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ABSTRACT
This paper studies association rule discovery in a graph G1 by ref-
erencing an external graph G2 with overlapping information. The
objective is to enrichG1 with relevant properties and links fromG2.
As a testbed, we consider Graph Association Rules (GARs). We pro-
pose a notion of graph joins to enrichG1 by aligning entities across
G1 and G2. We also introduce a graph filtering method to support
graph joins, by fetching only the data of G2 that pertains to the
entities of G1, to reduce noise and the size of the fused data. Based
on these we develop a parallel algorithm to discover GARs across
G1 and G2. Moreover, we provide an incremental GAR discovery
algorithm in response to updates to G1 and G2. We show that both
algorithms guarantee to reduce parallel runtime when given more
processors. Better yet, the incremental algorithm is bounded rel-
ative to the batch one. Using real-life and synthetic data, we empir-
ically verify that the methods improve the accuracy of association
analyses by 30.4% on average, and scale well with large graphs.
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1 INTRODUCTION
Association analyses have been studied for discovering regularities
between entities in graphs [40, 47, 48, 80], and have proven effective
in online recommendation, link prediction, fraud detection and
drug discovery, among other things. Gartner predicts that “graph
analytics will double annually” (cf. [26]).

Compared to association analyses in relational data, graph asso-
ciation analyses are more challenging. A real-life graph G1 often
does not come with a schema. It is more common to find the data
in G1 “incomplete”, witnessed by missing properties and links.

A natural question arises: Can we fill in the information missing
fromG1 with data from external graphsG2? There exist graphs G2
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that have accumulated the semantics of entities and expert knowl-
edge, notably knowledge graphs, e.g., FreeBase [23], Yago [59],
Wikipedia [3] and DBpedia [70]. Why not enrich G1 and improve
the accuracy of its association analyses by referencing such G2?

Example 1: Consider a real case of money laundering reported
by [25]. Four persons make small deposits regularly and the money
is then wired to a merchant account for purchasing an asset, e.g.,
a boat. The transactions are stored in graph G1 at a bank. With G1
alone, the usual monitoring process of the bank would not raise an
alarm. However, consider a graph G2, which records the addresses
of the users and the ATMs they use. Referencing the externalG2, the
bankmay suspect that such a group of four users divide transactions
into small deposits for money laundering if they use the same ATMs
and share addresses. We will see that this is an example of associa-
tion analysis with a rule, which helps the bank identify potentially
illegal activities and label suspicious users as high-risk. The ques-
tion is how to discover association rules across graphs G1 and G2?

Another question concerns incremental rule discovery. In the
real world, graphsG1 andG2 evolve constantly [68]. The association
rules often require dynamic adjustment, e.g., to catch new fraud
rings when new transactions and users are added to G1 and G2, or
to improve the accuracy of fraud detection when high-risk labels
are removed from certain users by the bank after investigation. 2

The example tells us that by referencing external graph G2 with
overlapping information, we can improve the accuracy of associa-
tion analyses in graphG1. The need for referencing external graphs
has been recognized in medical knowledge discovery [91], which
aims to find semantic patterns and improve the accuracy and ef-
ficiency of diagnoses and treatment. As reported in [91, 109], as
high as 77% of the discovered patterns are across heterogeneous
biological networks. Moreover, e-commerce needs to inspect mul-
tiple graphs, since a social media user engages an average of 6.6
different platforms [12], and analyzing a single platform cannot
fully understand users’ interests. In addition, recommendation [93],
information diffusing prediction [115] and network dynamics anal-
ysis [114] have been deducing associations across multiple graphs.

To make effective use of external graphs in association analyses,
we study discovery of association rules across G1 and G2. As a
testbed, we consider Graph Association Rules (GARs) [40], which
have been used in e.g., recommendation, battery manufacturing
and drug discovery [33]. This, however, introduces new challenges.
(1) Rule discovery across graphs. All discovery algorithms for GARs
assume a single graph, and no algorithm is yet in place for discov-
ering GARs across separate G1 and G2. We want to discover GARs
for entities of G1 enriched with data from G2. To enrich an entity
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(vertex) u inG1, we have to identify what verticesv inG2 refer to u,
where u and v are often specified with subgraphs of different topo-
logical structures. How can we align the entities acrossG1 andG2?
(2) Data filtering. One way to incorporate the external knowledge
of G2 is by merging G1 and G2 into one graph. But this introduces
noise, i.e., data irrelevant to the entities inG1. It makes the discovery
of useful rules forG1 harder (due to the noise) and more expensive
(due to the large merged graph). As observed in [75], noise in the
neighborhood of each entity incurs 8.26% loss of precision in entity
alignment. Moreover, it is costly to discover rules from large graphs,
e.g., it does not terminate within 15 hours when mining GARs with
5 patterns nodes from a movie graph with 153 million vertices and
edges, even when using 8 machines (see Section 6). How can we
filter the noise and fetch only the data relevant to G1?
(3) Incremental rule discovery. Worse still, no algorithm is in place
for incrementally discovering GARs in response to updates, from
a single graph or across two graphs. Real-life graphs constantly
change. For example, 0.5+ million new users are added to Facebook
per day [5], and Wikidata [3] publishes hundreds of live updates
every minute [2]. As indicated in Example 1, association rules need
to be dynamically adjusted in response to the updates.

Contributions & organization. This paper makes the first effort
to answer these questions. We review GARs in Section 2.

(1) Graph enrichment (Section 3). We propose a notion of graph
joins to align entities across G1 and G2, such that if a vertex u in
G1 and a vertex v in G2 denote the same entity, we can fuse u and
v and complement u with the relevant properties and links of v .
Graph joins enrich graph G1 with the information from external
graph G2. We also introduce a notion of GARs pertaining to G1, to
distinguish rules useful for the analysis ofG1 from the “noisy” ones.

(2) Rule discovery across graphs (Section 4). We introduce a frame-
work to discover GARs pertaining to a graph G1 by referencing
an external graphG2. We employ heterogeneous entity resolution
(HER) to identify vertices inG1 andG2 that refer to the same entity
[43]. We propose a graph filtering method and train an ML model
to locate relevant data in G2 that pertains to entities in G1. After
these, we adapt existing graph rule mining methods [35, 39] to the
new discovery setting, to reduce irrelevant rules and search space.

(3) Incremental rule discovery (Section 5). We develop an incremen-
tal discovery algorithm for GARs in response to updates to G1 and
G2. We incrementalize the batch discovery algorithm across G1
andG2 by inspecting only GAR candidates affected by updates. We
show that the incrementalized algorithm is bounded relative [44]
to the batch one, i.e., it incurs only the necessary cost for incremen-
talization. Moreover, we show that the discovery algorithms (batch
and incremental) can be parallelized with parallel scalability [67],
i.e., they guarantee to reduce runtime when given more processors.

(4) Experimental study (Section 6). Using real-life and synthetic data,
we empirically find the following. (a) By referencing external graphs
G2, the accuracy of association deduction in graphsG1 is improved
by 30.4% on average with GARs, up to 38.6%. (b) Graph filtering
speeds up GAR discovery by 17.4×, while retaining high accuracy
in association analyses. (c) The incremental GAR discovery method

consistently outperforms the batch algorithm even when the size
of updates accounts for 30% of G1 and G2. (d) Our batch (resp.
incremental) GAR discovery algorithm is parallelly scalable; it is
2.6× (resp. 2.4×) faster when 12 machines are used instead of 4.

We discuss related work in Section 7 and future work in Section 8.

Positioning in the state-of-the-art. (1)Whilemethods have been
developed for mining rules from graphs, e.g., [35, 39, 41, 52, 69, 78],
to the best of our knowledge, this work makes the first effort to
discover rules across two separate graphs, enriching graph G1
by referencing external G2. (2) The proposed filtering method,
together with graph joins, serve as an effective way to integrateG1
and G2 for mining rules pertaining to G1. This allows us to adapt
previous mining methods, e.g., [35, 39, 40], to the new discovery
setting, to avoid treating G1 and G2 indifferently, paying the cost
of unnecessary search and returning excessive rules that are
useless for G1. (3) The work also proposes the first incremental
rule discovery algorithm with effectiveness guarantees, not limited
to incremental mining of frequent patterns [13, 81].

2 PRELIMINARIES
In this section, we first review basic notations of graphs and graph
pattern matching. We then review Graph Association Rules (GARs)
[40]. Assume three countably infinite sets of symbols, denoted by
Γ, ϒ andU , for labels, attributes and constants, respectively.

