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ABSTRACT

GPUs are commonly utilized to accelerate GNN training, particu-

larly on a multi-GPU server with high-speed interconnects (e.g.,

NVLink and NVSwitch). However, the rapidly increasing scale of

graphs poses a challenge to applying GNN to real-world applica-

tions, due to limited GPU memory. This paper presents XGNN, a

multi-GPU GNN training system that fully utilizes system mem-

ory (e.g., GPU and host memory), as well as high-speed inter-

connects. The core design of XGNN is the Global GNN Memory

Store (GGMS), which abstracts underlying resources to provide

a unified memory store for GNN training. It partitions hybrid in-

put data, including graph topological and feature data, across both

GPU and host memory. GGMS also provides easy-to-use APIs for

GNN applications to access data transparently, forwarding data ac-

cess requests to the actual physical data partitions automatically.

Evaluation on various multi-GPU platforms using three common

GNN models with four large-scale datasets shows that XGNN out-

performs DGL, �iver and DGL+C by up to 7.9× (from 2.3×),

15.7× (from 3.3×) and 2.8× (from 1.3×), respectively.
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1 INTRODUCTION

Graph Neural Networks (GNNs), as a family of deep learning,

have recently achieved convincing performance on graph data

and have been successfully used in recommendation systems on

e-commerce platforms [52, 57], social network mining [14], drug

discovery [40], fraud detection [31], amongst others. GNNs extract
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Table 1: Comparison of execution time (in seconds) of dif-

ferent GNN systems on three GPU platforms for training

GraphSAGE on Twitter. Sym. and Asym. represent symmet-

ric and asymmetric GPU communication topologies, respec-

tively. “×” means the system fails to train the model.

System 1-GPU 4-GPU (Sym.) 8-GPU (Asym.)

DGL 2.95 1.22 0.63

GNNLab 1.46 0.29 0.18

�iver 6.45 0.92 0.54

WholeGraph × 0.51 ×

XGNN 0.92 0.18 0.08

the node relationship in the graph into a low-dimension vector

(i.e., embeddings), which can be useful in downstream tasks, such

as node classification [18, 44] and link prediction [35, 54]. The

learning process of GNNs can be described asmessage passing [16],

where each node first aggregates information from its neighboring

nodes before updating its embeddings through a traditional neural

network.

To accelerate GNN training without sacrificing accuracy, GNN

systems usually use a subset of neighbors for mini-batch training,

known as sample-based GNN training [10, 12, 18, 52, 53]. Sample-

based GNN training consists of two stages: sampling and training.

In the sampling stage, for each training node, a set of :-hop neigh-

bors is selected from the input graph topological data using various

sampling algorithms. In the training stage, the selected nodes and

their features are used as the input to train the GNN model with :

layers.

GPUs are widely used to accelerate GNN training nowadays [19,

21], especially on a multi-GPU server with high-speed intercon-

nects (e.g., NVLink and NVSwitch). However, the rapidly growing

scale of graphs is an obstacle to applying GNN to real-world appli-

cations. There can be billion to trillion of edges in graphs in indus-

try [7, 37]. This causes the total footprint of the graph topological

and feature data to exceed GPU total memory, even cannot only

store the graph topologies in the GPU. A common solution is to

let each GPU store graph topological data to accelerate sampling

and cache frequently accessed features in GPUmemory [28, 47, 51].

However, this leads to inefficiency GPU memory usage due to re-

dundant graph topological data and cached features across GPUs,

and underutilization of GPU interconnects. Recent works [42, 49]
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have noticed these issues and tried to improve GNN training for

large-scale graphs by partitioning data into multiple GPUs and ac-

cessing data partitions through NVLinks. However, these systems

(i.e., DGL, GNNLab, �iver, WholeGraph) either have low per-

formance or cannot run on diverse GPU communication topolo-

gies as shown in Table 1. Various communication topologies make

it harder to utilize resources well on GPU platforms, both multi-

GPU memory and interconnects. It is a challenge to efficiently uti-

lize GPU memory and host memory through fast GPU intercon-

nects and improve the system generality on diverse GPU commu-

nication topologies.

We therefore propose XGNN for large-scale GNN training with

multiple GPUs on a single machine. The core design of XGNN is

the Global GNN Memory Store (GGMS), which abstracts under-

lying resources to provide a unified memory store for both graph

topological and feature data over multiple GPUs and CPUs.GGMS

opens an opportunity to improve GPU memory and interconnects

utilization efficiency systemically while shielding details of com-

plex multi-GPU platforms. During system initialization, the graph

topological and feature data are partitioned acrossmultiple devices.

During GNN training, users can access graph topological and fea-

ture data transparently by calling three exposed APIs. The GGMS

automatically forwards the data access request to the actual phys-

ical data partitions.

