehensive analysis and evaluation
of optimization techniques proposed in GNN training systems. The
contributions of this paper can be summarized as follows.
• A taxonomy of data management techniques in GNN training.
• A comprehensive evaluation of data management techniques in

GNN training.
• A summarization of lessons learned from our evaluation results.
We believe that our comprehensive analysis and evaluation results
should be helpful for researchers and system developers to further
improve the existing GNN training systems or design new GNN
training systems.
Related Work. Recent surveys [24, 42, 46] provide an overview
of the state-of-the-art GNN training systems and related optimiza-
tion techniques. Unlike these survey papers, we categorize and
summarize various optimizations for GNN training from a data
management perspective, and provide a comprehensive experimen-
tal evaluation of them. Huang et al. investigate the performance gap
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Figure 2: Time portion of different steps in GNN training and
DNN training.

of GPU-based GNN systems and provide a set of optimizations to
enhance performance [15]. A recent work [30] empirically studies
graph partitioning for distributed GNN training. These two works
only evaluate a single step of the entire GNN training process and do
not separate data management from the entire training process for
evaluation. Liu et al. provide a thorough experimental comparison
of different sampling algorithms [27]. Wang et al. experimentally
evaluate GNN training and inference on a single GPU [57]. These
two works focus on single GPU GNN training and do not consider
a distributed environment.

2 GNN TRAINING PROCESS
GNNs are a type of neural network that operates on graphs. The
key idea behind GNNs is to learn vertex and edge representations
that capture the structural information of the graph.
Graph Neural Network (GNN). Similar to traditional neural net-
works, the training process of GNNs includes forward propagation
and backward propagation. In forward propagation, each vertex
collects its neighbors’ features to generate the aggregation result
using an aggregation function:

𝑎
(𝑙 )
𝑣 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 ({ℎ (𝑙−1)𝑢 |𝑢 ∈ 𝑁 (𝑣)}), (1)

where ℎ (𝑙−1)𝑢 denotes the embedding of vertex 𝑢 at (𝑙-1)-th layer,
𝑁 (𝑣) denotes the incoming neighbors of vertex 𝑣 , and 𝑎 (𝑙 )𝑣 denotes
the aggregation result of vertex 𝑣 at 𝑙-th layer. Specifically, ℎ0𝑣 de-
notes the input feature of vertex 𝑣 . The aggregate functions can
be sum, average, max/min, etc. Subsequently, the aggregated fea-
tures are combined with the vertex’s own features using a combine
function:

ℎ𝑙𝑣 = 𝜎 (W(𝑙 ) ·𝐶𝑂𝑀𝐵𝐼𝑁𝐸 (ℎ𝑙−1𝑣 , 𝑎𝑙𝑣)), (2)

where 𝜎 denotes a non-linear function (e.g., ReLU), W(𝑙 ) denotes
the weight matrix that transforms the vertex embedding at (𝑙-1)-th
layer. The combine function can be concatenation, element-wise
multiplication, or summation. Then, a neural network (usually a
multi-layer perceptron model, MLP) is used to update the features
of each vertex. Finally, the output vertex features are compared
to the ground truth labels to compute the loss. In the backward
propagation, the loss is propagated through the neural network in
the reverse direction, generating gradients that are used to update
the model’s parameters.
Distributed Mini-Batch GNN Training. Due to the increasing
size of real-world graph data, many emerging GNN training systems
[12, 18, 25, 26, 31, 44, 62, 67, 72–75] adopt distributed mini-batch
training. This approach splits the training vertices into multiple
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mini-batches and conducts GNN training among workers. Figure
1 illustrates an example of the distributed mini-batch training for
training a 2-layer GNN on vertices 𝑉5 and 𝑉6. In the data partition-
ing step, the graph data are stored in a distributed graph storage,
and each worker takes a subset of vertex samples for training. In the
batch preparation step, each worker samples the 𝐿-hop neighbors
of training vertices to generate training subgraphs. For example, as
shown in Figure 1, the training subgraph of 𝑉5 is sampled 2-hop
subgraphs rooted from vertex 𝑉5 (green shaded). The key idea of
this step is to let each worker make the remote-dependent neigh-
bors readily prepared locally before training starts. As a 𝐿-layer
GNN, this approach needs to retrieve not only the vertex’s direct
in-neighbors but also its {2, ..., 𝑘}-hop in-neighbors. For example,
𝑉6, 𝑉7, and 𝑉8 are remote-dependent neighbors of 𝑉5, and worker
1 needs to fetch their feature vectors before training starts. Note
that the sampled vertices may be deduplicated (𝑉7 in worker 1 is
simultaneously sampled by𝑉3 and𝑉6). In the data transferring step,
the training data, including sampled subgraphs and correspond-
ing feature vectors, are loaded from the CPU to the local GPU
through a PCIe interconnect. In the NN computation step, with
the 𝐿-hop sampled subgraph locally, this approach performs nor-
mal forward/backward propagation layer-by-layer within a worker
without any communication. Only the gradients need to be syn-
chronized in the parameter update stage.

3 TAXONOMY OF DATA MANAGEMENT
TECHNIQUES IN GNN TRAINING

There has been a surge of GNN training systems emerging in
academia and industry to support efficient training. A variety of
novel data management techniques have been proposed to acceler-
ate the training of GNNs. This section provides a taxonomy of these
techniques. As shown in Table 1, the recently emerged systems
are listed from four aspects, including deployment platform, data
partitioning, batch preparation, and data transferring.
Deployment Platform. From the perspective of deployment
platforms, CPU-cluster [29, 67, 72, 73, 75], Multi-GPU [11, 19, 25,
26, 28, 31, 44, 52, 62], and GPU-cluster [3, 12, 17, 18, 39, 49, 55, 74]
are the most commonly used. CPU-cluster is a network of multiple
computers in which the CPU is the only computing component.
Multi-GPU refers to the configuration of multiple GPUs inside a
single compute node. GPU-cluster is similar to a CPU-cluster, but
each compute node is equipped with one or more GPUs.
Data Partitioning. In terms of data partitioning, we categorize
the data partitioning methods of existing GNN training systems
into Hash, Metis-extend, and Streaming. Hash is a general graph
partitioning method. Different mapping rules are used to meet var-
ious task requirements, such as hashing by vertices [3, 10, 17, 44,
45, 55, 67, 75] or hashing by edges [28, 29, 39, 48]. Metis is an it-
erative data partitioning method that uses community detection
and iterative clustering for partitioning to minimize the amount of
communication between partitions. Metis has been widely used in
GNN training systems [44, 49, 75]. In addition, some GNN training
systems [18, 73, 74] combine Metis with sample-based GNN train-
ing, and we label these systems as Metis-extend. Streaming data
partitioning creates graph partitions in a pass over the sequence
of edges, so the decision to assign edges to partitions is made on

the fly. By defining different score functions, streaming can achieve
more fine-grained data partitioning [25, 26, 72]. For those systems
that do not perform data partitioning, we mark them as N/A.
Batch Preparation. Regarding batch preparation, GNN training
systems are categorized in terms of training method, whether they
support sampling, and the adopted sampling method. Batch size de-
notes the number of vertices involved in training within each batch
and also determines the frequency of model parameter updates.
In terms of batch size, GNN training methods can be categorized
into two types: full-batch [3, 17, 28, 29, 39, 45, 49, 51, 55, 70] and
mini-batch [18, 26, 43, 60, 62, 72, 73, 75]. With the increase of graph
data size in the real world, the full-batch training method suffers
from inefficiency and poor scalability [26, 72, 74]. The sample-based
mini-batch training method can effectively reduce the size of the
training graph [6, 8, 13, 66], thus becoming the mainstream training
approach [72]. We categorize the sampling methods into two types:
fanout-based and ratio-based, which are used to determine the size
of the sampling subgraph. The fanout-based sampling method sam-
ples a fixed number of neighbors [13, 73], while the ratio-based
sampling method samples neighbors or the whole graph by a ratio
[8, 49, 66, 73]. For systems that do not support sampling, we mark
it as N/A in the sample method column.
Data Transferring. Regarding data transferring, they are clas-
sified in terms of transfer method, whether they support pipeline
optimization [31, 44, 48, 74], and whether they support GPU cache
optimization [25, 26, 62]. The data transfer between CPU and GPU
can be summarized into two categories: extract-load and GPU direct
access. In mini-batch training, after the CPU obtains the sampled
subgraph through sampling, it first extracts the vertex features
from the feature matrix according to the sampled subgraph. It then
loads the sampled subgraph and vertex features to the GPU for
training. We call this process "Extract-Load" [25, 62]. GPU direct
access [18, 31] is another data transfer method that uses implicit
data transfer [33, 34] to enable the GPU to access the CPU’s mem-
ory directly, avoiding explicit data transfers and additional feature
extraction operations. Pipelining decomposes a task into multiple
stages and allows these stages to be executed in parallel on differ-
ent processors. GPU caching is a cache-based data reuse method
[19, 25, 26, 39, 44] that effectively reduces the data transfer over-
head between CPU and GPU by caching vertex features in GPU
memory. For systems that do not support GPU training, we mark it
as N/A in the transfer method column.

