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ABSTRACT
Supervised machine learning (ML) models trained on data with
mislabeled instances often produce inaccurate results due to label
errors. Traditional methods of detecting mislabeled instances rely
on data proximity, where an instance is considered mislabeled if its
label is inconsistent with its neighbors. However, it often performs
poorly, because an instance does not always share the same label
with its neighbors. ML-basedmethods instead utilize trainedmodels
to differentiate between mislabeled and clean instances. However,
these methods struggle to achieve high accuracy, since the models
may have already overfitted mislabeled instances.

In this paper, we propose a novel framework, MisDetect, that de-
tects mislabeled instances during model training. MisDetect lever-
ages the early loss observation to iteratively identify and remove
mislabeled instances. In this process, influence-based verification is
applied to enhance the detection accuracy.Moreover, MisDetect au-
tomatically determines when the early loss is no longer effective in
detecting mislabels such that the iterative detection process should
terminate. Finally, for the training instances that MisDetect is still
not certain about whether they are mislabeled or not, MisDetect
automatically produces some pseudo labels to learn a binary classifi-
cationmodel and leverages the generalization ability of the machine
learning model to determine their status. Our experiments on 15
datasets show that MisDetect outperforms 10 baseline methods,
demonstrating its effectiveness in detecting mislabeled instances.
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1 INTRODUCTION
State-of-the-art supervised ML techniques, like deep learning, re-
quire a large number of accurately labeled data to achieve their
full potential. This is especially crucial for mission-critical applica-
tions such as medical AI, which require millions of labels to train
a robust and accurate model that ensures the safety of passengers
or patients. To collect labels at this scale, they are often sourced
from non-experts or obtained through web annotations, which
can introduce errors and inaccuracies. Mislabeled instances in the
training set can significantly degrade the model’s performance and
potentially endanger human lives. Therefore, there is an urgent
need to effectively identify mislabeled instances in a training set
with label errors, which is a critical data cleaning task.
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Figure 1: Normalized Loss for Clean/Mislabel Instances.

Existing Solutions. Traditional methods [12, 47] rely on the data
proximity to detect mislabeled instances. For example, to determine
whether an instance is mislabeled, the classical 𝐾NN method [12]
checks its neighbors, based on the assumption that an instance
should have consistent labels with its neighbors. Otherwise, it tends
to bemislabeled. Othermethodsmainly use the output of the trained
models to detect mislabeled instances. For instance, ensemble-based
methods [15, 30, 60] train multiple models on the labeled dataset
and consider an instance asmislabeled if themodels are inconsistent
on their predictions. However, models tend to disagree with each
other even if the instances are correctly labeled. Cleanlab [40] is a
state-of-the-art approach that utilizes confident learning to estimate
the joint distribution of the entire dataset and leverages the learned
distribution to distinguish clean and mislabeled instances. However,
because it trains models with both correct and incorrect labels, this
oftenmakes themodel overfit the dirty data, thus reducing its ability
to distinguish between mislabeled and correctly labeled instances.
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In this work, we target solving this fundamental problem in
mislabel detection. The key idea is to distinguish mislabeled and
correctly labeled instances before the model starts overfitting the
mislabeled instances, a.k.a. early detection.

Key Observation. The loss values of clean training instances be-
have very differently from the mislabeled instances in early training
phases. Specifically, mislabeled instances tend to incur higher losses
than clean ones in first few training epochs. We thus call this the
early loss observation. Early detection can be achieved if we come
up with a way to effectively leverage this observation.
Empirical Verification. As shown in Figure 1, on each of the three
real-world datasets, we train a multi-layer perceptron (MLP) model
and collect the early loss of each instance. The 𝑥-axis denotes the
range of normalized loss after training the first epoch, and the 𝑦-
axis denotes the number of instances falling into the corresponding
loss range. The mislabeled instances always have large losses, while
the losses of the clean ones are relatively small. This verifies that
SGD tends to preferentially fit clean instances; and at early training
epochs, the training loss of clean instances tends to be smaller than
that of mislabeled instances.

The high-level intuition of this observation is that clean instances
always show more regular and clear patterns than mislabeled ones,
and thus clean instances tend to dominate the average gradient
which is used to update the model. Hence, the loss of clean instances
decreases faster. Next, we use a toy example to better illustrate the
loss difference between clean and mislabeled instances.

Example 1. Consider a wine dataset with four features
ProductID, Alcohol, Color, Capacity, and the label Type. Given
two instances 𝑜1 : (0001, 4%,𝐺𝑜𝑙𝑑𝑒𝑛, 500𝑚𝑙, 𝐵𝑒𝑒𝑟 ) and 𝑜2 :
(0002, 4%,𝐺𝑜𝑙𝑑𝑒𝑛, 450𝑚𝑙, 𝐿𝑖𝑞𝑢𝑜𝑟 ) which have very similar features
but different labels, suppose that 𝑜1 has the correct label while 𝑜2
is mislabeled. As long as the model learns the regular patterns that
beer shows, 𝑜1 will have a small loss. On the contrary, because 𝑜2 has
similar features to 𝑜1 but a different label, it tends to incur a large
loss on this model.

Challenges. Although early loss potentially can be valuable in
detecting mislabeled instances, to make it work, some major chal-
lenges have to be addressed. First, there is not a clear-cut between
the loss of mislabeled instances and that of clean labels for the
following reasons: (1) at the early training stages, many clean in-
stances might have not been well fitted by the randomly initialized
model, resulting in relatively large loss; (2) In some cases, clean
but difficult training instances incur a large loss as well due to the
irregularity of their features. Furthermore, when the model starts
fitting the mislabels, early loss will no longer be effective in detect-
ing mislabels. Clearly, relying on the users to manually set a proper
cutoff is not practical, because it varies across different types of ML
models trained on different training datasets. Ideally, an effective
mislabel detection approach should automatically determine when
to terminate the early loss-based detection process.

Our Proposal.We propose an iterative detection framework, called
MisDetect, to address the above challenges. The key idea is to lever-
age early loss to iteratively identify the most obvious clean and
mislabeled instances and then use them as pseudo labels to train
a classification model that determines if the remaining uncertain

instances are clean or not. In this way, we fully explore the early
loss observation as well as the generalization ability of the ma-
chine learning model to effectively identify mislabels. In addition,
MisDetect automatically terminates the detection process using an
entropy-based mechanism. MisDetect consists of three modules:
Early Loss-based Iterative Detection. MisDetect iteratively identi-
fies the instances with the largest loss as potential mislabeled in-
stances and removes them from the training process. In this way,
MisDetectmitigates the impact of the mislabels on the model train-
ing such that it can more effectively fit the clean instances, making
early loss more effective in detecting mislabels. At the same time,
MisDetect iteratively discovers the clean instances that have the
smallest loss as pseudo labels to train the classification model.