GGMS consists of three modules, i.e., Data Access Manager

(DAM), Placement Solver, and Data Partitioner. To shield off differ-

ent GPU communication topologies, GGMS employs both logical

and physical data partitions. After Data Partitioner partitions the

graph topological and feature data into several logical data parti-

tions, Placement Solver uses a pruning search algorithm to store

the logical data partitions on GPUs (i.e., physical data partitions)

based on the GPU network topology. Finally, Data Access Manager

facilitates data access between multiple devices and forwards data

access requests during training runtime.

GGMS is implemented as a function library for XGNN. To mit-

igate random remote memory access overhead during sampling,

XGNN optimizes the KHop algorithm by leveraging GPU mem-

ory hardware features. This reduces the volume of remote mem-

ory access. To improve feature extracting performance,XGNN uses

GPUs to extract features directly, which are stored in remote GPUs

or host memory [32, 49]. We evaluate XGNN by training three

common GNN models (i.e., GCN [24], GraphSAGE [18] and Pin-

SAGE [52]) on four large-scale graphs. Experimental results show

that XGNN outperforms DGL, �iver and DGL+C by up to 7.9×

(from 2.3×), 15.7× (from 3.3×) and 2.8× (from 1.3×), respectively.

To show its generality, we further evaluate XGNNwith large-scale

graphs on various multi-GPU platforms.

Contributions. We summarize our contributions as follows.

(1) We provide a category and in-depth analysis of existing GNN

training systems and identify issues with efficient GNN training

on large-scale graphs (§2).

(2)We devise a globalmemory store abstraction to unify GPUmem-

ory and host memory for GNN training, which can be applied on

various GPU platforms (§4).
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Figure 1: An example of sample-based training for a 2-layer

GNN on a mini-batch with +7.

(3) We implement XGNN, whose core is GGMS (§5), and compre-

hensively evaluate it on various GNNs, datasets, and GPU plat-

forms to show the efficacy and generality of XGNN (§6).

2 BACKGROUND ANDMOTIVATION

2.1 Graph Neural Networks (GNNs)

GNN is used to represent the node attributes (i.e., features) in a

low-dimensional vector, which is implemented by aggregating fea-

tures of neighboring nodes and learning the information through

neural network (NN) layers. To train large-scale graphs with bil-

lions of nodes and edges, a common practice is to only use a part

of neighbors to produce a subgraph for training [1, 2, 15, 28, 51, 57],

which is also known as sample-based GNN training. This approach

reduces both computation and memory pressure while still ensur-

ing high accuracy [11, 29, 36].

Sample-based GNN training mainly contains two stages: sam-

pling and training. In the sampling stage, for each training node, a

set of :-hop neighbors is selected from the input graph following

a sampling algorithm (e.g., :-hop neighborhood sampling [18, 20,

55] and random walks [17, 33, 52]); the output contains sampled

nodes (referred to as samples). In the training stage, the samples

and their features are used as the input to train the GNN model

with : layers. Figure 1 is an example of a sample-based 2-layer

GNN training. The training nodes are divided into mini-batches.

The nodes in the mini-batch are used as the 1st-hop root nodes

in the sampling stage. For each layer, two neighbors of each input

node are sampled. As the sampled nodes are required to be unique,

the nodes will be de-duplicated (e.g., +10,+12). Before feeding the

samples to the NN model, the node features will be extracted and

the node IDs will be remapped.

2.2 GPU Training Acceleration

Single machine with multiple GPUs is the common configuration

for GNN training [13, 28, 42, 47, 49, 51], to accelerate both sam-

pling and training stages. In the single-machine multi-GPU setup,

the GPU and CPU are connected through PCIe, while GPUs are

connected through a high bandwidth network, like NVLink (faster

than the PCIe 2 − 5×, shown in Figure 2), AMD Infinity Fabric

Link [4], and Huawei HCCS [27]. GNN systems usually adopt data

parallelism to accelerate the training procedure by partitioning

train nodes into multiple GPUs. Every GPU is dedicated to a train-

ing worker process (i.e., Worker), there is usually a Sampler re-

sponsible for the sampling stage and a Trainer in charge of the
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Figure 2: The cases of GPU platforms with different commu-

nication topologies. (a) and (c) are symmetric NVLink com-

munication topologies, while (b) is an asymmetric topology.

training stage. For every mini-batch (i.e., a subset of train nodes),

Sampler first performs sampling on the graph and sends the sample

to Trainer. After Trainer gets sampled nodes from Sampler, then

it extracts features from the host memory and trains the neural

network. During the neural network backward, every Worker will

synchronize gradients with each other through NVLinks.

