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ABSTRACT

Graph Neural Networks (GNNs) are emerging as a powerful tool for
learning from graph-structured data and performing sophisticated
inference tasks in various application domains. Although GNNs
have been shown to be effective on modest-sized graphs, training
them on large-scale graphs remains a significant challenge due
to the lack of efficient storage access and caching methods for
graph data. Existing frameworks for training GNNs use CPUs for
graph sampling and feature aggregation, while the training and
updating of model weights are executed on GPUs. However, our
in-depth profiling shows CPUs cannot achieve the graph sampling
and feature aggregation throughput required to keep up with GPUs.
Furthermore, when the graph and its embeddings do not fit in the
CPU memory, the overhead introduced by the operating system, say
for handling page-faults, causes gross under-utilization of hardware
and prolonged end-to-end execution time.

To address these issues, we propose the GPU Initiated Direct
Storage Access (GIDS) dataloader, to enable GPU-oriented GNN
training for large-scale graphs while efficiently utilizing all hard-
ware resources, such as CPU memory, storage, and GPU memory.
The GIDS dataloader first addresses memory capacity constraints
by enabling GPU threads to directly fetch feature vectors from
storage. Then, we introduce a set of innovative solutions, including
the dynamic storage access accumulator, constant CPU buffer, and
GPU software cache with window buffering, to balance resource uti-
lization across the entire system for improved end-to-end training
throughput. Our evaluation using a single GPU on terabyte-scale
GNN datasets shows that the GIDS dataloader accelerates the over-
all DGL GNN training pipeline by up to 582X when compared to
the current, state-of-the-art DGL dataloader.
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1 INTRODUCTION

Owing to their expressive power, Graph Neural Networks (GNN5s)
effectively capture the rich relational information embedded among
input nodes and edges, leading to improved generalization perfor-
mance over traditional machine learning techniques. As a result,
GNN s have gained significant attention in recent years and demon-
strated their efficacy in graph-based machine learning applications,
such as node classification [11, 20, 33, 35], recommendation [7, 27],
fraud detection [22, 38, 42, 43], and link prediction [9, 34, 45].

To cater to this growing interest, new open-source frameworks
such as PyTorch Geometric (PyG) [8], Spektral [10], and Deep Graph
Library (DGL) [49] have been developed to provide optimized oper-
ators required by GNNs, such as message-passing for aggregating
feature information across related graph nodes, and graph-specific
neural network computation layers. Although GNN frameworks
leverage GPUs’ high-throughput tensor operations, GNN training
faces challenges beyond its computational requirement. A major
challenge is the fast-growing graph dataset sizes that cannot fit
into the limited GPU memory capacity. To address this challenge,
frameworks like DGL exploit Unified Virtual Addressing (UVA) by
pinning both the graph structure data and feature data into the CPU
memory, thus enabling GPU kernels to efficiently perform subgraph
extraction and feature aggregation while making zero-copy access
to the graph data from the CPU memory [26].

For large-scale graphs that do not fit into the CPU memory, the
UVA approach is no longer sufficient. There are classes of traditional
solutions to support large-scale GNN training: (a) multi-node/multi-
GPU, (b) tiling, and (c) memory-mapped files. Leveraging multiple
nodes or GPUs [2, 4, 16, 23, 40] by partitioning the graph across the
nodes/GPUs to support large-scale GNN training is an expensive ap-
proach [48]. Tiling [14, 47] can be used to support large-scale GNN
training by leveraging graph partitioning to move tiles of graph
data in and out of the GPU memory. This approach shows poor per-
formance due to random access patterns and the additional cost of
pre-processing the input data. Finally, the most convenient solution
to train large-scale graph datasets on a single GPU is exploiting the
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memory-mapped file technique, which maps the graph data stored
on disk to the GPU’s virtual address space, enabling the GPU to
access the data without first loading the entire dataset into mem-
ory. Previous studies [21, 28, 32, 50] extended the memory-mapped
file approach and leveraged the in-memory caching mechanism to
mitigate the storage access overhead.

Despite its conceptual simplicity, the use of memory-mapped
files in GNN training faces performance challenges due to the heavy
software overhead in handling page faults and its inability to toler-
ate long latency incurred during data retrieval from storage. The
storage latency, which is two to three orders of magnitude longer
than the DRAM access latency, becomes a bottleneck in the GNN
training process. This is due to sparse and irregular graph data ac-
cess patterns and the inability of the memory-mapped file approach
to overlap the latencies of these accesses, resulting in poor overall
performance. In Section 2.3, we show that when using memory-
mapped files, the sampling and feature aggregation stages of the
GNN training pipeline dominate the overall execution time and
severely limit the overall GNN training performance.

In this paper, we propose a new approach called GPU Initiated
Direct Storage Access (GIDS) dataloader to tackle the challenges
of GNN training on large-scale graphs by leveraging GNN-specific
characteristics to efficiently utilize all the involved hardware re-
sources (CPU memory, storage, and GPU memory).

Figure 1 illustrates the GNN training workflow with the GIDS
dataloader. First, GIDS keeps the feature data of the graph in stor-
age as the feature data typically accounts for the vast majority
of the total graph dataset size for large-scale graphs (see Table 4
for details). GIDS overcomes the long storage access latency by
leveraging BaM [31] to allow GPU threads to directly fetch feature
data, using the massive GPU thread-level parallelism to overlap
the latencies of many storage accesses. However, to achieve the
peak SSD bandwidth, ensuring a sufficient number of concurrent
storage access requests is a critical prerequisite. The number of
storage access requests can vary based on the sampling parameters
or hardware configuration. To maintain sufficient overlapping stor-
age accesses for any environment, GIDS features a dynamic storage
access accumulator (1), a novel technique that exploits the inde-
pendency of the graph sampling process to automatically merge
iterations based on the system hardware specification.

Second, GIDS pins the graph structure data, whose size is typi-
cally tiny compared to the feature data, in the CPU memory to en-
able GPU graph sampling via UVA zero-data copy transfer to avoid
I/0 amplification and cache pollution. Third, GIDS enables users
to reserve CPU memory for a constant CPU buffer (2) to achieve
higher feature aggregation effective bandwidth by redirecting ac-
cesses from storage to the constant CPU buffer for hot nodes when
PCle bandwidth is not fully utilized. Finally, GIDS allocates GPU
memory for the BaM Application-Defined Software Cache to store
feature data for recently accessed nodes to minimize the storage
accesses. As a new contribution to the cache design, we introduce
a novel window buffering (3) technique that takes advantage of the
timing flexibility of the graph sampling process to exploit locality
across mini-batches and further improve GPU cache utilization.

We make the following key contributions in this paper.
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Figure 1: Illustration of the GNN training process with the
GIDS dataloader or the BaM dataloader.

