
QTCS: EfficientQuery-Centered Temporal Community Search
Longlong Lin

Southwest University,

College of Computer and

Information Science

longlonglin@swu.edu.cn

Pingpeng Yuan

Huazhong University of

Science and Technology

ppyuan@hust.edu.cn

Rong-Hua Li

Beijing Institute of

Technology

lironghuabit@126.com

Chunxue Zhu

Huazhong University of

Science and Technology

cxzhu@hust.edu.cn

Hongchao Qin

Beijing Institute of

Technology

qhc.neu@gmail.com

Hai Jin

Huazhong University of

Science and Technology

hjin@hust.edu.cn

Tao Jia

Southwest University

tjia@swu.edu.cn

ABSTRACT
Temporal community search is an important task in graph analysis,

which has been widely used in many practical applications. How-

ever, existing methods suffer from two major defects: (i) they only

require that the target result contains the query vertex q, leading to
the temporal proximity between q and other vertices being ignored.

Thus, they may find many temporal irrelevant vertices (these ver-

tices are called query-drifted vertices) concerning q for satisfying

their objective functions; (ii) their methods are NP-hard, incurring

high costs for exact solutions or compromised qualities for approxi-

mate/heuristic algorithms. In this paper, we propose a new problem

named query-centered temporal community search to overcome

these limitations. Specifically, we first present a novel concept of

Time-Constrained Personalized PageRank to characterize the tem-

poral proximity between q and other vertices. Then, we introduce a

model called β-temporal proximity core, which can seamlessly com-

bine temporal proximity and structural cohesiveness. Subsequently,

our problem is formulated as an optimization task that finds a β-
temporal proximity core with the largest β . We theoretically prove

that our problem can circumvent these query-drifted vertices. To

solve our problem, we first devise an exact and near-linear time

greedy removing algorithm that iteratively removes unpromising

vertices. To improve efficiency, we then design an approximate two-

stage local search algorithm with bound-based pruning techniques.

Finally, extensive experiments on eight real-life datasets and nine

competitors show the superiority of the proposed solutions.

PVLDB Reference Format:
Longlong Lin, Pingpeng Yuan, Rong-Hua Li, Chunxue Zhu, Hongchao Qin,

Hai Jin, and Tao Jia. QTCS: Efficient Query-Centered Temporal Community

Search. PVLDB, 17(6): 1187 - 1199, 2024.

doi:10.14778/3648160.3648163

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/longlonglin/QTCS.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.

doi:10.14778/3648160.3648163

Figure 1: Motivation Example. Frank is the query vertex. S1
is the answer of [12], S2 is our answer.

1 INTRODUCTION
Real-life graphs exhibit rich community structures that are defined

as densely connected subgraphs. Community mining is a significant

vehicle for analyzing network organization. In general, community

mining can be divided into community detection [2, 7, 25, 33, 38]

and community search [3, 6, 44, 55]. The former aims to find all
communities by some predefined criteria (e.g., Modularity or Con-

ductance [25]), resulting in that it is time-consuming and not cus-

tomized for user-specified query requests. To alleviate these defects,

the latter identifies the specific community containing the user-

initiated query vertex, which is more efficient and personalized.

Despite the significant success of community search, most ex-

isting approaches are tailored to static networks, which ignore the

potential time interaction information among vertices. For example,

in e-commerce or social media, the connection between two parties

was made at a specific time. Such networks are named temporal

networks [13]. It would be possible to use static community search

methods to temporal networks by ignoring the time information

of edges, but such solutions have been shown to be sub-optimal

[4, 12, 23, 35, 46]. For example, Figure 1 shows a sample money

transfer network, in which the timestamps of each edge indicate

when the two individuals make transactions. We assume Frank is

the query vertex. By using 2-core as the community model (i.e.,

each vertex has at least 2 neighbors in the community. Note that

3-core does not exist in Figure 1), the whole graph G is the answer

[6, 44]. However, the occurrence time of the transactions among

G differs greatly. Thus, G is an unpromising temporal community.

Recently, some studies have been done on temporal community

search. For example, Galimberti et al. [12] proposed the span-core

1187

https://doi.org/10.14778/3648160.3648163
https://github.com/longlonglin/QTCS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648163
https://www.acm.org/publications/policies/artifact-review-and-badging-current

model, which persistently maintains a k-core in every timestamp of

a small time window. As a result, S1 is the answer of [12] (because
S1 is 2-core in every timestamp of [1, 2]). However, we observe that
Frank cannot walk to Alice and Bob in chronological order, resulting
in that they have poor temporal proximity with respect to (w.r.t.)

Frank (see Section 2.2 and Definition 2.1 for details).

In this paper, we introduce a new problem named query-centered

temporal community search (QTCS), which aims at identifying a

community with good temporal proximity w.r.t. the query vertex.

Thus, the vertices of S2 may be the target community. This is be-

cause Frank has many walks to the vertices of S2 in chronological

order, resulting in that S2 has good temporal proximity w.r.t. Frank.
Note that Carol is not included in S2 because the time difference of

the walk from Frank to Carol is too big (e.g., the time difference of

{(Frank,David, 5), (David,Carol , 14)} is 14 − 5 = 9), resulting in

that Carol has also poor temporal proximity w.r.t. Frank (Section 2.2

and Definition 2.3). For applications such as anti-money-laundering,

we would like to search the community that contains a known sus-

picious account (e.g., the query node Frank), and investigate the

associated counts (e.g., nodes of S2) [21]. Besides, on temporal col-

laboration networks, QTCS may be the research group initiated by

the given query vertex. So, detecting QTCS enables us to reveal

interesting communities that revolve around the query vertex.

Unfortunately, existing temporal community search methods

suffer from two major challenges in terms of QTCS [4, 12, 23, 35, 46].
First, in the community search problem, the vertices of the target

community should have good proximity w.r.t. the query vertex

[18, 52]. However, all existing methods do not consider the temporal

proximity between the query vertex q and other vertices but simply

require the result including q. Namely, they underestimate the

importance of q in the target community. Thus, they may find

many temporal irrelevant vertices (e.g., Alice and Bob in Figure 1)

concerning q for satisfying their objective functions. We denote

such temporal irrelevant vertices as query-drifted vertices (Section
3.2). Second, most existing methods are NP-hard, incurring either

prohibitively high costs for exact solutions or severely compromised

results for approximate/heuristic algorithms. For example, [23, 46]

cannot obtain results within two days in our experiments, which is

clearly impractical for online interactive graph explorations.

For the first challenge, we extend the well-known proximity met-

ric Personalized PageRank [24, 30, 48, 50] to temporal networks and

define the corresponding Time-Constrained Personalized PageRank

(TPPR) by non-trivially integrating temporal constraint, which can

more properly capture the temporal proximity between the query

vertex and other vertices. Equipped with TPPR, we then propose

β-temporal proximity core to model the preference of user-specified

query vertex by combining seamlessly the temporal proximity and

structural cohesiveness. Consequently, by maximizing the value

of β , we proved theoretically that these query-drifted vertices are
removed (Section 3.2 and 6). Besides, the temporal proximity core

has only one parameter (i.e., the teleportation probability α in Sec-

tion 2.3), which is user-friendly. In contrast, [4, 23, 35] have many

parameters which are heavily dependent on datasets and are often

hard-to-tune. For the second challenge, we propose two efficient

algorithms. Specifically, we first develop an exact and near-linear

time greedy removing algorithm called EGR. EGR first computes

TPPR for every vertex and then greedily selects out the vertices

with the minimum query-biased temporal degree (Definition 2.5).

Clearly, the core of EGR is how to compute TPPR quickly. A base-

line solution for TPPR is to apply the existing push-based methods

[1, 47] or power iteration-based methods [34, 50], but they require

prohibitively high time costs. Based on in-depth observations, we

find that the state transition graph of a temporal graph is acyclic.

Thus, we leverage the acyclic property to devise an efficient dy-

namic programming algorithm to compute TPPR with one pass over

all temporal edges. To boost efficiency, we develop an approximate

two-stage local search algorithm named ALS with several pow-

erful pruning techniques. The high-level idea of ALS is to adopt

the expanding and reducing paradigm. The expanding stage di-

rectly starts from the query vertex and progressively adds qualified

vertices with proposed bound-based pruning techniques. Until it

touches the termination condition with theoretical guarantees. The

reducing stage iteratively removes unqualified vertices to satisfy

the approximation ratio. Our main contributions are as follows.

• Novel Model.We formulate the query-centered temporal com-

munity search problem in Section 2, which can reduce irrelevant

vertices and provide more accurate results.

• Theoretical Analysis.We introduce the concept of query-drifted
vertices to analyze the limitations of the existing solutions in

Section 3. We show that most existing methods contain many

query-drifted vertices. However, our model can circumvent these

query-drifted vertices.
• Efficient Algorithms.To solve our problem quickly, we propose

two practical algorithms in Section 4 and Section 5. One of them

is the exact greedy removing algorithm EGR with near-linear

time complexity. The other is the approximate two-stage local

search algorithm ALS.
• Comprehensive Experiments. Experiments (Section 6) on eight

datasets with different domains and sizes demonstrate our pro-

posed solutions indeed are more efficient, scalable, and effec-

tive than the nine competitors. For instance, on a million-vertex

DBLP dataset, ALS consumes about 13 seconds while EGR takes

47 seconds. However, some competitors cannot get the results

within two days on some datasets. Besides, our model is much

denser and more separable in terms of temporal features than

the competitors. Our model can find high-quality query-centered
temporal communities by eliminating query-drifted vertices that
the competitors cannot identify.

2 PROBLEM FORMULATION
2.1 Notations
Let G (V , E) be an undirected temporal graph, in whichV (resp., E)

indicates the vertex set (resp., the temporal edge set). Let (u,v, t)
∈ E be any temporal edge that indicates an interaction was made

between u and v at timestamp t . Note that (u,v, t1) and (u,v, t2)
are regarded as two different temporal edges if t1 , t2. That is, u
and v may be connected at different timestamps. Let |V | = n and

|E | = m be the number of vertices and the number of temporal

edges, respectively. For example, Figure 2(a) illustrates a sample

temporal graph G with 6 vertices and 9 temporal edges. More gen-

erally, temporal graphs can also be modeled as an edge stream [13],

which is a sequence of all temporal edges ordered by timestamps.

Figure 2(c) shows the edge stream representation for Figure 2(a).

We use G (V ,E) to denote the de-temporal graph of G, in which

E = {(u,v) |(u,v, t) ∈ E} and |E | = m̄. That is, G is a static graph

that ignores the timestamps of G. Figure 2(b) shows a de-temporal

1188

3
,4

2

v1

v3
v6

v5
v4v2

(a) Temporal graph G

v1

v3
v6

v5
v4v2

(b) De-temporal graph G (c) Edge stream representation for G (d) State transition graph

Figure 2: De-temporal graph, Edge stream and State transition of an example temporal graph

graph G. Let GS = (S,ES) be the subgraph induced by S if S ⊆ V
and ES = {(u,v) ∈ E |u,v ∈ S }. Let NS (v) = {u ∈ S |(u,v) ∈ E} be
the neighbors of v in S .