4 EXPERIMENTAL SETUP
Environments. Our experiments are conducted on the Aliyun ECS
cluster with 4 GPU nodes. Each node (ecs.gn6i-c40g1.10xlarge) is
equipped with 40 vCPU, 155 GiB DRAM, Intel Xeon (Skylake) Plat-
inum 8163, and an NVIDIA Tesla T4 GPU with 68 SMs, 2560 cores,
and 16GB GDDR6 global memory. The host side is running Ubuntu
20.04 LTS OS. The network bandwidth is 10 Gbps/s. Libraries CUDA
11.3, OpenMPI-3.3.2, Pytorch [38] v1.9 backend, and cuDNN 8.4 are
used. All the codes are compiled with O3 optimization.
GNN Models. The models used in our experiments are two repre-
sentative GNN models, Graph Convolutional Network (GCN) [21]
and GraphSage [13]. There are also some complex GNNmodels, e.g.,
MixHop [1]. Unlike traditional GNN models, it directly aggregates
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Table 1: Summary of representative GNN training system and data management techniques.

Year Systems Deploy Platform data partitioning Batch Preparation Data Transferring
Partition Method Train Method Sample Sample Method Transfer Method Pipeline Cache

2019 DGL [52] Multi-GPU N/A Mini-batch " Fanout-based Extract-Load " %

2019 PyG [11] Multi-GPU N/A Mini-batch " Fanout-based Extract-Load % %

2019 AliGraph [75] CPU-cluster Hash/Metis
/Streaming Mini-batch "

Fanout-based/
Ratio-based N/A % %

2019 NeuGraph [28] Multi-GPU Hash Full-batch % N/A Extract-Load % %

2020 AGL [67] CPU-cluster Hash Mini-batch " Fanout-based N/A % %

2020 DistDGL [73] CPU-cluster Metis-extend Mini-batch "
Fanout-based/
Ratio-based N/A " %

2020 ROC [17] GPU-cluster Hash Full-batch % N/A Extract-Load % %

2020 PaGraph [25] Multi-GPU Streaming Mini-batch " Fanout-based Extract-Load % "

2021 P3 [12] GPU-cluster Hash Mini-batch " Fanout-based Extract-Load % %

2021 DistGNN [29] CPU-cluster Hash Full-batch % N/A N/A % %

2021 DGCL [3] GPU-cluster Hash Full-batch % N/A Extract-Load % %

2021 Dorylus [45] Serverless Hash Full-batch % N/A N/A " %

2021 Pytorch-direct [31] Multi-GPU N/A Mini-batch " Fanout-based GPU direct access " %

2022 GNNLab [62] Multi-GPU N/A Mini-batch " Fanout-based Extract-Load " "

2022 ByteGNN [72] CPU-cluster Streaming Mini-batch " Fanout-based N/A " %

2022 BNS-GCN [49] GPU-cluster Metis Full-batch " Ratio-based Extract-Load % %

2022 DistDGLv2 [74] GPU-cluster Metis-extend Mini-batch " Fanout-based Extract-Load " %

2022 NeutronStar [55] GPU-cluster Hash Full-batch % N/A Extract-Load % %

2022 Sancus [39] GPU-cluster Hash Full-batch % N/A Extract-Load % "

2022 SALIENT [19] Multi-GPU N/A Mini-batch " Fanout-based GPU direct access " %

2023 Betty [63] GPU-only Metis Mini-batch " Fanout-based Extract-Load % %

2023 MariusGNN [48] GPU-only Hash Mini-batch " Fanout-based Extract-Load " %

2023 Legion [44] Multi-GPU Metis/Hash Mini-batch " Fanout-based Extract-Load " "

2023 SALIENT++ [18] GPU-cluster Metis-extend Mini-batch " Fanout-based GPU direct access " "

2023 BGL [26] Multi-GPU Streaming Mini-batch " Fanout-based Extract-Load " "

Table 2: Dataset description.

Dataset |V| |E| #F #L #hidden
Reddit [13] 232.96K 114.85M 602 41 128

OGB-Arxiv [35] 169.34K 2.48M 128 40 128
OGB-Products [37] 2.45M 126.17M 100 47 128
OGB-Papers [36] 111.06M 1.6B 128 172 128
Amazon [66] 1.57M 264.34M 200 107 128

LiveJournal [61] 4.85M 90.55M 600 60 128
Lj-large [32] 7.49M 232.1M 600 60 128
Lj-links [22] 5.2M 205.25M 600 60 128

Enwiki-links [23] 13.59M 1.37B 600 60 128

multiple-hop neighbors at each layer. Despite differences in their
computation methods, these models share a common L-hop neigh-
bor access pattern. Therefore, we only use GCN and GraphSage as
the default GNN models for experiments. Following the suggestion
from prior works [25, 52, 62], the dimension of the hidden layers
is set to 128. For all experiments, the default fanout is (25, 10), and
the default batch size is 6000 for all experiments.

Datasets. As listed in Table 2, we use nine real-world graph
datasets. Among them, OGB-Arxiv, Amazon, LiveJournal, Lj-large,
Lj-links, and Enwiki-links have skewed degree distributions. Reddit,
Amazon, and Enwiki-links have average degrees relatively higher
than other large real-world graphs. OGB-Arxiv, OGB-Products,
and OGB-Paper have low feature dimensions. Reddit and OGB-
Products are two dense graphs with a high clustering coefficient.
In the data partitioning and batch preparation experiments, we use
datasets with ground-truth labels, including Reddit, OGB-Arxiv,
OGB-Products, and Amazon, because we need to study their ef-
fect on the model accuracy. Regarding the data transferring ex-
periments, we use different types of datasets, including a social
network (Reddit), a citation network (OGB-Papers), co-purchasing

networks (OGB-Products and Amazon), livejournal communica-
tion networks (Livejournal, Lj-large, and Lj-links), and a wikipedia
links network (Enwiki-links). These datasets have different charac-
teristics, e.g., average degree, power-law, and feature dimension,
which are commonly used by existing GNN training systems in
performance evaluation [25, 31, 62].
Evaluation System. For data partitioning experiments, we use
DistDGL [73], which is commonly used by existing GNN training
systems in performance evaluation experiments, as our evaluation
system. For batch preparation and data transferring experiments,
we use NeutronStar [55] as our evaluation system. NeutronStar pro-
vides a rich programming interface to facilitate the implementation
of different performance optimizations.

5 DATA PARTITIONING
5.1 Goals and Challenges
In a distributed setting, the goal of traditional graph partitioning is
typically twofold: minimizing communication and balancing the
computational load. In traditional iterative graph computations,
typically all vertices and their 1-hop neighbors (connected through
edges) are involved in the computation (e.g., PageRank [2]). How-
ever, in GNN training, only a portion of vertices with ground-truth
labels (i.e., training vertices) and their L-hop subgraphs are involved.
For example, in a 2-layer GNN, as shown in Figure 3c, A and B rep-
resent the labeled vertices. The light blue and light green vertices
are their 2-hop neighbors. The dashed lines indicate vertices and
edges that are not involved in training.

Due to these differences, traditional graph partitioning methods
cannot be directly applied to GNN training. For traditional graph
computation, the partitioning in Figure 3a is optimal because it not
only balances the number of vertices and edges but also leads to
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the minimum number of cutting edges. However, this partitioning
is not optimal for GNN training due to the following two issues: (1)
Severe computational load imbalance. The graph partitioner assigns
all labeled vertices (A and B) to machine 2, leaving machine 1 idle,
thus wasting computational resources. (2) High communication vol-
ume. The minimum edge-cut graph partitioning method does not
consider the distribution of L-hop neighbors of vertices. The neigh-
bors of labeled vertices are scattered in different partitions, which
results in heavy remote neighbor requests. For example, as shown
in Figure 3b, for the GNN training, using the minimum edge-cut
partitioning method from Figure 3a would result in approximately
half of the 2-hop neighbors of training vertices (A and B) being
distributed across different partitions. This would lead to significant
communication overhead, especially considering that the vertices of
a GNN have high-dimensional feature representations. In contrast,
the partitioning shown in Figure 3c balances the workload and, at
the same time, maximizes the localization of L-hop neighbors of
training vertices, thereby reducing inter-partition communication.

Different from traditional data partitioning, GNN data partition-
ing has new goals. We summarize these goals as follows:

• Goal 1: Minimize communication. Partitioning label vertices
and their L-hop neighbors into the same partition allows the
L-hop sampled subgraphs to be distributed as locally as possible,
thus avoiding extensive remote data requests.

• Goal 2: Balance computational load. Making labeled vertices
and their L-hop neighbors evenly distributed across partitions
allows a balanced computational load.

• Goal 3: Minimize total computational load. Making the train-
ing L-hop subgraphs overlap with each other in a partition allows
reusing the NN computation results, which helps reduce the total
computational load.

• Goal 4: Balance communication load. Communication load
imbalance is a common challenge faced by both traditional graph
computations andGNNs. However, compared to traditional graph
computations, GNNs require frequent access to the L-hop neigh-
bors of vertices, and the vertices of GNNs have high-dimensional
feature representations. As a result, the problem of communica-
tion load imbalance is even more pronounced in GNNs. Making
the remote neighbors of labeled vertices evenly across different
partitions can balance the communication load.