Moreover, MisDetect monitors the distribution of the training
loss during the iterative process and terminates it before the model
begins to fit mislabeled data. To establish this stop condition, we
leverage the observation that the entropy of the training loss effec-
tively reflects the progress of the training.
Influence-based Verification.Meanwhile, in the iterative process, the
influence-based verificationmodule double-checks whether themis-
labeled candidates discovered via early loss are indeed mislabeled
or not. The observation is that a mislabeled instance tends to have a
larger influence on the model’s performance than a clean instance.
We thus leverage this observation to separate difficult but clean
instances from mislabeled instances.
Uncertain Instances Classification. Finally, MisDetect uses the
clean and mislabeled instances discovered in the above iterative
process to train a classifier that eventually determines the status
(clean or mislabeled) of the remaining uncertain instances. To train
an effective classification model, MisDetect augments the features
of each instance using the information of its neighbors. Then an at-
tention layer in this model converts the features into an embedding
which is effective in classifying this instance.

Contributions. Our main contributions include:
(1) We develop a framework, called MisDetect, which iteratively
detects mislabels during ML training, thus achieving high accuracy.
(Sections 3)
(2) We use the training losses produced in early training stages as
an effective signal to distinguish mislabeled instances from clean
ones; and we invent a loss entropy-based method to decide when
to terminate the iterative mislabel detection process, effectively
preventing the model from overfitting mislabeled instances. Fur-
thermore, we design a hybrid approach that effectively leverages
the influence function to further improve the detection accuracy.
(Section 4)
(3) We train a classification model (Section 5) to determine the
status of the instances that MisDetect is still unsure about after
the iterative detection process. Note MisDetect does not require
humans to manually supply any labels to train this model.
(4) We conduct extensive experiments using 15 datasets and com-
pared our MisDetect to 10 baselines (Section 6). Our results demon-
strate the superiority of MisDetect over existing methods. Specif-
ically, our approach achieves up to 31% (14% on average) higher
F1-score compared to the state-of-the-art method Cleanlab, where
the F1-score is measured by the detection of mislabeled instances
with respect to the ground truth labels.
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Figure 2: MisDetect Framework

2 MISLABEL DETECTION

Supervised ML. Without loss of generality, we consider a classifi-
cation model 𝑓 : 𝑋 → 𝑌 that maps an input 𝑥𝑖 to a label 𝑦𝑖 from
𝑌 . Given a training set 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )} (𝑖 ∈ [1, 𝑁 ]) with 𝑁 training
data instances, the objective of supervised ML training is to learn
the optimal parameters that minimize the training loss, as:

𝑤∗ = arg min
𝑤∈W

F(𝑤 ), F(𝑤 ) = 1
𝑁

𝑁∑︁
𝑖=1

L(𝑜𝑖 , 𝑤 ) (1)

where W represents the parameter space, and L(𝑜𝑖 ,𝑤) denotes
the loss of the 𝑖-th training instance.

Note that we support multi-classification tasks. For ease of rep-
resentation, we abbreviate L(𝑜𝑖 ,𝑤) as L(𝑜𝑖 ).
Mislabels in supervised ML. We define the ground truth label
for each training instance 𝑥𝑖 as 𝑦∗𝑖 . Based on this label, a training
dataset 𝐷 can be partitioned into two disjoint sets: 𝐷𝑐 , containing
all instances 𝑜 𝑗 = (𝑥 𝑗 , 𝑦 𝑗 ) where 𝑦 𝑗 = 𝑦∗𝑗 , and 𝐷𝑚 , containing all
other instances 𝑜𝑘 = (𝑥𝑘 , 𝑦𝑘 ) where𝑦𝑘 ≠ 𝑦∗

𝑘
. Clearly, 𝐷 = 𝐷𝑐 ∪𝐷𝑚 ;

and 𝐷𝑐 and 𝐷𝑚 do not overlap with each other (𝑖 .𝑒 ., 𝐷𝑐 ∩ 𝐷𝑚 = ∅).
In ML, labels play a critical role as a training set with accurate

labels leads to a smoother training process and bettermodels. Hence,
it is crucial to identify mislabeled instances within the train set to
prevent them from negatively impacting model performance.

Mislabel detection. The objective of mislabel detection is to iden-
tify all mislabeled instances in the training dataset 𝐷 . The effective-
ness of the mislabel detection algorithm is evaluated by comparing
the set of detected mislabeled instances 𝐷′

𝑚 to the set of actually
mislabeled instances 𝐷𝑚 , using precision, recall, or F1-score.

In addition to improved model accuracy and reduced training
cost, mislabel detection, which improves the quality of the train-
ing data, can benefit many downstream applications for different
purposes.
Remark. Note that although we currently focus on discussing
and evaluating the classification task, we believe that our proposed
method can also be extended to the regression task for the following
reason: we leverage the loss to detect mislabeled instances. Given
a regression task, if the labels of the training set are incorrect, the
early loss will also be large. In addition, training algorithms that
do not use gradient descent (e.g., random forest) cannot be utilized
to detect mislabels. Our method is automatic and no human is
involved, and a test set is not needed.

3 THE MISDETECT FRAMEWORK
As discussed in Sec. 2, the goal of ML optimization is to learn the
model parameters that minimize the loss of the training instances.
Therefore, the loss the training instances incur during each train-
ing epoch contains valuable information reflecting the interaction
between the model and the training data. Our fundamental idea is
based on the observation w.r.t. training loss: correctly labeled and
mislabeled instances exhibit distinct characteristics in training loss,
particularly during the early stages of training (or epochs).

Building on this principle, our proposed framework, called
MisDetect, is an iterative approach that leverages few-epoch train-
ing to iteratively detect mislabeled instances with high accuracy. In
each iteration, MisDetect identifies mislabeled instances as well
as correctly labeled instances with high confidence. It then pivots
on the correctly labeled instances to detect additional mislabeled
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instances in the second stage. Next, we provide more details of the
MisDetect framework.

3.1 Stage 1: Iterative Detection
Early loss-based candidates generation. As discussed in Section 1,
mislabeled instances often exhibit a large early loss due to the
model failing to fit them in the early stages of training. In light of
this, as depicted in the top half of Figure 1, our framework itera-
tively identifies instances with the largest loss during the initial
training epochs to form a dynamic dirty pool, denoted byP𝑚 . These
instances are likely to be mislabeled.

Concurrently, we also maintain a clean pool P𝑐 consisting of
instances with the smallest loss. Because these instances are very
likely to be correctly labeled, we use the model trained over P𝑐 to
double-check the instances in the dirty pool. Some instances in the
dirty pool might in fact have clean labels due to their large loss. To
achieve this, we leverage the concept of influence, which will be
discussed more shortly.

In addition, MisDetect incorporates a mechanism to automati-
cally determine whether the model𝑀 has started fitting the misla-
beled instances such that the loss is no longer a reliable indicator
of mislabel status. If this occurs, MisDetect will stop constructing
the dirty and clean pools and proceed to the second stage, where a
binary classification model is trained to determine the status of the
uncertain instances. We will elaborate on this process in Section 5.

Influence-based verification. At each iteration, based on the parame-
ter of the model trained over P𝑐 , we conduct an influence evaluation
to refine the instances in the dirty pool. The intuition is that mis-
labeled instances tend to have a negative impact on the learned
model [32, 43]. This negative impact is reflected on the update of
the model’s parameters when a mislabeled instance is added to this
clean training set. Therefore, by measuring the parameter update
of the learned model and hence the influence of each instance, we
can verify whether an instance is truly mislabeled or not.