2.2 Time-Constrained Personalized PageRank
Proximity is a fundamental concept in static graph analysis, which

aims to characterize the similarity between two nodes by summa-

rizing all walks between them [53]. Since community search aims

to find a vertex set similar to the given query node, proximity can

be applied to improve the effectiveness of community search [1, 44].

In this paper, we extend the proximity to temporal networks and

study the corresponding temporal proximity. In the literature, sev-

eral studies have been done on temporal proximity. For example,

[14, 37] first converted the temporal graph into a weighted graph

and then applied the traditional method over the weighted graph

to define the temporal proximity. These methods, however, only

consider the temporal information of two directly-connected ver-

tices, missing higher-order temporal and structural information.

[31] adopted the tensor to represent the temporal network and

calculated the eigenvector of the tensor to capture the temporal

proximity, which is inefficient for handling large graphs. [40] is

most relevant to our work. We discuss the main differences be-

tween [40] and us in Table 1 and Section 6. A high-level definition

of temporal proximity is as follows.

Definition 2.1. [Temporal Proximity [13]] Given a temporal

graph G (V , E) and two vertices u,q ∈ V . u has poor (resp., good)

temporal proximity w.r.t q if (1) q has few (resp., many) walks to

u in chronological order; (2) The probability of these walks being

visited is small (resp., large).

Inspired by Definition 2.1, we propose the Time-Constrained

Personalized PageRank to effectively capture the temporal proxim-

ity between two vertices. Before proceeding further, we review the

most representative proximity model Personalized PageRank (PPR)
[30, 48]. Essentially, PPR models a random walk process that has a

unique stationary distribution and solves the equation:

x = αs + (1 − α)xW (1)

x is the stationary PPR distribution,α is the teleportation probability,

and s is a start distribution named the teleportation vector. W is

the state transition matrix, where each entryWvu indicates the

transition probability from vertex v to vertex u.
Although PPR has achieved significant success in static networks,

how to preserve the rich temporal information in PPR still faces two

challenges as follows. First, how to design an effective walk for tem-

poral networks. In real-world scenarios, the information transmis-

sion follows the chronological order. For example, (v2,v1,v4,v5) is
a walk in Figure 2 (b), but (v2,v1,v4,v5) in Figure 2 (a) is clearly

problematic w.r.t. chronological order. Such chronological order

constraints frequently occur in temporal networks, such as tem-

poral money transfer networks, transportation transfer networks,

and disease transmission networks [13, 49]. Second, how to design

an effective state transition matrix in temporal networks. Intu-

itively, the preference for an interaction decreases as time goes

by [54] (i.e., the tie between two vertices becomes stronger if the

interaction between them happens in a more current time). For in-

stance, in Figure 2(a), when thewalker walks tov1 through temporal

edge (v2,v1, 1), the probability that the walker chooses (v1,v3, 2)
to walk is higher than (v1,v4, 4). This is because the time differ-

ence between (v2,v1, 1) and (v1,v3, 2) (i.e., 2-1=1) is smaller than

the difference between (v2,v1, 1) and (v1,v4, 4) (i.e., 4-1=3). An-
other example is in temporal money transfer networks, the money

transaction {(a,b, 1), (b, c, 2)} has a better transaction experience

than {(a,b, 1), (b,d, 2000)} because (b, c, 2) respondsmore promptly.

However, the traditional state transition matrixW cannot distin-

guish such edge relationships. Additionally, more than one interac-

tion may occur between two vertices in temporal networks. So, W
is not applicable for modeling temporal proximity.

For ease of description, we convert each temporal edge to two or-
dered temporal edges of opposing directions. For example, (u,v, t)
converts to < u,v, t > and < v,u, t > (to avoid confusion, we use

() and <> to represent the temporal edge and ordered temporal

edge, respectively.). Moreover, we use e⃗ to denote any ordered tem-

poral edge. Let head (e⃗), tail (e⃗) and time (e⃗) be the head vertex, tail

vertex and timestamp of e⃗ , N > (e⃗) = {< u,v, t > |u = head (e⃗), t >
time (e⃗)}, e⃗outu = {e⃗ |tail (e⃗) = u}, e⃗inu = {e⃗ |head (e⃗) = u}. Based on

these symbols, we present the following definition to overcome the

challenges discussed above.

Definition 2.2. [Temporal transition matrix] Given a tempo-

ral graph G (V , E), the temporal transition matrix P ∈ Rm×m on

two ordered temporal edges e⃗i and e⃗j can be computed as

P (e⃗i → e⃗j) =

д (t ime (e⃗j)−t ime (e⃗i))∑
e⃗k ∈N

> (e⃗i)
д (t ime (e⃗k)−t ime (e⃗i))

, e⃗j ∈ N > (e⃗i)

0, e⃗j < N > (e⃗i)

(2)

P (e⃗i → e⃗j) indicates the temporal transition probability from e⃗i
to e⃗j and д(a −b) is a decaying function to capture the dependency

between interactions. Here, we apply a linear decaying function

д(a − b) = 1

a−b , which is often used in temporal settings [20, 51].

Our proposed solutions can trivially accommodate different func-

tions (e.g., exponential or logarithmic function). In the case that∑
e⃗j P (e⃗i → e⃗j) = 0, we call e⃗i a dangling state as [30, 48]. For

simplicity, we set P (e⃗i → e⃗i) = 1 to handle these dangling states.

By doing so, we can guarantee that P is a stochastic matrix, that is,∑
e⃗j P (e⃗i → e⃗j) = 1 for any e⃗i holds.

Definition 2.3. [Time-Constrained Personalized PageRank
(TPPR)] Given a temporal graph G (V , E), a query vertex q and

1189

a teleportation probability α , the Time-Constrained Personalized

PageRank of vertexu is denoted by tpprq (u) =
∑
e⃗ ∈e⃗ inu p̃pr (α , χ̃q) (e⃗).

p̃pr (α , χ̃q) = α χ̃q + (1 − α)p̃pr (α , χ̃q)P (3)

χ̃q ∈ R
1×m

is a vector with χ̃q (e⃗) = 1/|e⃗outq | for e⃗ ∈ e⃗outq .

We explain the intuition behind Definition 2.3 as follows: (i)

Equation 3 is also a random walk process analogous to Equation

1, except that each state in Equation 3 is an ordered temporal edge

instead of a vertex. Thus, p̃pr (α , χ̃q) (e⃗) can reflect the proximity

of each ordered temporal edge e⃗ w.r.t. q. (ii) Since P is a stochas-

tic matrix, p̃pr (α , χ̃q) is a probability distribution [30, 48]. Thus,∑
u tpprq (u) =

∑
u
∑
e⃗ ∈e⃗ inu p̃pr (α , χ̃q) (e⃗) = 1. That is, tpprq is also

a probability distribution. (iii) tpprq (u) is equivalent to the proba-

bility sum of the temporal walks from q to u (Lemma 4.3), which

conforms to the intuition of Definition 2.1. So, it is reasonable to

use tpprq (u) to describe the temporal proximity of u w.r.t. q. For
simplicity, we use tppr (u) to denote tpprq (u) if the context is clear.

2.3 Problem Statement
As mentioned in Section 2.2, TPPR can be used to measure the tem-

poral proximity between the query vertex and other vertices. Thus,

a naive way is to find a connected subgraph containing the query

vertex and has optimal TPPR score. Unfortunately, it ignores the fact

that a perfect temporal community should also have strong struc-

tural cohesiveness. Thus, another potential approach is to adopt the

cohesive subgraph model k-core to model the structural cohesive-

ness of the community [6, 44]. We call this model QTCS_Baseline,
which serves as a baseline model for experimental comparison.

Definition 2.4. [QTCS_Baseline] For a temporal graph G (V , E),
a teleportation probability α , a query vertex q and a parameter

k , QTCS_Baseline finds a vertex set S , satisfying (i) q ∈ S ; (ii)
GS is a connected k-core (i.e., |NS (v) | ≥ k for any v ∈ S); (iii)
min{tppr (u) |u ∈ S } is maximum.

However, QTCS_Baseline considers separately structural cohe-

siveness and temporal proximity, resulting in that it may identify a

sub-optimal result. For example, QTCS_Baseline may remove many

vertices with good temporal proximity under the structural con-

straints of the k-core. Conversely, it may contain many vertices

with poor temporal proximity to satisfy the structural cohesive-

ness. Thus, we propose the following novel metrics to combine

seamlessly structural cohesiveness and temporal proximity.

Definition 2.5. [Query-biased temporal degree] Given a ver-

tex set C , the query-biased temporal degree of vertex u w.r.t. C is

defined as ρC (u) =
∑
v ∈NC (u) tppr (v).

By Definition 2.5, we know that the query-biased temporal de-

gree measures the quality (i.e., temporal proximity w.r.t. the query

vertex) of neighbors rather than quantity. For example, u has 10
5

neighbors and each neighbor has a TPPR value of 10
−10

. As a result,

the query-biased degree of u is 10
−5
. On the other hand, suppose u

has only 10 neighbors, but each neighbor has a TPPR value of 10
−2
.

In this case, the query-biased degree of u is 10
−1
. So, the higher

the query-biased temporal degree of u, u may have more neighbors

with good temporal proximity w.r.t. the query vertex.

Definition 2.6. [β-temporal proximity core] The β-temporal

proximity core is a vertex set C , satisfying (i) GC is connected; (ii)

min{ρC (u) |u ∈ C} ≥ β .

By maximizing the value of β of a β-temporal proximity core,

we can detect a community in which each vertex of the community

has many neighbors with good temporal proximity w.r.t. the query

vertex. As a result, it ensures that the detected community is very

related to the query vertex, which makes it is easier to interpret

why the community is formed (see case studies of Section 6).

Problem 1 (QTCS). Given a temporal graph G (V , E), a teleporta-
tion probability α and a query vertex q, query-centered temporal

community search aims to identify a vertex set C , satisfying (i)

q ∈ C ; (ii) C is a β-temporal core with the largest β ; (iii) there does
not exist another community C ′ ⊇ C meets the above conditions.