5.2 Existing Methods
The graph partitioning methods used in the GNN systems can be
categorized into the following three types:

(1) Hash. Hash is a general graph partitioning method that can sat-
isfy various task requirements by defining different mapping rules,

Table 3: Summary of evaluated partitioning methods.

Method Strategy Representative
System G1 G2 G3 G4

Hash Randomly assign vertices or
edges. P3 [12] � � � �

Metis-V
Extend Metis by adding
constraints on training vertex
masks.

N/A � � � �

Metis-VE
Extend Metis by adding
constraints on training vertex
masks and vertex degrees.

DistDGL
[73] � � � �

Metis-VET

Extend Metis by adding
constraints on
training/validation/test vertex
masks and vertex degrees.

SALIENT
++ [18] � � � �

Stream-V

Assign vertex 𝑣 to a partition
𝑃 that has the most edges
connected to 𝑣, while
balancing the number of train
vertices and caching L-hop
neighbors.

PaGraph
[25] � � � �

Stream-B

Assign a block 𝐵 of vertices to
a partition 𝑃 that has the
most edges connected to 𝐵,
while balancing the number
of train/val/test vertices.

ByteGNN
[72] � � � �

such as hashing by vertices [3, 10, 17, 44, 45, 55, 67, 75] or hash-
ing by edges [28, 29, 39, 48]. P3 [12] employs a hash-based graph
partitioning method that randomly assigns vertices to different
partitions, achieving a balance in computational and communica-
tion loads (goal 2 and goal 4). However, hash partitioning does not
consider the labeled vertices in GNNs and their L-hop neighbors,
so it cannot achieve the other two goals of GNN graph partitioning.

(2) Metis-extend. Metis [20] partitions the graph with the goal of
minimum edge cuts. In addition, it supports a variety of constraint
mechanisms to extend Metis to meet different task requirements.
We refer to this constrained Metis partitioning method as Metis-
extend, which is used in DistDGL [73], and SALIENT++ [18]. The
Metis-extend method effectively achieves the goals of GNN graph
partitioning. Firstly, Metis employs a clustering algorithm for parti-
tioning, ensuring that the neighbors of labeled vertices are allocated
together, thus minimizing both computational and communication
loads (goal 1 and goal 3). Secondly, Metis is extended by adding con-
straints with vertex masks to balance the number of labeled vertices
(goal 2). In addition, Metis can be extended by adding constraints
on vertex degrees to balance the number of edges across partitions,
alleviating the load imbalance in computation and communication
(goal 2 and goal 4).

(3) Streaming. Unlike traditional graph partitioning methods,
streaming partitioning does not require storing the entire graph
data but dynamically partitions the input vertices or edges. Stream-
ing partitioning can flexibly support various graph partitioning
tasks by setting different score functions when assigning vertices
or edges. PaGraph [25] and ByteGNN [72] both employ streaming
graph partitioning methods. When assigning vertices, they priori-
tize assigning vertices to the partitions with the highest number
of connected edges, aiming to minimize communication overhead
(goal 1). Additionally, they use a factor to balance the number of
label vertices (goal 2). However, these two streaming graph parti-
tioning methods do not consider the density of partitioned graphs
and the distribution of L-hop neighbors and thus suffer from high
computational and imbalanced communication loads.
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Figure 4: Computational load of different partitionings.
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Figure 5: Communication load of different partitionings.

5.3 Evaluation Results
Evaluated Methods. We conduct experimental analysis on the
three types of data partitioning, i.e., Hash,Metis-extend, and Stream-
ing. Table 3 summarizes the partitioning methods and the systems
that adopt these methods. For the hash partitioning method, P3
[12] is a representative system that randomly partitions the ver-
tices. For the Metis-extend partitioning method, DistDGL [73] and
SALIENT++ [18] are two representative systems. DistDGL balances
the number of training vertices and edges in partitions, which we
refer to as Metis-VE. SALIENT++ not only balances the training
vertices and edges but also considers balancing the number of vali-
dation and test vertices, ensuring high performance in the inference
stage, and we refer to this partitioning method as Metis-VET. In ad-
dition, we also compare the Metis-extend data partitioning method
that only balances training vertices, which we refer to as Metis-V.
Although Metis-V is not employed by any existing GNN system for
graph partitioning, we use Metis-V as a control group to compre-
hensively evaluate the performance of Metis-extend under different
constraints. PaGraph [25] and ByteGNN [72] are two representative
systems for the streaming partitioning method. PaGraph performs
partitioning at the vertex level, while ByteGNN partitions at the
block level. We refer to these two partitioning methods as Stream-V
and Stream-B, respectively.

5.3.1 Computational Workload Balance. We first conduct an ex-
perimental analysis from the perspective of computational work-
load balancing. The computational workload comprises two parts:
sampling and training. Regarding sampling, for remote-dependent
vertices, sampling requests are sent to remote machines to be exe-
cuted, and then the sampling results are returned. Therefore, the
sampling workload on each machine includes both processing lo-
cal sampling requests and processing remote sampling requests.
Regarding training, GNN training includes two parts: graph aggre-
gation and NN computation. Since the graph aggregation dominates
the overall computational cost. we only count the number of graph
aggregations in the training part.

As illustrated in Figure 4, regarding the hash partitioningmethod,
since vertices are randomly assigned to different partitions with
equal probability, it exhibits the most balanced computational work-
load. However, due to the neglect of vertex dependencies during
partitioning, hash partitioning results in the highest total computa-
tional workload. Regarding the Metis-extend partitioning, Metis-V
only balances the number of training vertices, ignoring the distri-
bution of L-hop neighbors of training vertices, resulting in load
imbalance issues. By introducing vertex degree constraints to ex-
tend Metis, Metis-VE and Metis-VET alleviate the load imbalance
problem observed inMetis-V.Metis-extend uses clustering for graph
partitioning. When sampling vertices within clusters, different sam-
pled vertices can share a large number of repeated neighbors [68].
Hence, the higher the clustering degree in graph partitioning, the

lower the computational load. Metis-VE and Metis-VET introduce
additional constraints, which reduce the degree of clustering in
the Metis partitioning. Therefore, the total computational load is
higher than that of Metis-V. Regarding the streaming partitioning,
Stream-V and Stream-B aim to minimize cross-partition edges while
balancing the number of labeled vertices when allocating vertices or
blocks. This partitioning method performs well on non-power-law
graphs but suffers from computational load imbalance on power-
law graphs (i.e., Amazon) because it ignores the distribution of
L-hop neighbors during partitioning. To illustrate this point, we
first compute the clustering coefficient of each partition graph to
represent the density of the partitioned graphs. Then, we compute
the variance of the clustering coefficients of the partition graph
to evaluate their distribution. The results show that the variance
of the clustering coefficient [58] of the Hash partition graph is
only 3.6 × 10−6, while the variances of Stream-V and Stream-B are
0.01 and 0.03, respectively. Therefore, the imbalance of partitioned
graphs makes Stream-V and Stream-V suffer from computational
load imbalance.

5.3.2 Communication Workload Balance. We also conduct an ex-
perimental analysis of these graph partitioning methods from the
perspective of communication workload balancing. The commu-
nication data comprises two parts: remote sample subgraphs and
corresponding vertex features. As shown in Figure 5, regarding the
hash partitioning, it exhibits the most balanced communication
workloads, but the overall communication volume is also the high-
est. This is because hash partitioning ignores vertex dependencies
during partitioning, resulting in a significant number of remote
data requests and thus higher network communication overhead.
Regarding the Metis-extend partitioning, it can achieve the goal of
minimizing communication (i.e., goal 1) by using a cluster-based
partitioning method. However, it does not consider how to bal-
ance the communication load during the partitioning process and
therefore suffers from an imbalanced communication load. Metis-V
has the lowest total communication volume because its partitioned
graph achieves the best clustering. By introducing vertex degree
constraints to balance the number of edges in the partitioned graph,
Metis-VE and Metis-VET alleviate the communication load imbal-
ance problem but increase the total communication volume. Re-
garding streaming partitioning, since Stream-V caches the graph
data of L-hop neighbors of training vertices, no communication is
required. Stream-B assigns a block to the partition with the most
connections to it, which reduces the overall communication but
ignores communication load balancing.

5.3.3 Partitioning Time vs. Training Time. Although graph parti-
tioning is a preprocessing task that only needs to be performed
once before training, in practical applications, the time required
cannot be ignored. In order to analyze the cost of graph partitioning,
we show the proportion of graph partitioning time and training
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Figure 7:Memory consumption of vary partitioningmethods.

time on different datasets. As shown in Figure 6, regarding hash
partitioning, it is the fastest and takes the smallest proportion of
overall training time (only 0.11% on average), resulting in the lowest
partitioning overhead. Regarding Metis-extend partitioning, the
graph partitioning time portion for Metis-V, Metis-VE, and Metis-
VET is 4.33%, 6.11%, and 7.98%, respectively. As more constraints
are introduced, the partitioning overhead of Metis-extend gradually
increases. Overall, the partitioning overhead of Metis-extend is
deemed acceptable, constituting less than 10% of the total training
time. Regarding streaming partitioning, it exhibits the longest graph
partitioning time. The graph partitioning time portion for Stream-V
and Stream-B is 99.36% and 84.87%, respectively. This is because
streaming-based partitioning involves extensive set intersection
computations during vertex assignment, incurring substantial com-
putational overhead. Additionally, due to vertex dependencies and
the constraints of streaming graph partitioning, it cannot benefit
from parallel acceleration.