We analyze the limitations of the existing GNN frameworks
while training on large graph datasets and show that the
existing CPU-initiated approach cannot keep up with the
demands of GPU-accelerated GNN training.

We introduce a novel dynamic storage access accumula-
tor, which accurately estimates the required number of
overlapping storage access requests to achieve peak SSD
bandwidth with the BaM system. The accumulator auto-
matically maintains a sufficient number of storage requests
by decoupling the graph sampling stage from the training
stage and allowing the former to run ahead of the latter.
We conduct an analysis of the logical dependencies among
the overall GNN training pipeline stages and propose an
innovative optimization strategy named window buffering.
It enables the GIDS dataloader to foresee the upcoming
node access pattern to optimize the cache eviction policy.
We increase the effective bandwidth of the GIDS dataloader
beyond the limited SSD bandwidth by classifying hot nodes
using reverse page rank scores, storing them in the constant
CPU buffer, and redirecting some of the storage accesses to
the CPU memory when PCle bandwidth is underutilized
due to limited SSD bandwidth.

We demonstrate the GIDS dataloader’s effectiveness and flexi-
bility by measuring performance using billion-scale datasets that
do not fit in the CPU memory. The results based on the NVIDIA
A100 GPUs and 512GB CPU memory capacity show that the GIDS
dataloader achieves 582X speedup in overall training over the state-
of-the-art GNN dataloader.

2 BACKGROUND

In this section, we provide an overview of GNN models, followed by
an introduction to mini-batching and sampling-based GNN training.
We then explain the state-of-the-art framework for large-scale GNN
training and its challenges.



2.1 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) have recently gained prominence
in solving machine learning problems by incorporating graph struc-
ture information [3, 6, 20, 35]. These networks typically consist of
multiple layers and operate through layer-wise message passing.
Given a graph G(V, E), with vertex set V and edge set &, the
node feature vectors for each vertex v € V are represented as xy.

The node embedding of vertex v at layer [ is denoted as hz(,” , with

hgo) initialized with v’s feature vector x,. The GNN updates the
node embeddings using the equation:

R = f P D no)): (1)

where N (v) defines the neighborhood set of v, hgf,) denotes the
node embedding of the neighbor node w at layer [, and f is a
parameterized update function.

Graph data consists of two components: graph structure data
and node feature data. The graph structure data represents the
edges and nodes of the graph, while the node feature data repre-
sents the feature embeddings for each node. Sparse matrix formats
such as Coordinate (COO) format and Compressed Sparse Column
(CSC) format are commonly used to store the graph structure data,
whereas the node features are typically stored in an N X D matrix,
where N is the total number of nodes in the graph, and D is the
dimension of each node feature. The size of each node’s feature can
vary greatly but typically ranges from 512B to 4KB. For large-scale
graphs with billions of nodes, the size of the node feature data can
reach several tens of terabytes. As a result, managing the node
feature data for large-scale GNN training with limited memory
capacity is a challenging task.

2.2 GNN Training Pipeline

GNN training on large graph datasets involves mainly four stages:
graph sampling, feature aggregation, data transfer, and model train-
ing. Mini-batch training is commonly used in these models for
scalability and computational efficiency [18, 29, 41]. In this section,
we briefly describe the mini-batching technique and each key stage
of the GNN training pipeline.

2.2.1  Mini-batching. Mini-batching of GNN models involves split-
ting the graph into smaller sub-graphs and training the network
on each of these sub-graphs. During each iteration of the train-
ing process, a batch of sub-graphs is loaded into GPU memory for
computation. The batch size must be carefully chosen to prevent
GPU memory overflow during training. Mini-batching also exposes
more parallelism as mini-batches can be assigned to different GPUs
during training, which significantly improves training speed and
efficiency and makes it a popular approach for many GNN models.
Previous studies have demonstrated that training neural networks
with mini-batches can also lead to faster convergence and better
optimization compared to training on the entire dataset [18, 29, 41].

2.2.2  Node Sampling. Mini-batching alone cannot fully address
the scalability limitations when working with large graphs. Even
with small batch sizes, the training cost can still be substantial
due to the exponential growth of memory footprint when collect-
ing k-hop neighbors. GraphSAGE [11] introduced the concept of
neighborhood sampling to tackle this problem. GraphSAGE reduces
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Figure 2: A subgraph generated by a uniformly random se-
lection method for two-layer Neighborhood Sampling.

the computation and memory footprint by randomly sampling a
fixed number of neighboring nodes rather than including all nodes
in the graph. To ensure a sufficient level of randomness in the
training process, GraphSAGE uses a uniformly random selection
method for neighborhood sampling. Figure 2 illustrates an example
of neighborhood sampling with a 2-hop computational graph. In
this example, the sampling size is set to 3, meaning up to three
neighboring nodes of the target node are selected. With two layers,
the sampled subgraph consists of 10 (1 + 3 + 6) vertices and 9 edges.

2.2.3  Node Feature Aggregation. The node features for the sampled
subgraph of a mini-batch must be aggregated, or gathered, before
training on the mini-batch can start. For smaller graphs whose
node feature data can fit into the CPU memory, the entire feature
data is first loaded into the CPU memory. The node features for
each mini-batch’s sampled subgraph are gathered from the CPU
memory and transferred into the GPU memory. In cases where
node feature data for the original graph exceeds the CPU memory
capacity, the current state-of-the-art approach [19, 49] uses the
CPU to first gather the node features of the sampled subgraph from
storage into a buffer in the CPU memory, and then transfer the
buffered feature data from the CPU memory to the GPU memory.

2.3 Limitation of Existing GNN Frameworks

State-of-the-art GNN frameworks, such as DGL [49] and PyG [8],
have adopted a hybrid CPU-GPU training system, where the CPU
is responsible for data preparation, and the GPU handles the model
training. Our profiling results show that such a hybrid training
approach can lead to significant under-utilization of the GPU and
suboptimal training time. Figure 3 compares the node feature vector
request generation rate of the data preparation stages, i.e., node sam-
pling and node feature aggregation, of the GNN training pipeline
when these stages are executed on the CPU vs. on the GPU. As a
reference, Figure 3 also shows that the training kernels running on
the GPU can consume the aggregated node features at a rate of 29
million requests per second. To maximize GPU utilization and min-
imize GNN training time for large graphs, the request generation
rate must match or exceed the consumption rate.

However, as shown in Figure 3, the data preparation stages can-
not generate more than 4.1 million feature vector requests per
second, even when using multiple threads (16 in this experiment
beyond which the rate plateaus) on the CPU. This is because the



sampling computation involves repeatedly traversing the graph and
accessing its edges and nodes, making it difficult for the CPU, with
its limited memory bandwidth and thread-level parallelism, to keep
up with the consumption rate of the GPU-accelerated training ker-
nels. In contrast, the GPU can generate 77 million feature requests
per second, which is more than sufficient to match the consumption
rate of the training kernels. Based on these observations, we will
focus on GNN training pipelines that offload the data preparation
stages to the GPU for the remainder of the paper.