3 PROBLEM ANALYSIS
3.1 Comparison with CSM
The community search by maximizing the minimum degree (CSM)

[6, 44] does have many similarities with our methods, but there

are also pivotal differences. Firstly, a key concept in CSM is the

degree of each vertex. So, we can simply adapt the CSM model to

solve the temporal community search problem by using a concept

of temporal degree. Specifically, the temporal degree of a vertex

u is the number of temporal edges that u participates in. Such a

simple adaption, however, has some serious defects. For example,

the temporal degree is a local metric used to measure the absolute

importance of vertices in the network. However, for the commu-

nity search problem, it may be more appropriate to consider the

relative importance between the query vertex and other vertices

[18, 52]. Unlike CSM, our solution is based on a new definition of

query-biased temporal degree (Definition 2.5) which can capture

the relative importance of temporal community search. Secondly,

in CSM, the (temporal) degree of a vertex can be obtained by sim-

ply checking the number of neighbors. However, the proposed

query-biased temporal degree is a global metric and needs more

complicated techniques to calculate it. Finally, the technologies of

CSM are very hard to handle massive temporal networks. This is

because their technologies are tailored to static networks. Even if a

temporal network can be approximately transformed into a static

network by existing methods, the size of the static network is often

much larger than the original temporal network (e.g., [49]), result-

ing in prohibitively computational costs. However, our technologies

are directly oriented to temporal networks which are very efficient

as shown in our experiments. Besides, we have also empirically

demonstrated the superiority of our approach by comparing it with

CSM in terms of community quality (Section 6).

3.2 Query Drift Issue
Here, we want to prove that most existing methods may identify

many temporal irrelevant vertices to the query vertex q for opti-

mizing their objective functions. For simplicity, we assume that

f (.) is an objective function, and the larger the value of f (C), the
better the quality of the community C . Let C∗ (f) be any optimal

community based on f (.), and Cq be any community containing q.

Definition 3.1. [Query-drifted vertices] Given an objective

function f (.), we say C∗ (f) −Cq , ∅ is query-drifted vertices and
f (.) suffers from the query drift issue iff the following two condi-

tions hold: (i) f (C∗ (f) ∪Cq) ≥ f (Cq); (ii) min{ρC∗ (f)∪Cq (u) |u ∈

C∗ (f) ∪Cq } ≤ min{ρCq (u) |u ∈ Cq }.

By Definition 3.1, we know that adding query-drifted vertices
C∗ (f) − Cq to Cq can improve its objective function score (i.e.,

1190

condition (i)), but reduce the query-biased temporal degree (i.e.,

condition (ii)). In other words, if an objective function f (.) finds
many temporal irrelevant vertices to the query vertex (i.e., condition

(ii)) for optimizing f (.) (i.e., condition (i)), then we say that f (.)
suffers from the query drift issue.

Remark. Surprisingly, the condition (i) of Definition 3.1 is also

called the free rider issue, which has been widely considered in

static community search [18, 52]. Specifically, if an objective func-

tion f (.) has the free rider issue (i.e., condition (i)), f (.)-based
community search methods tend to include some redundant ver-

tices (e.g., C∗ (f) −Cq) in the detected community. However, the

free rider issue cannot measure the temporal proximity between

the query vertex and the redundant vertices. Thus, we introduce

condition (ii) to further measure how these redundant vertices af-

fect the temporal proximity of the detected community. As a result,

our proposed query drift issue is more strict than the free rider

issue. That is, if f (.) suffers from the query drift issue, then f (.)
must have the free rider issue, and vice versa is not necessarily true.

Proposition 3.2. Given a temporal graph G and a query vertex
q, QTCS does not suffer from the query drift issue.

Proposition 3.3. Given a temporal graph G and a query vertex
q, [4, 12, 23, 35] suffer from the query drift issue.

4 EXACT GREEDY REMOVING FOR QTCS
In this section, we devise an exact greedy removing algorithm EGR
to address our problem QTCS. The main idea of EGR is first to

calculate the TPPR of each vertex and then greedily remove the

vertices with the minimum query-biased temporal degree.

4.1 Edge Stream For TPPR Computation
We focus on calculating the TPPR of every vertex. Straightforwardly,

we can use the push-based methods [1, 47] or power iteration-based

methods [34, 50] to solve Equation 3. However, suchmethods have a

high time overhead when handling temporal networks. The reasons

are as follows. First, the time complexity of thesemethods isO (MN)
[50], in whichM is the number of non-zero elements in the state

transition matrix and N is the number of iterations. For temporal

graphs, since each state in our model is an ordered temporal edge

instead of a vertex, M = O (m2) (m is the number of temporal

edges). So, the worst-case time complexity of existing methods is

O(m2N). Second, the state transition graph has a highly imbalanced

weighted distribution. As a result, they would spend significant

time on computing a small probability mass, resulting in high time

overhead in practice. So, the main technical contribution of this

section is to design efficient algorithms for computing TPPR.

Definition 4.1. [l-hop temporal walk] A l-hop temporal walk

from vertex i to vertex j is ordered temporal edges {e⃗1, e⃗2, ..., e⃗l },
satisfying head (e⃗1) = i , tail (e⃗l) = j, tail (e⃗i) = head (e⃗i+1) and
time (e⃗i) ≤ time (e⃗i+1) for all 1 ≤ i ≤ l − 1. For simplicity, we

denote twl and TW
u{v
l as the l-hop temporal walk and the set of

l-hop temporal walk from u to v , respectively.

Definition 4.2. [l-hop temporal transitionprobability]Given
a l-hop temporal walk twl = {e⃗1, e⃗2, ..., e⃗l }, the l-hop temporal tran-

sition probability of twl , denoted by P (twl), is P (twl) = P (e⃗1 →
e⃗2) ∗ P (e⃗2 → e⃗3) ∗ ... ∗ P (e⃗l−1 → e⃗l). For completeness, we set

P (tw0) = 0, P (tw1) = 1/|e⃗outu | if tw1 = {< u,v, t >}.

Lemma 4.3. Given a temporal graph G (V , E), a query vertex q
and a teleportation probability α , we have tppr (u) =

∑∞
i=0 α (1 −

α)i
∑
twi+1∈TW

q{u
i+1

P (twi+1).

Table 1: Comparison of PPR [1], TPP[40], and our TPPR

Graph State unit State transition graph

PPR [1] Static Node Cyclic

TPP[40] Temporal Node Acyclic

TPPR Temporal Ordered temporal edge Acyclic (self-loops are allowed)

Remark. Rozenshtein et al. [40] proposed temporal Personal-

ized PageRank (TPP) tppq (u) to model the temporal proximity of

u w.r.t q. Specifically, tppq (u) =
∑t (G)
i=0 α (1 − α)i

Pri (q{u)∑
v∈V Pri (q{v) , in

which t (G) is the maximum timestamp of G and Pri (q { u) =∑
twi ∈TW

q{u
i

PT PP (twi) (P
T PP (.) is the temporal transition prob-

ability of [40]). Our TPPR differs from TPP in two ways. Firstly,

TPP limits the length of the temporal walk to at most t (G). Thus,
in TPP, the temporal edges associated with t (G) do not have any

chance to connect with other temporal edges, which contradicts

the original definition of Personalized PageRank. However, our

TPPR allows the length of the temporal walk to be infinite, as stated

in Lemma 4.3. Thus, TPPR can capture more structure and tempo-

ral information than TPP. Secondly, the temporal transition prob-

ability of TPP (i.e.,
Pri (q{u)∑

v∈V Pri (q{v)) is differ from our TPPR (i.e.,∑
twi+1∈TW

q{u
i+1

P (twi+1)). However, the former takes more time to

calculate because it needs to consider all cases where q walks to

the remaining nodes (i.e., the denominator part). Besides, Table 1

summaries the differences among PPR [1], TPP[40], and our TPPR.
We know that a striking feature of our proposed TPPR is that the

state transition graph is acyclic (due to temporal walks occurring in

chronological order), which helps us to design efficient algorithms.

Note that the self-loops only appear in dangling states.

A failed attempt. By Lemma 4.3, a naive solution is first to enu-

merate all temporal walks from q to any vertexu. Then, it computes

the l-hop temporal transition probability from q to u by previous

temporal walks, and finally obtains tppr (u) by Lemma 4.3. Unfor-

tunately, it is impossible to calculate exactly the tppr (u) as the
summation goes to infinity. So, it is very challenging to directly

apply Lemma 4.3 to compute tppr (u). To tackle this challenge, we

observe that the state transition graph of a temporal graph is acyclic

(self-loops are allowed, see Definition 2.2 or Table 1), leading any

temporal walk has a finite length unless it hits a self-loop state (i.e.,

dangling state). We state the observation as the following lemma.

Lemma 4.4. By Definition 2.2 and 4.2, for tw∞ = {e⃗1, e⃗2, ...},
we observe that P (tw∞) , 0 iff there is an integer l such that (1)
time (e⃗i) < time (e⃗i+1) and e⃗i is not a dangling state for 1 ≤ i ≤ l −1;
(2) e⃗l is a dangling state and e⃗l = e⃗l+k for any integer k .

We denote a α-discount temporal walk of q as follows: (1) it

starts from an order temporal edge e⃗ sampled from the distribution

χ̃q ; (2) at each step it stops in the current order temporal edge

with probability α , or it continues to walk according to Equation 2

with probability 1-α . Let ut be any ordered temporal edge e⃗ with
tail (e⃗) = u and time (e⃗) = t . Let D[u][t] be the probability that a α-
discount temporal walk stops in ut given the α-discount temporal

walk at most one dangling state ut if any.

1191

Algorithm 1 Compute_tppr (G,q,α)
Input: temporal graph G; query vertex q; teleportation probability α
Output: the TPPR for every vertex.

1: tppr (u) ← 0, D[u]← {} for any u ∈ V
2: for (u, v, t) in the edge stream of G do
3: for t1 ∈ D[u] do
4: D[v][t] = D[v][t] + D[u][t

1
]

α (1 − α)P (ut1 →< u, v, t >)α
5: if u == q then
6: D[v][t] = D[v][t] + α

|e⃗outq |

7: for t2 ∈ D[v] do
8: D[u][t] = D[u][t] + D[v][t

2
]

α (1 − α)P (vt2 →< v, u, t >)α
9: if v == q then
10: D[u][t] = D[u][t] + α

|e⃗outq |

11: for u ∈ D do
12: for t ∈ D[u] do
13: if ut is a dangling state then
14: D[u[t] = D[u][t]/α
15: tppr [u] = tppr [u] + D[u][t]
16: return tppr

Lemma 4.5. Given a temporal graph G (V , E), a query vertex q,
and a teleportation probability α , we have tppr (u) =

∑
t ∈T1 D[u][t]+∑

t ∈T2 D[u][t]/α , in which T1 = {t |ut is not a dangling state} and
T2 = {t |u

t is a dangling state}.

Implication of Lemma 4.5. We can interpret tppr (u) as the sum
of probabilities that α-discount temporal walk stops in ut with

different t . In particular, when ut is a dangling state, the α-discount
temporal walk can be of infinite length and form a geometric se-

quence with (1 − α) common ratio. As a result, the termination

probability of α-discount temporal random walks with infinite

length can be calculated directly without simulating random walks.