5.3.4 Partitioning Memory Consumption. Memory consumption is
also a factor that should be considered when choosing a graph par-
titioning method. We conduct experiments to evaluate the memory
consumption of partitioning methods. As shown in Figure 7, hash
partitioning has the least memory consumption because it only
needs to randomly assign vertices to different partitions and does
not need to maintain the state of the partitions. Streaming partition-
ing requires maintaining the state of the partition (e.g., allocated
vertices) to guide the allocation of the next vertex or edge, so its
memory consumption is higher than hash partitioning. In addition,
the memory consumption of Stream-V is much higher than Stream-
B. This is because Stream-V needs to obtain the L-hop neighbors
of vertices when assigning vertices, which results in large memory
consumption. The Metis-extend partition has the highest memory
consumption because it requires iteratively performing coarsening
and uncoarsening steps, which results in severe memory overhead.

5.3.5 Effect to Accuracy and Convergence Speed. In distributed
training, each partition stores a portion of the graph data, and the
training subgraphs are constructed only for local training vertices.
Different graph partitioning methods result in various data distri-
butions among partitions. For instance, in hash-based partitioning,
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Figure 8: Accuracy and convergence speed of vary partition-
ing methods.
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Figure 9: Per-epoch runtime under different partition meth-
ods.

Table 4: Model accuracy under different partition methods.
Hash Metis-V Metis-VE Metis-VET Stream-V Stream-B Diff.

Reddit 96.2% 96.2% 96.2% 96.1% 96.4% 96.2% ±0.3%
Products 90.1% 90.3% 90.2% 90.2% 90.5% 90.2% ±0.4%
Amazon 64.5% 64.2% 64.4% 64.7% 65.1% 64.3% ±0.9%

vertices in each partition are randomly distributed, while in Metis-
extend partitioning, vertices within partitions are distributed in a
clustered manner. Hence, a question arises: does graph partitioning
impact the accuracy and convergence speed of model training?

We compare the accuracy and convergence speed of different
graph partitioning methods on three datasets. For each graph par-
titioning method, we train the model to converge and record the
highest validation accuracy and run time. Regarding model accu-
racy, as shown in Table 4, graph partitioning does not affect the
highest accuracy. Compared with DNN, there are complex depen-
dencies between GNN data. Even when data is divided into multiple
partitions, data exchange is still necessary between partitions due
to the dependencies among vertices. Therefore, graph partition-
ing does not result in the loss of complete graph information and
thus does not affect the final model accuracy. Regarding conver-
gence speed, as shown in Figure 8, hash partitioning exhibits the
slowest convergence speed, followed by Stream-B. Figure 9 fur-
ther illustrates that Hash, Stream-V, and Stream-B have the longest
per-epoch runtime, indicating that they require more time for the
same number of iterations. Regarding the three Metis-extend graph
partitioning methods, Metis-VET achieves the fastest convergence
speed, followed by Metis-VE and Metis-V. Figure 9 shows that the
per-epoch runtime for each graph partitioning method is similar,
but the convergence speed of Metis-VET is significantly faster than
the other two methods. We think that this is related to the char-
acteristics of Metis. In mini-batch training, the training process
needs to select a batch of vertices from local training vertices. Since
Metis employs a clustering method to partition densely connected
vertices together, this reduces the randomness in batch vertex se-
lection, which in turn affects the model’s convergence speed. Since
Metis-VET has the most constraints, it has the least clustering effect,
resulting in the fastest convergence speed.
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5.4 Lessons Learned
(1) Existing graph partitioning methods fail to meet the graph

partitioning requirements for GNN training, which poses new
challenges different from traditional graph computation, such
as minimizing total computational load and balancing commu-
nication load. (§5.1)

(2) There is a trade-off between minimizing computational load
and achieving load balance when partitioning a graph. Par-
titioning densely connected vertices together can effectively
reduce computation but may disrupt load balancing. (§5.3.1)

(3) Communication load imbalance is more serious in GNN train-
ing than in traditional graph computation due to the high-
dimensional vertex features and embeddings. Most existing
GNN systems ignore this issue. (§5.3.2)

(4) Most graph partitioning overhead is acceptable for GNN train-
ing. Although streaming partitioning is more flexible, existing
methods [25, 72] suffer from high computational costs and
inefficient implementation due to low parallelism. (§5.3.3)

(5) Although Metis-extend has better performance, its graph parti-
tioning requires a large memory consumption, especially for
large-scale graphs. This limitation prevents the scalability of
the Metis-extend partitioning method. (§5.3.4)

(6) Shorter per-epoch runtime does not necessarily mean faster
convergence speed. Partitioning densely connected vertices
into the same partition can significantly reduce inter-partition
communication and decrease the per-epoch runtime but may
decrease the randomness of model training, thus affecting con-
vergence speed. (§5.3.5)

6 BATCH PREPARATION
6.1 Goals and Challenges
After the graph partitioning step, sample-based mini-batch training
need a batch preparation step before training starts, which deter-
mines the model quality and training performance. In the batch
preparation step, the training process divides the training vertices
into multiple batches and then samples the 𝐿-hop subgraphs for
the training vertices based on a sampling method. The batch size
determines the number of batches (i.e., the frequency of model
parameter updates) in an epoch. The sampling method determines
graph topology information that GNN models can learn.

However, there is a trade-off between accuracy and performance
when choosing batch size and sampling method.

(1) Batch size. Due to vertex dependencies, vertices within a batch
usually have a large number of common neighbors. As the
batch size increases, the number of these common neighbors
also grows. The sampling and NN computation results of these
common neighbors can be reused, thus reducing the compu-
tational load of an epoch. However, increasing the batch size
reduces the frequency of model parameter updates, which may
affect accuracy and overall convergence speed.

(2) Sampling method. The sampling method of GNN aims to re-
duce the size of the training graph to support large-scale GNN
training under limited memory. The training speed of GNN can
be significantly improved by reducing the size of the sampled

Table 5: Default settings of batch size and sampling parame-
ters in existing GNN systems.

System Batch size Fanout Sampling rate
P3 [12] 1000 (25, 10) N/A

DistDGL [73] 2000 (25, 10)
(15, 10, 5) N/A

PaGraph [25] 6000 (2, 2) N/A

GNNLab [62] 8000 (10, 25)
(15, 10, 5) N/A

ByteGNN [72] 512 (10, 5, 3) N/A
BNS-GCN [49] full N/A 0.1

SALIENT++ [18] 1024 (25, 15)
(15, 10, 5) N/A

subgraph. However, as the size of the sampled subgraph de-
creases, the information learned by the model each time will
also decrease, impacting the accuracy and convergence rate.

This section empirically studies the impact of batch size and sample
method on accuracy and performance.

6.2 Existing Methods

Batch Size. GNN training methods can be categorized into two
types: full-batch training and mini-batch training. Full-batch train-
ing requires all vertices to participate in training simultaneously,
it requires more storage and computing resources. In addition, the
model parameters are updated only once within an epoch, which re-
sults in slower model convergence. In contrast, mini-batch training
involves only a subset of vertices in each training iteration, allowing
model parameters to be updated multiple times in an epoch.

Sampling Fanout and Sampling Rate. The sampling methods of
GNN can be divided into two types: fanout-based [12, 25, 39, 52] and
ratio-based [49, 73, 75]. Fanout-based methods generate sampled
subgraphs based on a fixed number, while ratio-based methods gen-
erate sampled subgraphs based on ratio. These two sampling meth-
ods determine the size of the sampled subgraph and are orthogonal
to sampling algorithms (e.g., vertex-wise sampling [7, 13, 64], layer-
wise sampling [6, 16, 77], and subgraph-wise sampling [8, 66]).

To the best of our knowledge, the settings of these parameters
have not yet been fully discussed. Users typically configure batch
size and sampling methods based on their experience and specific
task requirements. Table 5 summarizes parameter settings for sev-
eral systems. Regarding batch size, common choices include 512,
1024, 2000, 6000, and 8000. Regarding fanout, in 2-layer GNN mod-
els, it is typically set to (25, 10), while for 3-layer models, (15, 10,
5) is commonly chosen. Regarding sampling rate, BNS-GCN [49]
recommends using a 0.1 ratio to sample boundary vertices (i.e., ver-
tices involved in cross-partition communication). In this section, we
conduct extensive experiments to analyze the training performance
of the GNN under different parameter settings and also propose a
hybrid training method to accelerate the convergence of the model.

Other Optimizations. We note that some work to optimize batch
preparation from a system optimization perspective. For example,
shared-memory parallel batch preparation [19] uses zero-copy com-
munication to access the remote feature across training processes.
However, these optimizations are orthogonal to our concerns, so
we do not evaluate them experimentally.
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Figure 10: Accuracy and convergence speed with varying
batch sizes.
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Figure 11: Performance with adaptive batch size.