For small graphs (the graph topology and feature can fit in GPU

memory), GNN systems can store entire data in GPU memory to

avoid slow PCIe transmission between the host and GPU. How-

ever, as the graphs get larger and larger, the entire data typically

exceeds one GPU memory (e.g., the total size of PA in Table 3 ex-

ceeds 16GB for V100). This causes GPU memory contention and

makes it more challenging to train GNN on large-scale graphs ef-

ficiently. GNN systems must choose to either sacrifice the feature

cache by storing the graph topologies in GPUmemory [28] or sacri-

fice sampling performance by storing the graph topologies in host

memory to reserve GPU memory for the feature cache [42]. Re-

cently, efficient large-scale GNN training gains increasing atten-

tion and many GNN systems are proposed to solve this challenge.

2.3 GNN Training Systems

There are three main kinds of systems in a machine with multiple

GPUs. However, those systems still suffer from several issues to

train on large-scale graphs efficiently.

GNN system with a replicated cache. This class of system (esp.

DGL w/ cache in Figure 3(a)) optimizes GNN training by (a) sam-

pling on GPU and storing the whole graph in each GPU to avoid

accessing the host memory to accelerate sampling (b) using the rest

of GPU memory to cache the same hottest features in each GPU

to reduce data movement between GPU and the host during train-

ing (c) extracting feature data from the host memory with CUDA

zero-copy-based method to reduce data movement [32].

This replicated caching method, however, has a redundant

graph and feature data storage. Although the Sampler can utilize

GPU high bandwidth memory to accelerate graph topology data

access and have high sampling performance, the graph topology

Table 2: A comparison of XGNN systems. “©©©”means not sup-

porting all GPU topologies.

Systems
Efficient GPU

Mem.

NVLink

full-utilized

Host Mem.

full-utilized

DGL w/ cache ✗ ✗ ✓

GNNLab ✗ ✗ ✓

�iver ✗ ✗ ✓

WholeGraph ✓ ©©© ✗

XGNN ✓ ✓ ✓

(e.g., 6.4GB for OGB-Papers) is replicated in every GPU. Consider-

ing the limited GPU memory, the total footprint of the graph will

be a large portion of total GPU memory. Thus, the left GPU mem-

ory reserved for features is relatively small (e.g., OGB-Papers 7%).

Moreover, the cached feature is also replicated across GPUs (i.e.,

each Trainer only caches features for itself), which makes it worse

and feature cache cannot optimize feature extracting well. More se-

riously, for some large graphs (e.g., Friendster) which exceed GPU

memory, these systems are not a feasible design.

GNNLab [51] (Figure 3(b)) observed memory contention be-

tween graph topological data and feature data. To mitigate this, it

assigns the Sampler and Trainer to different GPUs. However, this

method still has the same problem of redundant graph topologi-

cal data storage in Sampler GPUs and redundant feature data in

Trainer GPUs.

Another problem with these systems is low bandwidth uti-

lization. GPUs only communicate with each other for gradi-

ent synchronization. Besides synchronization, the modern high-

bandwidth and low-latency inter-GPU network (e.g., NVLink) is

not used in the whole progress. The system design is not optimal

without considering such powerful links (e.g., 300GB/s bi-direction

bandwidth per GPU with NVLink).

Partitioned feature cache GNN system. This class of GNN sys-

tems (Figure 3(c)) has observed inter-GPU high bandwidth on

NVLink and adopts a partitioned feature cache optimization at the

multi-GPU platform, like �iver [42]. �iver treats the feature

cache on full-connected GPUs as a global cache pool. The features

sorted by the hotness are cached across these GPUs. During fea-

ture extraction, features cached on every GPU will be transmitted

to each other in parallel through NVLinks. Such a feature cache

storage method can cache more features in GPU and reduce data

movement from the host memory to GPU memory. Furthermore,

to optimize data placement and reduce data movement between

NVLink and PCIe, another work [38] (we refer to it as CliqueOpt)

duplicates some of the most frequently accessed feature data in

each GPU, striking a balance between the costs associated with

data movement across NVLink and PCIe. To avoid out-of-GPU-

memory when training on large-scale graphs and further increase

feature cache space, these systems store the graph data in the host

memory and execute sampling on the host CPU or with GPU direct

access acceleration.

However, the Sampler performance is sacrificed for Trainer. The

major problem of these systems is low sampling performance due

to slow PCIe bandwidth (especially for randommemory access dur-

ing sampling, 10× slower than inter-GPU NVLink) between GPU

and the host CPU. Another problem is they not using NVLinks
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Figure 3: A summary of different designs of sample-based GNN training on multiple GPUs.

well. For asymmetric GPU topology like Figure 2(b), they simply

split GPUs into two full-connected cliques, each of which works

as a features cache pool independently. The trainer only extracts

cached features from its GPU clique. Thus, links between cliques

(e.g., 6 links at the V100 platform) are still wasted and the overall

bandwidth of feature extracting is sub-optimal.

All-in-memory GNN system. Recently, another all-in-memory

GNN system appears. In this all-in-memory system, the GNN sys-

tem treats all GPU memory as a whole and partitions the whole

graph topology and whole feature data into each GPU. Whole-

Graph [49] (Figure 3(d)) is such an all-in-memory GNN system.