Inspired by the above theoretical observations, we devise an

efficient dynamic programming approach (Algorithm 1) to com-

pute TPPR with one pass over all temporal edges. Algorithm 1 first

initializes tppr (u) as 0 and D[u] as a dictionary structure for ev-

ery vertex u ∈ V (Line 1). In Line 2, we represent the temporal

graph as an edge stream to ensure the time of temporal edges is

non-decreasing, which can facilitate the D[u][t] calculation. Thus,
for each temporal edge (u,v, t), we update the dictionary structures
D[u][t] and D[v][t] accordingly (Lines 3-10). So, the TPPR of u is

the sum of D[u][t] for different t by Lemma 4.5 (Lines 11-15).

Example 4.6. Consider the edge stream representation in Figure

2(c). Let v5 be the query vertex and α = 0.2, after the edge set

{(v1,v2, 1), (v2,v3, 1), (v1,v3, 2), (v3,v4, 2), (v4,v6, 3)} is traversed
in Line 2 of Algorithm 1,D is still empty. This is because the edge set

does not contain the query vertex v5. Then, {(v5,v4, 3), (v5,v6, 3)}
is traversed, D[v4][3] = D[v6][3] =

α
|e⃗outv

5
|
= 0.2

3
by Lines 2-10.

Finally, {(v1,v4, 4), (v5,v6, 4)} is traversed,D[v1][4] =
D[v4][3]

α (1−

α)P (v3
4
→< v4,v1, 4 >)α =

α
|e⃗outv

5
|
= 0.16

3
, D[v6][4] =

α
|e⃗outv

5
|
=

0.2
3
, and D[v5][4] =

D[v6][3]

α (1 − α)P (v3
6
→< v6,v5, 4 >)α =

α
|e⃗outv

5
|
= 0.16

3
by Lines 2-10. In Lines 11-15, since v4

1
, v4

5
, and v4

6
are

dangling states, D[v1][4] =
D[v1][4]

α = 0.8
3
, D[v5][4] =

D[v5][4]

α =

0.8
3
, and D[v6][4] =

D[v6][4]

α = 1

3
. So, tppr [v1] = tppr [v5] =

0.8
3
,

tppr [v2] = tppr [v3] = 0, tppr [v4] =
0.2
3
, tppr [v6] =

0.2
3
+ 1

3
= 1.2

3
.

Algorithm 2 EGR (G,q,α)

Input: temporal graph G; query vertex q; teleportation probability α
Output: the exact QTCS
1: tppr ← Compute_tppr (G, q, α)
2: temp ← V ; R ← V ; β∗ ← 0

3: ρ (u) ←
∑
v∈NV (u) tppr (v) for each vertex u ∈ V .

4: while temp , ∅ do
5: u ← argmin{ρ (u) |u ∈ temp }
6: if u == q then
7: break

8: if ρ (u) ≥ β∗ then
9: R ← temp ; β∗ ← ρ (u)
10: temp ← temp \ {u }
11: for v ∈ NV (u) ∩ temp do
12: ρ (v)=ρ (v) − tppr (u)
13: return CC (R, q), in which CC (R, q) is the vertex set from the maximal connected compo-

nent ofGR containing q

Theorem 4.7. Algorithm 1 can compute TPPR for each vertex.
The time complexity of Algorithm 1 is O (Tmax · (m + n)), where
Tmax = max{Tu |u ∈ V }, Tu = |{t |(u,v, t) ∈ E}|.

4.2 The EGR Algorithm
Below, we show that the query-biased temporal degree satisfies

a monotonic property, which supports an exact greedy removing

algorithm to solve our problem.

Lemma 4.8. [Monotonic property] Given two vertex sets S and
H and S ⊆ H , we have ρS (u) ≤ ρH (u) for any vertex u ∈ S holds.

By Lemma 4.8, we know that the larger the vertex set, the greater

the query-biased temporal degree of vertex u. Inspired by this, we

devise an exact greedy removing algorithm called EGR (Algorithm

2). Algorithm 2 first calls Algorithm 1 to calculate TPPR of every

vertex (Line 1). Then, it initializes the current search space temp
as V , candidate result R as V , the optimal value β∗ of QTCS as 0,

and the query-biased temporal degree ρ (u) for every vertex u ∈ V
according to Definition 2.5 (Lines 2-3). Subsequently, it executes the

greedy removing process in each round to improve the quality of the

target community (Lines 4-12). Specifically, in each round, it obtains

one vertexu with the minimum query-biased temporal degree (Line

5). Lines 8-12 update the candidate result R, the optimal value β∗,
the search space temp, and the query-biased temporal degree. The

iteration terminates once the current search space is empty (Line 4)

or the query vertex q is removed (Lines 6-7). Finally, Line 13 returns

CC (R,q) as the exact query-centered temporal community.

Example 4.9. Consider the temporal graph in Figure 2(a). Let v5
be the query vertex and α = 0.2, the ordering (v1,v2,v3,v6,v5,v4)
is the order of vertices selected in Line 5 of Algorithm 2, which is

illustrated in Figure 3. This is because that v1 has the minimum

query-biased temporal degree (i.e., 0.07) in {v1,v2,v3,v6,v5,v4}.
Similarly, v2 has the minimum query-biased temporal degree (i.e.,

0) in {v2,v3,v6,v5,v4}. Following this ordering, we can derive that

(v4,v5,v6) is the resultant community returned by Algorithm 2.

This is because the minimum query-biased temporal degree in

(v4,v5,v6) is 0.34, which is the maximum value among all sub-

graphs generated by Algorithm 2 (Figure 3).

Theorem 4.10. Algorithm 2 identify the exact QTCS. The time
complexity and space complexity of Algorithm 2 are (Tmax · (m +
n) + n logn + m̄) and O (Tmax · n +m), respectively.

In most real-life temporal graphs, n logn ≤ m and m̄ ≤ m as

stated in Section 6. Thus, the time complexity of Algorithm 2 can

1192

Figure 3: Illustration of Example 4.9 for the EGR algorithm.
The black circle refers to the currently deleted vertices. The
numbers in parentheses next to each vertex correspond to
the tppr value (obtained by Example 4.6) and query-biased
temporal degree, respectively.

be further reduced to O (Tmax ·m). Moreover, Algorithm 2 is even

near-linear in practice because Tmax is usually small (Section 6).

Clearly, the time complexity of QTCS is Ω(m) because it has to visit
the whole graph at least once to calculate the exact TPPR of each

vertex. Therefore, Algorithm 2 is nearly optimal.

5 APPROXIMATE LOCAL SEARCH FOR QTCS
In this section, we develop an approximate two-stage local search

algorithm namedALS for solving our problemQTCS.ALS adopts the
expanding and reducing paradigm. The expanding stage estimates

the TPPR for some vertices, which essentially reduces unnecessary

computation. Besides, it also obtains a small vertex set (say C)
covering all target communitymemberswith theoretical guarantees.

The reducing stage identifies an approximate solution directly from

C instead of the original large graph, reducing the search space.

5.1 The Expanding Stage
Inspired by the problem of estimating PPR [1], we devise a local

expanding algorithm. Before proceeding further, we briefly review

the simple but efficient algorithm named Forward_Push proposed

by Andersen et.al [1]. Forward_Push starts from the source state

s and propagates information. The procedure iteratively updates

two variables for each state v : its reserve π (s,v) and residue r (s,v).
π (s,v) indicates the approximate PPR value of v w.r.t. s and r (s,v)
indicates the information that will be propagated to other states

from state v . In each iteration, for each state v that needs to propa-

gate information, Forward_Push propagates αr (s,v) to π (s,v) and
the remaining (1 − α)r (s,v) is propagated along its neighbors. Af-

ter finishing the propagation, Forward_Push sets r (s,v) to zero.

Forward_Push has the following equation [1].

PPR(s,v) = π (s,v) +
∑
w

r (s,w)PPR(w,v) (4)

Where PPR(s,v) (resp. PPR(w,v)) is the PPR value of v w.r.t. s
(resp.w). Our proposed expanding stage is built upon Forward_Push,
but incorporates more novel strategies to adapt to ordered temporal

edges (because each state in TPPR is an ordered temporal edge

instead of a vertex). We first propose one key sub-algorithm in

Algorithm 3, which will be invoked later to estimate the TPPR for

some vertices. The process is similar to Forward_Push, except that
the propagation is executed on ordered temporal edges.

Algorithm 3 Propagation(e⃗)
1: if r (e⃗) ≥ 1/m then
2: for each e⃗1 ∈ N > (e⃗) do
3: r (e⃗1) ← r (e⃗1) + (1 − α)r (e⃗)P (e⃗ → e⃗1)
4: π (e⃗) ← π (e⃗) + αr (e⃗), Etppr (tail (e⃗)) ← Etppr (tail (e⃗)) + αr (e⃗)
5: r (e⃗) ← 0

Algorithm 4 Expanding (G,q,α)

Input: temporal graph G; query vertex q; teleportation probability α
Output: expanded vertex setC , r and Etppr
1: r ← {}; π ← {}; Etppr ← {}
2: r (e⃗) ← 1/ |e⃗outq | for all e⃗ ∈ e⃗outq

3: C ← ∅; β̂ ← 0;Q ← {q }; D ← {q }
4: whileQ , ∅ do
5: u ← Q .pop ();C ← C ∪ {u }
6: for e⃗ ∈ e⃗outu do
7: Propaдation (e⃗)
8: if min{

∑
v∈NC (w) Etppr (v) |w ∈ C } > β̂ then

9: β̂ ← min{
∑
v∈NC (w) Etppr (v) |w ∈ C }

10: for v ∈ NV (u) and v < D do
11: D ← D ∪ {v }
12: if

∑
e⃗ r (e⃗) +

∑
w∈NV (v) Etppr (w) ≥ β̂ then

13: Q .push (v)
14: if

∑
e⃗ r (e⃗) +

∑
w∈Q Etppr (w) < β̂ then

15: C ← C ∪Q
16: break

17: returnC , r and Etppr

Lemma 5.1. For any vertex set H and any vertex u ∈ H , we have∑
v ∈NH (u)

∑
e⃗i ∈e⃗ inv π (e⃗i) ≤ ρH (u) ≤

∑
v ∈NH (u)

∑
e⃗i ∈e⃗ inv π (e⃗i) +∑

e⃗ r (e⃗).

Implication of Lemma 5.1. The lemma indicates that the additive

errors of ρH (u) are negligible when the residue sum
∑
e⃗ r (e⃗) is small

enough. Therefore, we set r (e⃗) ≥ 1/m in Algorithm 3 to speed up

the propagation, resulting in

∑
e⃗ r (e⃗) decreases rapidly.

Based on Lemma 5.1, we present powerful pruning techniques to

delete some unqualified vertices or terminate the expanding stage

with theoretical guarantees. We denote C as the expanded vertex

set for the following reducing stage, Q as the candidate vertices

that are neighbors of C and not in C , β̂ as the best estimate of the

minimum query-biased temporal degree so far, D as the visited

vertices to avoid repeated visits. Let t̂ppr (v) =
∑
e⃗i ∈e⃗ inv π (e⃗i) be

the lower bound of TPPR for vertex v by Lemma 5.1.