To measure this influence, a straightforward solution would be
to add the instance to the training set and retrain the model. How-
ever, this would result in prohibitive training costs. To overcome
this challenge, influence function [24, 32, 43] can be leveraged to
measure the influence of an instance on a model without retraining.
However, directly applying it to our context tend to be less effective.

This is because the influence function always assumes that the
given instance has already been involved in the training of the
model and estimates afterward how the model’s performance will
change if this instance is excluded. However, MisDetect aims to
identify mislabels, and involving a number of mislabeled instances
in training will inevitably compromise the model’s performance.
Furthermore, estimating the influence of an instance on a model
with poor performance tends to produce misleading results.

To solve this problem, we introduce a variation of the influence
function that estimates the influence more effectively in Section 4.2.

Overall, as shown in Figure 2, at each iteration, the 𝑟 instances in
P𝑚 with the largest influence values will be added into the result
set 𝑅, because they are more likely to be mislabeled. In addition, we
consider instances that have been put into P𝑐 as clean, because they
have the smallest loss, while the model tends to fit clean instances

at the beginning. Therefore, in the first stage, instances in 𝑅 and
P𝑐 are annotated as mislabeled and clean correspondingly.

3.2 Stage 2: Unannotated Instances Classification

Besides the annotated instances in the first stage, there remain
many instances (𝐷 \ (𝑅 ∪ P𝑐 )) that are not annotated, 𝑖 .𝑒 ., whether
they are mislabeled or not is still uncertain. The main reason is
that some instances may be located at the decision boundary of
the model and thus have similar loss values. Therefore, it is hard to
separate them at the first stage. Hence, we incorporate a classifica-
tion model to further identify the rest instances, fully exploring its
generalization ability.

As shown in the lower part of Figure 1, we use the instances
in the current result set and clean pool as training data, with the
mislabeled instances tagged as “-1” and the clean instances tagged
as “1”, to train a binary classification model. This model is used to
determine the status of these uncertain instances and classify them
as either clean or mislabeled. We will provide more details about
this process in Section 5.

In addition to the raw features of these instances, we also in-
corporate the original class labels and the annotated tags (“-1”, “1”,
or “0”) of their 𝐾 nearest neighbors (𝐾NN) as features. This is be-
cause the labels of an instance’s close neighbors can be helpful in
verifying if it is mislabeled or not [12]. The classical 𝐾NN classifi-
cation methodology shows that a correctly labeled instance tends
to have a consistent label with its nearest neighbors. On the other
hand, a mislabeled instance often has different labels with its 𝐾NN.
Therefore, by incorporating the 𝐾NN labels as features, the binary
classification model can learn to distinguish correctly labeled and
mislabeled instances more accurately.

Note that at the first stage, MisDetect might not be aware yet
if the retrieved neighbors are mislabeled or not. We thus annotate
these uncertain instances with a tag “0”.

At the inference phase, given an uncertain instance, we feed
its enhanced features into the trained model to predict if it is in-
deed mislabeled (-1). The final output of MisDetect includes the
mislabeled instances identified at both the first and second stages.

3.3 Algorithm: Putting Two Stages Together
Next, we use pseudocode (Algorithm 1) and Figure 2 to further
illustrate the framework.

Stage 1 (lines 4-9). We first iteratively train the model over 𝐷 and
detect mislabeled instances, as shown in Figure 2. At each iteration,
we obtain the loss of all instances, denoted by a set 𝐿 (line 4), and
then construct the two pools (line 5). Note that P𝑐 is incrementally
built at each iteration, generating a relatively small set P′

𝑐 of small
loss instances, and unioning with the previous clean pool. Based on
the model trained on P𝑐 , we evaluate the influence of each instance
in P𝑚 and select the top-𝑟 instances with the highest influence as
mislabeled ones (line 7).

Example 2. Figure 2 shows an example. In the current iteration,
P𝑚 consists of 𝑜10, 𝑜15, 𝑜11, 𝑜1, 𝑜3. Then we double-check these in-
stances by evaluating their influence on the model. Although 𝑜15
incurs a large loss, its influence is not large. Hence, 𝑜15 will not
be considered mislabeled. Because 𝑜1 and 𝑜10 show high influence,
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Algorithm 1: MisDetect Framework
Input: The original dataset 𝐷 , model𝑀 , 𝑟 (number of detected

instances per iteration).
Output: The result set 𝑅 of mislabeled instances.
𝑅 = ∅;1

/* The first stage */2

while stop condition is not satisfied do3

𝐿 = Train_few_Epochs(𝐷);4

P𝑚, P′
𝑐 = Pool_Generation(𝐿);5

P𝑐 = P𝑐 ∪ P′
𝑐 ;6

𝑡𝑜𝑝_𝑟=Influence_Evaluation(P𝑚, P𝑐 , 𝑟 );7

Add 𝑡𝑜𝑝_𝑟 into 𝑅;8

Remove 𝑡𝑜𝑝_𝑟 from 𝐷 ;9

/* The second stage */10

𝑅𝐾 = Retrieve_KNN(𝑅);11

𝐶𝐾 = Retrieve_KNN(P𝑐 );12

𝑀𝐾 = Train(𝑅𝐾 ∪𝐶𝐾 );13

𝑃𝐾 = Retrieve_KNN(𝐷 \ (𝑅 ∪ P𝑐 ));14

𝑅′ = Mislabel_Predict(𝑀𝐾 , 𝑃𝐾 );15

𝑅 = 𝑅 ∪ 𝑅′;16

return 𝑅;17

they are confirmed as mislabeled instances (line 8) and will be ex-
cluded from the training in the next iteration (line 9). This process
repeats until meeting the stop condition. In this example, suppose that
𝑟 = 2, and MisDetect stops after two iterations, it will recognize
𝑅 = {𝑜1, 𝑜3, 𝑜10, 𝑜11} as mislabeled after the first stage.

In the second stage, we consider the instances in 𝑅 as negative
training instances, while the instances in the clean pool P𝑐 are
regarded as positive training instances.

Stage 2 (lines 11-18). For each of these training instances, we
retrieve their 𝐾NN neighbors as additional features (lines 11-12).

Example 3. Consider the scenario where 𝑜9 and 𝑜13 are the neigh-
bors of 𝑜10 (suppose that 𝐾 = 2). In this case, MisDetect combines
these three instances to form a single training instance, where the
features include the raw features of all three instances, their original
class labels, and the tags assigned to them during the first stage. As
𝑜13 has not been identified in the first stage, it is assigned a tag of 0
which is also included as a feature.

Then we train a model𝑀𝐾 (line 13) to predict if the remaining
instances (𝐷 \ (𝑅 ∪ P𝑐 )) are mislabeled. The instances predicted as
-1 constitute 𝑅′, which is then combined with 𝑅 of the first stage
as the final output (line 15-16). For example, because in the first
stage, MisDetect is uncertain about 𝑜14, MisDetect then retrieves
the 𝐾NN of 𝑜14, feeds the constructed feature into the model, and
predicts it as mislabeled (𝑖 .𝑒 ., 𝑅′ = {𝑜14}). The final output is 𝑅 =

{𝑜1, 𝑜3, 𝑜10, 𝑜11, 𝑜14}.