6.3 Evaluation Results
6.3.1 Batch Size. To investigate the impact of batch size on train-
ing, we compare the training accuracy and convergence speed of
GNN models under different batch sizes. As shown in Figure 10, we
find that different batch sizes have a significant impact on both the
accuracy and convergence speed. The specific phenomenon can be
summarized in two points:
(1) Reducing the batch size will speed up convergence. However,

after exceeding a lower batch size, the convergence speed of
the model decreases.

(2) Increasing the batch size increases the accuracy of the model.
However, after exceeding a higher batch size, the model’s accu-
racy decreases.

Taking the Reddit dataset as an example, regarding convergence
speed, the model converges faster as the batch size decreases. For
example, when the batch size is reduced from 32,768 to 128, the
model’s convergence speed increases by 3.02 times. However, if
the batch size continues to decrease, e.g., from 128 to 64, the model
converges 1.95 times slower. Regarding accuracy, the accuracy of
the model increases with batch size. For example, when the batch
size increases from 32 to 4096, the accuracy of the model improves
by 1%. However, if the batch size continues to increase, such as
from 4096 to 196615, the model’s accuracy decreases by 0.3%.

In addition, we find that small batch sizes have larger gradient
magnitudes, and large batch sizes have smaller gradient magnitudes.
Therefore, we try to explain these two phenomena by the training
characteristics of Mini-Batch Gradient Descent [14] (MGD). For
phenomenon (1), we think that a larger gradient magnitude is good
for finding the direction of the model’s optimal point faster, but too
large a gradient magnitude is unfavorable for model convergence.
For phenomenon (2), we think that a smaller gradient magnitude
is good for finding the optimal point of the model, but too small
gradient magnitudes tend to fall into the local optimal point of the
model. To ensure both accuracy and convergence speed, we can
first use a large gradient magnitude (small batch size) to find the
optimal point direction and then use a small gradient magnitude
(large batch size) to close the optimal point.
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Figure 12: Accuracy and convergence speed of random and
cluster-based batch selections.

Table 6: Per-epoch runtime of different batch selection meth-
ods.
Dataset Method Per-epoch runtime (s) Involved #V Involved #E

Products random 2.4 24.8 M 45.9 M
cluster-based 1.0 15.7 M 38.3 M

Reddit random 1.7 6.8 M 25.2 M
cluster-based 0.6 4.2 M 16.7 M

Adaptive Batch Size. Previous work used fixed batch sizes for
GNN training. Through experiments, we find that smaller batch
sizes have faster convergence and larger batch sizes have higher
accuracy. Based on this, we propose an adaptive batch size training
method, which dynamically combines the advantages of different
batch sizes during training. The strategy for switching batch sizes
is to use a small batch size at the beginning of training so that the
model can quickly converge to a higher accuracy. Then, the batch
size is gradually increased to converge to the highest accuracy.
For example, on the Reddit dataset, we first start training with a
batch size of 512 (because it has the fastest convergence rate) and
then gradually increase the batch size until the batch size reaches
8,192. As illustrated in Figure 11, adopting this adaptive training
method significantly accelerates the model’s convergence rate. On
the Reddit and Products datasets, the convergence speed increased
by 1.64 and 1.52 times, respectively.

6.3.2 Batch Selection. Batch selection determines the vertices that
each batch contains in training. Selecting batch vertices with bias in-
creases the variance inmodel training, thereby affecting themodel’s
convergence. Furthermore, the density of connections between ver-
tices within the same batch can impact the overall computational
load. To investigate the influence of different batch selection meth-
ods on accuracy and convergence speed, we compare two existing
batch selection methods. 1) Random [11, 18, 25, 62, 73]. It randomly
selects a batch of vertices. 2) Cluster-based [68]. It leverages graph
clustering algorithm (e.g., Metis [20]) to arrange batches.

Table 6 shows the average per-epoch runtime and computational
load for each batch selection method, with computational load
measured by the number of vertices and edges involved in the
training subgraph. The cluster-based method results in the shortest
per-epoch runtime. This method selects a batch of vertices from
the cluster graph. The vertices in the cluster graph have denser
connections, which increases the chance of reusing computational
results. The random batch selection method does not consider the
dependencies between vertices when selecting batched vertices, it
involves the highest number of vertices and edges in computations.

Then, we compare the accuracy of these two batch selection
methods on the two datasets of Reddit and Ogbn-products. As
shown in Figure 12, the random selection method has the highest
accuracy because it has no bias when selecting samples. Since
cluster-based batch selection is limited to the internal structure
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Figure 13: Accuracy and convergence speed of different
fanout settings and sample rate settings (Arxiv).

Table 7: Accuracy of high and low degree vertices (Arxiv).

Vertex type Fanout
4, 4 8, 8 16, 16 32, 32

Low-degree vertices 0.718 0.722 0.720 0.718
High-degree vertices 0.786 0.794 0.810 0.817

of the clustered graph, it introduces data bias, resulting in lower
accuracy. In addition, we observe that the training process of cluster-
based is unstable. We think this phenomenon is related to the
distribution of batched subgraphs. Since each cluster graph has
a different density, this may lead to an imbalanced distribution
of the subgraphs involved in training. To illustrate this point, we
calculate the clustering coefficient for each batched subgraph as
a measure of its density. Subsequently, we calculate the variance
of the clustering coefficients for the batched subgraphs within
an epoch to assess their distribution. The experimental results
show that the variance of the cluster-based method (2 × 10−4) is
much larger than that of the random selection method (1.1 × 10−6).
Therefore, the imbalanced distribution of batch subgraphs leads to
the training process being unstable.

6.3.3 Fanout. The fanout is another key parameter in GNN train-
ing. To investigate the impact of fanout on training, we compare the
accuracy and convergence speed of GNN models under different
fanouts on the Ogbn-arxiv dataset. As shown in Figure 13a, the
accuracy of the GNN model shows a trend of "first increase and
then decrease" as the fanout increases, while the convergence speed
shows the opposite. We think this phenomenon is related to the
degree of vertices. Most real-world graphs are skewed (e.g., social
networks, e-commerce networks, and citation networks), which
means that only a few vertices have very large degrees, while most
vertices have small degrees. Hence, a fixed fanout is not conducive
to these power-law graphs. We find that low-degree vertices are
better suited for smaller fanouts, while high-degree vertices are
more appropriate for larger fanouts.

To illustrate this point, we select four typical fanout based on the
results in Figure 13a: the smallest fanout (4, 4), the best-performing
fanout (8, 8), and two larger fanout (16, 16) and (32, 32). Then, we
measure their prediction accuracy on low-degree and high-degree
vertices using the Ogbn-arxiv dataset. As shown in Table 7, as
fanout increases, the prediction accuracy on low-degree vertices
decreases while the accuracy on high-degree vertices increases.
This is because, for low-degree vertices, using smaller fanouts can
enhance the randomness of sampling while preserving the integrity
of graph information. However, using smaller fanouts for high-
degree vertices may result in too few neighbor samples, making it
challenging to learn the complete graph structure during training.

6.3.4 Sampling Rate. Through the above experimental analysis
on fanout, it is not optimal to use a fixed fanout for vertices of
different degrees. In addition, we find that fanout is not flexible

Table 8: Accuracy and performance comparison of fanout-
based sampling and fanout-rate hybrid sampling (Arxiv).

4, 4 8, 8 10,15 10,25 32, 32 hybrid
Accuracy (%) 71.5 72.1 72.1 72.1 71.5 72.1
Time (s) 300 172 165 237 300 99

enough to express sampling, especially when sampling high-degree
vertices. Sampling rate [8, 49, 66] seems to be a good choice, and
sampling vertices of different degrees proportionally is more fair
than fanout. As shown in Figure 13b, we compare the training accu-
racy and convergence speed under different sampling rates. Similar
to the experimental results of fanout, as the sampling rate increases,
the accuracy shows a trend of "first increase and then decrease".
It should be noted that the overall accuracy of the sampling rate
is lower than that of fanout. There are two main reasons, firstly,
smaller sampling rates disadvantage low-degree vertices. For ex-
ample, for a vertex with degree 20, if the sampling rate is set to 0.1,
only 2 vertices can be sampled each time, which is far less than the
number of fanout samples (10, 25). Secondly, increasing the sam-
pling rate will sacrifice the randomness of sampling, thus affecting
the accuracy and convergence speed of the model. Therefore, using
only a sampling rate is not optimal.
Fanout-Rate Hybrid Sampling. Previous work used fixed fanout
or sampling rate for GNN training. Through experiments, we found
that low-degree vertices are better suited for smaller fanouts, while
high-degree vertices are more appropriate for larger fanouts. In
addition, as the sampling rate increases, the model accuracy shows
a trend of "first increase and then decrease". Based on this, we pro-
pose a hybrid training method that combines fanout and sampling
rate. The fundamental strategy of the hybrid training method is to
employ fanout sampling for low-degree vertices and sampling rate
sampling for high-degree vertices. As shown in Table 8, using a
hybrid training method can significantly speed up the convergence
of the model. Compared to using only fanout (8, 8), the convergence
speed is improved by 1.74 times.