A challenge in running the data preparation stages on the GPU is
the limited GPU memory capacity that can be significantly smaller
than the CPU memory. To address this challenge, DGL recently
introduced the UVA-based GNN training technique [26], which pins
the entire graph dataset (both graph and feature vectors) in the CPU
memory and enables the graph sampling and feature aggregation
kernels running on the GPU to directly access the graph dataset
through zero-copy accesses. While this approach helps to scale GNN
training to graph datasets whose sizes exceed the GPU memory
capacity, it cannot handle large-scale graphs whose sizes surpass
the capacity of the CPU memory since all graph data must be pinned
in the CPU memory for the UVA-based technique to work.

CPU Sampling 4.1

GPU Sampling

77.0

GPU Training

10 20 30 40 50 60

Million Requests per Second

70 80 90

Figure 3: Request generation rate of data preparation on CPU
and GPU, and request consumption rate on GPU on IGB-
small dataset. The CPU and GPU used in this measurement
are listed in Table 1.
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Figure 4: Illustration of the GNN training process with the
memory-mapping DGL dataloader

Existing GNN frameworks fall back to the CPU for graph sam-
pling and feature aggregation execution to support graph datasets
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that cannot fit into the CPU memory. The key idea is to provide a
notion of infinite virtual memory by memory-mapping the node
feature vector files into the CPU virtual address space and allow
the node feature aggregation computation on the CPU to page
fault when the requested feature vector is unavailable in the CPU
memory. Figure 4 illustrates the GNN training process using the
approach of the memory-mapped file in the DGL framework. Dur-
ing the node feature aggregation stage, the CPU accesses the node
features mapped in its virtual memory space, and the OS page fault
handler brings the pages that contain the accessed features from
storage into the CPU memory when it misses from the OS page
cache. The memory-mapped file approach, along with the CPU
execution of node feature aggregation, eliminates the need for load-
ing/pinning the entire dataset into the CPU memory a priori and
only brings in the data being actively used on-demand.
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Figure 5: GNN training time breakdown for the baseline DGL
dataloader for different graph datasets. The node feature
data is accessed from memory-mapped files, while the graph
structure data is stored in the CPU memory. The GraphSAGE
model is used as the GNN training model. The graph proper-
ties are listed in Table 2.

Unfortunately, the memory-mapped file approach makes the
node feature aggregation by far the worst bottleneck of the overall
training pipeline. Our profiling of each stage in the GNN training
execution shows the iteration time is clearly dominated by the
sampling and node aggregation stages, as shown in Figure 5. For
example, the training stage is barely visible for the IGB-Full and
IGBH-Full graphs, the largest two graphs used in our evaluations.
This is because, for large-scale graphs, the additional cost of page
faults exacerbates the gap between the data preparation throughput
and model training throughput. Thus, the key to improving the GNN
training performance while training on large graphs is to drastically
accelerate the sampling and feature aggregation stages (i.e., the data
preparation stages).

Previous research [21, 28, 37, 50] has aimed to enhance the ef-
ficiency of node aggregation and sampling stages running on the
CPUs by using specific in-memory caching mechanisms to mini-
mize redundant storage accesses and/or utilizing pipelining tech-
niques to conceal graph sampling time. However, as shown in
Figure 3, the data preparation stages running on the CPU cannot
even generate node feature requests at a sufficiently high rate to
match the consumption rate of the training kernels. A successful
solution to the problem of efficiently accessing node feature vectors
from the storage on-demand must allow the data preparation stages
running on the GPU to make direct requests to the storage devices.



To this end, we develop the GIDS dataloader based on the BaM [31]
software stack, a recently released research infrastructure that en-
ables direct storage device access by the GPU, eliminating the over-
head of OS page faults during feature vector data access.

2.4 The BaM System

The BaM system [31] aims to tackle the problem of storage latency
in big-data GPU applications. The key idea behind BaM is to allow
GPU threads to have direct access to the storage. As a massive
number of GPU threads can initiate direct storage access without
incurring CPU-GPU synchronization or CPU software overhead,
the GPU can take full advantage of parallelism to hide long storage
access latency, enabling it to achieve peak storage bandwidth when
there is a sufficient number of concurrent storage access requests.

However, straightforward adoption of BaM in the data prepara-
tion stages of the GNN training pipeline leaves much end-to-end
performance on the table due to the imbalanced use of critical
resources in the system. Therefore, we propose a suite of novel
techniques to shift the use of hardware resources during the data
preparation stages and significantly improve the end-to-end GNN
training time.

3 SYSTEM DESIGN

To address the challenges associated with state-of-the-art large-
scale GNN training, we design and implement the GIDS dataloader,
which enables fully GPU-oriented GNN training for large graphs
and efficiently utilizes hardware resources. This section describes
the design and optimization of the GIDS dataloader?.

3.1

The GIDS dataloader improves the performance and scalability of
GNNs by efficiently utilizing all available hardware resources when
aggregating node features that cannot fit into the CPU memory.
This section provides a detailed breakdown of how each resource
is harnessed to accelerate GNN data preparation. The illustration
of the GNN training workflow with the GIDS dataloader is shown
in Figure 1.

GPU: As discussed in Section 2.3, the GIDS dataloader moves
the data preparation stages from the CPU to the GPU. As shown
in Figure 3, the request generation rate of the sampling and node
feature aggregation stages running on the GPU exceeds the GPU
training kernel throughput.

Storage: To overcome memory capacity constraints, the GIDS
dataloader stores the feature data in storage. To address the chal-
lenge of storage access bottlenecks, the GIDS dataloader employs
the BaM system [31], enabling GPU threads to directly access stor-
age and bypassing CPU page-fault handling software overhead.

The GIDS dataloader also features a novel dynamic storage
access accumulator to merge iterations for the graph sampling
and feature aggregation processes, ensuring a sufficient number of
concurrent storage accesses (Section 3.2).

CPU Memory: The GIDS dataloader pins the graph structure
data in CPU memory because the graph structure data (4-8B) ac-
cessed by the sampling process exhibits a much finer granularity

GIDS Dataloader System Overview

! Although the GIDS discussion in this section is based on DGL framework, it can be
easily extended to other GNN frameworks such as PyG [8] and AliGraph [50].
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access pattern than the node feature data (512-4096B) accessed by
the aggregation process. Despite the graph structure data being
pinned in memory, this does not lead to memory capacity issues
as it constitutes only a small fraction, typically around 5% of the
total dataset size. The structure data comfortably fits within CPU
memory, even for terabyte-scale graphs (refer to Table 4).