Lemma 5.2. [bound-based pruning] For a vertex v , we can
prune the vertex v if

∑
e⃗ r (e⃗) +

∑
w ∈NV (v) t̂ppr (w) < β̂ .

Lemma 5.3. [stop expanding-I] Given the currently expanded
vertices C and candidate vertices Q , we can safely terminate the
expanding stage if Q = ∅.

Lemma 5.4. [stop expanding-II] Given the current expanded
vertices C and candidate vertices Q , we can set C = C ∪Q and safely
terminate the expanding stage if

∑
e⃗ r (e⃗) +

∑
w ∈Q t̂ppr (w) < β̂ .

With these powerful pruning techniques, we introduce Algo-

rithm 4 to implement the expanding stage. Specifically, in Lines

1-2, the algorithm first initializes r and π for ordered temporal

edges, which are used to estimate the query-biased temporal de-

gree (Lemma 5.1). In Lines 4-16, it executes the expanding process.

In particular, it pops a vertex u from queue Q to execute the prop-

agation process and adds u into the expanded vertex set C (Lines

5-7). After the propagation, it updates the estimate of the minimum

1193

Algorithm 5 Reducing (C, r , t̂ppr ,q,α)

Input: expanded vertex setC , r and Etppr from Algorithm 4; query vertex q; teleportation
probability α
Output: the ϵ -approximate QTCS

1: R ← C ; ρ̂ ← {}; f laд ← T rue
2: for u ∈ C do
3: ρ̂ (u) ←

∑
v∈NC (u) Etppr (v)

4: temp ← max{ρ̂ (u) |u ∈ C } +
∑
e⃗ r (e⃗); ϵ ←

temp
min{ρ̂ (u) |u∈C }

5: while f laд do
6: Q ← ∅; D ← ∅
7: for u ∈ R do
8: if ϵ ρ̂ (u) ≤ temp then
9: Q .push (u)
10: if u == q then
11: f laд ← False ;Q ← ∅
12: whileQ , ∅ do
13: u ← Q .pop and D ← D ∪ {u }
14: for v ∈ NR (u) and v < D do
15: ρ̂ (v) = ρ̂ (v) −Etppr (u)
16: if ϵ ρ̂ (v) ≤ temp then
17: Q .push (v)
18: if v == q then
19: f laд ← False ;Q ← ∅
20: if f laд then
21: ϵ ← ϵ ; R ← R \ D ; ϵ ← ϵ/2
22: return (ϵ ,CC (R, q)), in whichCC (R, q) is the vertex set from the maximal connected com-

ponent ofGR containing q and ϵ is the corresponding approximation ratio

query-biased temporal degree (Lines 8-9). In Lines 10-13, for each

neighbor vertex v of u, it uses the bound-based pruning technique

(Lemma 5.2) to remove unqualified vertices. Once the queue Q be-

comes the empty set or

∑
e⃗ r (e⃗)+

∑
w ∈Q t̂ppr (w) < β̂ , the algorithm

stops expanding according to stop expanding pruning techniques

in Lemma 5.3 and Lemma 5.4. Clearly, the vertex set C returned by

Algorithm 4 covers all target community members.

Theorem 5.5. The time complexity and space complexity of Algo-
rithm 4 are O (

∑
u ∈C
∑
e⃗ ∈e⃗outu

|N > (e⃗) |) and O (n +m) respectively.

5.2 The Reducing Stage
In the reducing stage, we identify an approximate query-centered
temporal community directly from the subset C found by the pre-

vious expanding stage. At a high level, this stage progressively

removes the vertices inC that are not contained in the approximate

solution. Until the remaining vertices meet the given approximation

ratio. Choosing which vertices to remove is a significant challenge.

Thus, we devise the following definition and lemma to guarantee

the quality of the search.

Definition 5.6. For a vertex set H and ϵ ≥ 1, if min{ρH (u) |u ∈
H } ≤ β∗ ≤ ϵ · min{ρH (u) |u ∈ H }, we say H is an ϵ-approximate

QTCS, where β∗ is the optimal value for QTCS.

Lemma 5.7. For the current search space R and ϵ ≥ 1, we can
safely prune u ∈ R without losing any ϵ-approximate QTCS if ϵ ·∑
v ∈NR (u) t̂ppr (v) < max{

∑
w ∈NC (v) t̂ppr (w) |v ∈ C} +

∑
e⃗ r (e⃗).

Unfortunately, ϵ does not know in advance. Thus, to obtain a

high-quality estimation error ϵ , we use a binary search to con-

tinuously refine ϵ . The idea of the reducing stage is outlined in

Algorithm 5. Specifically, it first initializes the current search space

R as vertex set C found by the previous expanding stage and the

estimated query-biased temporal degree ρ̂ (u) by the lower bound

of TPPR (Lines 1-3). Subsequently, in Line 4, it computes ϵ as the up-
per bound of the approximation ratio. In Lines 5-21, it proceeds by

continuously refining ϵ and iteratively removing the unpromising

vertices in each round to meet the current approximation ratio ϵ by

Lemma 5.7. In particular, in each round, it first initializes a queueQ
to collect vertices to be deleted and a set D to maintain all deleted

vertices (Line 6). Then it applies Lemma 5.7 to push those unpromis-

ing vertices intoQ in Lines 7-9 and processes iteratively the vertices

inQ to remove more unpromising vertices in Lines 12-17. The algo-

rithm use a f laд to indicate whether query vertex q is removed or

not. If the f laд is True , it updates the target approximation ratio ϵ ,
search space R and ϵ (in Lines 20-21). The iteration terminates once

query vertex q is removed. Finally, the algorithm returns CC (R,q)
as the ϵ-approximate query-centered temporal community (Line 22).

Algorithm 5 can correctly find an ϵ-approximate query-centered
temporal community based on Lemma 5.7.

Theorem 5.8. The time complexity and space complexity of Al-
gorithm 5 are O (|GC | logm) and O (|GC |) respectively, where GC =
{(u,v) ∈ E |u,v ∈ C}.

6 EXPERIMENTAL EVALUATION
We conduct extensive experiments to evaluate our solutions. All

experiments are executed on a server with an Intel (R) Xeon (R)

E5-2680 v4@2.40GHZ CPU and 256GB RAM running Ubuntu 18.04.

6.1 Experimental setup
Datasets.We evaluate our solutions on eight graphs which are used

in recent work [4, 23, 26, 27, 35, 36, 59] as benchmark datasets

(Table 2). Reality Mining (Rmin for short), Lyonschool (Lyon), and

Thiers13 (Thiers) are temporal face-to-face networks, in which a

vertex represents a person, and a temporal edge indicates when the

corresponding persons had physical contact. Facebook and Twitter

are temporal social networks, in which vertices represent users

and temporal edges indicate when they had online interactions.

Lkml and Enron are temporal communication networks in which

a vertex indicates an ID and a temporal edge signifies when the

corresponding IDs had a message. DBLP is a temporal collaboration

network, in which each temporal edge denotes when the authors

coauthored a paper.

Algorithms. Several state-of-the-art baselines are complemented.

Specifically, CSM [6] identifies the maximal k-core containing the
query vertex with the largest k . TCP [15] applies the triangle con-

nectivity and k-truss to model the higher-order truss community.

PPR_NIBBLE [1] adopts the conductance as the criterion of a com-

munity and uses static Personalized PageRank to obtain the re-

sult. Note that CSM, TCP, and PPR_NIBBLE are static community

search methods. MPC [35] extends the concept of clique to adapt

to the temporal setting. PCore[23] maintains persistently a k-core
structure. DBS [4] uses the density and duration to model bursting

communities. But MPC, PCore, and DBS address the problem of

temporal community detection. Thus, to fit our problem, we first

find all possible communities by the predefined criteria[4, 23, 35],

and then select the target community containing the query vertex

from these communities. MTIS [46] and MSCS [12] are temporal

community search methods.MTIS andMSCSmodel the temporal co-

hesiveness of the community by extending the network-inefficiency

and k-core to the temporal setting, respectively. TPP_CS calculates
the TPP values proposed by [40] to replace Line 1 of Algorithm 2.

QTCS_Baseline is an intuitive variant model (Definition 2.4). EGR
and ALS are our methods.

Effectiveness metrics.Evaluating the utility of a temporal com-
munity ismore difficult than a static community since there

1194

Table 2: Dataset statistics. TS is the time scale of the timestamp

Dataset |V | |E | |E | Tmax TS

Rmin 96 76,551 2,539 2,478 Hour

Lyon 242 218,503 26,594 20 Hour

Thiers 328 352,374 43,496 49 Hour

Facebook 45,813 585,743 183,412 552 Day

Twitter 304,198 464,653 452,202 7 Day

Lkml 26,885 547,660 159,996 2,663 Day

Enron 86,978 912,763 297,456 765 Day

DBLP 1,729,816 12,007,380 8,546,306 49 Year

are no ground-truth communities for temporal networks yet
[23, 26, 27, 35, 36, 59]. However, we can adopt the following two

widely used effectiveness metrics [4, 26, 27, 43, 59] for qualita-

tive testing: temporal density (TD) and temporal conductance (TC).
Specifically, let S be the target community, the two metrics are de-

fined as follows.TD (S) = 2∗|{(u,v, t) ∈ E|u,v ∈ S }|/|S |(|S |−1) |TS |,
in which TS = {t |(u,v, t) ∈ E,u,v ∈ S }. Clearly, TD computes

the average density of the internal structure of the temporal com-

munity. TC (S) = |Tcut (S,V \ S) |/min{|Tvol (S) |, |Tvol (V \ S) |},
where Tcut (S,V \ S) = {(u,v, t) ∈ E|u ∈ S,v ∈ V \ S }, Tvol (S) =∑
u ∈S {(u,v, t) ∈ E}. Clearly, TC measures the separability of the

temporal community. Thus, the larger the value of TD(S), the denser
S is in the temporal network. The smaller the value of TC(S), the
farther S is away from the rest of the temporal network. In addition,

we also report the value of our proposed objective function. Let

MD(S)=min{ρC (u) |u ∈ S } be the minimum query-biased temporal

degree within S . So, the larger the value of MD(S), the better the
quality of S in terms of query-centered temporal community search.

Parameters.Unless otherwise stated, the teleportation probability
α is set to 0.2 in all experiments as [30, 48]. For other methods, we

take their corresponding default parameters. To be more reliable,

we randomly select 50 vertices as query vertices and report the

average running time and quality.