4 ITERATIVE MISLABEL DETECTION
In this section, we first show why mislabeled instances tend to have
larger training losses than clean instances, and then introduce the
details of our early loss-based mislabel detection method as well as
the stop condition. Next, we present the influence-based verification

to make the mislabel detection more robust. Finally, we prove the
convergence of the proposed iterative method.

4.1 Early Loss-based Detection

Loss of an instance. Typically, training a neural network model
starts with initializing the parameters randomly. Therefore, on the
initial model, all instances tend to incur large losses. Then the neural
network optimizes the parameters typically using the stochastic
gradient descent (SGD) algorithm [13]. Next, we show how SGD
impacts mislabeled data and clean data differently.

Formally, the gradient of an instance can be represented as:

𝑑𝑖 = ∇𝜃 L(𝑜𝑖 ) (2)

Clearly, given an instance 𝑜𝑖 , updating the model parameters in
the direction of its negative gradient −𝑑𝑖 would most effectively
reduce its training loss.

Average gradient. However, SGD in fact updates the model pa-
rameters based on the average gradient (−𝑑) of an entire batch of
instances, as shown in Eq. 3. Therefore, this update is not optimal
with respect to each individual instance.

𝑑 =
1
𝑁

𝑁∑︁
𝑖=1

∇𝜃 L(𝑜𝑖 ) (3)

Loss reduction for an instance. Putting Eq. 2 and 3 together,
whenever SGD updates the model parameters based on the average
gradients, the impact that this update causes to a given instance 𝑜𝑖 ,
namely the amount of loss reduction, can be measured by projecting
−𝑑 onto −𝑑𝑖 .

𝐸𝑖 = −𝑑 · −𝑑𝑖
∥ − 𝑑𝑖 ∥

=∥𝑑 ∥ cos(𝑑,𝑑𝑖 ) (4)

In Eq. 4, cos() denotes the cosine similarity between two vectors,
while 𝐸𝑖 denotes how much the loss of 𝑜𝑖 will be reduced.

At a high level, supervised ML learns a mapping from features to
labels. Intuitively, clean instances tend to showmore converged and
regular patterns in the mapping than mislabeled ones. Moreover, in
real applications, the clean instances usually are the majority of the
training data (𝑒.𝑔., in CleanML [35] benchmark, all datasets have
dirty data ratios no more than 40%). Hence, clean instances tend to
dominate the direction of the average gradient, 𝑖 .𝑒 ., the directions
of clean instance gradients tend to be more aligned with that of
the average gradient. As a result, given a clean instance 𝑜𝑐 and a
mislabeled instance 𝑜𝑚 , very likely cos(𝑑, 𝑑𝑐 ) > cos(𝑑,𝑑𝑚), and
thus 𝐸𝑐 > 𝐸𝑚 (as shown in Figure 3), which indicates that gradient
descent tends to be more effective in minimizing the loss of clean
instances.

The Detection Algorithm. Next, we further discuss some details
of our early loss-based method.

(1) Compute the loss of each instance: at each iteration, we train
for few epochs, say 3 epochs, and derive the set of cross entropy
loss 𝐿 = {L(𝑜𝑖 ), 𝑖 ∈ [1, 𝑁 ] |L(𝑜𝑖 ) =

∑𝑀
𝑐=1 𝑦𝑖𝑐𝑙𝑜𝑔(𝑝𝑖𝑐 )}, where 𝑀

denotes the number of classes, 𝑦𝑖𝑐 is an indicator that if 𝑦∗
𝑖
= 𝑐 ,

then 𝑦𝑖𝑐 = 1, otherwise 𝑦𝑖𝑐 = 0, and 𝑝𝑖𝑐 denotes the probability of
𝑜𝑖 belonging to 𝑐 .
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Figure 3: Gradient Projection.
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Figure 4: Normalized Range Loss for Clean/Mislabel Instances.

(2) Dynamically construct the dirty pool P𝑚 : at each iteration,
we use the mean 𝜇 and the standard deviation 𝜎 of 𝐿 to identify the
mislabel candidates. More specifically, an instance is considered as
potentially mislabeled if its loss is larger than 𝜇 + 𝜎 . In this way,
MisDetect avoids introducing a hyper-parameter to set the pool
size and instead it automatically establishes a cutoff threshold.

(3) Maintain the clean pool P𝑐 : similar to P𝑚 , we consider an
instance as clean if its loss is smaller than 𝜇 − 𝜎 . We iteratively
expandP𝑐 by unioning the clean instances discovered in the current
epoch (P′

𝑐 ). We observe that the loss of these instances does not
change significantly. Therefore, P𝑐 tends to be stable.

Stop condition. After the model has fitted most of the clean in-
stances and starts fitting the mislabeled ones, the early loss will
no longer be effective in detecting mislabels. Therefore, the early
loss-based mislabel detection stage, namely the first stage, has to
be stopped immediately.

One intuitive way to stop the detection would be to introduce
hyper-parameters. That is, we ask the users to determine after how
many epochs the early loss-based detection should stop. However,
it will be a hyper-parameter that is hard for the users to set appro-
priately, because it largely relies on the characteristics of the data
sets as well as the model architecture.

In this work, we propose an entropy-based method to automati-
cally determine the stop condition. The key idea is to continuously
test the entropy of the training loss in each epoch and stop when
the entropy reaches the lowest value.

The intuition is that entropy effectively reflects the distribution
of the loss. When the model is still fitting the clean instances, their
loss decreases rapidly. On the other hand, the loss of other instances
remains large. The distribution of the loss thus tends to be rough
and changes dramatically in this process. Accordingly, its entropy
will keep decreasing when the model is fitting the clean instances.
However, after the model begins to fit mislabeled instances, the
loss distribution will become flatter and flatter, resulting in an
increase in entropy. This observation inspires us with a solution
to automatically stop the early loss-based cleaning process. That
is, when the entropy reaches a turning point, we should stop using
early loss to detect mislabels.

More specifically, we compute the entropy of the loss distribution
as

∑𝑁
𝑖=1 𝑞𝑖 log𝑞𝑖 , where 𝑞𝑖 =

L(𝑜𝑖 )∑𝑁
𝑖=1 L(𝑜𝑖 )

. Figure 5 shows how the
loss entropy varies as the number of epochs increases (on MNIST
dataset). In general, the entropy decreases first and then increases.

Figure 5: Illustration of the Stop Condition.

In this work, we stop the early loss-based identification process
after the entropy has increased for three successive epochs.

4.2 Influence-based Verification
Although early loss is effective in identifying mislabeled instances,
it tends to introduce false positives. In particular, we observe that
some clean instances also get large training loss and hence are
erroneously detected as mislabels. In these cases, the model has not
yet fitted these instances well in the early epochs due to various
reasons, for example, the irregularity of their features or lack of
similar training examples. To this end, we propose an influence-
based method that further improves the detection performance.

The intuition is that mislabeled instances tend to impact the
modeling in a negative way [32]. Therefore, if we can effectively
measure the influence of each individual training instance on a
trained model, we will be able to purify the mislabeled candidates
in the dirty pool P𝑚 by excluding the instances that have a small
influence on the model.

Given a training instance 𝑜 , we propose to measure its influence
based on how large it would make the model parameter deviate
from the parameter learned from a purely clean dataset if 𝑜 was
used in the training process.