The GIDS dataloader allocates a user-configurable portion of
CPU memory as a constant buffer to pin a small subset of the
node feature data. This buffer redirects storage accesses for hot
nodes to the constant CPU buffer, amplifying the effective feature
aggregation bandwidth beyond the available SSD bandwidth (Sec-
tion 3.3).

GPU Memory: The GIDS dataloader employs BaM’s application-
defined software cache to temporarily store the feature data of re-
cently accessed nodes in the GPU memory. This reduces the number
of storage accesses and improves feature aggregation performance.
Additionally, the GIDS dataloader runs the data preparation several
iterations ahead of the training stage and maintains a node access
list for future iterations in a window buffer, enhancing the GPU
software cache hit ratio by leveraging GNN-specific data access
patterns (Section 3.4).

3.2 Dynamic Storage Access Accumulator

The GIDS dataloader leverages the BaM system and takes advan-
tage of the massive thread-level parallelism provided by GPUs to
effectively handle storage latency during feature aggregation. To
achieve this, a critical prerequisite is ensuring a sufficient number of
concurrent storage access requests during the feature aggregation
stage to maximize the utilization of the peak storage throughput.

The feature aggregation kernel via the BaM system can be di-
vided into three distinct stages. The first stage is the initial stage,
occurring from the beginning of feature aggregation until the first
data is fetched from the SSD. The second stage is the steady-state
stage, where data reception from the SSD reaches its peak IOPs.
The final stage is the termination stage, the time between when
the last access request to the SSD is handled and the conclusion
of the feature aggregation process. During the initial and termi-
nation stages, SSD bandwidth utilization is almost zero, while it
reaches its peak during the steady-state stage. Using this informa-
tion, one can calculate the number of overlapping storage access
requests required to achieve peak SSD’s read throughput based on
the following mathematical equations:

Naccess = I0Pychieed * (Ti+Ts+T;) = Nssa 2
N,
Ts — IOa;C(ess (3)
peak

where Njccess defines the required number of concurrent storage
accesses that must be maintained over time. T;, T, and T; denote the
time spent during the initial, steady-state, and termination stages,
respectively. [OP),q . represents the peak IOPs for each SSD while
IOP, hieved is the average achieved IOPs per SSD during the feature
aggregation stage. Finally, N  is the number of SSDs connected
to a single GPU.

In general, one determines the Nyccess value by making Ts much
larger than T; + T;, which can be determined empirically for the



system used. Naively, one can increase Ty by increasing the mini-
batch size. While the size of the mini-batch can be adjusted based on
available computational resources and task-specific requirements,
it may not be able to increase beyond a certain point due to training
quality considerations. Thus, one needs to eliminate the stop-and-go
boundaries between mini-batches by merging the data-preparation
of consecutive iterations and thus effectively increase T;. Statically
setting the number of iterations to merge to effectively hide storage
latency with the BaM system is not straightforward. Setting the
numbers too small will result in poor IOP, pieveq and setting the
number too high will incur an excessive level of buffer memory
usage.

The required number of concurrent storage accesses depends on
the characteristics of the SSD, with SSDs exhibiting higher latency
T; demanding even more concurrent accesses. Furthermore, if mul-
tiple SSDs are connected to increase the collective SSD bandwidth,
the required number of concurrent storage accesses scales linearly
with the number of SSDs. Additionally, the GIDS dataloader lever-
ages both CPU and GPU memory to amplify feature aggregation
throughput by redirecting some storage accesses to CPU/GPU mem-
ory. Thus, ensuring an adequate number of node feature accesses
is crucial, as there must be enough storage access availability even
after some accesses are redirected.

To address this challenge, we introduce the dynamic storage
access accumulator within the GIDS dataloader. This innovative
approach takes advantage of the work independence inherent in the
graph sampling process. Notably, the graph sampling and feature
aggregation stages of an iteration are logically independent of the
model training stage of previous iterations because the output of the
model training stage solely updates model parameters and does not
impact graph sampling or feature aggregation of future iterations.

Based on this observation, the dynamic storage access accu-
mulator combines iterations for the graph sampling and feature
aggregation processes to maintain a sufficient number of concur-
rent storage accesses over time. Initially, it calculates the threshold
for the required node accesses based on the proposed mathematical
model. The accumulator executes graph sampling processes for
future iterations until the number of node accesses surpasses the
threshold. At this point, the GIDS dataloader enters the steady state,
retrieving node feature vectors into mini-batch buffers in the GPU
memory and starting new iterations as the accesses for the older
iterations are completed. The training stage makes progress by ac-
cessing the next mini-batch from the batch buffers and performing
model training on the mini-batch.

Note that the number of required node accesses is influenced
by the number of storage accesses redirected to CPU/GPU mem-
ory. Therefore, the dynamic storage access accumulator tracks the
number of redirected storage accesses and dynamically adjusts the
threshold value accordingly.

3.3 Constant CPU Buffer

By exploiting the GPU’s massive parallelism and a sufficient number
of concurrent storage requests, the GIDS dataloader can achieve
peak SSD read bandwidth during feature aggregation. However,
it is crucial to acknowledge that the peak read bandwidth of a
single SSD falls significantly short of the PCle bandwidth, which
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is typically around 32GB/s. For instance, the peak read IOPs for
Intel Optane SSDs is around 1.5 million requests per second with a
4KB cache-line granularity (equivalent to 6GB/s) [15, 31], whereas
NAND Flash SSDs can only reach a maximum of 800 thousand
requests per second (approximately 3.2GB/s).

BaM [31] addresses this challenge by connecting multiple SSDs
to a single GPU, thereby linearly scaling the collective SSD band-
width to saturate the PCle bandwidth. However, implementing such
a system may not be practical for GNN developers, as it typically
requires the connection of at least 4 to 5 Intel Optane SSDs to a
single GPU. In the case of Samsung 980pro SSDs, a more substan-
tial number, exceeding 10 SSDs or more, may be required to fully
saturate the PCle bandwidth.

To amplify the effective bandwidth of the feature aggregation
process when the PCle bandwidth is under-utilized, the GIDS dat-
aloader leverages CPU memory as a constant CPU buffer. When
there is available CPU memory, GIDS offers users the flexibility to
allocate a configurable portion of CPU memory as a constant CPU
buffer to pin a portion of the feature data into the CPU memory.

Accesses to the feature table in the SSD are redirected to the
constant CPU buffer when the requested feature data resides in the
constant CPU buffer. With the assistance of the GIDS dataloader’s
storage access accumulator, there remains a sufficient number of
storage accesses to hide the storage latency, thereby preserving
peak SSD read bandwidth. As these redirected accesses are managed
by CPU memory, the effective bandwidth of the feature aggrega-
tion process increases proportionally to the number of redirected
accesses until the GPU ingress PCle bandwidth is fully utilized.