6.2 Efficiency testing
Exp-1: Running time of various temporal methods. From Ta-

ble 3, we can see that ALS is consistently faster than other methods

on most datasets. For example, ALS takes 3.038 seconds and 191.889
seconds to obtain the result from Facebook and Lkml, respectively,

while PCore and MTIS cannot get the result within two days. More-

over, our methods (i.e., QTCS_Baseline, EGR, and ALS) are more

efficient than existing methods. The reasons can be explained as

follows. (1) MPC, PCore, and DBS need to enumerate all possible

temporal communities in advance and then select the target commu-

nity containing the query vertex from these communities, resulting

in very high time overheads. (2) MTIS and MSCS first perform the

very time-consuming Steiner tree procedure to identify a tree T
containing all query vertices, and then greedily add some desir-

able vertices to T to derive the final result. (3) TPP_CS takes more

time to calculate the TPP values because it needs to consider all

cases where q walks to the remaining nodes (see Table 1 and the

corresponding Remark for details). Furthermore, ALS is faster than
EGR on all datasets. For example, ALS only consumes about 13 sec-

onds to identify the result from DBLP, while EGR consumes over

47 seconds. These results give some preliminary evidence that the

proposed pruning strategies (Section 5) are efficient in practice.

Exp-2: Running time of various QTCS algorithms with vary-
ing parameters. In this experiment, we investigate how the pa-

rameter α affects the running time of different QTCS algorithms.

Additionally, we also study the effect of the temporal occurrence

rank of query vertices. Let Tu = |{t |(u,v, t) ∈ E}| be the temporal

occurrence of the vertex u, which indicates how many timestamps

are associated with u. Thus, we denote the temporal occurrence

rank of a vertex as 0.1 if its temporal occurrence is in the bottom

1%- 10%, and the temporal occurrence ranks 0.2, . . ., 0.9 are defined

accordingly. For EGR algorithm, we know that the search time is

composed of Algorithm 1 and the greedy removing process. We

denote t(TPPR) as the time spent in Algorithm 1. Figure 4 (a-h) show

the results with varying rank and α on Rmin, Facebook, Enron, and

DBLP. Other datasets can also obtain similar results. As can be seen,

t(TPPR) dominates the time of EGR on all datasets except for DBLP.

This is because the size of DBLP is relatively large, so it needs more

time to perform the greedy removing process. Moreover, as shown

in Figure 4 (a-d), the running time decreases first and then increases

as rank increases, and the optimal time is taken when rank=0.5.

Thus, we recommend users set the vertex with rank 0.5 as the query

vertex for faster performance. On the other hand, by Figure 4 (e-h),

we know that the running time of ALS decreases with increasing α .
An intuitive explanation is that when α increases, the vertices have

a higher probability of running a temporal random walk around the

query vertex, resulting in the locality of ALS being stronger. As a
result, the techniques of bound-based pruning and stop expanding

are enhanced with increasing α , thus more search spaces or vertices

are pruned (Section 5.1). Note that the running time of t(TPPR) and

EGR are stable with varying α . This is because the time complexity

of t(TPPR) and EGR is independent of α .

Exp-3: The size of the expanded graph with varying param-
eters. Figure 4 (i-l) shows the size of the expanded graph obtained

by the expanding stage (i.e., |C | in Section 5.1), divided by the size

of the original graph, with varying rank and α . We can see that

the expanding stage obtains a very small graph. For instance, on

Enron and DBLP, the number of vertices obtained by the expanding

stage are only about 35% and 4% of the original graph, respectively.

And the size of the expanded graph decreases with increasing α .
This is because the power of both bound-based pruning and stop

expanding are enhanced when α increases. These results give some

preliminary evidence that the proposed expanding algorithm (Sec-

tion 5.1) is very effective when handling real-life temporal graphs.

Moreover, we also observe that the size of the expanded graph is

irregular as the rank increases.

Exp-4: Scalability testing on synthetic datasets. To test the

scalability of EGR and ALS, we first artificially generate eight tem-

poral subgraphs by selecting randomly 20%, 40%, 60% and 80%

vertices or edges from DBLP. Subsequently, we test the runtime

of EGR and ALS on these temporal subgraphs. Figure 5 shows the

results. As can be seen, EGR and ALS scale near-linear w.r.t. the size
of the temporal subgraphs. These results indicate that our proposed

algorithms can handle massive temporal networks.

Exp-5: Memory overhead of EGR and ALS. From Table 4, we

can see that the memory overhead of EGR and ALS is less than

twice that of the original graph. Moreover, we can also see that

the memory overhead of ALS is less than EGR in six of the eight

datasets. This is because ALS is a local search algorithm, thus fewer

vertices may be visited (Exp-3 also confirms this), which further

1195

Table 3: Running time of various temporal methods (second). AVG.RANK is the average rank of each method across testing datasets.

Temporal methods Rmin Lyon Thiers Facebook Twitter Lkml Enron DBLP AVG.RANK

MPC 2133.440 6.153 59.746 3.987 1.318 47563.571 729.380 2605.572 5

PCore 35913.248 28561.989 >48h >48h 148.447 >48h 21221.338 24.493 8

DBS 47.363 1722.200 2150.320 48.792 33179.300 91.411 614.998 2462.040 6

MTIS >48h 42.339 154.161 >48h 152.064 >48h >48h 78252.764 9

MSCS 241.613 25.204 28.786 753.186 42.699 859.255 1290.521 3083.327 7

TPP_CS 73.129 4.724 9.794 28.123 6.269 302.821 112.479 83.572 4

QTCS_Baseline 47.283 1.879 6.703 16.107 1.800 226.457 82.66 45.391 2

EGR 47.293 1.881 6.711 16.067 2.604 224.592 83.168 47.259 3

ALS 28.326 1.030 3.049 3.038 1.257 191.889 30.557 13.707 1

(a) Rmin (vary rank) (b) Facebook (vary rank) (c) Enron (vary rank) (d) DBLP (vary rank)

(e) Rmin (vary α) (f) Facebook (vary α) (g) Enron (vary α) (h) DBLP (vary α)

(i) Rmin (vary α) (j) Facebook (vary α) (k) Enron (vary α) (l) DBLP (vary α)

Figure 4: The efficiency of various algorithms with varying parameters

Table 4: Memory overhead of EGR and ALS (MB)

Graph in memory Memory of EGR Memory of ALS

Rmin 9.291 12.871 16.669

Lyon 34.780 35.236 35.072

Thiers 62.381 63.917 63.430

Facebook 149.538 162.873 159.564

Twitter 311.206 393.152 331.207

Lkml 131.514 148.0143 182.439

Enron 244.577 272.900 247.764

DBLP 5190.925 5758.229 5302.925

results in less space used to store reserve and residue for estimating

the TPPR values. However, EGR is a global algorithm, which needs

to store D[u] for computing the exact TPPR values. These results

show that EGR and ALS can achieve near-linear space cost, which

is consistent with our analysis in Section 4 and Section 5.

6.3 Effectiveness testing
Exp-6: Effectiveness of different methods. Table 5 reports our
results. For the TC metric, we have: (1) our model achieves the best

scores on seven of the eight datasets. This is because our model

(a) EGR (b) ALS

Figure 5: Scalability testing on synthetic datasets
can mitigate the query drift issue (Section 3.2), resulting in that it

can keep good temporal separability by removing many temporal

irrelevant vertices to the query vertex (i.e., query-drifted vertices).
(2) PPR_NIBBLE and QTCS_Baseline are the runner-up and third-

place, respectively, which shows that these random walk methods

can also obtain better temporal separability. (3) TPP_CS is slightly
better than static methods CSM and TCP but very worse than our

model. This is because although TPP_CS also uses temporal walks

1196

Table 5: Effectiveness of different methods. AVG.RANK is the average rank of each method across the testing datasets.

TC/TD/MD Rmin Lyon Thiers Facebook Twitter Lkml Enron DBLP AVG.RANK

CSM 0.33/0/0.35 0.87/0.42/0.76 0.92/0.14/0.49 0.43/0.08/0 0.71/0.04/0 0.68/ 0.06/0.07 0.48/ 0.02/0 0.72/ 0.30/0.01 5/10/3

TCP 0.92/0/0.10 1/0.38/0.55 1/0.13/0.32 0.50/0.28/0.03 0.71/0.52/0.03 0.36/0.08/0 0.40/0.09/0 0.68/0.40/0 6/9/4

PPR_NIBBLE 0.48/0/0.07 0.50/0.51/0.28 0.44/0.17/0.17 0.17/0.01/0 0.11/0/0 0.07/0/0 0.27/0.01/0 0.09/0/0 2/11/10

MPC 0.71/0.29/0.03 0.79/0.76/0.13 0.82/0.64/0.02 0.50/0.50/0 1/0.79/0 0.96/0.22/0 0.94/0.44/0 0.84/0.59/0 10/1/9
PCore 0.75/0/0.24 0.55/0.52/0.30 0.62/0.58/0.11 0.72/0.09/0 0.94/0.03/0 0.76/0.02/0.11 0.76/0.06/0.04 0.60/0.08/0 8/4/6

DBS 0.66/0.18/0.21 0.72/0.77/0.18 0.52/0.56/0.07 0.67/0.41/0 0.95/0.66/0 0.95/0.21/0.15 0.92/0.33/0.09 0.70/0.43/0 9/2/8

MTIS 0.67/0.02/0.13 0.98/0.43/0.02 0.98/0.27/0 1/0.32/0 1/0.26/0 1/0/0 1/0/0 1/0/0 11/8/11

MSCS 0.53/0.08/0.38 0.58/0.54/0.49 0.31/0.29/0.54 0.72/0.18/0 0.72/0.12/0 0.72/0/0.01 0.59/0/0 0.60/0/0 7/7/7

TPP_CS 0.31/0.01/0.18 0.62/0.48/0.43 0.57/0.22/0.26 0.46/0.15/0.01 0.69/0.06/0.02 0.57/ 0.02/0.07 0.53/ 0.12/0.03 0.64/ 0.02/0 4/6/5

QTCS_Baseline 0.30/0.01/0.43 0.56/0.52/0.58 0.45/0.17/0.46 0.49/0.07/0 0.68/0/0 0.53/0.03/0.06 0.54/0.20/0.04 0.55/0.05/0 3/5/2

our model 0.01/0.18/0.73 0.44/0.73/0.81 0.16/0.56/0.67 0.11/0.46/0.15 0.11/0.57/0.08 0.02/0.20/0.25 0.32/0.33/0.26 0.03/0.40/0.15 1/3/1

Table 6: Quality comparison between EGR and ALS

ϵ ϵ ∗ Precision Recall F1-Score

Rmin 3.350 1.657 0.646 0.984 0.780

Lyon 2.745 1.302 0.848 1.000 0.918

Thiers 3.439 1.489 0.772 1.000 0.871

Facebook 7.410 1.751 0.504 0.977 0.665

Twitter 5.160 1.584 0.266 0.983 0.419

Lkml 7.601 1.937 0.477 0.995 0.645

Enron 8.580 1.863 0.575 0.964 0.720

DBLP 13.024 3.279 0.224 0.950 0.362

(a) ϵ ∗ (vary α) (b) MD (vary α)

Figure 6: The quality of ALS with various α .

to measure the temporal proximity, but it limits the length of these

walks to t (G) at most, resulting in temporal information not being

fully utilized and performance degradation. (4) MPC, PCore, DBS,
MTIS, and MSCS have the worst performance. This is because they

focus on internal temporal cohesiveness but ignore the separability

from the outside. For the TD metric, we have: (1) MPC and DBS
outperform other methods (but they have poor TC), and our model

is the third-place and slightly worse than MPC and DBS. This is
because MPC and DBS respectively adopt the clique and density as

the criteria of the community, which has a strong density in itself.