Though graph redundancy storage in replicated graph storage is

resolved and sampling performance is not compromised for fea-

ture cache, there are still several problems forWholeGraph. First,

this class of GNN system needs too much total GPU memory to

store the whole graph and whole features in all GPU memory. If

the total GPUmemory space is less than the memory consumption

of the graph and features, the system will have no idea to solve it.

However, it is a trend that graph and feature data become larger

and larger in the future, whereas GPU memory capacity grows

slowly. Second, WholeGraph assumes that each GPU can direct

access to the memory of all other GPUs. Therefore, it only works

on a multi-GPU server with symmetric networks (e.g., NVSwitch

8xA100 in Figure 2(c)). Unfortunately, this assumption is invalid in

more general cases, for example, asymmetric links (e.g., 8xV100 in

Figure 2(b)).

Summary. From the above analysis of current GNN systems, we

found that the existing systems have not performed well in the as-

pects listed in Table 2. This leads to poor performance when train-

ing GNN models on large-scale graphs.

• GPU memory efficiency. DGL w/ cache and GNNLab suffer

from redundancy storage and waste GPU memory. Further-

more, �iver partitions feature data into multiple GPUs to

solve data redundancy, but�iver stores the graph topology in

the host memory and suffers from low sampling performance.

These all cause low efficiency of GPU memory usage.

• NVLink utilization. DGL and GNNLab almost do not use

NVLink.�iver only uses a part of links. WhileWholeGraph

fails to run on asymmetric links.

• Host memory utilization.WholeGraph only considers the GPU

memory, which causes host memory underutilization. More-

over, it fails to run when the graph topological and feature data

exceed the total GPU memory.
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Figure 4: XGNN Architecture.

3 XGNN OVERVIEW

Goal. To solve the above three problems in present GNN systems,

we propose a new GNN system, XGNN. The main goal of XGNN,

as shown in Figure 3(e), is to store the graph and features across

all available GPUmemory and host memory to overcome the mem-

ory limitation of GPUs. Therefore, there are two storage levels for

XGNN, thememory of all GPUs connected via NVLink and the host

memory. XGNN is capable of distributing a portion of the hottest

graph topological and feature data in GPU memory, whereas less

frequently accessed data is stored in the host memory. Besides,

XGNN should reduce data storage redundancy across GPUs by par-

titioning data into devices and ensure each Worker in XGNN can

access their necessary data from other GPUs through NVLink and

the host memory through PCIe. To achieve this goal and ensure

high performance, XGNN not only needs to provide a unified GPU

and CPU memory view and be easy to use but also utilize the fast

link (e.g., NVLink) efficiently and deal with asymmetric GPU plat-

forms. So we designed the Global GNN Memory Store (GGMS) to

manage these memory resources in XGNN.

Global GNNMemory Store.GGMS is a storage engine designed

for GNN systems to unify GPUs and CPU memory, whose ar-

chitecture is shown in Figure 4. At the underlying storage level,

GGMS manages memory between GPUs and CPUs through fast-

connected networks for efficient utilization. While at the upper

computation level, GGMS provides simple APIs for accessing data

that allow the Sampler and Trainer components of the GNN sys-

tem to focus solely on their respective computing tasks, without
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 GGMS is mainly implemented as a class in library

class DistGraph

1   DistGraph(dataset, graph_ratio, feat_ratio, )

2     //  initialize GGMS at startup time

3   NumNeighbor(node_id)

4     //  get the number of neighbors of node_id

5   Neighbors(node_id)

6     //  get neighbors array of node_id

7   Features(node_id)

8     //  get features array of node_id

 sample_nodes: the nodes to sample

 fanout: the number of neighbor nodes to sample

KHopSampling(dist_graph, sample_nodes, fanout, )

9   for node_id in sample_nodes

10    num_neighbor = dist_graph.NumNeighbor(node_id)

11    neighbor_array = dist_graph.Neighbors(node_id)

 a parallel set in CUDA shared memory

12    idx_set = {}

13    while idx_set.cnt != fanout   parallel in warps

14      idx = random() % num_neighbor

15      idx_set.insert(idx)

 remote memory access with batched requests

16    for sample_idx in idx_set     parallel in warps

17      sampled_neighbor = neighbor_array[sample_idx]

18      save sampled_neighbor

 input_nodes: the nodes to extract features

FeatureExtracting(dist_graph, input_nodes, )

19  for node_id in input_nodes

20    features = dist_graph.Features(node_id)

21    save features

Figure 5: An example for DistGraph usage.

concerning for details of the underlying memory allocation and

management.