More specifically, given a noisy training set 𝐷 , suppose there is
a perfect model parameterized with𝑤∗

𝑐 , which is learned from the
clean instances in 𝐷 denoted as 𝐷𝑐 , where all mislabeled instances
are excluded, then the influence of instance 𝑜 can be measured by
𝑓 (𝑜) =∥𝑤𝑜 −𝑤∗

𝑐 ∥, where𝑤𝑜 is the parameter learned over 𝐷𝑐 ∪{𝑜}.
However, to make this solution effective, we have two problems.

First, we do not know𝑤∗
𝑐 and 𝐷𝑐 beforehand. Otherwise, we would

not have themislabel identification problem to solve. Second, even if
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Figure 6: Extracted Features of a Training Instance.

we know𝑤∗
𝑐 apriori, how can we obtain𝑤𝑜 efficiently? Repeatedly

retraining themodel over𝐷𝑐∪{𝑜}would be prohibitively expensive.
𝑤𝑐 for influence evaluation. For the first problem, we propose
to use 𝑤𝑐 of the model 𝑀𝑐 to replace 𝑤∗

𝑐 , where 𝑀𝑐 is learned
from the clean set P𝑐 produced in the early loss-based mislabel
detection stage. That is, we use the objects in P𝑐 as the clean set
𝐷𝑐 to learn 𝑤𝑐 . Because P𝑐 tends to be clean and contains no or
at most a few mislabeled instances, adding a mislabeled instance
𝑜 into the training process potentially will largely alter𝑤𝑐 and in
turn produce a large influence 𝑓 (𝑜).

Based on the above analysis, we propose to use Equation 5 to
measure the influence of each object and identify the mislabel:

𝑜∗ = argmax
𝑜∈P𝑚

∥𝑤+
𝑜 − 𝑤𝑐 ∥ (5)

where𝑤+
𝑜 is the parameter of the model learned over P𝑐 ∪ {𝑜}. By

Equation 5, an object in the dirty pool will be indeed identified as
mislabeled if it has the largest influence.
Efficiently Compute the Influence. For the second problem,
rather than computing the influence 𝑓 (𝑜) by first obtaining 𝑤+

𝑜

through retraining, MisDetect directly estimates the 𝑓 (𝑜) based
on the model parameter𝑤𝑐 learned over the clean pool. Based on
the derivation in [32], we get 𝑓 (𝑜) =∥𝑤+

𝑜 − 𝑤𝑐 ∥ = ∥ ∇L(𝑜,𝑤𝑐 )
𝑁𝑐H(𝑤𝑐 ) ∥,

where L(𝑜,𝑤𝑐 ) represents the cross entropy loss function of 𝑜 , and

H(𝑤𝑐 )
𝑑𝑒𝑓
= 1

𝑁

𝑁∑
𝑖=1

∇L(𝑜𝑖 ,𝑤𝑐 ) represents the hessian matrix. 𝑁𝑐 is

the number of instances in P𝑐 . The computation of the Hessian
matrix can also be accelerated using the method proposed in [42].

Note unlike the classical method [32] which tests the influence
of one training instance that already exists in the training set used
to train the given model, our approach estimates the influence
of a training instance 𝑜 not shown in the training process of the
model. This is because a model that has not seen 𝑜 tends to be more
sensitive to 𝑜 .

5 UNANNOTATED INSTANCES CLASSIFICATION
Next, we propose to learn a machine learning model 𝑀𝐾 to de-
termine the status of the rest unannotated instances, namely the
instances that MisDetect is not sure whether they are clean or
mislabeled in the first stage.

Our approach does not rely on humans to supply any anno-
tated data. Instead, it uses the clean and mislabeled instances that
MisDetect has already recognized as the supervised training data
to train a binary classification model. MisDetect then leverages
the generalization ability of the machine learning model to infer
the status of uncertain instances.

More specifically, we denote this automatically generated train-
ing set as𝑇 . For each instance 𝑜 ∈ 𝑇 , it is tagged as -1 or 1, indicating
it is clean or mislabeled. The tag corresponds to the ground truth
label used to train the model.

Now to train a classification model, the only missing piece is
the features of each instance 𝑜 . Next, we discuss in detail how to
construct features that are effective in distinguishing clean and
mislabeled instances. We then demonstrate the architecture of our
model in Sec. 5.2.

5.1 Feature Extraction
In addition to the raw feature of each instance 𝑜 , we use the infor-
mation of its neighbors as an enhancement.

Intuitively, to check whether an instance 𝑜 is mislabeled, its
neighbors could play an important role. This is because a clean
instance tends to share the same label with its neighbors because
of their similar features. Naturally, if an instance 𝑜 has inconsistent
labels with its neighbors such as its 𝐾NN, it is suspicious and thus
might be mislabeled. Inspired by this data locality observation,
given an instance 𝑜 , we propose to encode the information of its
𝐾NN into its features to better classify mislabels.

We denote each instance 𝑜 ∈ 𝐷 as (𝑥,𝑦, 𝑡), where 𝑥 is the feature,
𝑦 is its class label in the original classification task, and 𝑡 ∈ {−1, 0, 1}
is its tag automatically annotated by MisDetect.
Retrieve 𝐾NN. Given an instance 𝑜 , we first retrieve its 𝐾NN from
the whole dataset 𝐷 . Each of its 𝐾NN thus can be either an instance
in the training set𝑇 or an uncertain instance in𝑇 ′, where𝑇 ′ = 𝐷\𝑇 .
For each uncertain object, because we are still unsure if it is clean
or mislabeled, its tag 𝑡 will be 0, indicating its uncertain status.
Feature Encoding.We use 𝑘𝑛𝑛(𝑜) to denote the𝐾NN of 𝑜 (including
𝑜 itself). For each 𝑘𝑛𝑛(𝑜), 𝑜 ∈ 𝑇 , we have four types of features to
encode, as shown in Figure 6.

• The red circles: The raw features of instances in 𝑘𝑛𝑛(𝑜),
𝑖 .𝑒 ., f𝑟 = {𝑥 | (𝑥,𝑦, 𝑡) ∈ 𝑘𝑛𝑛(𝑜)}.

• The purple circles: The vectors of early loss in early three
iterations, 𝑖 .𝑒 ., f𝑒 = {[L1 (𝑜),L2 (𝑜),L3 (𝑜)] |𝑜 ∈ 𝑘𝑛𝑛(𝑜)},
where L1 (𝑜) denotes the loss of instance 𝑜 at the first iter-
ation.

• The blue circles: The original labels of instances in 𝑘𝑛𝑛(𝑜),
𝑖 .𝑒 ., f𝑙 = {𝑦 | (𝑥,𝑦, 𝑡) ∈ 𝑘𝑛𝑛(𝑜)}.

• The white circles: The tags of instances in 𝑘𝑛𝑛(𝑜), 𝑖 .𝑒 ., f𝑡 =
{𝑡 | (𝑥,𝑦, 𝑡) ∈ 𝑘𝑛𝑛(𝑜)}.