(2) CSM, TCP, and PPR_NIBBLE have the worst performance. This is

because they are static methods that ignore the temporal dimension

of the graph. For the MD metric, we have: (1) our model achieves

the best scores on all datasets while other models are almost zero

on large datasets. (2) The gap between other models and our model

is smaller on small datasets (i.e., Rmin, Lyon, and Thiers) than on

large datasets. These results indicate that baselines cannot optimize

our proposed objective function well, and our model is much denser

and more separable in terms of temporal features than baselines.

Exp-7: Quality comparison between EGR and ALS. Here, we
compare the community identified by the approximate local search

algorithm ALS with that identified by the exact greedy removing al-

gorithm EGR. Specifically, we use the community derived by EGR as

the ground-truth for evaluating the quality of ALS. Table 6 reports
the results. Here, ϵ is the theoretical approximation ratio of ALS
(Algorithm 5) and ϵ∗ = min{ρH1

(u) |u ∈ H1}/min{ρH2
(u) |u ∈ H2}

is the true approximation ratio, where H1 and H2 are the communi-

ties identified by EGR and ALS, respectively. We have the following

observations. (1) ALS obtains better results than the theoretical ϵ-
approximation ratio. In particular, the true approximate ratio ofALS
is between 1 and 4. (2) ALS obtains a good recall value, which indi-

cates the community found by ALS covers almost all members of

the ground-truth. (3) ALS obtains relatively high scores of precision

and F1-Score, which implies the size of the community returned

by ALS is close to the ground-truth. In summary, the approximate

algorithm ALS can find high-quality communities in practice.

Exp-8: The quality of ALS with various α . Figure 6 shows the
true approximation ratio ϵ∗ and the minimum query-biased tempo-

ral degreeMD with various α . Due to the space limit, we only report

the results on Rmin, Facebook, Enron, and DBLP. Other datasets

can also obtain similar results. As shown in Figure 6(a), ϵ∗ increases
first and then decreases as α increases. The reasons are: (1) when

α is small, the target community is closer to the query vertex, and

the locality of ALS is stronger. As a result, the community found

by ALS matches the target community. (2) When α is large, the

target community may be very small. Thus, once the community

identified by ALS is slightly different from the target community,

it will cause ϵ∗ to drop rapidly. From Figure 6(b), we can observe

that MD increases with increasing α . This is because when α in-

creases, the TPPR value tends to be concentrated near the query

vertex and these TPPR values are large, which leads to a larger MD
by Definition 2.5.

Exp-9: Case studies on DBLP. Here, we further show that our

model can eliminate the query drift issue (Section 3.2) while other

models cannot eliminate it. Due to the space limit, we mainly report

the results on PCore, MSCS, QTCS_Baseline, and our model QTCS.
Similar results can also be obtained by the other models. Specifi-

cally, we choose Prof. Roxanne A. Yamashita or Joel E. Richardson

as the query vertex. The community identified by QTCS_Baseline
contains more than 1,000 authors (since it is too large to show in

a figure, we do not visualize the community) that come from di-

verse research domains. This is because QTCS_Baseline considers
structural cohesiveness and temporal proximity separately, which

forces the result to include many vertices with poor temporal prox-

imity to satisfy the structural cohesiveness. As shown in Figure

7 (c) (the timestamps of edges are ignored for visualizing), the

community obtained by QTCS is a meaningful query-centered tem-

poral community and does not cause the query drift issue. This
is because Roxanne A. Yamashita has many temporal walks with

small intervals to other researchers (see the temporal information

in http://snap.stanford.edu/). Besides, these researchers worked

closely and frequently with Roxanne A. Yamashita in conserved

1197

David I. Hurwitz

Gabriele H. Marchler

Aron Marchler-Bauer

Roxanne A. Yamashita

James S. Song

Stephen H. Bryant

Rodrigo Lopez

Christian J. A. Sigrist

Alex Bateman

Ivica Letunic

Peer Bork
Teresa K. Attwood

Christopher J. Lanczycki

(a) PCore

Roxanne A.
Yamashita

(b) MSCS

Roxanne A. Yamashita
John B. Anderson

Lewis Y. Geer

Siqian He

David I. Hurwitz

Cynthia A. Liebert

Gabriele H. Marchler

Aron Marchler-Bauer

James S. Song

Stephen H. Bryant

Carol DeWeese-Scott

John D. Jackson

Christopher J. Lanczycki

Chunlei Liu

Marc Gwadz

Zhaoxi Ke

(c) QTCS

Joel E. Richardson

Judith A. Blake

Janan T. Eppig

Martin Ringwald

James A. Kadin

Carol J. Bult

Richard M. Baldarelli

Maria P. Baya

J.S. BealD.A. Begley

William Boddy

Dirck W. Bradt

Neville Butler
T. Chu

Lori E. Corbani

J. Corradi

M.T. Davisson

D. Garippa

Leon Glass

Debra M. Krupke

(d) QTCS

Figure 7: Case studies on DBLP. (a-c) (resp. (d)) are the communities of Prof. Roxanne A. Yamashita (resp. Joel E. Richardson)

sequence, amino acid sequence, and proteins during 2015-2021 (see

their homepages for details). Thus, we can explain that this com-

munity is formed by their shared research interests and long-term

cooperation with Roxanne A. Yamashita. However, from Figure 7 (a),

we can see that the members on the upper and lower parts are con-

nected by the hub vertex Aron Marchler-Bauer. Besides, Roxanne A.

Yamashita has very few temporal walks to the lower part (see the

temporal information at http://snap.stanford.edu/). Thus, the lower

part is query-drifted vertices. Additionally, by looking at the home-

pages of these researchers, we find that they come from different

research backgrounds. Moreover, several important collaborators

of Roxanne A. Yamashita in Figure 7 (c) do not appear in Figure 7

(a). Such as Stephen H. Bryant, Gabriele H. Marchler, and David I.

Hurwitz (we can also see the importance of these three researchers

to Roxanne A. Yamashita from https://www.aminer.cn/). By Figure

7 (b), we can see that the community obtained by MSCS is a con-
nected subgraph composed of multiple stars. Furthermore, Figure 7

(b) contains many query-drifted vertices, which come from various

backgrounds. Similar trends can also be observed in the commu-

nity of Prof. Joel E. Richardson (due to the space limit, we only

visualize the result of QTCS in Figure 7 (d)). Since PCore and MSCS
only consider the temporal cohesiveness but ignore the temporal

proximity with the query vertex, they may find many temporal

irrelevant vertices to the query vertex for satisfying their cohesive-

ness. In summary, these case studies further indicate that our model

QTCS is indeed more effective than the other models in searching

query-centered temporal communities.

7 RELATEDWORK
Community detection. Existing studies mainly rely on structure-

based approaches to identify all communities from graphs, includ-

ing modularity optimization [33], spectral analysis [7], hierarchical

clustering [38] and cohesive subgraph discovering [2]. However, all

these methods do not consider the temporal dimension of networks.

Until recently, some studies have been done on community detec-

tion over temporal networks [4, 23, 26, 27, 32, 35, 39, 56, 57, 59]. For

instance, Lin et al. [27] proposed the stable quasi-clique to capture

the stability of cohesive subgraphs. Ma et al. [32] studied the heavy

subgraphs for detecting traffic hotspots.

Community search. As a meaningful counterpart, community

search has recently become a focal point of research in network anal-

ysis [10, 17]. For simple graphs, they aim to identify the subgraphs

that contain the given query vertices and satisfy a specific com-

munity model such as k-core [6, 44], k-truss [15, 28], clique [5, 58],
density [52], connectivity [41, 42, 45] and conductance [1, 25, 55].

For instance, Sozio et al. [44] introduced a framework of commu-

nity search, which requires the target community to be a connected

subgraph containing query vertices and has a good score w.r.t. the

proposed quality function. In particular, they used the k-core as the
quality function. Since the k-core is not necessarily dense, Huang et
al. [15] adopted a more cohesive subgraph model k-truss to model

the community. Recently, Wu et al. [52] observed the above ap-

proaches have the free rider issue, that is, the returned community

often contains many redundant vertices. However, our proposed

query drift issue (Definition 3.1) is more strict than the free rider

issue. That is, if an objective function f (.) suffers from the query
drift issue, then f (.) must have the free rider issue, and vice versa

is not necessarily true (Section 3.2). Besides, graph diffusion-based

local clustering methods have also been considered. For example,

Tong et al. [45] applied random walk with restart to measure the

goodness score of any vertex w.r.t. the query vertices. Andersen

et al. [1] used Personalized PageRank to sort vertices and then

executed a sweep cut procedure to obtain the local optimal conduc-

tance. However, the random walk used in these works is mainly

tailored to static networks. Besides simple graphs, more compli-

cated attribute information associated with vertices or edges also

has been investigated, such as keyword-based graphs [9, 16, 29],

location-based social networks [3, 8], multi-valued graphs [22] and

heterogeneous information networks [11, 19]. However, they ig-

nore the temporal properties of networks that frequently appear

in applications. Recently, two studies have been done on tempo-

ral community search [12, 46]. However, they suffer from several

defects stated in Sections 1, 3.2 and 6).

8 CONCLUSION
In this work, we are the first to introduce and address the query-
centered temporal community search problem. We first develop the

Time-Constrained Personalized PageRank to capture the temporal

proximity between the query vertex and other vertices. Then, we in-

troduce β-temporal proximity core to combine seamlessly structural

cohesiveness and temporal proximity. Subsequently, we formulate

our problem as an optimization task, which returns a β-temporal

proximity core with the largest β . To query quickly, we first de-

vise an exact and near-linear time greedy removing algorithm EGR.
To further boost efficiency, we then propose an approximate two-

stage local search algorithm ALS. Finally, extensive experiments on

eight real-life temporal networks and nine competitors show the

superiority of the proposed solutions.

ACKNOWLEDGMENTS
The work was supported by (i) the National Natural Science Founda-

tion of China under Grant Nos. 62072205 and 61932004, (ii) National

Key Research and Development Program of China 2021YFB3301301,

(iii) NSFC Grants U2241211, 62072034, (iv) Fundamental Research

Funds for the Central Universities under Grant SWU-KQ22028.

Pingpeng Yuan and Rong-Hua Li are the corresponding authors of

this paper.