6.4 Lessons Learned
(1) There is a trade-off between accuracy and performance when

setting a batch size. By adaptively setting a batch size (using a
smaller size at the beginning and then gradually increasing it),
it can effectively accelerate the convergence. (§6.3.1)

(2) Although the complex cluster-based batch selection method
can reduce the per-epoch runtime, simple batch selection meth-
ods (e.g., random selection) perform better, because no bias is
introduced when selecting data samples, resulting in higher
accuracy and faster convergence. (§6.3.2)

(3) It is nonsense to perform sampling with a fixed fanout on all
vertices. It is suggested to set a smaller fanout for low-degree
vertices and a larger fanout for high-degree vertices. (§6.3.3)

(4) Dynamically adjusting the batch size during training and com-
bining fanout and sampling rate during sampling can signifi-
cantly improve the convergence speed without sacrificing ac-
curacy. (§6.3.1 and §6.3.4)

7 DATA TRANSFERRING
7.1 Goals and Challenges
After the batch preparation step , we need to extract the features
of the selected vertices in a batch and then load the batch data to
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Figure 14: Performance gain of data transfer optimizations.

the GPU for NN computation. The data transferring of GNN has
the following special challenges.
(1) Irregular memory access. Compared with DNN, the random

memory access pattern of GNN causes a large amount of ran-
dom I/O overhead in feature extraction.

(2) Redundant communication. There are a large number of
repeated vertices and edges between sampled subgraphs due
to vertex dependencies. Unlike graph computation, vertices
and edges in GNNs are represented as feature vectors, which
usually have thousands of dimensions. Transferring these large
and redundant vertex/edge features increases the burden of
data transferring.

7.2 Existing Methods
The three following data transfer optimization methods have been
widely employed in GNN systems [18, 25, 26, 39, 44, 45, 62, 73],
including UVA-based data direct access, task pipelining, and cache-
based data reusing.
Data transferring method. The data transfer methods between
CPU and GPU can be categorized as explicit and implicit transfer.
In explicit transfers, developers need to explicitly call the CUDA [9]
API to transfer data between the CPU and GPU memory. Explicit
transfer is suitable for transferring large blocks of data, which can
fully utilize the bandwidth. Therefore, for GNN training, scattered
vertex features need to be extracted into a contiguous memory
space and then transferred to the GPU. In contrast, zero-copy [34]
is an implicit transfer method based on Unified Virtual Addressing
(UVA), which allows GPU threads to access CPU memory directly,
thus avoiding the overhead of extracting vertex features. However,
kernel performance suffers from high latency accesses to zero-copy
memory over the PCIe. Therefore, it requires fine-grained data
access orchestration to mitigate the performance impact of latency
access [31]. Unified memory [33] is another implicit memory access
method that provides a single memory address space for GPU and
CPU. The requested data memory pages are automatically migrated
and cached to the device, and subsequent accesses to the same
pages will read the data from GPU memory without additional data
transfer. When the memory consumed by cached pages exceeds
the GPU memory, some pages may need to be evicted from the
GPU to make space for new pages. However, due to the high cost of
page migrations and the irregular access pattern of graphs, unified
memory is not an efficient way of handling graph algorithms [53].
Task Pipelining. Pipelining decomposes a task into multiple
stages and allows these stages to be executed in parallel on different
processors or resources. In a CPU and GPU heterogeneous training
scenario, a complete batch training process consists of three steps:
batch preparation, data transferring, and NN computation. These
three steps are executed on three different devices, i.e., CPU, PCIe,
and GPU. Due to the data dependency between these steps, the
traditional training process performs these three steps sequentially

1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1
Block 1 Block 2 Block 3 Block 4

0 1 01... ... Active node

Inactive node

Figure 15: An example of active vertices distribution in a
batch.

[3, 12, 25]. Since there is no obvious dependency between training
in different batches, we can use pipeline optimization to improve
hardware utilization. Specifically, when the CPU finishes sampling
for batch 𝑏, it transfers the batch data to the GPU via PCIe, while
the CPU starts sampling for batch 𝑏 + 1. Once the GPU receives
the data for batch 𝑏, it begins NN computation. In this way, all
hardware resources can be scheduled simultaneously, maximizing
the use of hardware resources.

Cache-based Data Reusing. The training process needs to sample
labeled vertices to generate L-hop training subgraphs. Due to the
intricate dependencies between vertices, there are a large number
of duplicate vertices between batch training subgraphs [25]. This
results in redundant data transfers between the CPU and GPU,
which seriously wastes bandwidth resources. GPU caching is a
cache-based data reuse method [19, 25, 26, 39, 44]. Unlike zero-
copy and pipeline optimization, by caching vertex features in GPU
memory, the data transfer volume between the CPU and GPU can
be fundamentally reduced.

7.3 Evaluation Results
7.3.1 Data transferring method. As shown in Figure 2, the data
transferring step dominates the entire training process (taking up
73.4% in total), with feature extraction accounting for 31.2% and
data loading accounting for 42.2%. As shown in Figure 14, compared
to explicit data transfer (e.g., Baseline), zero-copy optimization (e.g.,
Baseline+Z) has 1.74 times the performance gain on average. Using
unified memory can achieve an improvement of 1.88 times on a
small-scale dataset (Reddit). However, on large-scale datasets, using
unified memory does not bring positive performance gains due to
frequent page migration overhead.
Does Hybrid Data Transferring Help? Regarding data transfer
optimization, a hybrid data transfer optimization method [53] was
recently proposed. This approach combines explicit and implicit
transferring methods, dynamically selecting the most suitable trans-
fer method for each data block. In order to explore whether hybrid
data transfer optimization can accelerate GNN training, we analyze
the distribution of active vertices (sampled vertices) within each
batch. As shown in Figure 15, we count the active vertices in the
data block in units of 256KB [31]. For each data block, we set a
threshold. If the number of active vertices exceeds this threshold,
the block will be considered suitable for explicit transfer. Otherwise,
it is suitable for implicit transfer (e.g., when the threshold is 0.5,
only block 4 is suitable for explicit transfer).

Figure 16 shows the ratio of data blocks suitable for explicit
transfer at different thresholds. We can observe that as the thresh-
old increases, the ratio of data blocks suitable for explicit transfer
decreases significantly. Since the Reddit dataset has a high average
degree, which makes the distribution of active vertices denser, it
is more suitable for the explicit transfer of data blocks. However,
after applying GPU cache optimization, the number of data blocks
suitable for explicit transfer is significantly reduced (orange line
in Figure 16). For example, when the threshold is set to 80%, only
2% of the data blocks are suitable for explicit transfer even for the
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Reddit dataset. Based on the above analysis, We find that the de-
mand for hybrid data transferring in GNN training is not significant.
This is due to the unique computational patterns of GNNs. Tradi-
tional graph computations have different vertex access patterns in
iterative computations [53, 76]. However, in GNN training, the dis-
tribution of vertices in the sampled subgraph is often random and
fragmented, especially after implementing a caching optimization.
Therefore, though the hybrid data transfer shows promising results
in graph computation, it does not help GNN training.

7.3.2 Task Pipelining. In the CPU-GPU heterogeneous training
scenarios, a complete batch training process can be divided into
three steps: batch preparation (BP), data transfer (DT), and NN com-
putation (NN). As shown in Figure 14, Baseline+Z+P represents the
simultaneous use of zero-copy transfer optimization and pipelining
optimization. It offers a performance improvement of 2.26 times
compared to Baseline (i.e., explicit transfer). When compared to
Baseline+Z (i.e., zero-copy optimization), the pipeline optimization
brings an additional performance gain of 1.30 times.

Figure 17 is a pipeline ablation experiment that reports the per-
epoch runtime when adding each step to the pipeline. No Pipe is
the slowest one due to its totally sequential execution. Pipeline BP
can significantly reduce the running time by pipelining the BP step.
The results show that the acceleration effect of pipelining is not
significant because data transfer is still the main bottleneck. On
the Livejournal and Lj-links datasets, the time proportion of data
transfer is 58.8% and 53.1%, respectively, which dominate the train-
ing process. Some research works [40, 50, 56] have demonstrated
that improving the performance of the pipeline is possible by bal-
ancing GNN workloads between CPUs and GPUs and employing
fine-grained task scheduling.

7.3.3 Cache-based Data Reusing. There are two main caching
strategies: (1) degree-based caching (degree), (2) pre-sampling-
based caching (sample). The degree-based caching strategy priori-
tizes caching vertices with large out-degrees. The sampling-based
caching strategy first obtains the access frequency of each vertex by
pre-sampling and then prioritizes the caching of frequently accessed
vertex features. We compare the performance of these two caching
strategies. As shown in Figure 18, on the Amazon dataset, the per-
formance of these two caching strategies is comparable. However,
on the OGB-Paper dataset, the pre-sampling-based caching strat-
egy significantly outperforms the degree-based caching strategy.
This is because degree-based caching is based on the assumption
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Figure 18: Performance comparison of caching policies.

that higher-degree vertices are more likely to be sampled. There-
fore, degree-based caching strategies perform well on power-law
graphs but perform poorly on non-power-law graphs. In addition,
the degree-based caching strategy is only applicable to the uniform
vertex sampling algorithm [13]. For special sampling algorithms
(such as importance sampling [6]), the degree-based assumption is
no longer valid. In contrast, the pre-sampling-based caching strat-
egy has better robustness and performs well on both power-law
graphs and non-power-law graphs.