GGMS includes three modules, Data Access Manager (DAM,

§4.1), Placement Solver (§4.2) and Partitioner (§4.3). Firstly, the

user will determine the ratio of the graph topology and features to

store in GPUs and CPU. For data in GPUs, GGMS uses Partioner

to divide the data into the same number of logical partitions as the

number of GPUs. Ideally, each GPU has a physical data partition

to map logical partition. However, in some asymmetric NVLink

networks, such as illustrated in Figure 2(b), a GPU cannot access

all physical partitions from connected GPUs and CPU. Therefore,

Placement Solver will duplicate some physical partitions condition-

ally on other GPUs and give a partition deployment plan to ensure

each GPU can access all physical partitions through NVLink or

PCIe. Finally, DAM uses a CUDA technique, Unified Virtual Ad-

dress (UVA), to manage the distributed physical data partitions on

devices, and extend GPU memory to the host CPU. DAM employs

UVA to allocate the data partitions on GPUs/CPUs and record

their physical position information in the metadata. After GGMS

startup, according to this metadata and UVA, DAM can redirect

data requests for every node to their correct physical location and

let CUDA kernel functions from the computation level access data

in these partitions directly.

In summary,GGMS uses the DAM to solve the host memory un-

derutilization problem by extending memory from one GPU to all

GPUs and CPU.Moreover, the Placement Solver solves the NVLink

underutilization problem and supports XGNN running on all types

of NVLink networks. Finally, the Partitioner eliminates memory re-

dundancy by partitioning data into multiple devices.

XGNN APIs. GGMS provides three main easy-to-use CUDA ker-

nel APIs for convenient graph topology and features accessing.

The Sampler can call NumNeighbor(node_id) to get the number

of a node’s neighbors and call Neighbors(node_id) to get the de-

tailed neighbors array pointer for the searching node. The Trainer

can call Features(node_id) to get the feature array pointer for

the node. The API calls will forward the data access requests to

the correct data partition transparently according to the placement

result. The request forwarding only costs a modulo and division

operation, which is almost no extra overhead introduced. Figure 5

gives the pseudocode of GGMSAPIs and usage examples, there are

only a few modifications (marked with blue) needed to use GGMS

in the sampling and features extracting stages.

Challenge: Complex and various multiple device intercon-

nects. GGMS not only needs to use inter-GPU links efficiently to

get better performance but also maintain generality on different

GPU platforms. However, the presentmulti-GPU interconnects are

complex. At the physical level, there are various inter-GPU net-

work topologies, such as asymmetric and symmetric topologies in

Figure 2. Furthermore, the user may also specify a part of GPUs

to train GNN, which makes link topologies more varied. Even in

the same topology, the links between two GPUs have different

bandwidths (e.g., 25GB/s and 50GB/s in Figure 2 (b)). The various

topologies pose challenges in maintaining workload balance and

efficiently accessing stored data across GPUs. At the software level,

CUDA offers several program-level techniques to enable commu-

nication across GPUs (i.e., UVA, UM and VMM), which have dif-

ferent performances in different scenarios, we need to make clear

their features and choose the best technique for our system. Hence,

how to shield complex link networks for applications and get optimal

performance via communication techniques poses a key challenge.

4 DESIGN OF GLOBAL GNN MEMORY STORE

4.1 Data Access Manager

Data Access Manager (DAM) provides underlying inter-GPU and

GPU-to-CPU data access capability to support GGMS.

P2PDirect Access.WhenWorkers cannot access the graph topol-

ogy or features locally, Workers need to access them in remote

GPU or the host memory. As far as our knowledge, there are two

methods to access data in remote devices, remote procedure call

(RPC) and P2P direct access. RPC is a kind of two-sidedmethod. For

example, if the graph topology is partitioned on GPU0 and GPU1,

when the Sampler gets a 1-hop sampling task, the Sampler first

divides input nodes into 2 parts and sends them to the correspond-

ing GPU where the nodes are stored. Then sampling kernels will

be called on two GPUs for each part of the input nodes. Finally,

the Sampler gathers the sample results from remote GPU. Mod-

ern GPUs also enable a one-sided method, i.e., P2P direct access,

GPUs can access their neighbor GPU memory in the kernel func-

tion. Back to the above example, with P2P direct access, the Sam-

pler can access both local and remote data in the local sampling

kernel function. We compare the two methods by sampling a few
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Figure 6: (a) Amicro-benchmark to test UVA, UM and VMM

performance on local and remote random data access. (b)

Pointer chasing of VMM with shared handle.

epochs in a micro-benchmark, and find P2P direct access method

is faster than the RPC method by 2 − 3×. The first reason is that

RPC methods incur more small kernel function callings (esp. the

1st and 2nd hop) and higher kernel launch latency [49]. Another

reason is that direct access introduces an opportunity to overlap

remote access in the kernel function.

P2P Method Comparison CUDA provides several techniques to

implement P2P direct access, i.e., Unified Memory (UM), Virtual

Memory Management (VMM) and Unified Virtual Address (UVA).