1198

REFERENCES
[1] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Partitioning

using PageRank Vectors. In FOCS. 475–486.
[2] Lijun Chang and Lu Qin. 2019. Cohesive Subgraph Computation Over Large

Sparse Graphs. In ICDE. 2068–2071.
[3] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, Jeffrey Xu Yu, and Jianxin Li. 2020.

Finding Effective Geo-social Group for Impromptu Activities with Diverse De-

mands. In KDD. 698–708.
[4] Lingyang Chu, Yanyan Zhang, Yu Yang, Lanjun Wang, and Jian Pei. 2019. Online

Density Bursting Subgraph Detection from Temporal Graphs. Proc. VLDB Endow.
12, 13 (2019), 2353–2365.

[5] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online

search of overlapping communities. In SIGMOD. 277–288.
[6] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search of

communities in large graphs. In SIGMOD. 991–1002.
[7] Luca Donetti and Miguel A Munoz. 2004. Detecting network communities: a

new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory
and Experiment 2004, 10 (2004), 10012.

[8] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017.

Effective Community Search over Large Spatial Graphs. Proc. VLDB Endow. 10, 6
(2017), 709–720.

[9] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective

Community Search for Large Attributed Graphs. Proc. VLDB Endow. 9, 12 (2016),
1233–1244.

[10] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. VLDB J.
29, 1 (2020), 353–392.

[11] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020. Ef-

fective and Efficient Community Search over Large Heterogeneous Information

Networks. Proc. VLDB Endow. 13, 6 (2020), 854–867.
[12] Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro

Cattuto, and Francesco Gullo. 2021. Span-core Decomposition for Temporal

Networks: Algorithms and Applications. ACM Trans. Knowl. Discov. Data 15, 1
(2021), 2:1–2:44.

[13] Petter Holme. 2015. Modern temporal network theory: A colloquium. CoRR
abs/1508.01303 (2015).

[14] Weishu Hu, Haitao Zou, and Zhiguo Gong. 2015. Temporal PageRank on Social

Networks. In WISE. 262–276.
[15] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In SIGMOD. 1311–1322.
[16] Xin Huang and Laks V. S. Lakshmanan. 2017. Attribute-Driven Community

Search. Proc. VLDB Endow. 10, 9 (2017), 949–960.
[17] Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. 2017. Community Search

over Big Graphs: Models, Algorithms, and Opportunities. In ICDE. 1451–1454.
[18] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Ap-

proximate Closest Community Search in Networks. PVLDB 9, 4 (2015), 276–287.

[19] Xun Jian, Yue Wang, and Lei Chen. 2020. Effective and Efficient Relational

Community Detection and Search in Large Dynamic Heterogeneous Information

Networks. Proc. VLDB Endow. 13, 10 (2020), 1723–1736.
[20] Jian-Huang Lai, Chang-DongWang, and Philip S. Yu. 2013. Dynamic Community

Detection in Weighted Graph Streams. In SDM. 151–161.

[21] Michael Levi and Peter Reuter. 2006. Money laundering. Crime and justice 34, 1
(2006), 289–375.

[22] Rong-Hua Li, Lu Qin, Fanghua Ye, Jeffrey Xu Yu, Xiaokui Xiao, Nong Xiao, and

Zibin Zheng. 2018. Skyline Community Search in Multi-valued Networks. In

SIGMOD. 457–472.
[23] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Persistent

Community Search in Temporal Networks. In ICDE. 797–808.
[24] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, and Guoren Wang. 2022. Efficient

Personalized PageRank Computation: A Spanning Forests Sampling Based Ap-

proach. In SIGMOD. 2048–2061.
[25] Longlong Lin, Ronghua Li, and Tao Jia. 2023. Scalable and Effective Conductance-

Based Graph Clustering. In AAAI. 4471–4478.
[26] Longlong Lin, Pingpeng Yuan, Rong-Hua Li, and Hai Jin. 2022. Mining Diversified

Top-r Lasting Cohesive Subgraphs on Temporal Networks. IEEE Trans. Big Data
8, 6 (2022), 1537–1549.

[27] Longlong Lin, Pingpeng Yuan, Rong-Hua Li, Jifei Wang, Ling Liu, and Hai Jin.

2022. Mining Stable Quasi-Cliques on Temporal Networks. IEEE Trans. Syst. Man
Cybern. Syst. 52, 6 (2022), 3731–3745.

[28] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-

based Community Search over Large Directed Graphs. In SIGMOD. 2183–2197.
[29] Qing Liu, Yifan Zhu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao.

2020. VAC: Vertex-Centric Attributed Community Search. In ICDE. 937–948.

[30] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2016. Personalized PageR-

ank Estimation and Search: A Bidirectional Approach. In WSDM. 163–172.

[31] Laishui Lv, Kun Zhang, Ting Zhang, Dalal Bardou, Jiahui Zhang, and Ying Cai.

2019. PageRank centrality for temporal networks. Physics Letters A 383, 12 (2019),

1215–1222.

[32] Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jinpeng Huai. 2017. Fast

Computation of Dense Temporal Subgraphs. In ICDE. 361–372.
[33] Mark EJ Newman. 2004. Fast algorithm for detecting community structure in

networks. Physical review E 69, 6 (2004), 066133.

[34] L. Page, S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank Citation

Ranking : Bringing Order to the Web. In WWW.

[35] Hongchao Qin, Rong-Hua Li, Guoren Wang, Lu Qin, Yurong Cheng, and Ye Yuan.

2019. Mining Periodic Cliques in Temporal Networks. In ICDE. 1130–1141.
[36] Hongchao Qin, Ronghua Li, Ye Yuan, Guoren Wang, Lu Qin, and Zhiwei Zhang.

2022. Mining Bursting Core in Large Temporal Graph. Proc. VLDB Endow. 15, 13
(2022), 3911–3923.

[37] Luis E C Rocha and Naoki Masuda. 2014. Random walk centrality for temporal

networks. New Journal of Physics 16, 6 (2014), 063023.
[38] Lior Rokach and Oded Maimon. 2005. Clustering methods. In Data mining and

knowledge discovery handbook. 321–352.
[39] Polina Rozenshtein, Francesco Bonchi, Aristides Gionis, Mauro Sozio, and Nikolaj

Tatti. 2018. Finding Events in Temporal Networks: Segmentation Meets Densest-

Subgraph Discovery. In ICDM. 397–406.

[40] Polina Rozenshtein and Aristides Gionis. 2016. Temporal PageRank. In ECML-
PKDD. 674–689.

[41] Natali Ruchansky, Francesco Bonchi, David García-Soriano, Francesco Gullo, and

Nicolas Kourtellis. 2015. The Minimum Wiener Connector Problem. In SIGMOD.
1587–1602.

[42] Natali Ruchansky, Francesco Bonchi, David Garcia-Soriano, Francesco Gullo, and

Nicolas Kourtellis. 2017. To Be Connected, or Not to Be Connected: That is the

Minimum Inefficiency Subgraph Problem. In CIKM. 879–888.

[43] Arlei Silva, Ambuj K. Singh, and Ananthram Swami. 2018. Spectral Algorithms

for Temporal Graph Cuts. In WWW. 519–528.

[44] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In KDD. 939–948.
[45] Hanghang Tong and Christos Faloutsos. 2006. Center-piece subgraphs: problem

definition and fast solutions. In KDD. 404–413.
[46] Ioanna Tsalouchidou, Francesco Bonchi, and Ricardo Baeza-Yates. 2020. Adaptive

Community Search in Dynamic Networks. In BigData. 987–995.
[47] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA:

Simple and Effective Approximate Single-Source Personalized PageRank. In KDD.
505–514.

[48] Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong

Wen. 2018. TopPPR: Top-k Personalized PageRank Queries with Precision Guar-

antees on Large Graphs. In SIGMOD. 441–456.
[49] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. 2014.

Path Problems in Temporal Graphs. PVLDB 7, 9 (2014), 721–732.

[50] Hao Wu, Junhao Gan, Zhewei Wei, and Rui Zhang. 2021. Unifying the Global and

Local Approaches: An Efficient Power Iteration with Forward Push. In SIGMOD.
1996–2008.

[51] Huanhuan Wu, Yunjian Zhao, James Cheng, and Da Yan. 2017. Efficient Process-

ing of Growing Temporal Graphs. In DASFAA. 387–403.
[52] YubaoWu, Ruoming Jin, Jing Li, and Xiang Zhang. 2015. Robust Local Community

Detection: On Free Rider Effect and Its Elimination. Proc. VLDB Endow. 8, 7 (2015),
798–809.

[53] Yubao Wu, Ruoming Jin, and Xiang Zhang. 2016. Efficient and Exact Local Search

for Random Walk Based Top-K Proximity Query in Large Graphs. IEEE Trans.
Knowl. Data Eng. 28, 5 (2016), 1160–1174.

[54] Wenlei Xie, Yuanyuan Tian, Yannis Sismanis, Andrey Balmin, and Peter J. Haas.

2015. Dynamic interaction graphs with probabilistic edge decay. In ICDE. 1143–
1154.

[55] Renchi Yang, Xiaokui Xiao, Zhewei Wei, Sourav S. Bhowmick, Jun Zhao, and

Rong-Hua Li. 2019. Efficient Estimation of Heat Kernel PageRank for Local

Clustering. In SIGMOD. 1339–1356.
[56] Yi Yang, Da Yan, Huanhuan Wu, James Cheng, Shuigeng Zhou, and John C. S.

Lui. 2016. Diversified Temporal Subgraph Pattern Mining. In KDD. 1965–1974.
[57] Michael Yu, DongWen, Lu Qin, Ying Zhang,Wenjie Zhang, and Xuemin Lin. 2021.

On Querying Historical K-Cores. Proc. VLDB Endow. 14, 11 (2021), 2033–2045.
[58] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2018. Index-

Based Densest Clique Percolation Community Search in Networks. IEEE Trans.
Knowl. Data Eng. 30, 5 (2018), 922–935.

[59] Chun-Xue Zhu, Longlong Lin, Pingpeng Yuan, and Hai Jin. 2022. Discovering

Cohesive Temporal Subgraphs with Temporal Density Aware Exploration. J.
Comput. Sci. Technol. 37, 5 (2022), 1068–1085.

1199

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Notations
	2.2 Time-Constrained Personalized PageRank
	2.3 Problem Statement

	3 Problem Analysis
	3.1 Comparison with CSM
	3.2 Query Drift Issue

	4 Exact Greedy Removing for QTCS
	4.1 Edge Stream For TPPR Computation
	4.2 The EGR Algorithm

	5 Approximate Local Search for QTCS
	5.1 The Expanding Stage
	5.2 The Reducing Stage

	6 Experimental Evaluation
	6.1 Experimental setup
	6.2 Efficiency testing
	6.3 Effectiveness testing

	7 Related Work
	8 CONCLUSION
	Acknowledgments
	References

