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ABSTRACT

We study federated unlearning, a novel problem to eliminate the

impact of specific clients or data points on the global model learned

via federated learning (FL). This problem is driven by the right

to be forgotten and the privacy challenges in FL. We introduce

a new framework for exact federated unlearning that meets two

essential criteria: communication efficiency and exact unlearning

provability. To our knowledge, this is the first work to tackle both

aspects coherently. We start by giving a rigorous definition of exact

federated unlearning, which guarantees that the unlearned model

is statistically indistinguishable from the one trained without the

deleted data. We then pinpoint the key property that enables fast

exact federated unlearning: total variation (TV) stability, which

measures the sensitivity of the model parameters to slight changes

in the dataset. Leveraging this insight, we develop a TV-stable FL al-

gorithm called FATS, which modifies the classical FedAvg algorithm
for TV Stability and employs local SGD with periodic averaging

to lower the communication round. We also design efficient un-

learning algorithms for FATS under two settings: client-level and

sample-level unlearning. We provide theoretical guarantees for our

learning and unlearning algorithms, proving that they achieve exact

federated unlearning with reasonable convergence rates for both

the original and unlearned models. We empirically validate our

framework on 6 benchmark datasets, and show its superiority over

state-of-the-art methods in terms of accuracy, communication cost,

computation cost, and unlearning efficacy.
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1 INTRODUCTION

The proliferation of personal data collection and processing by

various entities poses a serious threat to the public’s data privacy.

To reconcile users’ data privacy and the need for data analytics in

intelligent applications, Federated Learning (FL) [18] has emerged

as a promising paradigm for collaborative machine learning at edge.

FL allows multiple edge devices (or clients1) to cooperatively learn

a global model with the coordination of a central edge server. By

keeping users’ data locally and only exchanging model updates, FL

mitigates the risk of direct privacy leakage or disclosures. However,

this is not enough to address the privacy issues as adversaries can

still deduce sensitive user information from the shared models.

Therefore, users require the ability to erase some of their private

data from the global model, which is known as the right to be

forgotten and has been supported by several legal regulations such

as GDPR [26] and CCPA [11]. This is particularly relevant in the

setting of edge computing, where edge devices such as smartphones,

tablets, smartwatches, or sensors generate and process massive

amounts of diverse and confidential data from users. For example,

some usersmaywish to remove their health records from awearable

device or their location history from a navigation app. However,

simply deleting data from edge devices may not guarantee the

right to be forgotten, as the data may have been used to train

collaborative learning models that are distributed among multiple

edge devices and the server. This implies that the data may still

affect the model’s outcomes or actions or even be recovered by

malicious actors [23, 29, 33] Hence, it is essential to developmachine

unlearning [2] methods to endow FL models with the capability to

unlearn requested data, i.e., to eliminate the impact of some specific

data from a trained FLmodel. Moreover, data removal from a trained

model is also beneficial in other scenarios, such as countering data

poisoning attacks and correcting data errors [20].

Despite its importance and necessity, machine unlearning is not

a trivial task, even in the centralized setting where a single entity

stores and processes the data and the model. It requires efficient al-

gorithms that can update the model parameters without retraining

from scratch, as well as verify the effectiveness and soundness of

the unlearning process. Moreover, machine unlearning becomes

1In this paper, we use the term device and client interchangeably.
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exceedingly formidable in the federated setting. Machine unlearn-

ing in the federated setting, known as federated unlearning, has to

cope with several additional factors.

(I) Communication efficiency is paramount for federated unlearn-

ing, as communication is the primary bottleneck of FL [13]. Hence,

unlearning methods that incur frequent communication between

the server and the clients, or model retraining from scratch, are

highly impractical.

(II) The availability of training data is severely limited in feder-

ated unlearning, as the data are distributed across clients and not

divulged to the server. Therefore, unlearning methods that depend

on accessing or reusing the unlearned data are inapplicable in the

federated setting.

(III) Besides sample-level unlearning in the central setting, fed-

erated unlearning also entails client-level unlearning, which aims

to eliminate the influence of specific clients from the FL model.

This is because the edge environment is unstable and clients may

withdraw from the system at any time.

(IV) Federated unlearning requires provable guarantees for both

sample and client-level unlearning, as unlearning methods should

be trustworthy and capable of certifying that they effectively and

completely erase the influence of the unlearned samples or clients

with a reasonable convergence guarantee for the unlearned model.

These factors make federated unlearning a more intricate and

challenging problem than centralized machine unlearning. Conse-

quently, most of the existing machine unlearning methods are not

applicable in FL. Furthermore, existing works on federated unlearn-

ing are scarce and have many limitations. For example, most of

them proposed heuristic methods without any theoretical unlearn-

ing guarantees [16, 30, 31], or noise perturbation-based algorithm

with only an approximate unlearning guarantee [7] (see Section

2 for more details). How to enable efficient data removal from FL

models with provable guarantees remains largely under-explored.

Our Contributions. In this paper, we take the first step to fill

the gap by presenting a general framework for communication

efficient and provable federated unlearning. It is noteworthy that,

compared with the previous works, our goal is to achieve exact

federated unlearning. That is, when a specific data point or client is

requested to be removed, the algorithmic states are adjusted exactly

to what they would have been if the data or client had never been

included. Our main contributions can be summarized as follows:

(I) We provide a rigorous definition of exact federated unlearning,

which guarantees that, for each sample or client deletion request,

the unlearned model is statistically indistinguishable from the one

trained without the deleted sample or client from scratch. To the

best of our knowledge, this is the first formal definition of exact

federated unlearning. Moreover, we show that the efficiency of

exact federated unlearning depends on a key property of the FL

algorithm: total variation (TV) stability (at both sample and client

levels), which offers guidance for FL algorithm design.

(II) To achieve TV stable algorithm for FL, we develop FATS,
which leverages local SGD with periodic averaging for commu-

nication efficiency and incorporates an elaborately designed sub-

sampling rule. Specifically, at each communication round, only part

of the clients are selected to run multiple local update steps using

sub-sampled partial local data. We then devise efficient sample-

level and client-level unlearning algorithms for FATS. Informally,

for 𝑀 clients each with 𝑁 data samples, and a given pair of sample

and client level TV-stability parameters 𝜌𝑆 , 𝜌𝐶 ∈ (0, 1], our un-
learning algorithms only retrain on 𝜌𝑆 and 𝜌𝐶 fraction of sample

and client removal requests, respectively, while achieving both ex-

act unlearning requirement and the reasonable convergence error

of 𝑂

(
1√

𝜌𝑆𝑀𝑁

)
in terms of average-squared gradient norm over

non-convex loss and non-i.i.d. data.

(III) Finally, we evaluate our proposed framework on 6 bench-

mark datasets to show its effectiveness and efficiency. We find that

FATSmatches the performance of the standard FL baselines in terms

of test accuracy and convergence speed, and that the unlearning

algorithms can drastically reduce the computation and communi-

cation costs for both sample and client unlearning compared with

state-of-the-art federated unlearningmethods. Experimental results

confirm that our framework achieves the best possible learning

performance and restores utility faster upon receiving the unlearn-

ing request, which provides practical guarantees that fully comply

with the requirement of exact federated unlearning.

2 RELATEDWORK

Machine unlearning. The study of machine unlearning was pi-

oneered by [4], where exact unlearning methods were devised

for statistical query learning to guarantee the equivalence of the

unlearned model and the model retrained from scratch without

the deleted sample. However, their methods are limited to very

structured problems. A more general framework for deep learning

models was proposed by [2], which introduced the Sharded, Iso-

lated, Sliced, Aggregated (SISA) approach. Subsequently, several

works also adapted the SISA framework to graph data, e.g., [5, 27].

Nevertheless, these works all lack theoretical guarantees for their

approaches and are not suitable for the federated learning setting.