However, UM, VMM and UVA have their own advantages and

drawbacks.

UM is incompatible with multiple process training because UM

cannot be shared between processes. It needs to fork a new pro-

cess to use UM in XGNN, which will incur GPU memory over-

head to store extra process context. Thus, we will not consider

UM to implement P2P communication in XGNN. VMM, which al-

lows managing memory allocation and mapping manually, how-

ever, has serious randommemory access performance issues. UVA

does not have the above issues but requires manually maintaining

multiple pointers. Samplers in XGNN will access the graph topo-

logical data in remote GPU memory randomly during sampling.

Figure 6(a) compares UM, VMM and UVA by accessing local and

remote GPU memory in another process randomly w.r.t. different

data sizes. Because UM cannot be shared between processes, we

test the intra-process performance of UM. For random local ac-

cess, UM and UVA have similar performance. Further, when the

data size is larger than TLB coverage (i.e., 8GB), the performance

degrades. However, VMM shows severe performance degradation

when accessing memory randomly between processes when the

data size is larger than 256 MB. For random remote access, the ran-

dom memory access bandwidth is limited to a maximum of 4GB/s

due to limited link bandwidth. VMM performance degrades after

the data size is larger than 1 GB.

To analyze this problem, we also test VMM performance for an

intra-process case and the performance problem does not occur.

The reason is that exporting VMM to an inter-process sharable

handle will let CUDA map memory with smaller page size due to

some limitations. Thus, TLB will miss frequently when accessing

remote memory randomly. There are two levels of TLB, L1 and L2.

L2 TLB has a greater impact on accessing large data randomly than

L1 TLB. To figure out the L2 TLB coverage and page size, we detect

the TLB properties by pointer chasing [22]. Figure 6(b) shows the

result. We find that VMM L2 TLB page size is 1 MB and L2 TLB can

cover 256 MB. Compared to normal L2 TLB, which has a page size
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Figure 7: A case of graph partitioning and placement plan.

of 32 MB and can cover 8 GB, VMM L2 TLB’s page size is much

smaller.

Finally, we adopt UVA to implement DAM in XGNN. During

initialization, each Worker synchronizes with its neighbors to ex-

change data pointers of allocatedmemory. DAMwill use thesemul-

tiple pointers to manage remote data access.

MetadataManagement andData Access. Placement Solver will

pass the placement plan to DAMduring XGNN initialization. DAM

will use it to place logical graph topological and feature partitions

on GPUs, which are partitioned by Partitioner. During XGNN run-

time, DAM maintains an array of pointers, which point to data

physical partitions allocated in local GPU, remote GPU or the host

memory. When a data access request arrives, DAM will first de-

cide which physical data partition to access by modulo operation

according to the placement result and forward the request to it.

4.2 Placement Solver

The Placement Solver aims to provide a placement plan for plac-

ing logical data partitions to specific physical devices, allowing the

Sampler and Trainer on each GPU to access all corresponding par-

titions directly.

However, due to the various NVLink topologies [26], direct ac-

cess from one GPU to all other GPUs may not be always possible.

Furthermore, users may selectively utilize a few GPUs on the ma-

chine, rather than all available GPUs, thereby potentially compli-

cating the link topology. For an example of the 8-GPU topology

shown in Figure 7, GPU0 can not access GPU4, GPU5, GPU7 di-

rectly.

A naive solution is to partition GPUs into fully connected

cliques and replicate the entire data on each clique (as employed

by �iver). However, the clique placement policy results in low

utilization of NVLinks between GPU cliques. Furthermore, it may

have imbalanced storage across GPUs. Imbalanced storage will

cause wasted memory on some GPUs and a decrease in cache ratio,

ultimately increasing the end-to-end time. Because gradient syn-

chronization in eachmini-batch and end-to-end time is determined

by the slowest one. Contrarily, given logical graph topology (fea-

ture) partitions, the Placement Solver will replicate them for each

Sampler (Trainer) to balance data storage and maximize NVLink

utilization based on the NVLink network topology, and accelerate

Sampler (Trainer) data access. To achieve better performance, the

partition placement needs to satisfy the following properties.

Firstly, the number of storage partitions on each GPU should

be balanced. Imbalanced partition storage will cause an increase
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in end-to-end time. Secondly, it is very intuitive that the number

of redundant partitions should be minimized to store more data.

Thirdly, it is important to maximize the utilization of NVLinks and

ensure balanced access to remote data by Sampler (Trainer) over

each NVLink. It is crucial to avoid idle NVLinks or bottlenecks on

a single NVLink, as they can result in sub-optimal performance.

To obtain an optimal placement plan, usually, the Placement

Solver needs to search all possible plans and chooses the best one.