To maximize the utilization of the constant CPU buffer, it is es-
sential to optimize the number of redirected accesses. This can be
achieved by leveraging the access pattern of the graph sampling pro-
cess. Prior research [25] demonstrates the use of weighted reverse
page rank as a metric for distinguishing between hot nodes and
cold nodes can help in this regard. As a result, the GIDS dataloader
selectively retains nodes with the highest weighted reverse page
rank in the constant CPU buffer. Furthermore, the GIDS data loader
provides users with the flexibility to define which nodes should be
pinned in the constant CPU buffer when alternative metrics are
more suitable for identifying hot nodes.

3.4 Window Buffering

Although the GIDS dataloader can effectively handle storage latency
and achieve up to PCle bandwidth during feature aggregation, the
achievable storage read bandwidth is orders of magnitude lower
than the GPU memory bandwidth as High Bandwidth Memory 2
(HBM2) of recent NVIDIA GPUs can provide 2TB/s bandwidth [1]
whereas the storage read bandwidth is limited by the 32GB/s PCIe
in-take bandwidth of A100. Therefore, efficient utilization of GPU
memory is necessary to amplify the effective bandwidth and further
accelerate the feature aggregation process.

To address the bandwidth shortfall, GIDS employs BaM’s GPU
application-defined software cache. Unlike the GPU hardware caches,
which help to conserve DRAM bandwidth, the GIDS software cache
is used to help conserve storage bandwidth. BaM’s software cache
temporarily stores the previously accessed cache-lines based on the
random eviction policy.



However, when the graph dataset is much larger than the GPU
cache, achieving high reusability of node feature data becomes
challenging due to the random nature of the neighborhood sampling
process. In such scenarios, it is critical to accurately predict the
cache-lines that will be reused in the near future.

To overcome this challenge, the GIDS dataloader introduces a
novel technique called window buffering and integrates it into the
software cache. Unlike the traditional frameworks, GIDS leverages
the BaM software-defined cache which supports the customization
of cache-line eviction policies. The window buffering technique
reduces cache thrashing by avoiding the eviction of reusable node
feature vectors through mini-batch look-ahead. This is achieved by
conducting a graph sampling operation for a configurable number
of iterations to fill the window buffer with sampled node IDs and
avoiding the eviction of feature vectors for reused nodes in the
window buffer. Therefore, the dataloader can look-ahead to the list
of the sampled nodes for future iterations.

Specifically, as illustrated in Figure 6, the window buffer in the
GIDS dataloader is initially filled with the node IDs that will be
sampled in the next few iterations (@). Once the window buffer is
filled, the sampled node IDs in the current mini-batch are compared
with the nodes in the window buffer (@). Then, the list of nodes that
will be reused in the next iterations and the number of occurrences is
generated (@). This information is then used to update the software
cache metadata, which tracks the number of reuses in the next
iterations for each node (@).

During the update, when the future reuse counter value changes
from 0 to any positive number, the state of the node in the GPU
cache is changed from the “Safe to Evict” state to the "USE" state
so that the corresponding cache-line will not be evicted. If the
counter value is already a positive number, the state is kept marked
as the "USE" state (@). The counter value is decreased each time
the node is reused during the feature aggregation stage. When the
counter value becomes 0, the state of the corresponding cache-line
is then set back to the “Safe to Evict” state so that other threads
can safely evict the cache-line. This approach effectively reduces
cache thrashing and improves the performance of GNN feature
aggregation on GPUs.

3.5 Graph Structure Data in CPU Memory

As shown in Figure 5, the graph sampling throughput is higher
on GPU than on CPU despite graph sampling being a sequential
process. This is because the graph sampling process is especially
latency-critical for large-scale graphs. The fundamental approach
to accelerate such a process is to exploit parallelism to hide the
latency, which GPUs naturally provide. Figure 7 shows that GPU
outperforms CPU for all three datasets, with a performance gain of
over 3X for the medium dataset. However, storing graph structure
data in storage incurs multiple problems.

Firstly, the graph sampling process has a smaller data access gran-
ularity than the feature aggregation process, resulting in significant
I/0 amplification. This is because the data accesses to the storage
devices are handled in page granularity, such as 4KB, meaning even
if only a small segment of data is requested, the entire cache-line is
transferred from the storage to GPU memory. Secondly, the random
data access pattern from the sampling process makes it challenging
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for the GPU cache to exploit data locality, which can degrade the
performance of the feature aggregation process. This is because
the GPU memory is a limited resource, and the random data access
pattern can pollute the GPU software-defined cache.

To address these challenges, the GIDS dataloader employs zero-
copy data transfer via Unified Virtual Addressing (UVA) for graph
structure data. Instead of storing the entire graph data in storage
devices, our dataloader allows users to store node feature data on
storage while pinning graph structure data in the CPU memory.
This makes it possible to execute the graph sampling process on
either CPU or GPU. This is a practical approach because the graph
structure data is small compared to the node feature data, even for
the terabyte-scale graphs that we expect to accommodate in the
foreseeable future, as shown in Table 4.

4 EVALUATION
4.1 Experimental Setup

Environment. Table 1 summarizes the system configuration for all
evaluations. We compare GIDS and the state-of-the-art baseline dat-
aloaders on an AMD EPYC high-end server-grade system equipped
with a NVIDIA A100-40GB GPU and 1TB DDR4 CPU DRAM. Addi-
tionally, either 768 GB or 512GB of the CPU memory was locked
for exclusion to limit the CPU memory capacity for evaluation
purposes. The evaluations were conducted using Intel Optane PCle
Gen4 NVMe SSDs as the default storage. To comprehensively assess
overall performance, measurements were also taken with Samsung
980 Pro SSDs.

Table 1: Configuration used to evaluate GIDS.

Configuration [

CPU

Memory

Specification

AMD EPYC 7702 64-Core Processor
1TB DDR4

NVIDIA A100 HBM2 40GB

108 SMs, 192KB Shared Memory per SM
40MB LLC, 1555GBps HBM Bandwidth
Ubuntu 20.04 LTS, NVIDIA Driver 470.103
CUDA 11.4

DGL 0.10

Pytorch 1.13.0

Intel Optane SSDs

Samsung 980 Pro SSDs

PClIe Gen 4 Interconnect

GPU

S/W

SSDs

Datasets. To assess the performance of GIDS dataloader on large-
scale graph datasets, we conducted experiments using four real-
world datasets: IGB-Full [19], IGBH-Full [19], ogbn-papers100M [13],
and MAG240M [39]. Table 2 presents the characteristics of these
datasets, such as the number of nodes and edges, the dimension of
the node feature data, and the type of graph. It is worth noting that
ogbn-papers100M and MAG240M datasets are small enough to fit
into the CPU memory of our evaluation system.