Another line of work relaxed the exact unlearning requirement and

considered approximate unlearning starting from [8], which was

inspired by differential privacy [6] and allowed the distribution

of the unlearning model to be only close to that of the retaining

model. Various works have explored approximate unlearning al-

gorithms for different learning objectives, such as empirical risk

minimization [9, 19, 24] and population risk minimization [21]. Al-

though they provided theoretical error bounds for their algorithms,

the approximate unlearning objective implies that the deleted data

was not fully removed and could still be leaked to an adversary,

which makes it less desirable than exact unlearning. To bridge the

theoretical gap for exact unlearning, [25] introduced a notion of

algorithmic stability, Total Variation (TV) stability, which is used

for achieving exact unlearning. It designed TV-stable algorithms,

analyzed the trade-offs between accuracy and unlearning efficiency,

and established upper and lower bounds on the excess empirical

and population risks of TV-stable learning algorithms over convex

loss functions. However, its notion of TV stability is not directly

transferable to the federated setting, and the design of TV-stable

FL algorithms remains an open challenge. Moreover, its theoretical

analysis and results are based on convex optimization with i.i.d.

data, while we consider federated non-convex optimization with

non-i.i.d. data in this work.
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Federated unlearning. Unlearning in the federated learning

paradigm has received relatively less attention than in the central-

ized paradigm. FedEraser [16] reconstructs the unlearned global

model approximately by leveraging the historical parameter up-

dates of the participating clients. Although speeding up the un-

learning process compared with retraining from scratch, it is still

prohibitively expensive. Thus, more recent works have proposed

approximate unlearning techniques based on knowledge distillation

[30], class-discriminative pruning [28], projected gradient ascent

[10, 31], or second-order AdaHessian optimizer [17]. However, these

works still suffer from several limitations: Firstly, these approximate

unlearning techniques cannot completely eliminate the influence

of data samples to be removed from the trained model, which may

result in severe privacy leakage on data holders’ data samples, e.g.,

gradient leakage attacks [23]. Secondly, most of them only consider

client-level unlearning. Sample-level unlearning is also crucial and

distinct from the centralized paradigm. As clients will not share

their private data with the server, the federated unlearning process

can only be executed on the clients. Thirdly, prior works are mostly

heuristic. They only validate their method empirically without any

theoretical guarantees, which makes their methods unreliable in

real-world applications. To overcome these challenges, in this paper,

we pursue a more ambitious goal of exact federated unlearning at

both sample and client levels, and also provide rigorous theoreti-

cal analysis on both unlearning guarantees and convergence error

bound. Moreover, we consider the communication bottleneck in

the federated scenario, which is seldom addressed in prior works

but is vital in practice.

3 PRELIMINARIES

3.1 Federated Learning

We consider a typical federated learning setup where 𝑀 clients

cooperate to train a machine learning model under the coordination

of a central server. Let X be the data universe and Θ be the model

parameter space in general. Each client 𝑘 ∈ [𝑀] has a local dataset
D𝑘 comprising 𝑁 data points 𝑋

(1)
𝑘

, 𝑋
(2)
𝑘

, . . . , 𝑋
(𝑁 )
𝑘

∈ X sampled

from a client-specific local distribution 𝐷𝑘 . The goal is to learn a

machine learning model parameterized by 𝜃 ∈ Θ that minimizes the

global empirical risk function 𝐹 (·) over the𝑀 local datasets without

disclosing the data to the central server due to privacy concerns.

The goal can be formally described as the following empirical risk

minimization (ERM) problem:

min
𝜃 ∈Θ

𝐹 (𝜃 ) � 1

𝑀

𝑀∑
𝑘=1

𝐹𝑘 (𝜃 ), (1)

where 𝐹𝑘 (𝜃 ) is the local empirical risk function for client 𝑘 and is

defined as 𝐹𝑘 (𝜃 ) � 1
𝑁

∑𝑁
𝑖=1 𝑓 (𝜃 ;𝑋

(𝑖)
𝑘

) with 𝑓 (𝜃 ;𝑋 (𝑖)
𝑘

) being the

point-wise loss of model parameter 𝜃 for the data sample 𝑋
(𝑖)
𝑘

.

3.2 Federated Unlearning

The goal of machine unlearning is to remove the influence of the

requested data from a trained machine learning model. In the fed-

erated setting, we distinguish two types of exact unlearning re-

quirements — sample-level unlearning and client-level unlearning.

A pair of federated learning and unlearning procedure can be de-

noted as a tuple (L,U), where L : X∗ → Θ × S is the learning

algorithm that maps a set of training data points to a trained model

𝜃 ∈ Θ together with an internal algorithmic state 𝑠 ∈ S, and
U : Θ×S ×X∗ → Θ×S is the unlearning algorithm that updates

the learned model 𝜃 ∈ Θ and internal state 𝑠 ∈ S to the unlearned

model 𝜃𝑢 and corresponding state 𝑠𝑢 , given an unlearning request

(either a target data point in some client or the entire dataset of

a target client2). We collectively refer to the output model 𝜃 and

internal state 𝑠 as the algorithmic state. In FedAvg algorithm with

local mini-batch SGD and client sub-sampling for example, the out-

put model is the final global model whereas the rest of intermediate

local and global models, local mini-batches, subsets of clients are

the internal state. We use C to denote the set of clients and D(C)
to denote all the data points stored by the clients in C. We may omit

the client set indicator C and simply use D to denote the global

dataset when it is clear from the context. For any two setsZ and

Z′, we use Δ(Z,Z′) to denote the symmetric difference between

them, i.e., Δ(Z,Z′) � (Z \Z′) ∪ (Z′ \Z). For any setZ, we use

|Z| to denote its cardinality. Now, we define the notions of both

sample-level and client-level exact federated unlearning.

Definition 1 (Sample-level Exact Federated Unlearning). A pair of

federated learning and unlearning algorithms (L,U) is said to sat-

isfy sample-level exact federated unlearning if for anyD(C),D(C)′
such that D(C) ⊃ D(C)′ and |Δ(D(C),D(C)′) | = 1, and any

measurable event E ⊆ Θ × S, it holds that
P(L(D(C)′) ∈ E) = P(U(L(D(C)),Δ(D(C),D(C)′)) ∈ E).

Definition 2 (Client-level Exact Federated Unlearning). A pair

of federated learning and unlearning algorithms (L,U) is said
to satisfy client-level exact federated unlearning if for any C, C′
such that C ⊃ C′ and |Δ(C, C′) | = 1, and any measurable event

E ⊆ Θ × S, it holds that
P(L(D(C′)) ∈ E) = P(U(L(D(C)),Δ(D(C),D(C′))) ∈ E).
The above definitions imply that, for each target sample or target

client to delete, the unlearned model is equivalent to the one that

would have been obtained if trained on the updated setting (i.e.,

without the target sample or target client) from scratch, since they

have exactly identical output distributions. This is the reason why

we refer to this type of unlearning requirement as exact unlearning.

Furthermore, although the above definitions are for a single edit

request, they can be extended for a sequence of𝑤 edit requests by

requiring the condition to hold recursively for every request in the

sequence.

3.3 Federated Unlearning via TV-Stability

We adopt the total variation (TV) distance as a measure of discrep-

ancy between two distributions 𝑃 and 𝑄 :

TV(𝑃,𝑄) � sup
measurable set Z

|𝑃 (Z) −𝑄 (Z)| = 1

2
‖𝜙𝑃 − 𝜙𝑄 ‖1, (2)

where the second equality is valid when distributions 𝑃 and 𝑄
admit probability densities (denoted as 𝜙𝑃 and 𝜙𝑄 respectively)

with respect to a base measure.

2In this paper, we formally refer to the data sample and client that need to be forgotten
as the target sample and the target client respectively.
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Let D and D′ be two datasets such that D′ ⊆ D is obtained

by removing a data point or a client from D. Let 𝑃 = L(D) and
𝑄 = L(D′) for some randomized FL algorithm L. To satisfy the

requirement of exact federated unlearning, we need to move from

𝑃 to 𝑄 , which is an optimal transport problem.

In a general optimal transport problem, we are given two proba-

bility distributions 𝑃 and 𝑄 over a measurable space Ω and a cost

function 𝑐 : Ω × Ω → R. The goal is to transport from 𝑃 to𝑄 using

the minimum cost. Formally, let Π(𝑃,𝑄) denote the set of couplings
(or transport plans) of 𝑃 and 𝑄 , we seek a transport plan 𝜋 which

minimizes the expected cost: min𝜋 ∈Π (𝑃,𝑄) E(𝑥,𝑦)∼𝜋𝑐 (𝑥,𝑦).
In the context of federated unlearning, we aim to find a trans-

port from 𝑃 = L(D) to 𝑄 = L(D′) over the set of all possible

algorithmic states Ω = Θ × S. Notably, we require the probability
distribution of the entire algorithmic state, not just the output, to

be exactly identical after unlearning. A trivial transport plan is

re-computation that generates independent samples from 𝑃 and

𝑄 , but this is extremely inefficient as it requires a full re-training

from scratch for every unlearning request. To improve the effi-

ciency of unlearning, we should exploit the correlation between

𝑃 and 𝑄 so that we can reuse the randomness (computation) in-

volved in generating P when transforming 𝑃 to 𝑄 , hoping that

no re-training or only a partial re-training from the middle of the

learning process is sufficient for every unlearning request. For this

purpose, we define the cost function for any two distinct algorith-

mic states, which captures the expected costs for any transport

rule from 𝑃 to 𝑄 . A natural choice is to set the cost function as

𝑐 (𝑥,𝑦) =
{
1, if 𝑥 ≠ 𝑦

0, otherwise
, which means we incur one unit of com-

putation if the algorithmic state produced by 𝑃 differs from the

one produced by 𝑄 , which corresponds to a re-computation. Un-

der this computation model, the optimal expected computation

cost is inf𝜋 ∈Π (𝑃,𝑄) E(𝑥,𝑦)∼𝜋 [1{𝑥 ≠ 𝑦}], which coincides with the

total variation (TV) distance between 𝑃 and 𝑄 . Therefore, if we
want to transport 𝑃 to 𝑄 using the minimum computation cost,

the expected computation cost is determined by the TV distance

between 𝑃 and𝑄 . This implies that at least 1−TV(𝑃,𝑄) fraction
of samples are representative for both 𝑃 and 𝑄 , and thus at

most 𝑂 (TV(𝑃,𝑄)) fraction of unlearning requests need to be

handled by re-training. Moreover, due to the sequential nature

of the unlearning problem, when we produce 𝑃 , i.e., the output

and internal state on dataset D, we are unaware of what 𝑄 will be,

since we don’t know the upcoming unlearning request. Therefore, a

desirable property to enable the unlearning ability for an FL algorithm

is that its entire state should be close in TV distance uniformly over

all possible 𝑄 ’s.