Graphs and patterns. We consider graphs G = (V ,E,L, FA),
where (a) V is a finite set of vertices, (b) E ⊆ V × Γ × V is a fi-
nite set of edges, where each e = (v, l ,v ′) in E denotes an edge
from vertex v to v ′ that is labeled l ∈ Γ, (c) L is a function such that
for each vertex v ∈ V , L(v) is a label from Γ, and (d) each vertex
v ∈ V carries a tuple FA(v) = (A1 = a1, . . . ,An = an ) of attributes
of a finite arity, where Ai ∈ ϒ and ai ∈ U , written as v .Ai = ai ,
and Ai , Aj if i , j, representing different properties.
Paths. An (undirected) path ρ of length m in graph G is a se-
quence ρ = (u0, l0,u1, . . . ,um−1, lm−1,um ), where (ui , li ,ui+1) or
(ui+1, li ,ui ) is an edge in G for each i ∈ [0,m − 1]. We refer to um
as the terminal vertex of ρ. We consider paths ρ without cycles.
Patterns. A graph pattern is Q[x̄] = (VQ , EQ , LQ , µ), where (1) VQ
(resp. EQ ) is a set of pattern nodes (resp. edges); (2) LQ assigns
a label LQ (u) ∈ Γ to each pattern node u ∈ VQ ; (3) x̄ is a list of
distinct variables; and µ is a bijective mapping from x̄ to VQ , i.e.,
it assigns a distinct variable to each node v in VQ . For x ∈ x̄ , we
use µ(x) and x interchangeably when it is clear in the context.
Pattern matching. Following [17, 42], a match of pattern Q[x̄] in
graph G is defined as a homomorphism h from Q to G such that
(a) for each pattern node u ∈ VQ , LQ (u) = L(h(u)); and (b) for each
pattern edge e = (u, l ,u ′) in Q , e ′ = (h(u), l ,h(u ′)) is an edge in G.

We denote the match as a vector h(x̄), consisting of h(x) for all
x ∈ x̄ in the same order as x̄ , denoting entities identified by Q .

Graph association rules. We start with predicates of GARs.
Predicates. A predicate p of Q[x̄] has one of the following forms:

p ::= x .A | l(x ,y) | x .A = y.B | x .A = c | M(x ,y),

where x ,y are variables in x̄ ; x .A is an attributeA of pattern node x ;
l(x ,y) is an edge from x to y labeled l ; c is a constant; and M is an
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Figure 1: Patterns for graph association rules

ML model (see below). We refer to l(x ,y), x .A = y.B, x .A = c and
M(x ,y) as edge, variable, constant and ML predicate, respectively.

One can “plug in” an existingMLmodelM that returns a Boolean
value (e.g.,M ≥ θ for a predefined bound θ ). We uniformly express
various models we used as link prediction for l(x ,y), where the
label l can indicate (1) a predicted link, (2) the match of x and y
with ‘=’, or (3) semantic similarity between nodes x and y with ‘≈’.
GARs. A GAR (Graph Association Rule) φ is defined as [40]

Q[x̄](X → p),

where Q[x̄] is a graph pattern, X is a conjunction of predicates
of Q[x̄], and p is a single predicate of Q[x̄]. We refer to Q[x̄] and
X → p as the pattern and dependency of GAR φ, respectively, and
to X and p as the precondition and consequence of φ, respectively.

Intuitively, pattern Q in a GAR identifies entities in a graph,
and X → p is a dependency on the entities. Predicates x .A = c and
x .A = y.B can be used to fill in missing properties. Edge predicates
enforce the existence of edges, to deduce missing links.

Example 2: The money laundering mentioned in Example 1 can
be detected by the following GAR with graph pattern shown in
Figure 1, where nodes involved in the consequence are marked bold.
(1) GAR φ1 = Q1[x̄](

∧
i, j ∈[0,3]M1(zi , zj ) → p1), where the ML

modelM1 checks whether locations zi and zj are close, and the con-
sequencep1 is x0.risk = high. Intuitively,φ1 says that if the four per-
sons x0 to x3 make deposit into their accounts y0 to y3, respectively,
which wire money to the same merchant account y4, and if the four
use the same ATM z′ (specified in Q1) and have close addresses
(verified by M1), then x0 (to x3) should be labeled as high-risk.

GARs can also be used in knowledge graph-based recommen-
dation [83, 104, 116] across multiple graphs. Below are two rules
for a real case [29], whose patterns are also given in Figure 1.
(2) GAR φ2 = Q2[x̄](∅ → p2), where consequence p2 is edge predi-
cate like(x ,y1). It recommends a movie y1 to user x0 if x0 likes to
watch movie y0 and the same actor z stars in both movies. Here the
casts of movies are fetched from external graph G2 (see Section 3).
(3) GAR φ3 = Q3[x̄](M3(z0, z1) ∧ z0.country = z1.country → p3),
where p3 is like(x0, z1). It states that if user x0 likes a movie y0 that
is based on book z0, then x0 may also buy another book z1 if z0
and z1 have the same class, country and similar topics (verified by
M3), and if they won the same award z. It references an external
knowledge graphG2 to get information about movies and books. 2

As shown in [40], graph functional dependencies (GFDs) [49],
graph entity dependencies (GEDs) [42] and graph pattern associ-
ation rules (GPARs) [47] are special cases of GARs. GARs extend
these dependencies by supporting ML and edge predicates.

Table 1: Notations
Notations Definitions
G1 , G2 , f graph, external graph, HER function
Q [x̄ ], h(x̄ ) graph pattern, pattern match

h(x̄ ) |= p0 (or X ) match h(x̄ ) satisfies a predicate p0 (or a conjunction X )
G⊕(G1, G2, f ) or G⊕ the join of G1 and G2 with HER function f

φ ⊸ G⊕ GAR φ pertains to G1 w.r.t. G2 and f
sup(φ, G⊕) support of GAR φ ⊸ G⊕(f )

Semantics. To interpret φ = Q[x̄](X → p), denote by h(x̄) a match
of Q in a graph G, and by p0 a predicate of Q[x̄].

We say that h(x̄) satisfies predicate p0, denoted by h(x̄) |= p0, if
the following condition is satisfied: (a) whenp0 is l(x ,y), there exists
an edge with label l from h(x) to h(y); (b) when p0 is x .A = y.B,
attributes A and B exist at h(x) and h(y), respectively, and h(x).A =
h(y).B; similarly for x .A = c; and (c) when p0 is M(x ,y), the ML
model predicts true about a semantic relationship between x and y.

For φ = Q[x̄](X → p), we write h(x̄) |= X if h(x̄) |= p0 for all p0
in X . We write h(x̄) |= φ such that if h(x̄) |= X , then h(x̄) |= p. We
write G |= φ if for all matches h(x̄) of Q in graph G , h(x̄) |= X → p.
We write G |= Σ for a set Σ of GARs if G |= φ for all φ ∈ Σ.

The notations of the paper are summarized in Table 1.

3 SEMANTIC ENRICHMENT
In this section, we first present a notion of graph joins. We then
propose a method to improve association analyses in a graph G1
by incorporating relevant data from an external graph G2.

Graph joins. We define graph joins with heterogeneous entity
resolution (HER) across separate graphs. Consider a graph G1 =
(V1,E1,L1, F1) and an external graph G2 = (V2,E2,L2, F2).
HER. We assume the availability of an HER function f that, given a
graph G1 and an external graph G2, computes a set of pairs:

f (G1,G2) = {(u,v) | u ∈ G1,v ∈ G2,u ⇒ v}.

Hereu ⇒ v denotes that verticesu andv match, i.e., they refer to the
same real-world entity. We refer to f (G1,G2) as the set of matches
across G1 and G2 by f . To simplify the discussion, we assume
w.l.o.g. that if (u,v) ∈ f (G1,G2), then L1(u) = L2(v); and f (G1,G2)
is “bijective”, i.e., each u has a unique match v and vice versa.

Several HER functions are already in place, e.g., JedAI [84],
parametric simulation [43], and ML models Silk [62], MAGNN [51]
and EMBLOOKUP [15]. In this paper, we take parametric simula-
tion [43] as HER; our method works with the other HER functions.
Graph joins. The join ofG1 andG2 withHER f is a graphG⊕(G1,G2,
f ) = (V⊕,E⊕,L⊕, F⊕), whereV⊕ (resp. E⊕) is a revision of the union
V1 ∪V2 (resp. E ∪ E2) such that u and v are represented as the same
(merged) vertex in V⊕ if (u,v) is a match in f (G1,G2); and L⊕ and
F⊕ inherit the label and attribute assignments from G1 and G2.
When u and v both carry attribute A, the merged vertex takes the
value v .A from G2, assuming that the data in G2 is more reliable.

We write G⊕(G1,G2, f ) as G⊕ when it is clear in the context.
Intuitively, if u and v are determined by HER to denote the same

entity, the two are merged into the same vertex inG⊕ , which inher-
its all the adjacent edges and attributes ofu andv . This is analogous
to a “semantic” extension of the natural join in SQL, where tuples
t1 and t2 join if the two have the same common attribute values,
and then t1 is “enriched” with additional attributes of t2.
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Figure 2: Graph join G⊕ of G1 and G2

Example 3: Figure 2 depicts the graph join G⊕ of two graphs G1
andG2, in which the merged vertices inG⊕ are colored in gray. That
is, theHER function links eachvi (movie or book) inG1 towi inG2
for i ∈ [0, 4], yielding the merged verticesmi . Their adjacent edges
labeled by e.g., won, based on and like are inherited accordingly. 2
GARs across G1 and G2. A GAR φ = Q[x̄](X → p) across separate
G1 and G2 is simply φ defined on G⊕ ; and it is interpreted in G⊕ ,
i.e., we consider matches h(x̄) of Q in the join G⊕ of G1 and G2.
This is how we interpret the GARs φ1-φ3 of Example 2.
Remark. One can adopt alternative definitions for graph joins G⊕ ,
as long as there exist (a) a function f that returns pairs of vertices
across G1 and G2 satisfying certain conditions θ (not limited to
entity matching), just like θ -joins in relational queries; and (b) a
scheme that determines which graph data related to the matched
vertex pairs will be included in G⊕ .