7.4 Lessons Learned
(1) Due to GNN’s irregular data access pattern, the vertex fea-

tures required for heterogeneous training are often scattered
in memory. Through UVA-based data direct access (zero-copy)
optimization, the GPU device can access CPU memory directly,
avoiding expensive feature extraction operations. (§7.3.1)

(2) Vertices do not exhibit an obvious active or deactivated state in
GNN training, the hybrid data transfer optimization will not
help improve data transferring. (§7.3.1)

(3) The effect of pipeline optimization is not outstanding (less than
50% improvement in most cases) under our experimental set-
tings because the data transferring step is the main bottleneck,
overwhelming the other tasks. (§7.3.2)

(4) GPU caching is the most significant data transfer optimization
method as it fundamentally reduces data transfer volume. Com-
pared to degree-based caching, pre-sampling-based caching
exhibits better robustness. (§7.3.3)

8 CONCLUSION
In this paper, we conduct a comprehensive evaluation of the opti-
mization techniques adopted by existing GNN systems from a data
management perspective. We show that graph partitioning of GNN
is a complex task. Achieving the goals of GNN graph partitioning
presents significant challenges. In addition, we find that there are
significant differences in the accuracy and convergence speed of
GNN under different parameter settings. We propose adaptive batch
size training and hybrid fanout and sample rate training methods to
accelerate convergence while maintaining accuracy. Lastly, we con-
duct evaluations of three data transfer optimizations, summarizing
their advantages, disadvantages, and suitable scenarios. Based on
these results, we provide insights and lessons learned for enhancing
the training performance of GNNs.

ACKNOWLEDGMENTS
This work is supported by the National Key R&D Program of China
(2018YFB1003400), the National Natural Science Foundation of
China (U2241212, 62072082, 62202088, 62072083, and 62372097),
and the Fundamental Research Funds for the Central Universities
(N2216015 and N2216012). Yanfeng Zhang and Qiange Wang are
the corresponding authors.

1252



REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. MixHop:
Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood
Mixing. In Proceedings of the 36th International Conference on Machine Learning,
ICML’19, Long Beach, California, USA. 21–29.

[2] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine. Comput. Networks 30, 1-7 (1998), 107–117.

[3] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021.
DGCL: an efficient communication library for distributed GNN training. In
Sixteenth European Conference on Computer Systems, EuroSys’21, Online Event,
United Kingdom. 130–144.

[4] Zhenkun Cai, Qihui Zhou, Xiao Yan, Da Zheng, Xiang Song, Chenguang Zheng,
James Cheng, and George Karypis. 2023. DSP: Efficient GNN Training with
Multiple GPUs. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, PPoPP’23, Montreal, QC, Canada.
392–404.

[5] Chaoyi Chen, Dechao Gao, Yanfeng Zhang, Qiange Wang, Zhenbo Fu, Xuecang
Zhang, Junhua Zhu, Yu Gu, and Ge Yu. 2023. NeutronStream: A Dynamic GNN
Training Framework with SlidingWindow for Graph Streams. Proc. VLDB Endow.
17, 3 (2023), 455–468.

[6] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In 6th International Confer-
ence on Learning Representations, ICLR’18, Vancouver, BC, Canada.

[7] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convolu-
tional Networks with Variance Reduction. In Proceedings of the 35th International
Conference on Machine Learning, ICML’18, Stockholmsmässan, Stockholm, Sweden.
941–949.

[8] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD’19, Anchorage, AK, USA.
257–266.

[9] CUDA 2023. CUDA. https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html.

[10] Euler 2019. Euler. https://github.com/alibaba/euler/wiki/System-Introduction.
[11] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[12] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed Deep Graph
Learning at Scale. In 15th USENIX Symposium on Operating Systems Design and
Implementation, OSDI’21, 2021. 551–568.

[13] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
NeurIPS’17 Long Beach, CA, USA. 1024–1034.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR’16, Las Vegas, NV, USA. 770–778.

[15] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen. 2021.
Understanding and bridging the gaps in current GNN performance optimiza-
tions. In 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’21, Virtual Event, Republic of Korea. 119–132.

[16] Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive
Sampling Towards Fast Graph Representation Learning. In Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS’18, Montréal, Canada. 4563–4572.

[17] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improv-
ing the Accuracy, Scalability, and Performance of Graph Neural Networks with
Roc. In Proceedings of Machine Learning and Systems 2020, MLSys’20, Austin, TX,
USA.

[18] Tim Kaler, Alexandros-Stavros Iliopoulos, Philip Murzynowski, Tao B. Schardl,
Charles E. Leiserson, and Jie Chen. 2023. Communication-Efficient Graph Neural
Networks with Probabilistic Neighborhood Expansion Analysis and Caching.
CoRR abs/2305.03152 (2023).

[19] Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos, Tao B.
Schardl, Charles E. Leiserson, and Jie Chen. 2022. Accelerating Training and
Inference of Graph Neural Networks with Fast Sampling and Pipelining. In
Proceedings of Machine Learning and Systems 2022, MLSys’22, Santa Clara, CA,
USA.

[20] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (1998),
359–392.

[21] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR’17, Toulon, France, Conference Track Proceedings. OpenRe-
view.net.

[22] KONECT 2017. LiveJournal links network dataset. http://konect.uni-
koblenz.de/networks/livejournal-links.

[23] KONECT 2017. Wikipedia links, English network dataset.
http://konect.cc/networks/wikipedia_link_en.

[24] Haiyang Lin, Mingyu Yan, Xiaochun Ye, Dongrui Fan, Shirui Pan, Wenguang
Chen, and Yuan Xie. 2022. A Comprehensive Survey on Distributed Training of
Graph Neural Networks. CoRR abs/2211.05368 (2022).

[25] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. PaGraph:
Scaling GNN training on large graphs via computation-aware caching. In ACM
Symposium on Cloud Computing, SoCC’20, Virtual Event, USA. 401–415.

[26] Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua
Peng, Hongzheng Chen, Hongzhi Chen, and Chuanxiong Guo. 2023. BGL: GPU-
Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing. In 20th
USENIX Symposium on Networked Systems Design and Implementation, NSDI’23,
Boston, MA. 103–118.

[27] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, and Dongrui Fan. 2022.
Sampling Methods for Efficient Training of Graph Convolutional Networks: A
Survey. IEEE CAA J. Autom. Sinica 9, 2 (2022), 205–234.

[28] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. NeuGraph: Parallel Deep Neural Network Computation on Large
Graphs. In 2019 USENIX Annual Technical Conference, ATC’19, Renton, WA, USA.
443–458.

[29] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos
Georganas, Alexander Heinecke, Dhiraj D. Kalamkar, Nesreen K. Ahmed, and
Sasikanth Avancha. 2021. DistGNN: scalable distributed training for large-
scale graph neural networks. In International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’21, St. Louis, Missouri, USA. 76.

[30] Nikolai Merkel, Daniel Stoll, Ruben Mayer, and Hans-Arno Jacobsen. 2023. An
Experimental Comparison of Partitioning Strategies for Distributed GraphNeural
Network Training. CoRR abs/2308.15602 (2023).

[31] Seungwon Min, Kun Wu, Sitao Huang, Mert Hidayetoglu, Jinjun Xiong, Eiman
Ebrahimi, Deming Chen, andWen-meiW. Hwu. 2021. Large Graph Convolutional
Network Training with GPU-Oriented Data Communication Architecture. Proc.
VLDB Endow. 14, 11 (2021), 2087–2100.

[32] Alan Mislove, Massimiliano Marcon, P. Krishna Gummadi, Peter Druschel, and
Bobby Bhattacharjee. 2007. Measurement and analysis of online social networks.
In Proceedings of the 7th ACM SIGCOMM InternetMeasurement Conference, IMC’07,
San Diego, California, USA. 29–42.

[33] NVIDIA. 2017. Mark Harris. UnifiedMemory for CUDABeginners — nvidia devel-
oper blog. https://developer.nvidia.com/blog/unified-memory-cuda-beginners.

[34] NVIDIA. 2022. Zero Copy. https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html#zero-copy.

[35] Open Graph Benchmark 2021. The ogbn-arxiv dataset.
https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv.

[36] Open Graph Benchmark 2021. The ogbn-papers100M dataset.
https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M.

[37] Open Graph Benchmark 2021. The ogbn-products dataset.
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[39] Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong
Cao. 2022. SANCUS: Staleness-Aware Communication-Avoiding Full-Graph
Decentralized Training in Large-Scale Graph Neural Networks. Proc. VLDB
Endow. 15, 9 (2022), 1937–1950.

[40] Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Anand Sivasubramaniam,
and Mahmut T. Kandemir. 2020. GCN meets GPU: Decoupling "When to Sample"
from "How to Sample". In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS’20,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.).