Motivated by the above discussion, we introduce the notion of

sample-level and client-level TV-stability. This is a type of algorith-

mic stability that captures the closeness of the algorithmic states

under different datasets. We will use this notion to guide the design

and analysis of our federated learning and unlearning algorithms.

Definition 3 (𝜌𝑆 -sample-level TV-stability). An FL algorithm L
is 𝜌𝑆 -sample-level-TV-stable if

sup
D,D′: |Δ(D,D′) |=1

TV(L(D),L(D′)) ≤ 𝜌𝑆 . (3)

Definition 4 (𝜌𝐶 -client-level TV-stability). An FL algorithm L is

𝜌𝐶 -client-level-TV-stable if

sup
C,C′: |Δ(C,C′) |=1

TV(L(D(C)),L(D(C′))) ≤ 𝜌𝐶 . (4)

Remark 1. For any two datasets D,D′ such that D ⊃ D′ and
|Δ(D,D′)| = 𝑤 , if L is 𝜌𝑆 -sample-level TV-stable, then by the

triangle inequality of TV and repeated applications of the Defini-

tion 3, we have that TV(L(D),L(D′)) ≤ 𝑤 · 𝜌𝑆 . Similarly, we

have TV(L(D(C)),L(D(C′)) ≤ 𝑤 · 𝜌𝐶 for any C, C′ such that

C ⊃ C′ and |Δ(C, C′) | = 𝑤 if L is 𝜌𝐶 -client-level TV-stable.

We have established that TV-distance is a sufficient stability

measure for exact federated unlearning based on our theoretical

analysis. However, we do not claim that it is a necessary condition,

nor that it is the optimal choice among other possible stability

measures. This is a highly non-trivial problem that deserves further

investigation in future work.

4 OUR ALGORITHMS

We propose our algorithms for federated learning and unlearning

in this section. We devise a general framework that consists of a

learning algorithm FATS and two unlearning algorithms to enable

efficient data sample and client removal for FATS, respectively. In
our algorithms, the server and clients will employ functions save(·)
and load(·), which indicate saving and loading the variables to and

from its local memory respectively.

4.1 TV-Stable FL Algorithm: FATS
Based on our previous discussions in Section 3.3, it is sufficient to

design a TV-stable learning algorithm. Specifically, our objective

is to achieve both 𝜌𝑆 -sample-level TV-stability and 𝜌𝐶 -client-level
TV-stability simultaneously for any given stability parameters 𝜌𝑆
and 𝜌𝐶 . For this purpose, we propose a federated learning algorithm
called FATS, which extends the classical FedAvg algorithm [18] for

TV stability. Due to the widespread usage of FedAvg, FATS can be

easily integrated into existing systems. The main idea for FATS to
achieve sample-level and client-level TV stability simultaneously is

to elaborately adjust the number of clients sampled per round and

the mini-batch size per iteration. We describe FATS in Algorithm 1.

FATS operates in a synchronized manner, dividing the learning

process into 𝑇 time steps 𝑡 = 1, 2, . . . ,𝑇 . These 𝑇 time steps are

further grouped into 𝑅 communication rounds 𝑟 = 1, 2, . . . , 𝑅, each
consisting of 𝐸 iterations of local updates, such that 𝑇 = 𝑅 · 𝐸. The
𝑟 -th communication round covers iterations from (𝑟 − 1) · 𝐸 + 1 to

𝑟 · 𝐸. We denote by I𝐸 = {𝑠𝐸 + 1|𝑠 = 0, 1, 2, . . . , 
𝑇−1𝐸 �} the set of
time steps that mark the start of a communication round. In each

communication round, FATS performs the following three steps.

STEP 1. At the beginning of each communication round, the

server randomly draws a multiset of𝐾 clients with replacement and

broadcasts the latest global model to them (steps 7-10). It is possible

for a client to be activated multiple times in a single communica-

tion round. Let C(𝑡 ) denote the chosen client multiset that allows

repetitions. Note that C(𝑡 ) is only defined for each 𝑡 ∈ I𝐸 . For con-
venience, we use P(𝑡 ) for every 𝑡 ∈ [𝑇 ] in the algorithm to denote

the most recent selected clients at time step 𝑡 , i.e., P(𝑡 ) � C(𝑛) ,
where 𝑛 = max{𝑡 ′|𝑡 ′ ≤ 𝑡, 𝑡 ′ ∈ I𝐸 }.
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Algorithm 1: Federated Averaging with TV-Stability:

FATS(𝑡0, 𝑇 , 𝐸, 𝜂, 𝜌𝑆 , 𝜌𝐶 )

1 Input: Start iteration 𝑡0, time horizon 𝑇 , local iteration
number 𝐸, learning rate 𝜂, TV-stability parameters 𝜌𝑆 , 𝜌𝐶 .

2 𝐾 ← 𝜌𝐶 ·𝐸 ·𝑀
𝑇 , 𝑏 ← 𝜌𝑆 ·𝑁

𝜌𝐶 ·𝐸 ;

3 if 𝑡0 ∉ I𝐸 then

4 The server performs Load(P(𝑡0) ) ;
5 The server informs each client 𝑘 ∈ P(𝑡0) to perform

Load(𝜃
(𝑡0)
𝑘

) ;

6 for 𝑡 ← 𝑡0, . . . ,𝑇 do

7 if 𝑡 ∈ I𝐸 then

8 The server samples a multiset of clients P(𝑡 ) of size
𝐾 with replacement ;

9 The server performs save(P(𝑡 ) ), load(𝜃 (𝑡−1) ) ;
10 The server broadcasts index 𝑡 and the latest model

𝜃 (𝑡−1) to all clients in P(𝑡 ) such that

𝜃
(𝑡−1)
𝑘

= 𝜃 (𝑡−1) ,∀𝑘 ∈ P(𝑡 ) ;

11 for each client 𝑘 ∈ P(𝑡 ) (in parallel) do

12 Sample a mini-batch B(𝑡 )
𝑘

of size 𝑏 uniformly at

random without replacement ;

13 𝑔
(𝑡 )
𝑘

← 1
𝑏

∑
𝑋 ∈B(𝑡 )

𝑘

∇𝑓 (𝜃 (𝑡−1)
𝑘

;𝑋 ) ;
14 𝜃

(𝑡 )
𝑘

← 𝜃
(𝑡−1)
𝑘

− 𝜂 · 𝑔 (𝑡 )
𝑘

;

15 Perform Save(𝑡 , B(𝑡 )
𝑘

, 𝜃
(𝑡 )
𝑘

) ;

16 if 𝑡 mod𝐸 = 0 then

17 Each client 𝑘 ∈ P(𝑡 ) sends its latest local model 𝜃
(𝑡 )
𝑘

to the server ;

18 The server aggregates the received local models as

𝜃 (𝑡 ) ← 1
𝐾

∑
𝑘∈P(𝑡 ) 𝜃

(𝑡 )
𝑘

;

19 The server performs save(𝜃 (𝑡 ) ) ;

20 return global model 𝜃 (𝑇 ) ;

STEP 2. Upon receiving the global model, the selected clients up-

date the model parameters by using mini-batch stochastic gradient

descent for 𝐸 iterations over their local datasets. Specifically, in each

iteration 𝑡 , the selected client 𝑘 ∈ P(𝑡 ) first samples a mini-batch

B(𝑡 )
𝑘

of size 𝑏 from its local dataset D𝑘 without replacement and

then updates the local model 𝜃
(𝑡−1)
𝑘

using gradient descent based

on the mini-batch gradient 𝑔
(𝑡 )
𝑘

(step 12-17).

STEP 3. After completing 𝐸 local updates, the selected clients up-

load the local model parameters to the server, who then aggregates

a new global model by averaging these local models (steps 18-22).