Association analyses with external graphs. On the one hand,
the join G⊕ enriches graph G1 with information from G2. On the
other hand, it is often not very practical to compute G⊕ since it
incurs extra computational and maintenance costs, and moreover,
the join G⊕ contains “noise” irrelevant to the entities in G1.

To reduce noise and cost, we propose to make use of G⊕ for
association analyses without physically computing the graph join.
GARs pertaining to G1. We define the scope of GARs that can facili-
tate the association analyses in graphG1. For aGARφ = Q[x̄](X →

p), we assume w.l.o.g. that its consequence p involves two variables
xp ,x

′
p ∈ x̄ (xp = x ′p if one is involved), which are referred to as the

pivots of φ. We say that φ pertains to G1 w.r.t. G2 and f , denoted by
φ ⊸ G⊕ , if there exists at least one match h of Q in G⊕ such that
at least one of h(xp ) and h(x ′p ) is in G1, as mapping of pivots in φ.

Intuitively, such φ pertains to the entities of G1 rather than to
irrelevant entities in G2. The reason for specifying this scope is
twofold. (a) We want to reduce the search space and irrelevant rules.
(b) We want to enrich G1 for association analyses but not G2, by
taking the action specified in the consequence predicate p.

For instance, when p is xp .A = x ′p .B such that xp and x ′p are
pivoted at vertices u ∈ G1 and v ∈ G2, respectively, we enrich u .A
in G1 with v .B. When p is l(xp ,x ′p ) and xp and x ′p are pivoted at
vertices u,u ′ ∈ G1, we deduce a (missing) link from u to u ′ in G1.
Association analyses pertaining to G1. Based on this notion, we
◦ discover a set Σ of GARs pertaining to G1 from G⊕(G1,G2, f ),
◦ incrementally mine GARs in response to updates to G1 and G2.
In the process, we inspect graph G1 and only the data of G2

that pertains to entities in G1, not the entire G2, to avoid noise
and redundant computation. Along the same lines, we can deduce
associations in G1 by referencing G2, with the discovered GARs.

We will develop discovery algorithms in Section 4 and incremen-
tal algorithms in Section 5, without physically computing the join.

4 RULE DISCOVERY ACROSS GRAPHS
This section formulates the problem of mining GARs across graphs
G1 and G2, and proposes a discovery framework (Section 4.1). We
also develop a strategy to identify relevant data of G2 (Section 4.2).

4.1 The Discovery Problem
Following [35, 39], we measure the quality of GARs with support.
Support. We extend the support ofGFDs [39] toGARs pertaining to
G1 w.r.t.G2 and f . Given such a GAR φ = Q[x̄](X → p) with pivots
xp and x ′p of p, we denote by Q(G⊕,G1) the set of matches h of Q
in the join G⊕ , such that at least one of h(xp ) and h(x ′p ) is in G1.
Let Q(G⊕,G1,X ,p) be the set of all such matches h in Q(G⊕,G1)
with h |= X and h |= p. The support of GAR φ ⊸ G⊕ is

sup(φ,G⊕) = ∥{⟨h(xp ),h(x
′
p )⟩ | h ∈ Q(G⊕,G1,X ,p)}∥,

i.e., the number of valid matches with distinct pivot mappings. Intu-
itively, GARs with higher support can be applied more frequently.
Anti-monotonicity. One can verify that sup(φ,G⊕) retains the anti-
monotonicity w.r.t. the partial order ⪯ on GARs defined in [35]. For
GARs φ1 = Q1[x̄1](X1 → p) and φ2 = Q2[x̄2](X2 → p), φ1 ⪯ φ2 if
the pattern Q1 is a “subgraph” of Q2 and X1 is a subset of X2 [35].
Lemma 1: Given a graph join G⊕ and GARs φ1 ⪯ φ2, if φ1 ⊸ G⊕

and φ2 ⊸ G⊕ , then sup(φ1,G⊕) ≥ sup(φ2,G⊕). 2

Discovery problem. The new discovery problem is as follows.
◦ Input: A graph G1, an external graph G2, an HER function f , a
positive integer k and a support threshold σ .

◦ Output: The set Σ ofGARs that pertain toG1 w.r.t.G2 and f such
that for each GAR φ=Q[x̄](X→p)∈Σ, G⊕ |=φ w.r.t. the matches
Q(G⊕,G1), sup(φ,G⊕)≥σ , and φ has at most k pattern nodes.

Parameter k is to control the cost of discovery following [35, 41].

A framework. A strawman approach is to treat G⊕ as the input
graph and directly apply an existing mining algorithm [34, 35, 39,
41]. As remarked earlier, this may be prohibitively expensive. It may
also end up with many GARs that reflect regularities in G2 only.
Three-step discovery. In light of these, we propose a new 3-step
framework to (1) access only the data in G2 relevant to GARs per-
taining to G1; and (2) discover GARs that pertain to G1 only.
◦ Tentative join. Given an HER function f , we compute the set

f (G1,G2) of matches across graph G1 and external graph G2.
◦ Graph filtering (Section 4.2). Applying a novel ML-based filter-
ing strategy, we identify data in G2 that is relevant to GARs
pertaining to G1, filtering out the rest to reduce noise and cost.

◦ Mining. We discover GARs over G1 and the relevant data se-
lected from G2 in the second step, instead of the join G⊕ .
The mining step follows [35, 39], except that it computes the

support of a rule such that at least one pivot is mapped to a vertex in
G1. It generates candidateGARs in a levelwise manner with vertical
spawning to construct patterns, and horizontal spawning to expand
dependencies for GARs. All candidates w.r.t. each pattern Q are
organized in a generation treeT (Q). Every nodew inT (Q) encodes
a candidate GAR Q[x̄](X → p), and each of w’s children in T (Q)
representsQ[x̄](X ′ → p), where X ′ extends X with one more pred-
icate. It iteratively conducts grouped candidate validation, which
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Algorithm 1: Filter
Input: A graph G1, external graph G2, the set f (G1, G2) of matches

across G1 and G2 by HER function f , and threshold δ .
Output: Filtered external graph r1(G2).
1 initialize r1(G2) as an empty graph;
2 foreach pair of matches (u0, v0) ∈ f (G1, G2) do
3 generate paths P1(u0):=Mρ (G1, u0); P2(v0):=Mρ (G2, v0);
4 foreach path set P2(v0, vm ) generated from G2 do
5 calculate the ranking score R(P2(v0, vm )) by using DPRA;
6 if R(P2(v0, vm )) satisfies the threshold δ then
7 add all vertices and edges in P2(v0, vm ) to r1(G2);

8 return r1(G2);

verifies “similar” candidates together with support and satisfaction
checking, and prunes candidates by anti-monotonicity of support.

Putting the three steps together, we denote the discovery algo-
rithm as JDisR. It returns those candidateGARs that are satisfied by
the filtered graph join and have support values above the threshold.

Below we focus on graph filtering. As will be seen in Section 5,
we also incrementally discover GARs in response to updates, and
parallelize the discovery processes to scale with large graphs.

4.2 Graph Filtering
We introduce an ML-based method to select a subgraph r1(G2) from
G2, consisting of data that is relevant to GARs pertaining to G1.

Rationale. A naive approach to identifying r1(G2) is to include
all the data within k − 1 hops of the matched vertices v by HER
function f . Since we aim to find thoseGARs having at most k nodes
in their patterns, all required GARs pertaining to G1 can be found
from G1 and such r1(G2). However, when real-life graphs follow,
e.g., the power-law node degree distribution [28], the size of r1(G2)
may grow exponentially with k , making GAR discovery inefficient.

To get a smaller r1(G2), we propose to filter G2 based on its
semantic relevance toG1. In practice, external (knowledge) graph
G2 often includes data that is extracted from multiple data sources,
covering general and diverse use cases [60]. The graph G1, on the
contrary, targets limited, user-specific applications only.

Path-driven filtering. Algorithm 1 outlines Filter, our strategy
to identify r1(G2). As observed in [43], relevant entities are often
linked via paths in a graph. Hence Filter consists of three major
steps: (1) path generation (lines 2-3), which constructs a set of se-
mantically meaningful paths in bothG1 andG2 based on a language
modelMρ , starting from the matches; (2) path ranking (lines 4-5)
that quantitatively measures the semantic relevance between the
generated paths; and (3) data selection (lines 6-7), which filters out
the data in G2 that is not endorsed by any high-ranking paths, i.e.,
their semantic relationship toG1 is weak; it is controlled by a score
threshold δ , to strike a balance between effectiveness and efficiency.