GIDS Implementation We extended DGL [49] to implement the
GIDS dataloader. Our approach involves creating new extensions
for the storage-based feature gathering by leveraging BaM [31] to
support user-level GPU-initiated direct storage access. We then
extended the DGL dataloader class to incorporate GIDS functional-
ities. To use the GIDS dataloader, users only need to set the GIDS
flag when initializing the DGL dataloader.
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Table 2: Real-world dataset used for evaluating GIDS.

Dataset Graph Type Number of Number of | Feature Di-
Nodes Edges mension
ogbn- Homogeneous 111,059,956 1,615,685,872 128
papers100M
IGB-Full Homogeneous 269,364,174 3,995,777,033 1024
MAG240M Heterogeneous 244,160,499 1,728,364,232 768
IGBH-Full Heterogeneous 547,306,935 5,812,005,639 1024
Table 3: IGB datasets used for micro-benchmarks.
Dataset Graph Type Number of Number of | Feature Di-
Nodes Edges mension
IGB-tiny Homogeneous 100,000 547,416 1024
IGB-small Homogeneous 1,000,000 12,070,502 1024
IGB-medium Homogeneous 10,000,000 120,077,694 1024
IGB-large Homogeneous 100,000,000 1,223,571,364 1024

Table 4: Datasize distribution for the real-world datasets.

Dataset Feature Data Size Graph Structure Total Size (GB)
(%) Data Size (%)

ogbn- 68.3 31.0 77.4

papers100M

IGB-Full 94.7 5.1 1084.0

MAG240M 86.7 12.8 200.0

IGBH-Full 96.0 3.8 2773.0

Model: We assessed the performance of the GIDS dataloader us-
ing two distinct sampling techniques: neighborhood sampling [11]
and LADIES [51] for layer-wise sampling. All models were config-
ured with a hidden dimension of 128, and a mini-batch size of 4,096
was employed with three sampling layers

1234

GB of GPU device memory for GPU software-defined caching and
allocated CPU memory for 10% of the dataset. We utilized a single
NVMe SSD for both the GIDS dataloader and the DGL baseline
dataloader.

Baseline: We compared GIDS with the DGL dataloader that is
extended to work with memory-mapped files. We used the memmap
function from NumPy to create a memory-mapped array tensor for
the graph data. Additionally, we implemented a BaM dataloader,
which integrates the BaM system into the DGL dataloader, and
compared it with GIDS to showcase the novel benefits offered by
GIDS. Furthermore, we conducted comparisons with Ginex [28].
However, Ginex exclusively supports homogeneous graphs and
neighborhood sampling techniques.

Measuring Execution Time: When working with large graph
datasets, the training process can be excessively long, especially for
the baseline. Therefore, we conducted the evaluations by measuring
the execution time for 100 iterations after a warm-up stage of
1,000 iterations. We used the listed model configuration, with a
mini-batch size typically ranging from 1 GB to 3 GB. This setup is
favorable for the baselines mmap and Ginex as we are not measuring
the storage latency overhead from the first 1,000 iterations when
the page cache in the CPU memory is being warmed up for the
baseline. However, for the GIDS dataloader, only 10 iterations are
required to warm up the GPU software-defined cache, and the cache
miss for the baseline is more critical due to the exposed storage
latency.

4.2 Estimation of the Required Number of
Overlapping Storage Accesses

In Section 3.2, we introduced a mathematical model to estimate
the necessary number of overlapping storage accesses to attain the
target SSD bandwidth. To validate our model, we measured the
achieved SSD bandwidth with different numbers of overlapping
storage accesses for two distinct SSDs: the Intel Optane SSD and
the Samsung 980 Pro SSD. Then, we compared the achieved SSD
bandwidth with the expected SSD bandwidth calculated by our
model. For this evaluation, we configured our IO size to be 4KB.
With a 4KB IO size, the peak IOPs reached 1.5M IOPs for Intel
Optane and 700K IOPs for the Samsung 980 Pro SSDs. The SSD
latency was measured at 11yus for Intel Optane SSDs and 324ps for
Samsung 980 Pro SSDs. Additionally, we added 25us to account for



the initial latency related to kernel launch and to capture initial
software overheads while we set the termination latency to 5ps.
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Figure 8: SSD bandwidth with different numbers of over-
lapping accesses using estimation from the model and mea-
surement from the microbenchmark. The model accurately
predicts both the trend and values of the measurements.

Figure 8 displays the achieved SSD bandwidth and the expected
SSD bandwidth from our model based on the number of overlap-
ping SSD accesses. Despite the high variance in latency, our model
accurately estimates the SSD bandwidth, particularly when it ap-
proaches the peak bandwidth. For example, if we aim to achieve
95% of the peak SSD IOPs, our model estimates that 812 accesses are
required for the Intel Optane SSD, while we measured the targeted
IOPs with 1024 overlapping accesses. These results show that our
model accurately estimates the required number of overlapping
storage accesses for GIDS techniques, such as the dynamic storage
access accumulator.

4.3 Impact of the Dynamic Storage Access
Accumulator

In this evaluation, we present an experiment using two Intel Optane
SSDs connected to a single GPU to assess the effectiveness of the
dynamic storage access accumulator. We varied the batch size across
arange from 32 to 128 while keeping the fan-out values constant for
neighborhood sampling at (5,5). Our evaluation employed the IGB-
Full dataset, and we measured the GPU PCle ingress bandwidth.

[ Storage @ Constant CPU buffer

20

(GB/s)
w 6

o

BaM BaM + GIDS GIDS + BaM BaM + GIDS GIDS + BaM BaM + GIDS GIDS +
Acc ACC Acc ACC Acc ACC

GPU PCle Ingress Bandwidth

Batch Size: 32 Batch Size: 64 Batch Size: 128

Figure 9: The dynamic storage access accumulator increases
GPU PCle ingress bandwidth for BaM (1.25%) and GIDS dat-
aloader (1.95x) by enhancing overlapping storage accesses.
This improvement is more pronounced in GIDS due to its
lower SSD bandwidth use through (1) a higher software cache
hit ratio due to window buffering and (2) a reduced number
of storage accesses through the CPU constant buffer.
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Figure 9 illustrates the GPU PCle ingress bandwidth with dif-
ferent configurations during the feature aggregation stage of the
GIDS dataloader. The BaM dataloader integrates the BaM system
into the DGL dataloader while window buffering and the constant
CPU buffer are activated for the GIDS dataloader.

The baseline BaM dataloader achieves PCle ingress bandwidths
of 7.6 GB/s, 9.4 GB/s, and 10.1 GB/s for batch sizes of 32, 64, and
128, respectively. Since the peak bandwidth for Intel Optane SSDs
is approximately 5.8 GB/s, the peak collective SSD bandwidth is
11.6 GB/s, showing that there are insufficient overlapping storage
accesses to effectively hide latency, particularly evident with a batch
size of 32. With the accumulator, BaM can achieve 9.8 GB/s, 10.4
GB/s, and 10.6 GB/s, which is much closer to the peak bandwidth.