4.2 Unlearning Algorithms for FATS
We recall that FATS involves two sources of randomness: the server’s

client sampling and the client’s data sample sampling.When a target

data sample or a target client is removed, the number of available

data samples for a client or the number of available clients will

Algorithm 2: Sample-level Unlearning for FATS:
FATS-SU(𝑡𝑢 , 𝑋𝑢 , 𝑘𝑢 )

1 Input: Unlearning time step 𝑡𝑢 , target sample 𝑋𝑢 ∈ D𝑘𝑢 .

2 for 𝑡 ← 1, . . . , 𝑡𝑢 do

3 if 𝑘𝑢 ∈ P(𝑡 ) then
4 perform Load(B(𝑡 )

𝑘𝑢
) ;

5 if 𝑋𝑢 ∈ B(𝑡 )
𝑘𝑢

then

6 FATS(𝑡𝑆 ,𝑇 , 𝐸, 𝜂, 𝜌𝑆 , 𝜌𝐶 ) ;

7 halt ;

Algorithm 3: Client-level Unlearning for FATS:
FATS-CU(𝑡𝑢 , 𝑘𝑢 )

1 Input: Unlearning time step 𝑡𝑢 , Target 𝑘𝑢 to unlearn.

2 𝑟𝑢 ← 
(𝑡𝑢 − 1)/𝐸� + 1 ;

3 for 𝑟 ← 1, 2, . . . , 𝑟𝑢 do

4 𝑡𝑟 ← (𝑟 − 1) · 𝐸 + 1 ;

5 if 𝑘𝑢 ∈ P(𝑡𝑟 ) then
6 FATS(𝑡𝐶 ,𝑇 , 𝐸, 𝜂, 𝜌𝑆 , 𝜌𝐶 ) ;

7 halt ;

change accordingly. This implies that the sampling probability dis-

tribution may differ if the algorithm is run on the updated setting

(without the target data sample or client). Therefore, to achieve ex-

act unlearning, we need to first verify whether such a discrepancy

occurs, which is referred to as verification. If yes, we need to rectify

this discrepancy by adjusting the sampling probability measure

appropriately, which is done by re-computation. The sample-level

and client-level unlearning algorithms are given in Algorithm 2

and Algorithm 3 respectively.

Suppose an unlearning request (for unlearning either a sample

𝑋𝑢 of 𝑘𝑢 or a client 𝑘𝑢 ) is made at time step 𝑡𝑢 in round 𝑟𝑢 . For ver-
ification, For verification, we need to inspect whether the sampling

probability distribution changes after deleting the target sample or

client. At a high-level, we verify if the current model learned from

the original dataset is equally probable to occur after the deletion

for each iteration. We first consider the sample-level unlearning

case. To unlearn the target sample 𝑋𝑢 ∈ D𝑘𝑢 , we iteratively check

for each time step 1 ≤ 𝑡 ≤ 𝑡𝑢 whether B(𝑡 ))
𝑘𝑢

can be generated by

learning on the updated dataset with the same probability. Our

specific approach is that, we check whether the target sample 𝑋𝑢
has ever been used for training the current model up till 𝑡𝑢 . If not,
then we affirm that no discrepancy exists between 𝑃 and 𝑄 till 𝑡𝑢 ,
and thus no re-computation is required to perform. Otherwise, if

at some iteration 𝑡𝑆 ≤ 𝑡𝑢 , we find the target sample was involved

in the training, then the discrepancy occurs and a re-computation

should then be initiated to retrain the model starting from 𝑡𝑆 (step 6
in Algorithm 2). The client-level unlearning case is simpler since we

only need to account for the client sampling process. Specifically,

we iteratively check for each round 𝑟 ≤ 𝑟𝑢 whether the target client

𝑘𝑢 was involved. If for some round with its first iteration being 𝑡𝐶 ,
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we find 𝑘𝑢 participated in the model training, then a re-computation

should then be initiated (step 6 in Algorithm 3).

5 MAIN RESULTS

5.1 Unlearning Guarantees

In this part, we establish that our framework achieves both sam-

ple and client level exact unlearning. We first show that FATS is

TV-stable. Then we show that our unlearning algorithms are valid

transports that preserve the output distribution of the model param-

eters. Thanks to the TV-stability, the probability of re-computation

is also small, which implies that our unlearning algorithms are

efficient in computation and communication.

Notations:We introduce some notations that we will use for our

unlearning analysis. For simplicity, we slightly deviate from the

notations used in the algorithm description, which are elaborated

in the following. For sample-level unlearning, we suppose that

client 𝑘𝑢 requests to delete the target data sample 𝑋𝑢 from its local

dataset D𝑘𝑢 and D𝑘𝑢 becomes D′
𝑘𝑢

after the deletion. For client-

level unlearning, client 𝑘𝑢 is the target client. Let D and D′ be the
global dataset of all data points across the clients before and after

the deletion, respectively. That is, D and D′ differ by either the

target sample 𝑋𝑢 ∈ D𝑘𝑢 for sample unlearning, or the whole local

dataset D𝑘𝑢 of the target client 𝑘𝑢 for client unlearning. Let 𝜃D
and 𝜃D′ be the model learnt from D and D′, respectively. In each

communication round 𝑟 , there are two kinds of sampling: client

sampling by the server and local mini-batch sampling by each

client. We use P[𝑟 ] to denote the multiset of 𝐾 clients that server

samples in round 𝑟 . Let B[𝑟 ]
𝑘

denote the set of all mini-batches that

client 𝑘 ∈ [𝑀] samples during the 𝐸 iterations in round 𝑟 , and let

B[𝑟,𝑖 ]
𝑘

denote the specific mini-batch that client𝑘 samples in the 𝑖-th

iteration of round 𝑟 . Thenwe haveB[𝑟 ]
𝑘

= {B[𝑟,𝑖 ]
𝑘

}𝑖∈[𝐸 ] if𝑘 ∈ P [𝑟 ] ,
and B[𝑟 ]

𝑘
= ∅ otherwise. Finally, let B[𝑟 ] � {B[𝑟 ]

𝑘
}𝑘∈[𝑀 ] denote

the set of all mini-batches sampled by all clients in round 𝑟 .
In our analysis, we will use the concept of push-forward measure.

Given a measurable function 𝑓 : X → Y and a measure 𝜇 on X,

we denote by 𝑓 #𝜇 the push-forward measure on Y, defined as

(𝑓 #𝜇) (Z) = 𝜇 (𝑓 −1 (Z)) for any measurable set Z ⊆ Y.

To demonstrate that our framework ensures exact unlearning, we

need the following crucial lemma, which states that our federated

learning algorithm FATS is TV-stable with respect to both sample

and client level.

Lemma 1. For any given 𝜌𝑆 , 𝜌𝐶 ∈ (0, 1], FATS is min{𝜌𝑆 , 1}
sample-level TV-stable and min{𝜌𝐶 , 1} client-level TV-stable.

The proof of Lemma 1 is in Appendix B.1. With Lemma 1, we are

ready to demonstrate that our framework ensures exact unlearning.

Furthermore, we show that the probability of re-computation is

bounded linearly with the number of unlearning requests and the

level of stability. The unlearning guarantee is formally stated in

Theorem 1, whose proof is in Appendix B.2.

Theorem 1. (FATS, FATS-SU) satisfies sample-level exact federated

unlearning. (FATS, FATS-CU) satisfies client-level exact federated
unlearning. Moreover, the probability of re-computation for𝑤 num-

ber of sample-level or client-level unlearning requests is at most

𝜌𝑆 ·𝑤 or 𝜌𝐶 ·𝑤 , respectively.

5.2 Convergence Analysis

In this part, we provide convergence guarantees for our proposed

FL algorithm FATS. We show that the global model converges to

an approximate stationary point of the empirical risk function un-

der mild assumptions. We also show that the unlearned models

preserve the accuracy of the original models, while achieving ex-

act unlearning. These results demonstrate the effectiveness of our

federated unlearning framework.