This strategy is echoed by previous work on heterogeneous
networks [61, 95], which finds that paths, as special structural fea-
tures, can capture relevant semantics needed for recommendation
and similarity search. Below we present the three steps in Filter.
(1) Path generation. Starting from the matches in f (G1,G2) across
G1 and G2 , Filter generates a collection of paths whose terminal

vertices represent “important” properties, by using a language
modelMρ . That is, for each pair (u,v) ∈ f (G1,G2), it computes a
set P2(v) of paths in G2 via pre-trainedMρ such that each path ρ
in P2(v) originates fromv and terminates at a semantically relevant
property ofv . Similarly the paths in P1(u) are selected fromG1 to get
u’s properties. Indeed, language models have been shown effective
in “parsing” information within (knowledge) graphs [30, 72, 74];
they can explore the embedding sequence for a path, and generate
a single representation to encode its holistic semantics [107].

More specifically, Filter initializes a path ρ = (v, l ,v1) w.r.t. each
edge (v, l ,v1) in G2, where v is in f (G1,G2) and matches a vertex
ofG1. ThenMρ is applied to vertex label L2(v1) to get a set of edge
labels with their possibility of following the “word” L2(v1). The edge
(v1, l ′,v2) (or (v2, l ′,v1)) is chosen from the set of edges incident
to v1, whose label l ′ has the highest possibility in this set. Filter
appends l ′ and v2 to ρ, and repeats the above steps, i.e., feeding
L2(v2) to Mρ to have another set of edge labels for subsequent
edge selection. Such iteration for constructing ρ proceeds until (a)
Mρ returns the end of sentence tag, (b) there is no edge to choose,
(c) ρ already has k vertices, or (d) ρ forms a cycle (abandoned). All
the resulting paths ρ are included in P2(v). Along the same lines, it
also builds the path set P1(u) for graph G1 based onMρ .

We implement Mρ as a long short-term memory (LSTM) net-
work, and collect sequences of vertex and edge labels on the random
walk paths inG1 andG2 to build a training corpus. Taking the labels
as sentences of words, we train Mρ on the corpus driven by the
“perplexity” loss [79]; the training is unsupervised.

We employ LSTM as an exemplary implementation, replaceable
by e.g., large language models. LSTM is adopted since it can effec-
tively capture the semantic meaning of labeled paths in graphs [72–
74], by “memoizing” long-term dependencies in a sequence and
reasoning about paths. In particular, compared to large language
models, LSTM is simple to train and is efficient in inference.
(2) Path ranking. Filter computes a ranking score R(P2(v0,vm )) for
each path set P2(v0,vm ) generated from G2, where all paths in
P2(v0,vm ) have the same starting vertexv0 and terminal vertexvm .
It measures the “importance” of these paths in GARs pertaining
to G1. To achieve this, Filter applies a Dual-Path Ranking Algo-
rithm (DPRA). In a nutshell, DPRA ranks P2(v0,vm ) by consider-
ing both (a) R2(P2(v0,vm )), its semantic significance in G2, and
(b) R1(P2(v0,vm )), its semantic relevance to entities in G1. Hence
DPRA outputs R(P2(v0,vm )) = R2(P2(v0,vm )) + R1(P2(v0,vm )).

Consider a generated path ρ=(v0, l0,v1, ...,vm ) in P2(v0,vm )

from G2, where v0 has a match u0 in G1 by HER function.
(a) DPRA first computes the ranking score

R2(ρ) =
m−1∏
i=0

1
D(vi )

,

where D(vi ) denotes the degree of vi in G2.
Intuitively, it simulates the process that a resource unit flows

from the starting vertex v0 of path ρ, and equally divides to each
branch in the middle, representing the evolution of significance
along ρ. The score estimates the reliability of ρ as a semantically
meaningful connection between v0 and property vm [74].
(b) It then computes the other score R1(ρ) based on the semantic
similarity between ρ and selected paths originated from u0 in G1.
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(i) If ρ has nomatched vertex byHER exceptv0, DPRA setsR1(ρ) =
0, as ρ is a “dangling” path in G2 and has little relevance to G1.

(ii) If there exists a vertex vi (i ∈ [1,m]) on path ρ that has a
match u inG1 by HER, it finds the subset P1(u0,u) = {ρ ′ | ρ ′ ∈
P1(u0),u is on ρ ′} from P1(u0). That is, each path ρ ′ in P1(u0,u)
and path ρ originate from the same entity u0 ⇒ v0, and in-
tersect at another vertex u ⇒ vi . This indicates that ρ of G2
is semantically related to ρ ′ of G1, and the “importance” of ρ ′
should contribute to that of ρ for GARs pertaining to G1.
In light of this, DPRA computes the score

R1(ρ,vi ) = max
ρ′∈P1(u0,u)

len(ρ′)∏
i=1

1
D(ui )

,

where len(ρ ′) denotes the total number of vertices in path ρ ′ andui
is a vertex on ρ ′; and R1(ρ) is obtained by summing up the values
of R1(ρ,vi ) for all matched vertices vi (i ∈ [1,m]) by HER on ρ.
(c) Having computed R2(ρ) and R1(ρ) for all individual paths ρ,
DPRA finally aggregates the scores by letting R2(P2(v0,vm )) =∑
ρ ∈P2(v0,vm ) R2(ρ) and R1(P2(v0,vm )) =

∑
ρ ∈P2(v0,vm ) R1(ρ).

Theoretically the ranking scores for individual paths depress
the role of high-degree nodes, which may underestimate important
vertices in graphs following the power law. For instance, a number
of people are born in the same populous country; dropping high-
degree country vertices makes it difficult to find a GAR that people
with the same birthplace are also likely to have the same citizenship.
The final aggregation phase in DPRA is to avoid such punishment.
(3) Data selection. Filter derives the subgraph r1(G2) by including
only the vertices and edges that appear in those path sets P2(v0,vm )

having scores above threshold δ . Obviously, smaller δ leads to more
discovered GARs but lower efficiency. As will be seen in Section 6,
medium δ values, e.g., 0.05, suffice to help us find a large percentage
of required GARs while it notably reduces the size of r1(G2).

Example 4: Recall graphs G1, G2 and the HER matches from Ex-
ample 3. Algorithm Filter generates paths from each vertex in the
HER matches to filterG2. For instance, starting from vertexw3, the
language model Mρ creates fours paths that link to the publisher,
series, award and same class book of w3. Filter drops the paths
w.r.t. publisher and series for their low scores. Similarly it processes
the paths fromw2 andw4. Finally Filter returns the filtered r1(G2)
from G2 by removing the paths to s1 and s2. Joining it with G1, the
filtered graph join is smaller than the G⊕ depicted in Figure 2. 2

Analysis. Once the matches across G1 and G2 are determined by
HER function, it takes O(|G1 |2 + |G2 |2) time to generate all the
meaningful paths and construct r1(G2) with paths of high scores.
As shown in [43], HER takes at most quadratic (O(|G1 | |G2 |)) time.

5 INCREMENTAL RULE DISCOVERY
In this section, we first develop an incremental GAR discovery al-
gorithm that is relatively bounded (Section 5.1). We then parallelize
the discovery algorithms with parallel scalability (Section 5.2).

5.1 Incremental Discovery Algorithm
We consider batch updates∆G1 (resp.∆G2) to graphG1 (resp.G2). To
simplify the discussion, ∆G1 and ∆G2 are assumed to be sequences

of edge insertions and deletions. Vertex updates are a dual of edge
updates [66], which can be handled similarly [44, 46].

Incremental discovery. Suppose that given pattern size bound k
and support threshold σ , batch GAR discovery across G1 and G2
returns a set Σ(G1,G2,k,σ ) of GARs pertaining to G1. Let ∆Σ+ =
Σ(G1⊗∆G1,G2⊗∆G2,k,σ )\Σ(G1,G2,k,σ ),∆Σ− = Σ(G1,G2,k,σ )\
Σ(G1 ⊗ ∆G1,G2 ⊗ ∆G2,k,σ ), and ∆Σ(G1,G2,∆G1,∆G2,k,σ ) =
(∆Σ+,∆Σ−), denoting the new GARs introduced by (∆G1,∆G2),
removed by (∆G1,∆G2), and their combination, respectively. Here
Gi ⊗∆Gi refers to the updatedGi by applying ∆Gi toGi (i ∈ [1, 2]).

The incremental GAR discovery problem across G1 and G2 is:
◦ Input: G1, G2, k , σ as in the discovery problem, updates (∆G1,
∆G2), and a set Σ(G1,G2,k,σ ) ofGARsmined acrossG1 andG2.

◦ Output: Changes ∆Σ(G1,G2,∆G1,∆G2,k,σ ) to Σ(G1,G2,k,σ ).
We simply write Σ(G1,G2,k,σ ) as Σ(G1,G2)when k and σ are clear
in the context; similarly for ∆Σ(G1,G2,∆G1,∆G2).

When (∆G1,∆G2) is small as commonly found in practice, it is
often more efficient to compute the above changes than re-mining
GARs across G1 ⊗ ∆G1 and G2 ⊗ ∆G2 starting from scratch.
Relative boundedness. Denote by (G1,G2)A the data inspected by a
batch GAR discovery algorithmA for computing Σ(G1,G2), includ-
ing the auxiliary structures used by A. Given updates (∆G1,∆G2),
denote by AFF the difference between (G1 ⊗ ∆G1,G2 ⊗ ∆G2)A
and (G1,G2)A . An incremental GAR discovery algorithm A∆ is
bounded relative toA [44, 46] if the size of data checked byA∆ can
be expressed as a function of |∆G1 |, |∆G2 | and |AFF|.