[41] Victor Garcia Satorras and Joan Bruna Estrach. 2018. Few-Shot Learning with
Graph Neural Networks. In 6th International Conference on Learning Representa-
tions, ICLR’18, Vancouver, BC, Canada.

[42] Yingxia Shao, Hongzheng Li, Xizhi Gu, Hongbo Yin, Yawen Li, Xupeng Miao,
Wentao Zhang, Bin Cui, and Lei Chen. 2022. Distributed Graph Neural Network
Training: A Survey. CoRR abs/2211.00216 (2022).

[43] Shihui Song and Peng Jiang. 2022. Rethinking graph data placement for graph
neural network training on multiple GPUs. In 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP’22, Seoul, Republic of
Korea. 455–456.

[44] Jie Sun, Li Su, Zuocheng Shi, Wenting Shen, Zeke Wang, Lei Wang, Jie Zhang,
Yong Li, Wenyuan Yu, Jingren Zhou, and Fei Wu. 2023. Legion: Automatically

1253

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Pushing the Envelope of Multi-GPU System for Billion-Scale GNN Training. In
Annual Technical Conference, ATC’23, Boston, MA, USA. 165–179.

[45] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, and Guoqing Harry
Xu. 2021. Dorylus: Affordable, Scalable, and Accurate GNN Training with Dis-
tributed CPU Servers and Serverless Threads. In 15th USENIX Symposium on
Operating Systems Design and Implementation, OSDI’21. 495–514.

[46] Jana Vatter, Ruben Mayer, and Hans-Arno Jacobsen. 2024. The Evolution of
Distributed Systems for Graph Neural Networks and Their Origin in Graph
Processing and Deep Learning: A Survey. ACM Comput. Surv. 56, 1 (2024),
6:1–6:37.

[47] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR’18, Vancouver, BC, Canada.

[48] Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkatara-
man. 2023. MariusGNN: Resource-Efficient Out-of-Core Training of Graph
Neural Networks. In Eighteenth European Conference on Computer Systems, Eu-
roSys’23, Rome, Italy. 144–161.

[49] Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. 2022. BNS-GCN:
Efficient Full-Graph Training of Graph Convolutional Networks with Partition-
Parallelism and Random Boundary Node Sampling. In Proceedings of Machine
Learning and Systems 2022, MLSys’22, Santa Clara, CA, USA.

[50] Xinchen Wan, Kaiqiang Xu, Xudong Liao, Yilun Jin, Kai Chen, and Xin Jin. 2023.
Scalable and Efficient Full-Graph GNN Training for Large Graphs. Proc. ACM
Manag. Data 1, 2 (2023), 143:1–143:23.

[51] LeiWang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen,Wenyuan Yu, Zihang
Yao, and Jingren Zhou. 2021. FlexGraph: a flexible and efficient distributed
framework for GNN training. In Sixteenth European Conference on Computer
Systems, EuroSys’21, Online Event, United Kingdom. 67–82.

[52] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[53] Qiange Wang, Xin Ai, Yanfeng Zhang, Jing Chen, and Ge Yu. 2023. HyTGraph:
GPU-Accelerated Graph Processing with Hybrid Transfer Management. In 39th
IEEE International Conference on Data Engineering, ICDE’23, Anaheim, CA, USA.
558–571.

[54] QiangeWang, Yao Chen,Weng-FaiWong, and Bingsheng He. 2023. HongTu: Scal-
able Full-Graph GNN Training on Multiple GPUs (via communication-optimized
CPU data offloading). CoRR abs/2311.14898 (2023).

[55] Qiange Wang, Yanfeng Zhang, Hao Wang, Chaoyi Chen, Xiaodong Zhang, and
Ge Yu. 2022. NeutronStar: Distributed GNN Training with Hybrid Dependency
Management. In International Conference on Management of Data, SIGMOD’22,
Philadelphia, PA, USA. 1301–1315.

[56] Yuke Wang, Boyuan Feng, Zheng Wang, Tong Geng, Kevin J. Barker, Ang Li, and
Yufei Ding. 2023. MGG: Accelerating Graph Neural Networks with Fine-Grained
Intra-Kernel Communication-Computation Pipelining on Multi-GPU Platforms.
In 17th USENIX Symposium on Operating Systems Design and Implementation,
OSDI’23, Boston, MA, USA.

[57] Zhaokang Wang, Yunpan Wang, Chunfeng Yuan, Rong Gu, and Yihua Huang.
2021. Empirical analysis of performance bottlenecks in graph neural network
training and inference with GPUs. Neurocomputing (2021), 165–191.

[58] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440–442.

[59] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Trans. Neural Networks Learn. Syst. 32, 1 (2021), 4–24.

[60] Zihui Xue, Yuedong Yang, Mengtian Yang, and Radu Marculescu. 2022. SUGAR:
Efficient Subgraph-level Training via Resource-aware Graph Partitioning. CoRR
abs/2202.00075 (2022).

[61] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Com-
munities Based on Ground-Truth. In 12th IEEE International Conference on Data
Mining, ICDM’12, Brussels, Belgium. 745–754.

[62] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen,
Wenyuan Yu, and Jingren Zhou. 2022. GNNLab: a factored system for sample-
based GNN training over GPUs. In Seventeenth European Conference on Computer

Systems, EuroSys’22, Rennes, France. 417–434.
[63] Shuangyan Yang, Minjia Zhang, Wenqian Dong, and Dong Li. 2023. Betty:

Enabling Large-Scale GNN Training with Batch-Level Graph Partitioning. In
Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS’23, Vancouver,
BC, Canada. 103–117.

[64] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery &DataMining, KDD’18, London, UK. 974–983.

[65] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. 2018. Hierarchical Graph Representation Learning with
Differentiable Pooling. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS’18,
Montréal, Canada. 4805–4815.

[66] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-
tor K. Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning
Method. In 8th International Conference on Learning Representations, ICLR’20,
Addis Ababa, Ethiopia.

[67] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang Hu, Xianzheng Song,
Zhibang Ge, Lin Wang, Zhiqiang Zhang, and Yuan Qi. 2020. AGL: A Scalable
System for Industrial-purpose Graph Machine Learning. Proc. VLDB Endow. 13,
12 (2020), 3125–3137.

[68] Lizhi Zhang, Kai Lu, Zhiquan Lai, Yongquan Fu, Yu Tang, and Dongsheng Li.
2023. Accelerating GNN Training by Adapting Large Graphs to Distributed
Heterogeneous Architectures. IEEE Trans. Comput. (2023), 1–14. https://doi.org/
10.1109/TC.2023.3305077

[69] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural
Networks. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS’18, Montréal,
Canada.

[70] Wentao Zhang, Yu Shen, Zheyu Lin, Yang Li, Xiaosen Li, Wen Ouyang, Yangyu
Tao, Zhi Yang, and Bin Cui. 2022. PaSca: A Graph Neural Architecture Search
System under the Scalable Paradigm. In The ACMWeb Conference 2022, WWW’22,
Virtual Event, Lyon, France.

[71] Xin Zhang, Yanyan Shen, Yingxia Shao, and Lei Chen. 2023. DUCATI: A Dual-
Cache Training System for Graph Neural Networks on Giant Graphs with the
GPU. Proc. ACM Manag. Data 1, 2 (2023), 166:1–166:24.

[72] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,
Changji Li, James Cheng, Hao Yang, and Shuai Zhang. 2022. ByteGNN: Efficient
Graph Neural Network Training at Large Scale. Proc. VLDB Endow. 15, 6 (2022),
1228–1242.

[73] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. DistDGL: Distributed Graph
Neural Network Training for Billion-Scale Graphs. In 10th IEEE/ACM Workshop
on Irregular Applications: Architectures and Algorithms, IA3’20, Atlanta, GA, USA.
36–44.

[74] Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George Karypis.
2022. Distributed Hybrid CPU and GPU training for Graph Neural Networks
on Billion-Scale Heterogeneous Graphs. In The 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD’22, Washington, DC, USA. 4582–
4591.

[75] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network
Platform. Proc. VLDB Endow. 12, 12 (2019), 2094–2105.

[76] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A Computation-Centric Distributed Graph Processing System. In 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI’ 2016, Savan-
nah, GA, USA, November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.).
301–316.

[77] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan
Gu. 2019. Layer-Dependent Importance Sampling for Training Deep and Large
Graph Convolutional Networks. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS’19, Vancouver, BC, Canada. 11247–11256.

1254

https://doi.org/10.1109/TC.2023.3305077
https://doi.org/10.1109/TC.2023.3305077

	Abstract
	1 Introduction
	2 GNN Training Process
	3 Taxonomy of Data Management Techniques in GNN Training
	4 Experimental Setup
	5 Data Partitioning
	5.1 Goals and Challenges
	5.2 Existing Methods
	5.3 Evaluation Results
	5.4 Lessons Learned

	6 Batch Preparation
	6.1 Goals and Challenges
	6.2 Existing Methods
	6.3 Evaluation Results
	6.4 Lessons Learned

	7 Data Transferring
	7.1 Goals and Challenges
	7.2 Existing Methods
	7.3 Evaluation Results
	7.4 Lessons Learned

	8 conclusion
	Acknowledgments
	References