Notations: Recall that, in Algorithm 1, the server first randomly

selects a multiset P(𝑡 ) of clients at the beginning of each round and

then only the selected clients perform local updates. This introduces

some technical challenges in the analysis since P(𝑡 ) varies every 𝐸
time steps. To overcome this difficulty, we consider analyzing an

alternative equivalent procedure where the server always activates

all clients at the beginning of each round and then only aggregates

the updated parameters from the clients inmultisetP(𝑡 ) to generate
the latest global model. Specifically, the updating scheme of the

alternative procedure can be described as: for all 𝑘 ∈ [𝑀] and any

time step 𝑡 ∈ [𝑇 ],

𝜈
(𝑡 )
𝑘

= 𝜃
(𝑡−1)
𝑘

− 𝜂𝑔
(𝑡 )
𝑘

, (5)

𝜃
(𝑡 )
𝑘

=

{
𝜈
(𝑡 )
𝑘

, if 𝑡 mod𝐸 ≠ 0,
1
𝐾

∑
𝑘∈P(𝑡 ) 𝜈

(𝑡 )
𝑘

, if 𝑡 mod𝐸 = 0.
(6)

For ease of exposition, we introduce some notations that will facili-

tate the analysis. Recall that, in Algorithm 1, we use 𝑔
(𝑡 )
𝑘

to denote

the stochastic mini-batch gradient of client 𝑘 in iteration 𝑡 . We will

use 𝑔
(𝑡 )
𝑘

to denote the full gradient calculated from the entire local

dataset at client 𝑘 in iteration 𝑡 , i.e., 𝑔
(𝑡 )
𝑘
� ∇𝐹𝑘 (𝜃 (𝑡 )𝑘

). Moreover,

in Algorithm 1, 𝜃 (𝑡 ) is the global model that is aggregated among

the selected clients in P(𝑡 ) every 𝐸 iterations at the end of each

communication round. Thus, 𝜃 (𝑡 ) there is only defined for 𝑡 that is
a multiple of 𝐸. In what follows, we extend the definition of 𝜃 (𝑡 )

for ∀ 𝑡 ∈ [𝑇 ] ∪ {0} as 𝜃 (𝑡 ) � 1
𝐾

∑
𝑘∈P(𝑡 ) 𝜃

(𝑡 )
𝑘

, which we also call

the virtual average model.

Throughout our convergence analysis, we will use the following

standard assumptions for loss function 𝑓 .

Assumption 1 (𝐿-smoothness). The loss function 𝑓 (·;𝑋 ) is 𝐿-
smooth, i.e., for any given data sample 𝑋 and ∀𝜃1, 𝜃2 ∈ R𝑑 , we have
‖∇𝑓 (𝜃1;𝑋 ) − ∇𝑓 (𝜃2;𝑋 )‖2 ≤ 𝐿‖𝜃1 − 𝜃2‖.
Assumption 2 (Bounded Local Variance). For each local dataset

D𝑘 , 𝑘 ∈ [𝑀], we can sample an independent mini-batch B𝑘 with

|B𝑘 | = 𝑏 and compute an unbiased stochastic gradient 𝑔𝑘 defined as
1
𝑏

∑
𝑋 ∈B𝑘

∇𝑓 (𝜃 ;𝑋 ) for ∀𝜃 , with its variance bounded from above as

EB𝑘
[‖𝑔𝑘 − 𝑔𝑘 ‖22] ≤ 𝐺2

𝑏 , where 𝑔𝑘 = E[𝑔𝑘 ] = 1
𝑁

∑
𝑋 ∈D𝑘

∇𝑓 (𝜃 ;𝑋 ).
We introduce the following notion of gradient diversity to quan-

tify the dissimilarity between gradients of local empirical risk func-

tions during the learning process.

Definition 5 (Gradient Dissimilarity). We define the following

quantity as gradient diversity among all the clients at the 𝑡-th

learning iteration: Λ(𝜃 (𝑡 ) ) �
1
𝑀

∑𝑀
𝑘=1 ‖∇𝐹𝑘 (𝜃

(𝑡 )
𝑘

) ‖22
‖ 1
𝑀

∑𝑀
𝑘=1 ∇𝐹𝑘 (𝜃

(𝑡 )
𝑘

) ‖22
.
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Clearly, for any 𝑡 , Λ(𝜃 (𝑡 ) ) ≥ 1. And Λ(𝜃 (𝑡 ) ) = 1 if and only

if all the local gradients ∇𝐹𝑘 (𝜃 (𝑡 )𝑘
)’s are equal. In the following

assumption, we introduce the quantity 𝜆, which is the upper bound

on the gradient diversity and measures the degree of heterogeneity.

Assumption 3 (Bounded heterogeneity). There is a common up-

per bound 𝜆 on the gradient diversity among local empirical risk

functions, such that for any 𝑡 ∈ [𝑇 ], we have Λ(𝜃 (𝑡 ) ) ≤ 𝜆.

With these assumptions, in the following Lemma 2, we bound

the average-squared gradient norm for FATS in general. The proof

of Lemma 2 can be found in Appendix C.1.

Lemma 2. Under Assumption 1, 2 and 3, if the learning rate 𝜂 is

small enough and satisfies the following condition:

− 𝜂

2
+ 𝜂3𝐿2𝜆𝐸 (𝐸 − 1) + 𝜂2𝜆𝐿

2
< 0. (7)

Then the average-squared gradient norm is bounded as

1

𝑇

𝑇∑
𝑡=1

E[‖∇𝐹 (𝜃 (𝑡−1) )‖22]

≤ 2(𝐹 (𝜃 (0) ) − 𝐹 ∗)
𝜂𝑇

+ 𝜂2𝐿2𝐺2𝐸 (𝐾 + 1)
𝐾𝑏

+ 𝜂𝐿𝐺2

𝐾𝑏
(8)

=
2(𝐹 (𝜃 (0) ) − 𝐹 ∗)

𝜂𝑇
+ 𝜂2𝐿2𝐺2𝐸 (𝜌𝐶𝐸𝑀 +𝑇 )

𝜌𝑆𝑀𝑁
+ 𝜂𝐿𝐺2𝑇

𝜌𝑆𝑀𝑁
, (9)

where 𝐹 ∗ is the global minimum value.

In Lemma 2, we did not specify the choice of learning rate 𝜂 and

per-round local iteration number 𝐸, and the obtained bound does

not imply any convergence result for FATS. Now, we discuss the
choice of 𝜂 and 𝐸 for ensuring convergence. To ensure convergence,

one can choose 𝜂 = 𝑂
(
1
𝑇

)
. In this case, the condition (7) reduces

to 𝐸
𝑇 ≤ 𝑂

(√
1
𝜆

)
. That is, the number of local iterations should be

dependent on the data heterogeneity and generally decreases as

the data heterogeneity becomes larger. Such a constraint on 𝐸 is

quite intuitive: when the data are heterogeneous, the average of the

minimizers of 𝐹1, . . . , 𝐹𝐾 can be very different from theminimizer of

𝐹 . If 𝐸 is set too large, then each 𝜃
(𝑡 )
𝑘

can converge to the minimizer

of 𝐹𝑘 , which makes the algorithm diverge.

In the next Theorem 2, we formalize the above discussion and

provide the convergence rate for FATS. The proof of Theorem 2 is

in Appendix C.5.

Theorem2. Define Γ � 𝐺2

𝐿 (𝐹 (𝜃 (0) −𝐹 ∗)𝜌𝑆𝑀𝑁 . Under Assumption 1, 2

and 3, if we choose 𝜂 = 1

𝐿
√
Γ𝑇

, and let 𝑇 ≥ 2𝜆√
Γ
, then condition (7)

reduces to
𝐸 (𝐸−1)
𝑇 2 < Γ

4𝜆 . Therefore, by requiring 𝐸
𝑇 < 1

2

√
Γ
𝜆 , we

obtain the average-squared gradient norm bound of

1

𝑇

𝑇∑
𝑡=1

E[‖∇𝐹 (𝜃 (𝑡−1) )‖22]

≤ 3
√
𝐿𝐺2 (𝐹 (𝜃 (0) ) − 𝐹 ∗)√

𝜌𝑆𝑀𝑁
+ 𝐿(𝐹 (𝜃 (0) ) − 𝐹 ∗) 𝐸

𝑇
( 𝜌𝐶𝑀𝐸

𝑇
+ 1) . (10)

Remark 2. The above bound consists of two terms, for which we

have some observations in order:

(I) The first term can be seen as the cost for achieving stability, which

scales as 𝑂

(
1√

𝜌𝑆𝑀𝑁

)
and thus is a non-vanishing term. If the per-

client sample number 𝑁 and the client number𝑀 are large enough,

the cost can bemade as small as possible. Though non-vanishing, we

claim that this kind of stability cost is reasonable and it also appears

in the existing centralized unlearning results, e.g., [25]. In fact,

the algorithmic TV-stability means that the performance of an FL

algorithm on similar data sets is somewhat indistinguishable. If the

accuracy of an FL algorithm is very high (i.e., the average-squared

gradient norm converges to 0), then this kind of indistinguishability

will be broken. Therefore, in order to achieve algorithmic stability,

it is acceptable and necessary to sacrifice a certain accuracy.

(II) It is worth noting that our stability cost only depends on the

sample-level stability 𝜌𝑆 and has nothing to do with client-level

stability 𝜌𝐶 . This is because our stability cost comes from balancing

the first and last terms in the (8), fromwhich we can see that the cost

actually determined by the effective number of data samples used

in each iteration, i.e., 𝑘 · 𝑏. Since 𝐾 ∝ 𝜌𝐶 and 𝑏 ∝ 1/𝜌𝐶 , 𝜌𝐶 cancels

out in 𝐾 · 𝑏. As a result, only 𝜌𝑆 makes a difference to the stability

cost. This implies that FATS can achieve high client-level stability

without compromising accuracy or communication efficiency if

each client has enough local data samples.