Intuitively, |AFF| is the size of the affected area by ∆G1 and ∆G2
relative to A. It is the minimum cost for any possible incremental-
ization of A. A relatively bounded incremental A∆ is measured by
this necessary cost without inspecting irrelevant parts.

Theorem 2: There exist incremental graph filtering andGARmining
algorithms that are relatively bounded. 2

We next provide a constructive proof of Theorem 2 by incremen-
talizing Filter first, and then the mining step. A relatively bounded
incremental algorithm for graph joins withHER (parametric simula-
tion) has been developed in [43] with the time complexityO(|AFF|).

Incremental graph filtering. To incrementalize algorithm Filter
(Section 4.2), we maintain all paths generated by the language
model Mρ as auxiliary structures along with their scores. Then
it suffices to identify paths that interact with updates, revise the
affected paths, and update the ranking scores accordingly.

The incremental filtering algorithm, referred to as IncFilter,
works as follows. (1) For each updated edge (v, l ,v ′) and the gener-
ated path ρ, it first checks whetherv (resp.v ′) is on ρ; it marks ρ as
stale if so, and v (resp. v ′) as an interaction vertex. (2) For each stale
path ρ, it resumes the generation for ρ at interaction vertices in the
updated graphs, starting from the first such vertex on ρ. Note that
the re-generation between two consecutive interaction vertices is
not induced if the edge selected with the former is unchanged. (3)
Using the updated paths, IncFilter adjusts the ranking scores and se-
lects paths with scores above threshold σ from each matched vertex
in G2 ⊗ ∆G2, along the same lines as the last two steps in Filter.

IncFilter is bounded relative to Filter since Filter creates paths
iteratively by checking the adjacent edges of their current terminal
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Algorithm 2: IncJDisR
Input: Updated graphs G1 ⊗ ∆G1 and r1(G2 ⊗ ∆G2), GARs

Σ(G1, G2) mined w.r.t. k and σ , and auxiliary structures T .
Output: Changes ∆Σ(G1, G2, ∆G1, ∆G2) to Σ(G1, G2).
1 ∆Σ+:=∅; ∆Σ−:=∅; fuse G1 ⊗ ∆G1 and r1(G2 ⊗ ∆G2) as G′′

⊕ ;
2 retrieve valid (resp. invalid) boundary GARs ΣT (resp. ΣF) from T;
3 foreach GAR φ ∈ ΣT do
4 if ReCheck(φ, σ , G′′

⊕, T) = false or G′′
⊕ ̸ |= φ then

∆Σ−:=∆Σ−∪{φ };
5 foreach GAR φ ∈ ΣF s.t. G′′

⊕ |= φ do
6 if ReCheck(φ, σ , G′′

⊕, T) = true then ∆Σ+:=∆Σ+∪{φ };
7 update ∆Σ+ with BacktrackGT(ΣT ∪ ΣF, G′′

⊕, σ , T);
8 update ∆Σ+ with ExpandGT(ΣT ∪ ΣF, G′′

⊕, σ , T);
9 return (∆Σ+, ∆Σ−);

vertices; hence all interaction vertices and the data inspected by
the re-generation in IncFilter are covered by AFF. Similarly, score
adjustment only inspects paths having the same source vertices as
the re-generated ones, which are also included in AFF.

IncFilter takes O(|AFF|(|∆G1 | + |∆G2 |)) time in the worst case
since every unit update can trigger path re-generation. The space
cost is O((mt +m

′
t )(|G1 | + |G2 | + |∆G1 | + |∆G2 |)), wheremt (resp.

m′
t ) denotes the number of HER matches (resp. newly added HER

matches) across G1 and G2 (resp. G1 ⊗ ∆G1 and G2 ⊗ ∆G2); this
includes the cost for maintaining intermediate results, i.e., O(mt )

old paths and another O(m′
t ) paths that start with new matches.

Incremental mining. We now deduce IncJDisR, an incremental
GAR discovery algorithm. It takes as input the updated graphG1 ⊗
∆G1, the new subgraph r1(G2 ⊗ ∆G2) returned by IncFilter, the set
Σ(G1,G2) ofGARsmined by JDisR, and some auxiliary structuresT .
It treatsG1 ⊗∆G1 and r1(G2 ⊗∆G2) as vertex-cut partitions, “fuses”
them into G ′′

⊕ and incrementally computes ∆Σ(G1,G2,∆G1,∆G2).
A brute-force incremental version of the mining step of JDisR

would re-examine the support and satisfaction of candidate GARs
φ. To simplify the discussion, below we focus on support checking;
similarly for checking whether the updated graphs satisfy φ.

Support re-examination incurs redundant validation since many
GARs in G ′′

⊕ retain support above threshold. Instead, based on the
anti-monotonicity of support and the generation treesT (Q) in JDisR
(Section 4.1), IncJDisR identifies a set of boundary GARs fromT (Q)
as the “triggers” of the changes to Σ(G1,G2), which may get in
or out of Σ(G1,G2) because of support changes. It re-checks these
rules, and propagates possible updates over T (Q).
Boundary GARs. A GAR is called qualified if it meets the support
threshold σ . There are two types of boundary GARs: (1) a valid
boundary GAR is a qualified GAR in T (Q) without any children;
(2) an invalid boundary GAR is an unqualified GAR in T (Q).
Auxiliary Structures. To speed up re-checking of the support for pre-
viousGARs, we maintain the following auxiliary structures. (1) The
generation treeT (Q)w.r.t. each patternQ ; (2) previous support value
of each candidate GAR; and (3) all pivot mappings for every candi-
date GAR. These are obtained during the execution of batch JDisR.
Algorithm. We present IncJDisR in Algorithm 2. After identifying
the valid and invalid boundary GARs from the generation trees,

t1
t2 t3

X3 → p3

X3 ∧ z0.country = z1.country → p3 X3 ∧ z0.author = z1.author → p3

X3 ∧ z0.author = z1.author∧
z0.price = z1.price → p3

t4

Figure 3: Fraction of generation tree T (Q3)

IncJDisR checks whether each valid (resp. invalid) one has become
an unqualified (resp. qualified) GAR via procedure ReCheck; if so,
such rules are included in the sets ∆Σ− and ∆Σ+ regarding their
satisfaction with the updated G ′′

⊕ , respectively (lines 3–6). Then it
invokesBacktrackGT to start the backtracking process over the gen-
eration trees from every boundary GAR (line 7). In each step, proce-
dure ReCheck is called to check the support of the GAR currently
under inspection in G ′′

⊕ . It proceeds until reaching a qualified GAR
that is satisfied by G ′′

⊕ with minimum predicates, which will be in-
cluded in ∆Σ+. Analogously, another procedure ExpandGT expands
the generation trees from boundary GARs whose ancestors have
not been added to ∆Σ+ in a levelwise manner, conducts verification
and updates the set ∆Σ+ accordingly with qualified GARs that are
satisfied byG ′′

⊕ (line 8). IncJDisR finally returns (∆Σ+,∆Σ−) (line 9).
ReCheck ensures that when validating an existing GAR φ, only

new (resp. old) matches involving inserted (resp. deleted) edges
are computed. This is achieved by firstly mapping edges to the
graph updates in pattern matching. It then compares the pivot
mappings embedded in these matches against the maintained ones,
and increases (resp. decreases) the support value of φ if new pivot
mappings appear (resp. all matches that cover certain old pivot
mappings also involve deleted edges). For new candidate GARs,
ReCheck applies the same validation method as that in JDisR.

Example 5: Recall G1 and G2 from Example 3 and r1(G2) from
Example 4; let k = 5 and σ = 2. Assume that the ML model M3
returns true for similarity checking among topics of all books in
G2, which are written by the same author; each book has a unique
price (attribute, not shown); w2 and w4 have the same country
(attribute), but different from that atw3. Given these, batch JDisR
spawns vertically to generate patternQ3 of Figure 1; a fraction of the
generation treeT (Q3) is shown in Figure 3, where X3 =M3(z0, z1).
The dependency encoded by node ti (i ∈ [1, 4]) in T (Q3) is coupled
with Q3 to form a candidate GAR φ ′i , e.g., φ

′
2 corresponds to φ3 of

Example 2. Based on the support and satisfaction, JDisR only returns
φ ′2 with support 2; note that φ ′4 has support 0 below threshold.

Suppose that updates (∆G1,∆G2) insert (u1, like,v0) intoG1 and
delete (w2, same_class,w4) fromG2. For thresholdσ=2,φ ′2 is a valid
boundary GARs, while φ ′4 is invalid. IncJDisR checks their support
and satisfaction changes. Since the support of φ ′2 decreases to 0,
IncJDisR adds it to ∆Σ− and backtracks over T (Q3). It then finds
that the root φ ′1 also becomes unqualified with a new support 1 and
stops the backtracking. Note that no expansion is initiated because
now both φ ′2 and φ ′4 have support below σ . Hence IncJDisR just
returns the GAR in ∆Σ−, which is to be removed. 2

Analysis. IncJDisR is bounded relative to the mining step of JDisR,
since (a) procedures BacktrackGT and ExpandGT just inspect those
candidate GARswhose support and satisfaction changes may affect
their memberships in Σ(G1,G2). All such GARs in the generation
trees are covered by affected area AFF. (b) The re-checking of pre-
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vious GARs only finds matches involving updated edges, which
are contained in AFF. (c) Each newly generated candidate GAR in
expansion is also checked by JDisR when given the updated graph.