With the incorporation of the constant CPU buffer and window
buffering, the performance gap widens. GIDS with the accumulator
achieves 1.95x, 1.46%, and 1.31X speedup compared to GIDS without
the accumulator. The number of concurrent storage accesses is
reduced in GIDS as some storage requests are redirected to either
the GPU software cache or the constant CPU buffer, resulting in
lower SSD bandwidth utilization. Thus, the performance gain by the
accumulator is higher in GIDS as it ensures the peak SSD bandwidth
utilization even with redirected storage access. While the achieved
SSD bandwidth is slightly below the peak, this is due to a decrease
in the number of GPU threads that can simultaneously enqueue
storage accesses, as they are involved in copying data from the
CPU buffer to GPU memory. Overall, the dynamic storage access
accumulator empowers users to enhance SSD bandwidth utilization
for various configurations of their GNN models, irrespective of
their hardware specifications.

4.4 Impact of the Constant CPU Buffer

In this section, we examine the impact of the constant CPU buffer
on the feature aggregation performance, particularly when the PCle
bandwidth is underutilized. In this evaluation, the GIDS dataloader
fetches feature data from storage that consists of a single SSD for
the IGB-full dataset.

Across all dataloaders, we consistently configured the GPU soft-
ware cache to be 8GB, without the application of the window buffer-
ing technique. To assess the influence of the CPU buffer, we system-
atically varied its size, ranging from 10% to 20% of the dataset size.
Furthermore, we explored the performance of feature aggregation
when implementing the reverse page-rank algorithm to determine
which nodes should be pinned in the constant CPU buffer.

Figure 10 provides insights into the effective bandwidth when
10% or 20% of the feature data is pinned in the constant CPU buffer.
The baseline GIDS dataloader achieved a feature aggregation band-
width of 6.6 GBps, which slightly exceeds the peak SSD bandwidth
(5.8 GBps) as it fully saturated the SSD bandwidth, and some ac-
cesses were redirected to the GPU software cache. However, it
is essential to highlight that the baseline dataloader cannot fully
utilize the available GPU ingress PCle bandwidth.

In contrast, with a 20% constant CPU buffer size, particularly
when employing the reverse page-rank selection strategy, the fea-
ture aggregation throughput of the GIDS dataloader is increased
from 10.4 GBps and 23.4 GBps. This is because a significant portion
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Figure 10: Feature aggregation throughput of the baseline
GIDS and GIDS with the constant CPU buffer. GIDS achieves
up to 3.53% higher effective bandwidth with the constant
CPU buffer with reverse page rank. With reverse page rank,
the CPU constant buffer holding 20% of the graph feature
data effectively magnifies the bandwidth of a single SSD to
that of four SSDs.

of storage accesses are redirected to the constant CPU buffer, in-
creasing the PCle bandwidth utilization beyond the SSD bandwidth.
These results show that GIDS dataloader’s capacity to mitigate
resource constraints on SSDs by harnessing the potential of CPU
resources, establishing it as a practical solution across a wide spec-
trum of systems.

4.5 Impact of the Window Buffering Cache
Optimization

In this section, we present an evaluation of the impact of GPU
software-defined cache optimization on the feature aggregation
process. To conduct this evaluation, we compared the performance
of GIDS with a basic GPU software-defined cache against GIDS
with window buffering optimization. To ensure a fair comparison,
we used the IGB-full dataset with the same neighborhood sampling
parameters and mini-batch size. We evaluated the performance
with an 8 GB GPU software cache.

To accurately measure the impact of the window buffering tech-
nique, we varied the depth of the window buffer from 0 to 4, and
then to 8 while evaluating the feature aggregation time and the
GPU software-defined cache hit ratio. When the window buffer
depth is 0, the GPU software-defined cache follows the random
eviction policy, which serves as the baseline. Figure 11 displays
the results, which show that the window buffering technique can
improve the cache hit ratio. A window size of 4 improves the cache
hit ratio by only 1.2X and the feature aggregation time by 1.04X.

Setting the window buffer depth too low, compared to the size
of the GPU cache, can lead to a similar performance as random
eviction. For instance, if the mini-batch size is 2 GB, and the GPU
cache size is 10 GB, most of the node features from the previous
four mini-batches still reside in the cache with a random eviction
policy. Therefore, the optimal hit ratio with a window size of four is
similar to random eviction, making it hard to achieve a meaningful
performance gain.

When we increase the window buffer size to 8, the cache hit ratio
improves by 2.19X over not having any window buffering, and the
aggregation time decreases by 1.13X. This is because the depth of
the window buffer provides enough information about the cached
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Figure 11: Performance comparison of feature aggregation
process on GIDS dataloader for different window buffering
depths.

node features that will be reused in future mini-batches to avoid
evicting reusable cache-lines across mini-batches, which results in
a substantial difference compared to random eviction. When the
window buffer size is set to 8, the cached node features that the
GPU cache can utilize exceed the number of the node features that
can fit into the GPU cache. Any further increase in the window
buffer depth should be accompanied by an increased GPU cache

size.

GIDS GIDS+ GIDS GIDS+ GIDS GIDS +
WB (8) WB (16) WB (32)

4GB 8GB 16 GB

N
=

3

0.25
0.15

; ||II|
. m

0.1
GIDS GIDS+ GIDS GIDS+ GIDS GIDS+
WB (8) ws ws
(16) (32)

8GB 16 GB

Hit Ratio

0.

o

Aggregation Time (s)

bR NN W W
wohm3dndn

[
4GB

Figure 12: Feature aggregation performance comparison be-
tween window buffering and the baseline. GIDS achieves a
higher GPU software cache hit ratio by capturing more lo-
cality with the window buffer.

Next, we compare the performance of the window buffering
technique with 4 GB, 8 GB, and 16 GB of the GPU software cache.
When window buffering is activated, we set the depth of the window
buffer to 16 for all 4 GB, 8 GB, and 16 GB GPU software cache,
respectively.

As shown in Figure 12, the window buffering technique demon-
strates an improvement, outperforming the GIDS without window
buffering by a factor of 1.20, 1.18, and 1.12 for the IGB-Full dataset
with 4 GB, 8 GB, and 16 GB GPU cache, respectively. The hit ratio
for the baseline GPU software cache increases as the size of the
cache increases since it can exploit more temporal locality. How-
ever, even the 16 GB GPU cache performs worse than the 4 GB
GPU cache with window buffering because the hit ratio of GIDS’s
GPU cache is less affected by the GPU cache size unless the window
buffer depth is changed.