(III) The second term scales as 𝑂
(
𝐸
𝑇

)
, which is controlled by the

ratio of 𝐸 and 𝑇 . To make this term diminish with 𝑇 → ∞, one

can set 𝐸 = 𝑂 (𝑇 1−𝛼 ) with 0 < 𝛼 ≤ 1. This way, the second term

scale as𝑂 (𝑇−𝛼 ), and when𝑇 is large enough, the entire bound will

converge to the stability cost only. This actually reflects a trade-off

between the convergence rate and the communication costs: larger

𝛼 means faster convergence but also leads to more communication

rounds. In some extreme cases, one can even set 𝐸 = 𝑐 ·𝑇 for some

constant 𝑐 < 1
2

√
Γ
𝜆 . However, in this case, to retain the best possible

convergence error of𝑂

(
1√

𝜌𝑆𝑀𝑁

)
, we will need an additional mild

restriction on the client number 𝑀 so that 𝑀 ≤ 𝑂 (𝑁 ). This shows
that FATS can achieve a fast convergence rate with a small number

of communication rounds under certain conditions.

With the perceptions above, we give in the following corollary

the specific convergence error for different choices of 𝐸.

Corollary 1. Under Assumption 1, 2 and 3, for any 0 < 𝛼 ≤ 1 if we

set 𝜂 = 1

𝐿
√
Γ𝑇

, 𝐸 = 𝑇 1−𝛼 , and 𝑇 ≥ max

{
2𝜆√
Γ
,

(
2

√
𝜆
Γ

) 1
𝛼

, (𝜌𝐶𝑀) 1
𝛼

}
,

then we have

1

𝑇

𝑇∑
𝑡=1

E[‖∇𝐹 (𝜃 (𝑡−1) )‖22] ≤
4𝐺

√
𝐿(𝐹 (𝜃 (0) ) − 𝐹 ∗)√

𝜌𝑆𝑀𝑁
= 𝑂

(
1√

𝜌𝑆𝑀𝑁

)
.

If we set 𝐸 = 𝑐 · 𝑇 for some constant 𝑐 < 1
2

√
Γ
𝜆 , 𝑇 ≥ 2𝜆√

Γ
and

𝑀 <
4𝜆2𝐿 (𝐹 (𝜃 (0) )−𝐹 ∗)𝜌𝑆

𝐺2𝜌2𝐶
𝑁 , then we have

1

𝑇

𝑇∑
𝑡=1

E[‖∇𝐹 (𝜃 (𝑡−1) )‖22] ≤
4𝐺

√
𝐿(𝐹 (𝜃 (0) ) − 𝐹 ∗)√

𝜌𝑆𝑀𝑁
= 𝑂

(
1√

𝜌𝑆𝑀𝑁

)
.
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Remark 3. The convergence error of FATS is dominated by the

stability cost of 𝑂

(
1√

𝜌𝑆𝑀𝑁

)
, where 𝜌𝑆 is closely related to the

unlearning efficiency. Specifically, the smaller 𝜌𝑆 is, the more stable

the algorithm is and the more efficient the unlearning process. In

this way, 𝜌𝑆 characterizes the trade-off between the unlearning

efficiency and learning accuracy. If we disregard unlearning effi-

ciency and accept retraining computation for every sample removal

request, then we can make 𝜌𝑆 > 1 arbitrarily large to obtain, as

expected, arbitrarily small convergence error. However, the intrigu-

ing case is when we make 𝜌𝑆 < 1: in this case, we achieve a faster

unlearning time and still a non-trivial accuracy, up to 𝜌𝑆 > 𝑂 ( 1
𝑀𝑁 ).

This implies that we can attain a substantial decrease in commu-

nication and computation costs for federated unlearning without

compromising too much accuracy for learning.

Remark 4 (Utility of unlearned models). Previously, we have

shown a convergence error of 𝑂

(
1√

𝜌𝑆𝑀𝑁

)
for our FL algorithm

FATS. This error bound reflects the accuracy of the original model

trained on the full dataset. However, whenwe perform federated un-

learning, we remove some data samples or clients from the dataset,

which may affect the utility of the unlearned models. We now dis-

cuss the utility of the unlearnedmodels and show that they preserve

the same error bound as the original model under certain conditions.

Since the error bound is mainly dependent on the total number of

data samples 𝑀𝑁 , as long as the number of remaining data sam-

ples after deletion is still 𝑂 (𝑀𝑁 ), the convergence error bound of

𝑂

(
1√

𝜌𝑆𝑀𝑁

)
will still hold for the unlearned models. This means

that the unlearned models have almost the same accuracy perfor-

mance as the original model while satisfying the exact unlearning

provability criterion. This conclusion will also be supported by our

experiments.

5.3 Unlearning Time and Space Overheads

5.3.1 Time Overheads. We analyze the computational efficiency

of FATS, which is a crucial aspect of federated unlearning, as it

influences the scalability and responsiveness of the unlearning

process. The total execution time of the unlearning algorithm con-

sists of the time for verification and the time for re-computation.

The most optimal way for verification is to maintain a dictionary

of samples/clients to the earliest iteration/round that each sam-

ple/client participated in. This way, it requires 𝑂 (1) time lookup

for every unlearning request. The time for each re-computation is

bounded by the training time. According to Proposition 6 in [25],

for a coupling-based unlearning algorithm with acceptance proba-

bility at least 1 − 𝛿 and for 𝑤 unlearning requests in general, the

expected number of times re-computation is invoked is at most 4𝑤𝛿 .
FATS-SU and FATS-CU re-compute with probability of min{1, 𝜌𝑆 }
and min{1, 𝜌𝐶 }, respectively. Hence, we can derive the expected

number of re-computations for w sample-level or client-level un-

learning requests as 4𝑤 min{1, 𝜌𝑆 } and 4𝑤 min{1, 𝜌𝐶 }, respectively.
Based on the analysis above, we obtain the expected running time

for our framework as follows.

Theorem 3. For𝑤 sample-level unlearning requests, the expected

unlearning running time is𝑂 (max{min{𝜌𝑆 , 1}𝑤×Training time,𝑤}).

Similarly, for𝑤 client-level unlearning requests, the expected run-

ning time is 𝑂 (max{min{𝜌𝐶 , 1}𝑤 × Training time,𝑤}).
5.3.2 Space Overheads. We require the server and the local de-

vices to store some intermediate states of the training process for

FATS as in Algorithm 1. We enumerate the parameters to be stored

on the server and on each local device. The server stores the sub-

sets of clients in each communication round (i.e., P(𝑡 ) ) and the

global models (i.e., 𝜃 (𝑡 ) ). For every training iteration 𝑡 that client
𝑘 is selected, client 𝑘 preserves the iteration index (i.e., 𝑡 ), local

mini-batches (i.e., B(𝑡 )
𝑘

) and local models (i.e., 𝜃
(𝑡 )
𝑘

). We conduct

a space complexity analysis of our algorithms. Each local device

stores all the mini-batches and local models that it utilizes for every

training iteration, which consumes up to 𝑂 (𝑇 · 𝑏) and 𝑂 (𝑇 · 𝑑)
words respectively via dictionaries that associate iteration index

with mini-batch samples and local models. The space complexity

for each device is 𝑂 (𝑇 · max{𝑏, 𝑑}) = 𝑂
(
𝑇 ·max

{
𝜌𝑆𝑁
𝜌𝐶𝐸

, 𝑑
})
. The

server stores the involved clients and the global models in each

communication round, which occupies𝑂 (𝑅 ·𝐾) and𝑂 (𝑅 ·𝑑) words
respectively via dictionaries that link round index with client sub-

sets and global models. The space complexity for the server is

𝑂 (𝑅 ·max{𝐾,𝑑}) = 𝑂
(
max

{
𝜌𝐶𝑀, 𝑇𝑑𝐸

})
.

We remark that our unlearning algorithms employ the stored

local models, mini-batch samples, and client sub-sets only for pre-

sentation convenience. We can easily devise a simple but efficient

implementation of our unlearning algorithms, which does not store

any local models, mini-batch samples, or client sub-sets, but has the

same unlearning time complexity as in Theorem 3. In Theorem 3,

we bound the re-computation time by the full re-computation time,

i.e., training time. This implies that the unlearning time bound holds

even if we do full re-computation every time the discrepancy arises.

The unlearning algorithms can be modified as: instead of retraining

from iteration 𝑡0 where the target sample or client is involved, we

do full retraining from the beginning. With this, each local device

stores a vector of length 𝑁 to indicate the involvement of each

local sample, and the server stores a vector of length 𝑀 to indicate

the participation of each client, which takes 𝑂 (𝑁 ) and 𝑂 (𝑀) bits
respectively. Both the server and each device store a 𝑑-dimensional

model, which costs 𝑂 (𝑑) words. The space complexities of each

device and the server are𝑂 (𝑁 +𝑑) and𝑂 (𝑀 +𝑑) words, which are

independent of 𝑇 and acceptable even when 𝑇 is large.