IncJDisR is in O(|AFF|2) time because it generates and checks
at most O(|AFF|) many candidate GARs, and every validation step
needs O(|AFF|) time. Note that here AFF takes the difference of
traces in data access for GAR validation, i.e., pattern matching.

The space cost of IncJDisR is O(Ct · (|G1 |(|G1 | + |r1(G2)|) +
max(|G1 |+ |r1(G2)|, |G1⊗∆G1 |+ |r1(G2⊗∆G2)|))) in the worst case,
whereCt denotes the total number of candidate GARs in the gener-
ation trees. It covers the cost for maintaining generation trees (resp.
previous pivot mappings of each candidate and index for matching
each GAR [40]), which is in O(Ct ) (resp. O(|G1 |(|G1 | + |r1(G2)|))
and O(max(|G1 | + |r1(G2)|, |G1 ⊗ ∆G1 | + |r1(G2 ⊗ ∆G2)|))).

Since the space cost for maintaining intermediate results is obvi-
ously larger that of the graphs, we persist auxiliary structures on
disks to speed up the incremental discovery. In contrast, the data
graphs are accommodated in main memory by default.

5.2 Parallel Discovery Algorithm
We parallelize the discovery framework forGARs across graphs and
show that each step has performance guarantee (parallel scalability).

Parallel scalability. We adapt the notion of [67] to characterize
the effectiveness of parallel algorithms. Consider a sequential al-
gorithm A for a problem Y . Let t(|IY |, |G1 |, |G2 |) be the worst-case
runtime of A when solving the instance IY of Y on graphs G1 and
G2. A parallel algorithm Ap for Y is parallelly scalable relative to
A if for any instance IY and graphs G1 and G2, the runtime of Ap
for handling IY using n processors can be expressed as:

T (|IY |, |G1 |, |G2 |,n) = O
( t(|IY |, |G1 |, |G2 |)

n

)
.

Intuitively, the parallel scalability guarantees speedup of parallel
algorithm Ap relative to a “yardstick” sequential algorithm A.
Such Ap can reduce the cost of A when more processors are used.

Below we outline the parallelization for each step of the
discovery framework. Given n machines, we partition the graphs
into n fragments such that each fragment is small enough to fit into
the memory of a machine; discovery is then conducted on all the
fragments by multi-machine parallelism. We show that the paral-
lelized batch and incremental algorithms are parallelly scalable and
thus can scale with large graphs in principle by adding machines.

Parallelization. (1) A parallel algorithm for graph join (the first
step) is in place with parametric simulation [43]. It evenly partitions
G1 and G2 into n fragments each, and iteratively filters invalid
matches in synchronized parallel steps. Along the same lines, the
incremental graph join algorithm can also be readily parallelized.
(2) Using hash-based task assignment, a parallel filtering algorithm
PFilter can be developed to deduce r1(G2). It decomposes the opera-
tions of Filter into three stages, i.e., path generation, score computa-
tion for individual paths, and score aggregation and data selection.
Then each one is conducted by independent and parallel tasks,
which are allocated to processors according to the hash values of
different kinds of task identifiers. Similarly, we can parallelize the
incremental filtering algorithm IncFilter into PIncFilter, by hash-
based partitioning of the path re-generation and score adjustment.

(3) Denoted as PJDisR, the parallel discovery algorithm works on
graphs that are partitioned across n processors. The overall proce-
dure in PJDisR follows [35, 39], where candidate GARs are gener-
ated in a levelwise manner and verified in parallel synchronously.
Each parallel round is responsible for validating rules that reside
at the same level of the generation trees. It also maintains partial
matches as workloads and eliminates the skewed ones by evenly
partitioning the partial matches across consecutive rounds. Based
on the same workload balancing strategy, the incremental discovery
algorithm IncJDisR can be parallelized into PIncJDisR.
Analysis. The parallel batch graph join algorithm is in O((|V1 | +
|V2 |)(|E1 | + |E2 |)/n) time; due to even partition of workloads
achieved by hash-based distribution, PFilter needs O((|G1 |2 +
|G2 |2)/n) time; and PJDisR takes O(

∑k
i=1Ci · (|G1 | + |r1(G2)|)i/n)

time, where Ci denotes the number of candidate GARs generated
with i pattern nodes; this cost can be verified along the same lines
as that in [35, 39]. Putting these together, the three-step discovery
framework is parallelly scalable. Similarly, the parallel incremen-
tal algorithm for graph join (resp. graph filtering, rule mining) is
inO(|AFF|/n) (resp.O(|AFF|(|∆G1 | + |∆G2 |)/n),O(|AFF|2/n)) time,
retaining the parallel scalability as the batch ones.

The total space costs of the parallel algorithms are the same
as that of their sequential counterparts given above, except for
the ones for mining GARs. Specifically, PJDisR and PIncJDisR need
more space to maintain partial matchesw.r.t.GARs at the same level
of generation trees, yielding space costs ofO(Ct · (|G1 |+ |r1(G2)|)k )
andO(Ct ·(|G1 |(|G1 |+ |r1(G2)|)+(|G1⊗∆G1 |+ |r1(G2⊗∆G2)|)k )), re-
spectively. Due to the workload balancing strategies, the space costs
are evenly partitioned across n processors for all parallel algorithms.

6 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we experimentally evaluated
(1) the effectiveness of graph filtering, (2) the efficiency and (parallel)
scalability of the (incremental) GAR discovery algorithms across
graphs, and (3) the accuracy of association deduction with theGARs
mined by referencing external graphs. Moreover, (4) we conducted
a case study with the rules mined from real-life graphs.

Experimental setting. We start with the experimental setting.
Datasets. We used five real-life datasets; each is a pair of a graphG1
and a knowledge graph G2. (1) Graph movieLens (ml) [9], a movie
rating network with 224K entities (users and movies) and 25M rat-
ings between users and movies; it was paired with IMDB [7], a
movie knowledge graph with 14.2M vertices and 114M edges. (2)
MGP [8], an academic genealogy database with 288K mathemati-
cians as entities and 317K edges; it was paired with DBLP [1] for
publications and authors, having 8.7M vertices and 161M edges.
(3) OSM [10], an open geographic database with 278K entities and
325K edges; it was paired with DBpedia [4], a knowledge graph of
5.2M vertices and 17.5M edges, for general facts. The three pairs
are denoted asml-IMDB,MGP-DBLP and OSM-DBP, respectively.

The other two are widely-used benchmark datasets for recom-
mendation [105], a type of association deduction: (4) Amazon–FBS,
in which graph G1 has 95K entities and 847K links drawn from the
product recommendation network Amazon-review (Amazon) [58],
and knowledge graphG2 includes 88K entities and 2.5M links from
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Freebase (FBS) [23]. (5) Last–FBS, in whichG1 has 71K entities and
3M links collected from the online music platform Last.fm (Last),
and G2 includes 58K entities and 464K links from Freebase. Both
retain the 10-core setting, i.e., each user or item has at least 10 links.

Following [82], we also generated synthetic graphs to test the
scalability of (incremental) discovery. Graph G1 has up to 20M ver-
tices and 150M edges, andG2 has up to 50M vertices and 1.1B edges.
Accuracy measure. We evaluated the accuracy of association deduc-
tion with the mined GARs, including recommendation, in terms of
F-measure. It is defined as 2 ·

precision·recall
precision+recall , where precision is the

ratio of true associations to all associations deduced, while recall is
the ratio of associations correctly derived to all the true associations.

Following [40, 54], to test the accuracy of association deduction
over ml-IMDB, MGP-DBLP and OSM-DBP, we manually injected
noises into their graphs G1 by changing attribute values and re-
moving edges. This was controlled by a noise ratio α%, i.e., the
ratio of changed values and removed edges to all attribute values
and edges in each original graph G1. By default, α% was set as 3%.
Therefore, a deduced association is classified as a true association
over these graphs if it restores a value change or edge removal.
For benchmark datasets Amazon–FBS and Last–FBS, the accuracy
of recommendation was evaluated directly over the real test sets
provided in [105], which also include all true associations.
Updates. We randomly generated updates (∆G1,∆G2) fromG1 and
G2 that include both edge and vertex updates, without heavily
affecting the underlying degree distribution. They were controlled
by the size |(∆G1,∆G2)| = |∆G1 | + |∆G2 | and a ratio of edge and
vertex insertions to deletions. We kept this ratio as 1 unless stated
otherwise, i.e., the size of each pair of graphs remains stable.
Algorithms. We implemented the following algorithms in C++. (1)
PFilter and PIncFilter for graph filtering. (2) Batch GAR discov-
ery algorithm PJDisR, and variant PJDisR1 (resp. PJDisRF), which
mines GARs from the join ofG1 and entire 1-hop neighbors of HER
matches in G2 (resp. the entire join of G1 and G2). (3) Incremental
GAR discovery algorithm PIncJDisR. (4) GARJDet, GARJDet1 and
GARJDetF, which apply the GARs discovered by PJDisR, PJDisR1
and PJDisRF to deduce associations following [40], respectively.