However, there is a trade-off to consider when increasing the
window buffer depth. First, there needs to be enough memory space
for the window buffer. As the number of node samples for each



mini-batch is around 1M, the size of the list of sampled nodes for a
mini-batch is several megabytes. Although this is not a significantly
large amount, larger window sizes increase the GPU memory re-
quirement as the list of sampled nodes in the window buffer must
be kept in GPU memory for subsequent iterations. Additionally, a
larger window size means a larger portion of the GPU cache will be
pinned for future reuse, increasing the contention on the available
cache-lines in the GPU software cache. Therefore, it is essential to
carefully choose the window buffer size to ensure that the benefit of
a higher cache hit ratio outweighs the overhead of a larger window
buffer size. By default, the GIDS dataloader sets the depth of the
window buffer to 8 based on the system environment. However, the
window buffer depth is a tunable parameter that users can adjust
based on the hardware environment, such as GPU memory size.

4.6 Overall Performance

Figure 13 and Figure 14 illustrate the End-to-End (E2E) GNN train-
ing times for both the baseline and GIDS dataloaders on homoge-
neous and heterogeneous graphs, using Samsung 980pro and Intel
Optane SSDs, respectively. Notably, Ginex does not support het-
erogeneous graphs, and therefore, the performance on IGBH-Full
and MAG240M datasets for Ginex is not measured. For IGBH-Full
datasets, two SSDs are used for the evaluation due to storage ca-
pacity.

As shown in Figure 13 and Figure 14, the GIDS dataloader achieves
speedups, reaching up to 8.3x and 582X compared to the DGL base-
line dataloader for Intel Optane and Samsung 980pro SSDs, respec-
tively. The performance gain is higher with Samsung 980pro SSDs,
primarily because the feature aggregation process in the baseline
dataloader is limited by the SSD latency, and the SSD read latency
of Samsung 980pro SSDs is approximately 30X higher than that
of Intel Optane SSDs. Furthermore, the performance gain for IGB-
Full and IGBH-Full datasets is substantially larger than that for
ogbn-papers100M and MAG240M because the sizes of the latter
two graphs are smaller than the CPU memory capacity, and thus
the baseline does not incur a significant number of page faults while
training with these datasets.

When compared with Ginex, GIDS attains speedups of up to
10.6x and 37.2X with Intel Optane and Samsung 980pro SSDs. Ginex
aims to alleviate storage overhead by reducing redundant accesses
to storage, but the storage latency remains a challenge to effec-
tively mitigate, resulting in significant overhead. Finally, GIDS also
outperforms the BaM dataloader by 1.3x to 3.1x. This is attrib-
uted to GIDS’s efficient utilization of CPU and GPU memory, which
minimizes storage accesses and leads to higher effective bandwidth.

4.7 Performance of GIDS with Layer-wise
Sampling

We also conducted a performance comparison of GIDS with layer-
wise sampling techniques, such as LADIES [51], against the baseline
dataloaders. Since Ginex [28] does not support sampling techniques
other than neighborhood sampling, we compared GIDS with the
DGL dataloader and BaM. In this evaluation, we pinned 512 GB of
CPU memory while allocating 8 GB GPU cache for both BaM and
GIDS. As shown in Figure 15, GIDS achieved a speedup of 412x
compared to the DGL dataloader and a 1.92Xx speedup compared to
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BaM. These results highlight GIDS’s exceptional performance with
layer-wise sampling techniques.

For subgraph-based sampling techniques, such as ClusterGCN [5],
the GIDS dataloader can also be utilized. However, subgraph-based
sampling techniques involve the use of the Metis [17] algorithm to
partition the graph and feature vectors to fit in the CPU memory.
Metis-based graph dataset partition is an extremely time-consuming
process for large-scale graph datasets like IGB (more than 2 days).
On the other hand, GIDS leverages SSDs to store graph datasets
and enables the mapping of significantly large graph datasets in
a single node (depending on the size and number of SSDs in the
system) without the need for a graph partitioning step. Given this,
we chose not to evaluate GIDS for subgraph-based partitioning due
to the potential impracticality of employing the Metis algorithm in
such cases.

5 RELATED WORK

Several GNN specific applications and optimizations have been
proposed in the literature [12, 24, 30, 36, 44, 46]. ROC [16], Neu-
Graph [23], and DSP [4] propose multi-GPU training system for
large-scale GNN training. However, they require significant addi-
tional hardware resources and are not scalable solutions.

FeatGraph [14] and ZIPPER [47] propose tiling to mitigate the
memory footprint during GNN training. FeatGraph reduces mem-
ory usage by utilizing graph partitioning and feature dimension
tiling. Meanwhile, ZIPPER employs graph-native intermediate rep-
resentation to optimize GNN, such as sparse graph tiling and redun-
dant operation elimination. However, these approaches suffer from
random accesses from GNN, leading to poor performance. More-
over, these solutions do not leverage GPU for the data preparation
process.

AliGraph [50], PaGraph [21], and Ginex [28] use in-memory
caching to reduce data transfer overhead. AliGraph and PaGraph
cache high out-degree vertices in GPU memory to minimize data
transfer between CPU and GPU. Ginex uses Belady’s algorithm with
super-batch samples and pipelining techniques to hide the latency
from specialized caching policies. However, these approaches rely
on the CPU for the data preparation process and cannot fully hide
storage latency.

Data Tiering [25] uses weighted reverse PageRank to estimate
the frequency of accesses during node sampling, improving GPU
memory utilization. However, it requires all graph data to be stored
in either CPU or GPU for GNN training execution, so it is not
applicable to large-scale GNN training.

6 CONCLUSION

Training Graph Neural Networks (GNNs) on large-scale graph
datasets is a challenging task due to their size exceeding the CPU
memory capacity. Although distributed training is a possible solu-
tion, it is not cost-effective or even practical for many users. In this
paper, we propose the GIDS dataloader, a GPU-oriented GNN train-
ing system that enables the training of large-scale graph datasets
on a single machine. The GIDS dataloader enables GPU threads to
directly access storage and fully tolerates the long storage latency
by exploiting the massive data-level parallelism provided by GPUs
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Figure 15: Feature aggregation time comparison of the GIDS
dataloaders and the baseline dataloaders for neighborhood
and LADIES sampling.

and our novel storage access accumulator. Moreover, the GIDS dat-
aloader further improves performance by utilizing GPU memory as
a software-defined cache with window buffering and CPU memory
as the constant CPU buffer. By reducing the I/O overhead and max-
imizing hardware resource utilization, GIDS dataloader can scale
GNN training to datasets whose sizes are more than an order of
magnitude larger than a single machine’s CPU memory capacity
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while achieving up to 582X speedups over the state-of-the-art dat-
aloader for the overall execution of an end-to-end GNN training
pipeline.
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