We use f 𝑗𝑟 , 𝑗 ∈ [1, 𝐾] to denote the raw feature of 𝑗-th neighbor of
𝑜 . Besides, when 𝑗 = 0, f0𝑟 = 𝑥 . This denotation rule applies equally
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Figure 7: Model Architecture.

to f 𝑗𝑒 , f
𝑗

𝑙
, f 𝑗𝑡 , 𝑗 ∈ [1, 𝐾]. Note that f0𝑡 is regarded as the label of an

instance, and others will be taken as the features. More specifically,
to encode each 𝑜 𝑗 ∈ 𝑘𝑛𝑛(𝑜), we concatenate the four types of
features and get f 𝑗 = f 𝑗𝑟 ⊕ f 𝑗𝑒 ⊕ f 𝑗

𝑙
⊕ f 𝑗𝑡 , 𝑗 ∈ [1, 𝐾], which will

be fed into the model for training. Note that since f0𝑡 is the label,
f0 = f0𝑟 ⊕ f0𝑒 ⊕ f0

𝑙
.

5.2 Model Architecture
Figure 7 shows the model architecture. It is composed of a fully-
connected (FC) layer, an attention layer, and anMLP layer. The fully-
connected layer converts each f 𝑗 to a 𝑑−dimension vector, denoted
by 𝐸 (f 𝑗 ). Then the attention mechanism (Equation 6) is applied
among these instances, which guides the model to concentrate on
some neighbors that matter more to the classification task. For
example, the model is likely to focus more on the instance with
similar important features to the target instance to predict. Formally,
we have:

𝜌 𝑗 =
𝑒𝐸 (f

𝑗 )𝑇𝑊𝐸 (f0 )∑𝐾
𝑣=1 𝑒

𝐸 (f𝑣 )𝑇𝑊𝐸 (f0 )
, 𝑗 ∈ [1, 𝐾 ] (6)

where𝑊 is the parameter matrix of the attention layer. Afterwards,
we obtain the aggregated feature 𝐸 (𝑎𝑔𝑔) =

∑𝐾
𝑗=1 𝜌 𝑗𝐸 (f 𝑗 ). Then

we concatenate the embedding of 𝑜 and the aggregated feature.
Using this aggregated feature as input, the MLP layer produces
the final prediction as f̂0𝑡 = Σ(MLP( [𝐸 (f0), 𝐸 (𝑎𝑔𝑔)])), where Σ is
the sigmoid function. We use the cross entropy loss for this binary
prediction. Overall, the optimization goal of𝑀𝐾 with parameter 𝜃
can be formulated as:

𝜃∗ = argmin
𝜃

1
|𝑇 |

∑︁
𝑜=(𝑥,𝑦,𝑡 ) ∈𝑇

L(f̂0𝑡 = 𝑓𝜃 (𝑜, 𝑘𝑛𝑛 (𝑜 ) ), f0𝑡 ) (7)

6 EXPERIMENTS
In the experiments, we compare MisDetect against the state-of-
the-art on the precision, recall and F1-score of mislabel detection,
evaluate the keymodules (influence evaluation, classificationmodel,
stop condition) of MisDetect, and conduct some other experiments.

6.1 Experimental Settings

Datasets.We evaluate our approach on 15 real-world image and
tabular datasets from diverse domains. The size of the datasets
varies from the magnitude of 102 to 106. The number of classes
in each dataset ranges from 2 to 100. Among the 15 datasets, 3
(USCensus, Credit, EEG) of them are used by CleanML [35], which
is a benchmark of data cleaning for ML. For the other 12 datasets,
following the existing works like [25, 29, 45, 59], we inject synthetic
mislabels with two methods, 𝑖 .𝑒 ., random injection and equal in-
jection. More specifically, given an expected proportion (say 20%)
of mislabeled instances, random injection randomly selects 20%
instances from the dataset and flips each of them to a random label
different from the ground truth. Equal injection instead flips the
same number of instances in each class. For example, on the MNIST
dataset, because it has ten classes, we randomly flip 2% × 𝑁 of
instance in each class. In the experiments, we focus on random
injection, while showing that our approach works well on both
types of synthetic mislabels in Section 6.4. We randomly pick the
proportion of mislabeled instances from {5%, 10%, 20%, 30%, 40%}.
We do not consider a proportion larger than 40%, because it is rare
in real applications [35]. Table 1 shows the statistics of the datasets.
Baselines.We compare our approach against 10 baselines, including
existing works and the variants of our own approach:
(1) K-Nearest Neighbor [12] (KNN). Given an instance, if it has
the same label with the majority of its 𝐾 nearest neighbors, it is
considered to be clean. Otherwise, it is mislabeled. We vary 𝐾 from
1 to 30 and report the best result.
(2) Ensemble-based method via majority vote [15] (E-MV). It
ensembles multiple independent classifiers with a majority vote. An
instance will be marked as mislabeled if the prediction is different
from its label.
(3) Forgetting Events [48] (F-E) identifies mislabeled instances
if their prediction results vary frequently during training.
(4) Clean Pool uses P𝑐 to train a classification model and then
predicts each instance in 𝐷 . An instance will be considered as
mislabeled if the prediction is inconsistent with its label.
(5) MentorNet [29]. It is a reweighting-based robust learning
method. The key idea is to use MentorNet to produce a smaller
weight for potentially mislabeled instances and a higher weight
for the clean. We train the robust model over 𝐷 and then mark the
misclassified training instances as mislabeled.
(6) Co-teaching [25]. As discussed in the related work section,
Co-teaching is a classical robust learning method. Similar to
MentorNet, we use the robust model trained by Co-teaching to
detect mislabels as the training instances misclassified by the model.
(7) Cleanlab [40] uses confident learning to distinguish mislabeled
instances and clean ones, which implements a Python library to
detect mislabels. It takes as input 𝐷 as well as an ML model. For
the model, we use the same type as ours for a fair comparison.
(8) Non-iter is a baseline that trains only one iteration and then
uses early loss to detect mislabels.
(9) MisDetect Without Influence and Classification Model
(M-W-IM) is a variation of our method that only uses early loss to
detect mislabels, while disables the influence-based verification and
classification model.
(10) MisDetect Without Classification Model(M-W-M) is an-
other variation that uses early loss and influence-based verification
while disabling the classification model.
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Table 1: Statistics of Datasets.

Dataset #-Items #-Attributes #-Classes Mislabel Ratio Classification Task
USCensus [35] 32,561 14 2 5% If an adult earns more than $ 50,000.

Wine [5] 6,497 12 7 20% Different types of wine quality.
Credit [35] 150,000 10 2 16.55% If a client will experience financial distress.

Mobile-Price [6] 2,000 20 4 30% The price range of a mobile.
Airline [7] 103,905 24 2 40% The airline satisfaction level.
SVHN [4] 630,420 3 × 32 × 32 10 10% Different street view house numbers.
MNIST [2] 70,000 1 × 28 × 28 10 10% Different handwritten numbers.
EEG [35] 14,980 14 2 5% If an eye-state is closed or open.

CIFAR-10 [3] 60,000 3 × 32 × 32 10 20% Different universal objects.
CIFAR-100 [3] 60,000 3 × 32 × 32 100 20% Different universal objects.

Heart [8] 919 11 2 30% If a patient has heart disease.
Hotel [9] 36,276 18 2 30% If a hotel booking status is canceled or not.
KMNIST [10] 70,000 1 × 28 × 28 10 40% Different types of Japanese cursive scripts.