We also compared with the following baselines. (5) AMIE+ [52],
an algorithm for discovering Horn rules. (6) GFDDet [49] and
GARDet [40], which enforce the GFDs and GARs that are mined
from G1 only, respectively, without referencing G2. (7) HornDet,
which uses Horn rules mined by AMIE+ from G1 as in [40, 49].
(8) LiteralE [65], an ML-based association deduction method that
leverages literals from knowledge graphs. (9) KGAT [105] and
KGIN [106], two ML recommendation models; both incorporate
data from knowledge graphs via graph attention networks [101].

We adopted SimplE [64] as the ML predicates for general GARs,
due to its high accuracy and efficiency. We used KGAT [105] as the
embedded ML model in GARs for recommendation.
Configuration. We used a hyper computing cluster with up to 12
machines; each is powered by 12 Intel Xeon 2.2GHz cores and
64GB DDR4 RAM. We adopted Solid-State Drives (SSDs) to store
the auxiliary structures for incremental PIncJDisR. Unless stated
otherwise, we set δ = 0.05 in graph filtering; σ = 2000, k = 5, and

Table 2: Percentage of the filtered data from G2 (δ = 0.05)

Datasets
Methods

PFilter 1-hop nbr 2-hop nbr full join (#matches by f )

MGP-DBLP 3.9% 10.8% 63.8% 100% (75K)
ml-IMDB 7.8% 11.5% 22.9% 100% (62K)
OSM-DBP 1.5% 5.1% 19.0% 100% (19K)

Amazon–FBS 26.2% 27.7% 100.0% 100% (25K)
Last–FBS 87.3% 81.8% 99.8% 100% (48K)

|(∆G1,∆G2)| = 10%(|G1 | + |G2 |) in (incremental) discovery. We
implemented parametric simulation [43] as theHER function f and
used n = 8 machines for parallel algorithms by default. We termi-
nated any test when it ran for more than 15 hours. All experiments
were repeated five times, and the average is reported here.

Experimental results. We next report our findings.
Exp-1: Graph filtering. We first tested the effectiveness of our
graph filtering strategy. We compared the runtime of discovery
algorithms PJDisR and PIncJDisR with PJDisR1 and PJDisRF.

Varying the score threshold δ from 0.01 to 0.2, Figures 4(a)–
4(b) report the runtime of these algorithms on MGP-DBLP and
ml-IMDB, respectively. We find the following. (1) Since fewer paths
are selected fromG2 by PFilter and PIncFilterwhenδ gets larger, i.e.,
the filtered subgraph r1(G2) is smaller, PJDisR and PIncJDisR take
less time with the increase of δ , as expected, e.g.,when δ = 0.05, the
size of r1(G2) is on average only 25.3%|G2 |. (2) On average, PJDisR
beats PJDisRF by 17.4× on average, and the gap gets larger as δ
grows. In fact, the runs of PJDisRF cannot terminate in 15 hours
with default k = 5 (hence not shown). When δ = 0.2, PJDisR is
36.8× faster, while the mined GARs still achieve high accuracy in
association deduction (see Exp-3). (3) PJDisR is on average 2.1×
faster than PJDisR1 when δ = 0.05, since mostly 1-hop neighbors of
matched vertices in G2 are larger than r1(G2) extracted by PFilter.
(4) PFilter and IncFilter on average take 92.1s and 33.8s on the two
datasets (not shown), respectively, while PJDisR and PIncJDisR take
9320s and 1209s on average. Thus (incremental)GAR discovery cost
is dominated by the mining time, not by filtering.

In addition, Table 2 reports the percentage of the data in external
G2 that is extracted by different graph filtering approaches. Here δ
is set 0.05 for PFilter, and 1-hop nbr (resp. 2-hop nbr) represents
the extraction of entire 1-hop neighbors (resp. 2-hop neighbors) of
all HERmatched vertices inG2. As shown there, on average PFilter
extracts 25.3% data fromG2 in the five datasets, which is often much
smaller than filtering the entire 1-hop neighbors. Extracting 2-hop
neighbors can take as high as the entire G2. GAR discovery needs
more than 15 hours with this strategy except on recommendation
benchmarks. Joins of G1 with the entire G2 increase the size |G1 |
by 9.97× on average, and make PJDisRF prohibitively costly.

Exp-2: Rule discovery. We next evaluated the efficiency and (par-
allel) scalability of the (incremental) discovery algorithms.
Varying k . We first tested the impact of pattern node numbers.
From the results in Figures 4(c)–4(d), we find the following.
(1) When the bound k on pattern node numbers is varied from 3
to 7, PJDisR and PIncJDisR consistently beats the baselines except
AMIE+. AMIE+ is fast for k = 3 since it mines Horn rules that
are much simpler than GARs. However, when k > 3, AMIE+ gets
much slower because it is a single-machine algorithm; and it uses
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(j) Varying |(∆G1, ∆G2) | (OSM-DBP)
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(m) Varying n (OSM-DBP)
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(n) Synthetic data
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Figure 4: Performance evaluation

SQL to validate rules, which does not explore the locality of graph
pattern matching and is costly for large rules.
(2) PJDisR and PIncJDisR are able to discover GARs with fairly
large patterns, e.g., the two take 7056s and 582s to mine GARs with
7 patterns nodes and 7 edges on MGP-DBLP, respectively, when
k = 7, while PJDisRF cannot terminate in 15 hours when k = 5.
Varying σ . We varied σ from 500 to 10000 to check the impact of
support threshold on the discovery algorithms. As shown in Fig-

ures 4(e)–4(f) over MGP-DBLP and ml-IMDB, respectively, (1) the
runtime of all levelwise methods decreases as σ grows. This is
because the anti-monotonicity of support can prune more candi-
date rules when σ gets larger, reducing unnecessary validation. (2)
PJDisR is at least 14.4× faster than PJDisRF, again verifying the
effectiveness of the graph filtering strategy.
Varying |G2 |. We also tested the impact of the size |G2 | of external
G2 by randomly selecting 20% to 100% entities and relations in
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Figure 5: Memory usage and recommendation accuracy

external DBLP. As shown in Figure 4(g), when G2 grows, PJDisR
and PIncJDisR take longer since the size of r1(G2) also increases.
This said, PJDisR still outperforms PJDisR1 by at least 1.7×. We also
find that larger G2 can help improve the accuracy of association
deduction with GARJDet, as expected. For instance, the accuracy
grows from 0.65 to 0.72 over MGP-DBLP when 100% of entities
and relations from DBLP are selected as G2, instead of 20%.
Incremental discovery. We next tested the efficiency of incremental
PIncJDisR, by varying the size |(∆G1,∆G2)| of updates from 5% to
30% of the size of original (G1,G2). As reported in Figures 4(h)–4(j)
over the three real-life datasets, (1) all incremental methods get
slower when updates get larger, as expected. (2) PIncJDisR is on
average 10.6× faster than batch PJDisR, up to 42.9× when the size
|(∆G1,∆G2)| accounts for 5% of |(G1,G2)|. (3) PIncJDisR outper-
forms PJDisR even when |(∆G1,∆G2)| reaches 30% of |G1 | + |G2 |.
Parallel scalability. Varying the number n of machines used, we
checked the parallel scalability of the discovery methods. As shown
in Figures 4(k)–4(m), PJDisR (resp. PIncJDisR) is on average 2.6×
(resp. 2.4×) faster when n is varied from 4 to 12. It takes only 1287s
on MGP-DBLP when k = 5 by using n = 12 machines.
Synthetic data. We also tested the scalability of our methods by
varying the size of synthetic (G1,G2) from 274M to 1.3B. As shown
in Figure 4(n), (1) all algorithms take longer on larger graphs, as
expected. (2) PJDisR and PIncJDisR scale with large graphs. They
take 6029s and 825s on the graphs of size 274M, respectively.

The results on other datasets are consistent and hence not shown.
Storage cost. Figure 5(a) reports thememory consumption of PJDisR,
PIncJDisR and baselines. As shown there, PJDisR (resp. PIncJDisR)
consumes on average 4.9× (resp. 4.4×) less memory than PJDisR1
and PJDisRF, by using smaller filtered subgraph. AMIE+ is a single-
machine algorithm for simpler Horn rules and takes less memory
when n = 8. However, it runs out of memory when the size of graph
G1 reaches 136M. PIncJDisR takes on average 417.7 GB disk to
maintain auxiliary structures.AMIE+ does not use disk (not shown).