However, searching all possible placement plans is computation-

ally intensive and time-consuming. Based on the analysis of par-

tition placement, we present a pruning strategy with three pri-

oritized rules to reduce search space. Figure 8 shows the search-

ing algorithm progress. Initially, the logical data partitions (equal

to the number of GPUs) will be placed into each GPU. For every

GPU, the solver adopts the pruning strategy to duplicate data parti-

tions, which it cannot access from itself and its neighbor GPUs. The

first two rules below are used to choose possible GPUs (from itself

and its neighbor GPUs) to store this partition during the pruning

search. After finding a complete placement plan, the solver will use

the third rule to filter the plan with a maximum of NVLink utiliza-

tion as the final result. The three rules are defined as the following.

Balance rule chooses the GPU with the least number of storage

partitions. This rule can balance the Trainers’ cache space and try

to achieve the minimum total partition storage, so this rule has the

highest priority.

Less replication rule improves utilization of each partition and

stores it to the neighbor GPUs where it is most needed. Besides,

the GPU which needs to access that partition by itself has higher

priority.

Bandwidth rule is used to filter the possible placement plans

pruned by the first two rules and choose one with the highest

minimal bandwidth weight. The minimal bandwidth weight of one

placement plan is measured by

08 = min
{�0=3F83Cℎ8 9

�224BB�=C 8 9

�

� �%* 9 is connected to �%*8

}

,

"8=�0=3F83Cℎ = min{01, 02, · · · , 0=},

where �0=3F83Cℎ8 9 is the bandwidth from GPU8 to GPU9 , when

GPU8 and GPU9 are the same GPU, it is local memory bandwidth.

�224BB�=C 8 9 is the number of partitions which are accessed from

GPU8 to GPU9 .

Figure 7 shows the final partition placement for the 8-GPU plat-

form. As an example of Worker4 (W4), its logical partitions are

placed in GPU2, GPU4, GPU5, GPU6, GPU7 and the host memory,

and W4 will access these physical devices to get the whole data.

The right table in Figure 7 shows the detailed placement result for

eachWorker. Finally,GGMS stores one extra partition in eachGPU

and makes all NVLinks be used evenly.

4.3 Data Partitioner

In this section, we introduce howGGMS partitions the graph topol-

ogy and features into logical data partitions, which are then dis-

tributedly stored in GPUs and CPU through the Placement Solver.

When the total memory of GPUs cannot store all graph data,

XGNN allows users to specify different ratios for the graph topol-

ogy and features separately to store in GPU memory, due to their

1 results = []

PlacementSolver(parts, GPUs)

2   store_p = [][] ▸ place which partitions for each GPU

▸ place a part on each GPU

3   for p, g in (parts, GPUs)

4     store_p[g].insert(p)

5   PruningSearch(GPUs[0], GPUs.size(), 0, {}, store_p)

▸ R3 (Bandwidth)

6   sort results by their MinBandwidth

7   return results[-1]

PruningSearch(gpu, n_gpu, p_idx, p_list, store_p)

8   if (gpu == n_gpu) then

9     save store_p in results and return

10  if (p_list is null) then

11    save parts that gpu can not access to p_list

▸ try to store part in gpu.nbrs

12  if (p_idx < p_list.size()) then

13    part = p_list[p_idx]

14    for nb in ChooseNbrs(part, gpu)

15      store_p[nb].insert(part)

16      PruningSearch(gpu, n_gpu, p_idx+1, ...)

17      store_p[nb].remove(part)

18  else 

19    PruningSearch(gpu+1, n_gpu, 0, {}, store_p)

▸ get the Nbrs. by rules with priority

▸ R1 (Balance), R2 (Redundancy)

ChooseNbrs(part, gpu) -> list

20  for nb in gpu.nbrs

21    nb.w1 = nb.stored_part_cnt

22    nb.w2 = part utilization if stored in nb

23  return the highest weighted Nbrs. in gpu.nbrs

Figure 8: Placement searching algorithm.

different access patterns. Given the graph topology or features, the

Partitioner partitions them into logical partitions P0–P# and PCPU,

which belong to GPUs and CPU respectively. In experiments, pri-

oritized graph topology storage usually achieves better end-to-end

performance than prioritized feature storage in most cases. This is

because the features of each node typically consist of a continu-

ously stored high-dimension embedding vector (e.g., 128 floats for

OGB-Papers). This vector is accessed as a complete unit, so fea-

ture extraction exhibits spatial locality and belongs to sequential

memory access. However, the graph sampling belongs to random

memory access as it randomly samples a subset from the neighbors

of input nodes, which are unsigned integers. Considering the large

bandwidth gap between PCIe and NVLink for random memory ac-

cess, XGNN processes the graph topology and features separately

and stores the graph topology in GPUs first by default. However,

prioritized feature storage can outperform prioritized graph topol-

ogy storage while GPU memory is more limited (see §6.8).

Graph Partition. As shown in Figure 9, the graph topology is

stored in compressed sparse column (CSC) format. Each node’s

neighbors are stored contiguously in the “indices” array, while the

“indptr” array stores the offset of neighbors’ position for each node.