Fashion-MNIST [11] 70,000 1 × 28 × 28 10 10% Different types of products.
CoverType [1] 581,013 54 7 40% Different forest cover types.
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Figure 8: F1-score Comparison of Baselines.

Table 2: F1-score Comparison of Baselines for Other Datasets.

CIFAR-10 CIFAR-100 Heart Hotel KMNIST Wine Fashion-MNIST CoverType

KNN 0.3548 0.3166 0.4518 0.4616 0.3980 0.3887 0.4096 0.5039
E-MV 0.3213 0.3753 0.5679 0.6123 0.4566 0.4611 0.4207 0.6704
F-E 0.4141 0.3619 0.4257 0.5391 0.4881 0.5626 0.4121 0.6411

Clean Pool 0.5049 0.5031 0.5661 0.6163 0.5187 0.6156 0.4778 0.7485
Non-iter 0.6166 0.5110 0.5800 0.6213 0.6150 0.6464 0.4898 0.7082
MentorNet 0.7842 0.6091 0.7211 0.6581 0.7405 0.6798 0.6135 0.7333
Co-teaching 0.7920 0.6101 0.7354 0.6629 0.7579 0.6812 0.6365 0.7465
Cleanlab 0.7395 0.4835 0.6059 0.6233 0.6866 0.6095 0.5011 0.6818
MisDetect 0.8622 0.7942 0.8000 0.6932 0.8008 0.7748 0.6844 0.8096

Hyper-parameter Setting. We set each iteration to include 3
epochs. For our classification model, we use Adam optimizer [31].
The learning rate is set to 0.002. We use a fully-connected layer
with a length of 256, followed by a 3-layer perceptron.

Although we have a well-designed stopping mechanism, it is still
important to roughly know the proportion of mislabeled instances
in a given dataset apriori. Otherwise, it is hard to decide how many
instances to be annotated and removed from 𝐷 at each iteration,
𝑖 .𝑒 ., the parameter 𝑟 . When the proportion is high, we should set 𝑟
to be relatively large. Otherwise, we will only be able to discover a
small number of mislabeled instances at the first stage. On the other
hand, when the proportion is small, we should set 𝑟 to be small to

avoid misclassifying clean instances as mislabeled. However, rather
than assume we are aware of the exact fraction, we only know
it falls into some range, 𝑖 .𝑒 ., (0, 10%], (10%, 30%], (30%, 40%]. The
range can be estimated by for example asking experts to annotate a
small sample of 𝐷 . On these datasets, we empirically observe that
on average, the model begins to fit mislabeled instances after 5
iterations (15 epochs). Hence, given a range, 𝑒.𝑔., (10%, 30%], we
set 𝑟 = 10%+30%

2 /5 × 𝑁 , which roughly ensures that we can dis-
cover enough mislabeled instances before dirty data starts getting
fitted, while the stop condition designed by us determines the exact
termination point.
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Evaluation Metrics.We focus on evaluating the effectiveness of
our approach. So we take precision, recall, and F1-score as metrics.
Denote the set of mislabeled data that we detect correctly as 𝐷𝑇 .
The precision is computed by 𝑝𝑟𝑒 = |𝐷𝑇 |

|𝑅 | , the recall is computed

by 𝑟𝑒𝑐𝑎𝑙𝑙 = |𝐷𝑇 |
|𝐷𝑚 | , while the F1-score is 𝐹1 =

2×𝑝𝑟𝑒×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒+𝑟𝑒𝑐𝑎𝑙𝑙 .

Environment. All experiments were implemented in Python, per-
formed on a Ubuntu Server with an Intel (R) Xeon (R) Silver 4110
2.10GHz CPU having 32 cores, a Nvidia Geforce 2080ti GPU, and
128GB DDR4 main memory without SSD.

6.2 Comparison with Baselines
For baselines (1)-(8), because they directly output the detection
results in a non-iterative way, we evaluate the final F1-score, recall,
and precision. Baselines (9)-(11) are iterative. Therefore, we show
their F1-score produced in each iteration. For 7 datasets, we display
the F1-score, recall, and precision with figures, each of which corre-
sponds to one metric w.r.t. one dataset. Due to the space constraint,
for other datasets, we only show the F-1 score in Table 2.

6.2.1 Comparison with non-iterative baselines. As shown in Fig-
ure 8, MisDetect outperforms all the baselines in terms of F1-score.
For example, the 𝐾NN-based method only achieves an F1-score
less than 40% on all datasets, mainly because it is not informative
enough to just rely on labels of near neighbors to identify mislabels.
The ensemble-based solution performs poorly as well (around 50%
F1-score), mainly because it trains over both mislabeled and clean
instances and thus the trained model is not accurate enough.

MisDetect outperforms F-E, indicating that it is not sufficient
to purely rely on the fluctuation of prediction results to detect mis-
labels. Clean Pool does not perform well, because it only uses a
small fraction of clean instances to train the model, which is rep-
resentative enough. Non-iter does not achieve good performance
because the initial model it relies on is not effective enough to
distinguish mislabeled and clean instances.

MisDetect also outperforms robust learning-based methods. For
example, on dataset Credit, MisDetect achieves 0.87 F1-score,
while MentorNet and Co-teaching are 0.77 and 0.78 respectively.
This is because in many cases the robust machine learning mod-
els still tend to overfit some mislabeled instances, thus failing to
separate them from clean labels. Finally, we compare against the
state-of-the-art mislabel detection method Cleanlab. MisDetect
significantly outperforms it. For example, on EEG dataset, our F1-
score is 0.64 while Cleanlab is 0.53. This is because Cleanlab
learns the distribution from the data already contaminated by mis-
labels, which is often not effective in separating mislabels from
clean labels. MisDetect instead continuously monitors and ana-
lyzes the loss and influence in the iterative training process and
iteratively removes mislabeled instances to mitigate their impact.

For precision and recall, as shown in Figures 10 and 9, we out-
perform all baselines on almost all datasets. However, the precision
of Co-teaching (the state-of-the-art method in robust machine
learning) is a little higher than ours. This is because the training
mechanism of Co-teaching ensures that the training instances
that cannot fit well are usually mislabeled. However, its recall is
low, because it tends to perfectly fit some mislabeled instances and

erroneously consider them as clean instances. Therefore, overall,
our method outperforms all baselines clearly.

6.2.2 Comparison with iterative baselines. In this set of experi-
ments, we evaluate how our influence-based verification and unan-
notated instance classification techniques work. Figure 11 displays
the F-1 score in each iterative. The X-axis denotes the number of
epochs during training. On all datasets, we show the first three
iterations (each iteration contains 3 epochs). For ease of presenta-
tion, we only show the F1-score when the stop condition is met
because different datasets may stop at different epochs. As we can
see, as the number of epochs increases, the F1-score of all iterative
methods continuously increases until the stop condition is achieved.
This is mainly because the recall keeps increasing. For example, on
dataset USCensus, during the iterative process, MisDetect outper-
forms M-W-IM by about 3%, because the influence-based verification
effectively reduces the false positive rate. Because the classification
model is only applied at the last iteration, MisDetect shows the
same performance with M-W-M in the earlier iterations. MisDetect
has a 7.6% higher F1-score than M-W-M at the last iteration, confirm-
ing that the classification model indeed is effective in annotating
the instances that MisDetect is unsure about in the first stage.