Exp-3: Association deduction. We next evaluated the accuracy
of association deduction with the GARs mined across graphs. For
rule-based methods, we applied the entire set of rules mined from
either graphs G1 alone or (filtered) graph joins of G1 and G2.
Varying δ . Figures 4(o)–4(q) report the accuracy of GARJDet with
the GARs mined by PJDisR over MGP-DBLP, ml-IMDB and OSM-
DBP, respectively, when δ is varied from 0.01 to 0.2. We can see that
(1) GARJDet gets less accurate when δ gets larger. This is because
more paths in external graphsG2 are omitted during graph filtering
in response to a larger δ . (2) The accuracy of GARJDet increases
steadily when δ drops from 0.2 to 0.05; then it grows much slower,
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!2 !3product
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Figure 6: GAR across G1 and G2 for fraud detection

while the discovery spends much longer at this point (Figures 4(a)–
4(b)). (3) When δ = 0.05, GARJDet on average beats GARDet and
GFDDet that enforce rules discovered from G1 only, by 30.4% and
41.7% in accuracy, respectively, verifying the effectiveness of refer-
encingG2 with paths generated by LSTM. Moreover, it is 10.7% and
6.5% more accurate than GARJDet1 and the ML-based LiteralE, re-
spectively. (4) GARJDet also outperforms HornDet, since (a) GARs
are more powerful than Horn rules and hence can deduce more
types of associations, and (b) GARJDet references G2. (5) While
GARJDetF is a bit more accurate than GARJDet since all GARs
mined from the entire graph joins by PJDisRF are applied, the time
for GAR discovery is more than 15 hours. Thus our graph filter-
ing strategy with LSTM strikes a balance between the accuracy of
association deduction and the cost of rule discovery.
Sensitivity to discovery parameters. Figures 4(r)–4(s) show the accu-
racy ofGARJDet by applyingGARs discoveredwith different bound
k on pattern node numbers and support threshold σ , respectively,
overMGP-DBLP.We find that (1) inmost of the cases,GARJDet still
outperforms the competitors except for GARJDetF, which is con-
sistent with Figures 4(o)–4(q). (2) GARJDet is more accurate when
given a larger k or a smaller σ , since more usefulGARs are returned
by PJDisR and applied in association deduction in such settings.
Varying α%. As shown in Figure 4(t) onMGP-DBLP, the accuracy
gap betweenGARJDet and LiteralE,GARDet andHornDet remains
consistent when varying noise ratio α% from 1% to 5%. GARJDet
is 38.0% (resp. 55.9%) more accurate than GARDet (resp. GFDDet).
LiteralE is better than the two but worse than GARJDet. All rule-
based methods get less accurate when α% increases, since their
rules may yield more false associations from the noise.
Recommendation. We further compared GARJDet with ML-based
KGAT and KGIN on benchmarks Amazon–FBS and Last–FBS, to
evaluate the accuracy of recommendation on real test sets. As
shown in Figure 5(b), (1) GARJDet is on average 36.1% and 17.0%
more accurate than KGAT and KGIN, respectively, although the
latter two also leverage information from the same knowledge
graphs. (2) Since graphsG1 are short of, e.g., attributes and labels,
HornDet,GFDDet andGARDet do not find many meaningful rules
from G1 alone; hence their accuracy is rather low, e.g., 0.11 for
GARDet (not shown). (3) In particular, GARJDet performs much
better than KGAT and KGIN on Last–FBS. As observed in [105],
this is because the preferences of users with many interactions are
too general to be caught by these ML models in Last–FBS.

Exp-4: Case study. Besides the real case of anti-money launder-
ing given in Example 1, below we show another exemplary GAR
discovered across a pair of graphs G1 and G2 for fraud detection in
receipts [19]; its pattern is depicted in Figure 6.

It is reported that dishonest people often commit document
forgery by, e.g., modifying the true prices of purchases or restau-
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rants’ addresses in receipts to get money from insurance or meet
the requirements of reimbursement. We can use GAR φf to catch
such fraudulent receipts. Here graphG1 is constructed with infor-
mation extracted from the receipt dataset for document forgery
detection in [6], while external G2 refers to the knowledge graph
built from the Sirene database [11, 97], which includes statistical
data about millions of French companies.

Specifically, GAR φf =Qf [x̄](x1.#articles=1∧x1.year=x3.year∧
Mf (x2,x3) → x1.total = x3.price). It says that if receipt x1 is
issued by company x0 which also creates x2, the only product
contained in receipt x1 (inG1), then x1’s total to pay must be equal
to the price of product x3 when x3’s year of production is the same
as that of x1, and x2 and x3 refer to the same product (determined
by the ML model Mf ). Note that the correct detailed information
of products, e.g., year of production and price, can only be fetched
from the external graph G2. This GAR helps detect higher prices
declared by fraudsters for products that are damaged or stolen, the
most common type of fraud in receipt data [19]. Similarly, one can
extract the real addresses of restaurants fromG2 to detect erroneous
ones presented in the receipts, by using GAR across G1 and G2.

Summary. We find the following. (1) By referencing external
(knowledge) graphs, the accuracy of association deduction with
GARs is improved by 30.4% on average, up to 38.6%. Moreover, it
outperforms the state-of-the-art ML-based methods by more than
10% over recommendation benchmarks. (2) Graph filtering is effec-
tive: it acceleratesGAR discovery by 17.4× on average, while retain-
ing high accuracy in association deduction. (3) Mining GARs across
graphsG1 and external graphsG2 is feasible: it takes 1287s to mine
GARs having 10 pattern nodes and edges from graphs of size 170M.
(4) The incremental GAR discovery method outperforms the batch
counterpart by 3.4× even when the size of updates accounts for 30%
of the original graphs; it beats PJDisR by 85.5× when |(∆G1,∆G2)|
= 1% (|G1 | + |G2 |). (5) Our batch (resp. incremental) GAR discovery
algorithm is parallelly scalable, improving the performance by 2.6×
(resp. 2.4×) on average when using 12 machines instead of 4.

7 RELATEDWORK

Data enrichment. Data enrichment aims to enhance a dataset by
extracting additional information from external sources. It has been
employed in recommender systems [24, 61, 103, 104, 108], link pre-
diction [55, 65, 92, 111], and entity resolution (ER) [27, 76, 102]. Rec-
ommenders, e.g., KPRN [107], KGAT [105] and KGIN [106], learn
embeddings of user-item relationships from a knowledge base. Link
prediction and ER algorithms leverage features that are extracted
from social graphs [16], texts [18, 98], pre-computed rules [57] and
knowledge graphs [63, 87, 99]. Cross-graph embedding was used
to integrate link prediction and network alignment [31, 32].

In contrast to the prior work, (1) this work studies rule discovery
by referencing external graphs G2, to improve the accuracy of
association deduction. (2) It proposes a graph filtering method and
an ML model to identify properties from G2 that are relevant to
entities in G1, an approach that has not been explored before.
Rule discovery. Discovery of association rules has been well studied
for relational data, e.g., [22, 36–38, 45, 77, 85, 86, 117]. Over graphs,
the prior work has mostly focused on rules defined with graph pat-

terns without logic conditions, and hence reduces to graph pattern
mining. For example, graph evolution rules [21, 89], link formation
rules [71], and predictive graph rules [100] are mined by employing
pattern mining techniques [50] such as gSpan [112]. RNNLogic [88]
and NeuralLP [113] adopt specialized machine learning models,
again to learn rules defined with paths but without logic conditions.
Horn rule learners, e.g., AnyBURL [78], AMIE [53], AMIE+ [52],
and GPFL [56], employ either top-down or bottom-up approaches
for discovering rules with “path” patterns.

Closer to this work are discovery algorithms for graph functional
dependencies (GFDs) [39], graph differential dependencies (GDDs)
[69], graph association rules (GARs) [35, 41], and graph cleaning
rules (GCRs) [34], which are defined with both graph patterns
and logic conditions. The algorithms are either mining-based via
levelwise traversal [39, 69], or learning-based [34, 41] by iteratively
generating candidate rules and validating them. The algorithm
of [35] adopts a strategy to select relevant predicates and a sampling
method to strike a balance between accuracy and scalability.

As opposed to the prior work, (1) we develop the first algorithms
for discovering rules by referencing an external graph G2, rather
than from a single graphG1. (2) The algorithms align entities across
G1 and G2 via HER, and train an ML model to identify relevant
properties. None of these has been studied before. (3) We adapt the
mining-based algorithm toGARs acrossG1 andG2. The objective is
to reduce noise and the size of merged data. Moreover, we show that
the algorithms remain parallelly scalable in the multi-graph setting.
Incremental rule discovery. Incremental rule discovery has been
studied over relational data [14, 90, 96, 110, 118]. On graphs, exist-
ing work mostly focuses on frequent subgraph mining (FSM) [50].
For instance, IncGM+ [13] adopts existing method on incremental
graph pattern matching [94]. TipTap [20, 81] computes a bounded
approximation for the collection of frequent subgraphs.

To the best of our knowledge, no incremental algorithm is yet in
place for mining rules with both general patterns and logic condi-
tions in response to updates. We develop the first such algorithms,
which discover rules across two separate graphs, and moreover,
guarantee both the relative boundedness and the parallel scalability.

8 CONCLUSION
This work has made the first effort to study (1) rule discovery from
a graph G1 by referencing external graphs G2, and proposing a
notion of graph joins; (2) a graph filtering model to identify only
information relevant to entities inG1, reducing noise and cost; and
(3) the first incremental rule discovery algorithms, in a single graph
or across different graphs. These algorithms have performance
guarantees, namely, parallel scalability and/or relative boundedness.
Our experimental study has verified that the methods are promising
in improving the accuracy of association deduction.

One topic for future work is to identify external graphs that help
enrich our graphs on hand, possibly by usingHER. Another topic is
to study rule discovery acrossG1 andG2 under privacy constraints.
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