6 EXPERIMENTS

To demonstrate the advantages of our proposed framework in terms

of performance and scalability of learning/unlearning, we conduct

comprehensive experiments on 6 federated learning benchmark

datasets and present empirical evidence of its superiority. Specifi-

cally, we compare our framework with state-of-the-art methods for

federated unlearning and evaluate the accuracy, communication

cost, computation cost, and unlearning effectiveness of different

methods. We also investigate the impact of different stability pa-

rameters on the performance of our framework.

6.1 Experimental Settings

6.1.1 Datasets. We adopt several widely-used benchmark datasets.

These datasets can be categorized into two categories: simulated
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(a) Cifar-100 (b) FEMNIST (c) Shakespeare

(d) Cifar-100 (e) FEMNIST (f) Shakespeare

Figure 1: Comparison of the test accuracy of different methods and their changes after unlearning on Cifar-100, FEMNIST, and

Shakespeare. Top: sample-level unlearning. Bottom: client-level unlearning.

federated datasets and real federated datasets. For simulated fed-

erated datasets, we manually partition centralized datasets into

the federated setting. For real federated datasets, we use datasets

from the well-known FL benchmark LEAF [3] whose datasets are

originally built for real-world federated settings.

Simulated federated datasets.We use MNIST [15], Fashion-

MNIST (FashionM) [32], Cifar-10 and Cifar-100 [14] and apply the

Label-based Dirichlet Partition (LDA) [12] on them to simulate the

label-based non-i.i.d. data distribution. These datasets are widely

used for image classification tasks in FL, e.g., [18]. Each dataset is

partitioned into 100 clients using the LDA, assigning the partition

of samples to clients by 𝑝 ∼ Dir(𝛽), where Dir is the probability
density function of the Dirichlet distribution and 𝛽 is a positive

real parameter. Smaller 𝛽 leads to a higher heterogeneity level of

partition. Unless otherwise stated, we set 𝛽 to 0.5 by default.

Real federated datasets. We use FEMNIST and Shakespeare

(Shakes) from LEAF and they cover both vision and language tasks.

We sample the full-sized datasets and partition each client’s samples

into training/test groups as per [3] except that we set the minimum

number of samples per client to 100.

For more details of the datasets, see Table 2 in Appendix A.1.

6.1.2 Models and Hyperparameters. We adopt different models for

different FL tasks, based on the complexity and modality of the data.

Specifically, for image classification tasks, we use the CNN model

for MNIST, Fashion-MNIST, FEMNIST, and the VGG16 pre-trained

on ImageNet1K for Cifar-10 and Cifar-100. The learning rate is set to

be 0.001 for both models. For the natural language generation task

on Shakespeare, we use the same model architectures as reported

in [3]: the model first maps each character to an embedding of

dimension 8 before passing it through an LSTM of two layers of 256

units each. The LSTM emits an output embedding, which is scored

against all items of the vocabulary via a dot product followed by a

softmax. We use a sequence length of 80 for LSTM and the learning

rate of LSTM is set as 0.8. All other hyperparameters are set to the

values reported in Table 2 for the respective datasets.

6.1.3 Evaluation Metrics. We use the following metrics to assess

the learning and unlearning performance of different methods on

various datasets and tasks.

Test accuracy. This metric quantifies the accuracy of the global

model for different tasks on the test data of various datasets. For

image datasets, we assess the classification accuracy of the model

on the test data, which means the ratio of correct predictions to

the total number of predictions. For Shakespeare dataset, we gauge

the top-1 accuracy of the model for predicting the next word in a

sequence, which means the fraction of the model answer (the one

with highest probability) that matches the actual words in the test

data. Higher accuracy indicates better performance.

Unlearning time. This metric measures the number of time

steps required by an unlearning algorithm to unlearn target data

samples or clients. It reflects the computation/communication effi-

ciency and scalability of the unlearning algorithm. Fewer unlearn-

ing time means higher efficiency.

MIA accuracy and precision. These two metrics measure the

vulnerability of the global model under the membership inference
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(a) FEMNIST: Sample Unlearning Case

(b) FEMNIST: Client Unlearning Case

Figure 2: Unlearning Efficiency of FATS compared with FRS.

attack (MIA) [22]. MIA aims to infer whether a given target data

sample was used to train the model or not. Thus, the performance

of MIA reflects the amount of information that remains in the

unlearned global model, which indicates the unlearning efficacy.

Accuracy and precision are two complementary metrics for MIA

to assess how well the attack can infer the membership status of a

given data point. Accuracy is the fraction of correct predictions over

all predictions, while precision is the fraction of correct positive

predictions over all positive predictions. In other words, accuracy

measures how often the attack is right, while precision measures

how confident the attack is when it predicts a positive membership.

When applying MIA to unlearned models, the closer the MIA accu-

racy or precision is to 50% (which intuitively represents a random

guess), the higher the unlearning efficacy.

For the test accuracy and unlearning time, we will report the

averaged results over 5 independent runs. For MIA accuracy and

precision, we will perform MIA 100 times and report the average

performance as well as the standard deviation.

6.1.4 BaselineMethods. To show the advantages of our framework,

we compare it with two existing methods: Federated Retraining

from Scratch (FRS) and Federated Rapid Retraining (FR2) [17]. For
these two methods, we use the most widely used FL algorithm,

federated averaging (FedAvg) [18], to train the global FL model. The

unlearning strategy of these two methods is described as follows.

FRS. This method retrains the FL model from scratch on the

remaining data after removing target samples or clients. This is the

simplest but most time and communication intensive method.

(a) FEMNIST

(b) Shakespeare

Figure 3: Impacts of the number of unlearning requests on

unlearning efficiency.

FR2. This method employs a diagonal approximation of the Fisher

Information Matrix to achieve rapid retraining and introduces the

momentum technique to enhance model utility. This is a state-of-

the-art federated unlearning framework, applicable to sample-level

and client-level unlearning.

We implement all methods based on Flower [1], a scalable and

efficient open-source FL framework.

6.2 Experimental Results

6.2.1 Performance Evaluation. We compare the learning perfor-

mance and the unlearning capability of our proposed method with

two baseline methods, FRS and FR2, on all 6 datasets. Our main

focus in this experiment is to examine how these methods can

achieve FL training, handle unlearning requests, and recover from

data deletion. To this end, we first train a global FL model for all

these methods, then we issue some unlearning requests to them and

let them update the model accordingly. We measure and present the

model test accuracy throughout the whole process. Due to space

limit, here we report the results on Cifar-100, FEMIST and Shake-

speare in Figure 1. Other results are included in Appendix A.2. We

will also study the streaming unlearning setting in Appendix A.5.

Regarding the unlearning request issue time, we vary the issue

iterations for different datasets according to their convergence

speed. In fact, there is no clear criterion to decide when an FL model

is fully trained, and unlearning requests can be issued at any time

during the FL training process. If an unlearning request is issued in

the initial stage of FL training, even the naive retraining method

would be relatively cheap. Therefore, in this experiment, we choose
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Table 1: Membership Inference Attack (MIA) Results on Six Datasets.

Datasets
Accuracy Precision

FRS FR2 FATS FRS FR2 FATS

MNIST 50.10± 0.25% 49.47± 0.42% 50.06± 1.40% 50.55± 0.13% 49.70± 0.24% 50.30± 0.78%

FMNIST 47.85± 1.93% 48.47± 5.20% 48.29± 5.28% 49.13± 1.55% 48.91± 4.99% 49.48± 4.40%

Cifar-10 49.04±4.03% 51.23±2.25% 49.15±1.91% 49.53±11.34% 54.17±7.48% 49.20±0.38%
Cifar-100 49.34±0.53% 47.89±1.53% 48.61±1.29% 49.20±0.61% 48.03±1.39% 48.90±0.99%
FEMNIST 50.14±0.23% 50.00±0.00% 53.30±2.34% 55.01±17.22% 33.20±42.12% 55.64±4.72%
Shakes 49.68±0.26% 49.44±0.04% 49.35±0.02% 49.30±0.51% 48.87±0.13% 49.04±0.28%
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(a) Fashion-MNIST: varying 𝜌𝑆
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(b) Fashion-MNIST: varying 𝜌𝐶

Figure 4: Impacts of stability parameters on learning utility

and unlearning efficiency.

an issue iteration for each dataset such that the test accuracy has

reached a stable level. At such an iteration, the FL model has been

adequately trained and the performance gap between different

unlearning methods is evident. For the unlearning requests, we

consider both sample-level and client-level unlearning scenarios.