6.3 Ablation Studies
6.3.1 K in KNN. We also evaluate how the number of neighbors (𝐾 )
influences the classificationmodel. In Figure 12, when𝐾 is relatively
small, the F1 score is relatively low. This is because the retrieved 𝐾
neighbors are not sufficient in representing the neighborhood of a
given instance. On the other hand, if𝐾 is too large, the performance
also degrades because in this case some of the retrieved 𝐾NN are
not similar enough to the given instance. Empirically, we observe
that setting 𝐾 = 20 leads to good performance.

6.3.2 Influence-based Verification. Finally, we evaluate the effec-
tiveness of influence-based verification. We compare against the
baseline Deletion which trains a model over 𝐷 and then uses
the influence function to evaluate the influence of an instance by
deleting it from 𝐷 . As shown in Figure 13, MisDetect achieves a
higher F1-score. This is because we instead evaluate the influence
on a model trained with a clean training set that has not seen the
to-be-evaluated instance and thus not been contaminated by it.

6.4 Mislabel Injection Evaluation

6.4.1 Mislabel Ratio. First, we evaluate how MisDetect performs
when the proportion of mislabeled data varies within the range
[5%,40%]. In Figure 14, the performance is not sensitive to mislabel
fraction. For example, on dataset MNIST, as the fraction ofmislabeled
data increases, the F1-score does not change much (around 88%).
The reason is that even when the mislabel ratio increases, the clean
instances might still dominate the direction of the average gradient,
because the gradients of the mislabeled instances are more disparate
in direction. So our method still works.

6.4.2 Mislabel Distribution. We test two mislabel injection meth-
ods mentioned in Section 6.1. The results (Figure 15) on 3 datasets
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Figure 9: Recall Comparison of Baselines.
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Figure 10: Precision Comparison of Baselines.
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Figure 11: F1-score Comparison for Iterative Baselines.
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show that our method is robust to different injection methods be-
cause the first stage is able to identify accurate mislabel annotations,

which provides high-quality labels to the second stage for further
verification.
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Figure 16: Efficiency Evaluation.

6.5 Efficiency Evaluation
As shown in Figure 16, traditional methods (KNN and NCN) are the
most efficient. However, they cannot achieve high accuracy, which
is our main target. Ensemble-based methods are not efficient be-
cause they have to train multiple ML models. The SOTA approaches
like Cleanlab and Co-teaching are slow because they have to
learn the distribution over the noisy training data, which takes
many iterations to converge. Our method is more efficient and
effective than Cleanlab and Co-teaching.

7 RELATEDWORK
Traditional mislabel detection methods. 𝐾NN-based meth-
ods [12, 47] determine whether an instance is mislabeled or not
based on its 𝐾NN neighbors. Badenas et al. [12] consider an in-
stance as clean if it has a consistent label with the majority of its
𝐾 nearest neighbors (𝐾NN). Otherwise, it is mislabeled. Sánchez
et al. [47] adopt the similar idea. However, they find the 𝐾NN and
make sure that they are distributed diversely around the given in-
stance. This ensures that the 𝐾NN are not too similar to each other
or even redundant. Valizadegan et al. [49] model the mislabel detec-
tion problem as an optimization problem and use the kernel-based
method to solve it. But it only targets binary classification datasets.
Mislabel detection using ML. Ensemble-based solutions [15, 30,
60] leverage the key idea that different classifiers tend to produce
conflicting predictions on a mislabeled instance. Toneva et al. [48]
assume that the prediction of a mislabeled instance tends to fluctu-
ate greatly during training and detect mislabeled instances accord-
ingly. Zhang et al. [57] propose to discover a small set of mislabeled
instances and clean them such that the performance of a validation
set can be improved most. Different from us, this method does not
aim to detect all mislabeled instances and it needs a validation set.
Cleanlab [40] is the state-of-the-art method for mislabel detection,
which takes the dataset and an ML model as input, utilizing confi-
dent learning [22, 23] to estimate the joint distribution of all training
instances based on the trained model. A mislabeled instance is then
identified if it deviates from this distribution.
Robust ML. Robust ML aims to learn a well-performed model from
a noisy training dataset, which can be classified into 4 categories:
(1) Using models that are known to be robust to polluted data
such as random forest and some ensemble classifiers [14, 39, 46].
(2) Reweighting techniques [29, 45, 51, 56] that aim to weigh the
instances based on their cleanness. Small weights will be assigned to
the potentially noisy labels to mitigate their impact on the model. (3)
Robust loss function [28, 41, 52, 58], which makes ML models noise-
tolerant. Zhang et al. [58] combine mean absolute loss and the cross
entropy loss. Loss correction approaches [28, 41, 52] use instance

predictions to estimate the noise transition matrix to optimize the
loss function. (4) Co-teaching [25, 34, 37, 38], which at a high level,
initializes two models and trains them alternatively. The first model
selects some instances with small losses and then feeds them into
the second model for training. The second model conducts the same
process. The above steps repeat until they converge.

To summarize, although some robust machine learning meth-
ods (𝑒.𝑔., co-teaching) leverage the loss to help distinguish clean
instances from dirty ones, their goal is different from ours. To be
specific, MisDetect aims to accurately identify all mislabeled in-
stances. On the other hand, the goal of co-teaching is to improve
the model accuracy. However, to achieve this goal, it is not neces-
sary for co-teaching to detect all mislabels. Only identifying some
highly confident mislabeled instances often is enough to improve
the model, even if some mislabeled instances are missed. This leads
to high precision, but poor recall and in turn low F-1 score, as
confirmed by our experiments in Figures 9 and 10.
Data cleaning v.s. ML techniques. Holoclean [44, 53] leverages
the factor graph to repair dirty instances (𝑒.𝑔., duplicates, incon-
sistency), but it does not focus on mislabel detection and requires
additional repairing constraints as input. Holodetect [27] utilizes
few-shot learning to detect errors, which also does not consider mis-
labeled data, and it needs an additional clean train set. CHEF [55]
iteratively cleans the most influential instances so as to maximize
the model performance. Different from us, this method involves
human annotators to verify mislabels and the goal is to save human
cost while improving the performance of the model. TARS [21]
is also a label-cleaning framework that involves humans to clean
mislabels, so as to improve the model performance. Rain [54] iden-
tifies data errors that cause unexpected ML prediction results, but
it needs users’ compliant as input.
Data management for ML. Besides, existing methods also focus
on improving machine learning model performance as well as the
efficiency of MLmodel training using data management technology,
including data discovery [18–20, 50], data cleaning [16, 26, 36] and
data labeling [17, 33].

8 CONCLUSION
We study the problem of mislabel detection using early loss during
iterative training. At early epochs, we regard training instances with
large losses as mislabeled ones and iteratively remove them. Besides,
we leverage the influence of instances to double-check the removed
instances. We also design a classification model trained over the
instances identified by the iterative process, to annotate the rest
instances accurately. Extensive experiments show our superiority
over state-of-the-art baselines.
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