Specifically, we randomly select 10 samples/clients for MNIST and

FEMIST and 5 samples/clients for the other datasets to be unlearned

simultaneously. The reason why we issue a batch of unlearning

requests is that, if we only issue one request, re-computation may

not be triggered in FATS, and then we will not be able to compare

how these methods cope with sample or client deletion.

For the learning process, we can see that FATS achieves compa-

rable or even superior (e.g., for FEMNIST and Shakespeare) test

accuracy than the baselines before unlearning over all the datasets.

This indicates that FATS can learn as effectively as the classical FL

algorithm FedAvg while achieving TV-stability at the same time.

For the unlearning process, we can see that our method con-

sistently outperforms the baselines across all datasets. FRS suffers
from a significant drop in accuracy after data deletion, which in-

curs more rounds to recover the model utility. This shows that FRS
is inefficient and costly for unlearning, as it requires retraining

the model from scratch on the updated dataset. FR2 has difficulty

on converge and requires more communication rounds to achieve

stable performance, as shown by the large fluctuations on MNIST,

Fashion-MNIST, and FEMNIST. This shows that FR2 is not robust
and unreliable for unlearning, as it relies on a diagonal approxima-

tion of the Fisher Information Matrix that may not capture the true

Hessian information. In contrast, our framework achieves rapid

and effective unlearning with minimal loss in accuracy and com-

munication cost. The accuracy drop of FATS is significantly smaller

than that of all baselines over all the datasets. This shows that our

method can unlearn more quickly and accurately without affecting

the model utility too much. This demonstrates the superiority of

our method over the existing methods for federated unlearning.

In summary, FATS achieves effective learning and unlearning

performance in the federated setting. It learns as fast as FedAvg
and achieves comparable or better accuracy before unlearning.

It unlearns more rapidly and accurately than the baselines and

preserves more model utility after unlearning.

6.2.2 Unlearning Efficiency. The unlearning efficiency of our frame-

work is influenced by the stability parameters 𝜌𝑆 and 𝜌𝐶 for sample-

level and client-level unlearning, respectively. These parameters

are related to the hyperparameters𝐾 ,𝑇 , 𝐸,𝑀 , 𝑏, and 𝑁 . Specifically,

𝜌𝐶 = (𝐾 ·𝑇 )/(𝐸 ·𝑀) and 𝜌𝑆 = (𝑏 ·𝐾 ·𝑇 )/(𝑁 ·𝑀). We aim to assess

the unlearning efficiency of our framework and contrast it with the

baseline methods under different settings of stability parameters

𝜌𝑆 and 𝜌𝐶 . We manipulate 𝜌𝑆 and 𝜌𝐶 by adjusting the values of the

hyperparameters. Specifically, we keep 𝑇 and 𝐸 constant as shown

in Table 2 in this experiment and only vary 𝑀 , 𝐾 and 𝑏. We test

the unlearning efficiency of FATS on the FL benchmark datasets

FEMNIST and Shakespeare. We present the results on FEMNIST in

Figure 2. The results on Shakespeare can be found in Appendix A.3.

For sample-level unlearning, we fix the hyperparameters 𝑇 , and
𝑀 , and vary 𝐾 for each chosen 𝑏, which changes the sample un-

learning ratio 𝜌𝑆 accordingly. Since 𝜌𝑆 is proportional to 𝐾 when

1129



𝑀 , 𝑁 , 𝑇 , and 𝑏 are fixed, a larger 𝐾 corresponds to a higher 𝜌𝑆 .
The results are shown in the first row of Figure 2. Each line therein

ends at the largest 𝐾 such that 𝜌𝑆 reaches 1. We can see that FATS
requires fewer rounds to fully recover model utility for sample

unlearning, compared to the baseline FRS.
For client-level unlearning, we fix the hyperparameters 𝑇 and 𝐸,

and vary 𝐾 for each chosen𝑀 , which changes the client unlearning

ratio 𝜌𝐶 accordingly. Since 𝜌𝐶 is proportional to 𝐾 when𝑀 ,𝑇 , and
𝐸 are fixed, a larger 𝐾 corresponds to a higher 𝜌𝐶 . The results are
shown in the second row of Figure 2. Each line therein ends at the

largest𝐾 such that 𝜌𝐶 reaches 1. We find that FATS takes more time

for larger values of𝐾 as expected, but its largest average unlearning

time is still less than half of the time taken by FRS.
In summary, our proposed federated unlearning framework

demonstrates superior efficiency over baseline approaches on large

real-world federated datasets. It accomplishes unlearning with less

time and rounds while restoring model accuracy. These results

highlight the effectiveness of our proposed method for efficient

federated unlearning.

6.2.3 Impact of the Number of Unlearning Requests. As stated in

Theorem 3, the time taken to unlearn data is greatly affected by

the number of unlearning requests. In this experiment, we examine

how the number of unlearning requests influences the unlearning

efficiency in practice. We conduct experiments on FEMNIST and

Shakespeare. For FEMNIST, we use𝑀 = 3550 clients and for Shake-

speare, we use 𝑀 = 630 clients. For both datasets, we consider the

settings with K varying from 2 to 10. Since different K corresponds

to different stability parameter 𝜌𝐶 , we also examine whether the

influence of unlearning request number holds consistently under

different stability parameters. We issue 1 − 10 client unlearning

requests respectively for each setting and report the average un-

learning time in Figure 3. For comparison, we choose FRS as the

baseline method. As we can see from Figure 3, when 𝜌𝐶 is fixed, the

unlearning time is positively correlated with the number of unlearn-

ing requests. Moreover, since larger 𝐾 corresponds to larger 𝜌𝐶 , we
can also see that, the unlearning time is also positively correlated

with the stability parameter when the unlearning request number

is fixed. We can also observe that with some appropriate 𝐾 , the
unlearning time can still be significantly smaller than it of FRS even

if there are multiple unlearning requests. All these experimental

results corroborate our theoretical results.

6.2.4 Utility v.s. Efficiency. To further analyze the trade-off be-

tween learning utility and unlearning efficiency, we show the aver-

age unlearning time and accuracy of FATS as a function of 𝜌𝐶 and

𝜌𝑆 on MNIST and Fashion-MNIST. Here we present the results on

Fashion-MNIST in Figure 4. The results on MNIST can be found

in Appendix A.4. The first row of Figure 4 shows how the aver-

age unlearning time and accuracy of FATS change as 𝜌𝑆 increases

from 0.125 to 1. We can see that the accuracy curves rise rapidly

at first, then slowly level off. The unlearning time curves exhibit a

similar trend, decreasing sharply initially before plateauing as 𝜌𝑆
approaches 1. The second row of Figure 4 shows how the average

unlearning time and accuracy of FATS change as 𝜌𝐶 increases from

0.2 to 1 for MNIST and from 0.33 to 1 for Fashion-MNIST. We can

see that the accuracy curves increase faster than the unlearning

time curves at first, but then start to flatten out when 𝜌𝐶 exceeds

0.5, while the unlearning time curves keep increasing. This suggests

an optimal trade-off point around 𝜌𝐶 = 0.5, where good learning

utility is balanced with efficient client-level unlearning. Overall,

we can observe that 𝜌𝑆 has a higher impact on the learning utility

than 𝜌𝐶 . This is also supported by the convergence analysis we

conducted in Section 5.2.

6.2.5 Membership Inference Attack. We conduct Membership Infer-

ence Attack (MIA) [22] on the final unlearned global models trained

by different federated unlearning methods. The MIA results are

shown in Table 1. Our method exhibits high unlearning effective-

ness, as the attack gains no advantage over random guessing and

cannot reliably discern membership in the training set. The per-

formance of FATS and FRS is generally consistent. This suggests

that our method indeed achieves exact federated unlearning. We

note that the state-of-the-art baseline FR2 achieves very low MIA

precision on the FEMNIST dataset, which indicates that FR2 is not
robust and unreliable for unlearning. In summary, the MIA results

verify that our method indeed satisfies exact federated unlearning,

and demonstrate the superiority of our method over the existing

methods for federated unlearning.

7 CONCLUSIONS

In this paper, we presented the first algorithmic framework for

federated unlearning that attains communication efficiency and

unlearning provability. The newly introduced notion of exact fed-

erated unlearning guarantees the total removal of a client’s or a

sample’s effect on the global model. We devised a TV-stable FL al-

gorithm FATS, which reduces the communication rounds by using

local SGD with periodic averaging. We also developed matching

unlearning algorithms for FATS to cope with both client-level and

sample-level unlearning scenarios. Furthermore, we offered theo-

retical analysis to demonstrate that our learning and unlearning

algorithms fulfill exact unlearning and achieve reasonable conver-

gence errors for both the learned and unlearned models. Lastly, we

verified our framework through comprehensive experiments on 6

benchmark datasets, and revealed that our framework outperforms

existing baselines, while considerably lowering the communication

and computation cost, and fully erasing the impact of a specific

data sample or client from the global FL model.
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