At first, the graph will be reordered by custom policies, like de-

gree policy. The most frequently accessed nodes have a high prior-

ity to be stored in GPU memory. The hottest part of the graph is

divided into # partitions for # GPUs based on the result of node

ID modulo # . And the new node ID is equal to the old node ID di-

vided by # . This approach results in a uniform node distribution

across GPUs and ensures graph access load balance. By modulo
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Figure 9: An example of the data partition workflow.

operation, it is not necessary to maintain the mapping data struc-

ture between old and new ID numbers and let memory requests

for each partition be balanced.

Feature Partition. The rest of the GPU memory will be used to

put features, which is a large 2D matrix. The features will be first

sorted by hotness, the hottest features will be placed in the GPU

memory. These features will be also partitioned into # partitions

via modulo operations for the same reason.

5 IMPLEMENTATION

The core design GGMS in XGNN is implemented as a function

library. We use Tsota [51], a state-of-the-art GNN system as our

codebase, which extends DGL [1] with a GPU cache and a fast GPU

sampler from scratch. We further attach Tsotawith new optimiza-

tions like hashtable module optimization for sampling and features

extracting on GPU [32]. XGNN extends Tsota with GGMS and

graph accessing optimizations. In the following, we use DGL+C

to represent XGNN without GGMS and sampling optimization.

There are about 6,100 new lines of C++/CUDA codes for all above

features.

Optimizations for graph accessing. In the XGNN architecture,

the Sampler will randomly access data in the other device (i.e., GPU

or CPU), which is more expensive than local GPU memory. XGNN

implements a newKHop algorithm to reduce the number of remote

access requests by leveraging underlying GPU memory access fea-

tures (i.e., coalesced memory access).

In the present Reservoir-algorithm-based [45] samplingmethod,

for each input sampling node, GPU should iterate all neighbor posi-

tions one by one and decide whether to choose it. XGNN optimizes

it by batching the memory requests. XGNN first uses an on-chip

memory (i.e., shared memory in CUDA) hashtable to de-duplicate

the produced random neighbor positions of a sampling node. Then

XGNN calculates the actual memory addresses of these positions,

and send these memory addresses at one time. Because GPU can

pack memory requests with continuous addresses into a memory

Table 3: Datasets summary. Volume� and Volume� indicate

the data volume of graph topology and features.

Dataset #Vertex #Edge Dim. Volume� Volume�

TW [25] 41.7 M 1.5 B 256 5.6 GB 40 GB
PA [3] 111 M 1.6 B 128 6.4 GB 53 GB
UK [8] 77.7 M 3.0 B 256 11.3 GB 74 GB
CF [50] 65.6 M 3.6 B 140 13.7 GB 34 GB

transaction automatically, it reduces remote access requests effi-

ciently. Figure 5 illustrates the pseudocode of our KHop algorithm

(Lines 9–18).

6 EVALUATION

6.1 Experimental Setup

Environments. The experimentswere conducted on aGPU server

that consists of one Intel Xeon Platinum 8163 CPUs (total 32 cores),

256GB RAM, and eight NVIDIA Tesla V100 (16GB memory, SXM2)

GPUs. The software environment of the server was configured

with Ubuntu 20.04.3 LTS, Python v3.8, PyTorch v1.10, CUDA v11.7,

DGL v0.9.1.

GNNs. We use three GNNmodels, i.e., GCN [24], GraphSAGE [18]

and PinSAGE [52] for evaluation. The number of model layers of

GCN and GraphSAGE is three and two respectively, and the dimen-

sion of the hidden layer is both 256, which is a common configura-

tion. For each mini-batch, the Sampler will sample 3-hop (2-hop)

for GCN (GraphSAGE) neighbors of the training nodes. The num-

ber of sampled neighbors of each layer is 15, 10, 5 (10, 25) for GCN

(GraphSAGE). For PinSAGE, the number of layers is three, and

each layer samples 5 neighbors by random walking from 4 paths

of length 3. All above settings are following the details reported in

the original papers [18, 24, 52]. Similar to previous work [28], we

set the batch size to 6000.

Datasets. We use four large-scale graphs, i.e., Twitter [25] (TW),

OGB-Papers [3] (PA), UK-2006-05 [8] (UK) and Friendster [50] (CF).

Table 3 shows the detailed information of each dataset. TW is a

network of Twitter user follow relationships. PA, a dataset from

Open Graph Benchmark (OGB), represents the citations between

papers. UK is a web graph of pages on the .uk domain. CF is an

online game friendship network. Because TW, UK and CF do not

have features originally, we use randomly generated features dur-

ing training.

Baselines. We compared XGNN with four open-source and

recent GNN systems: DGL [56], �iver [42] , WholeGraph [49]

and CliqueOpt [38]. The first three systems support GPU-based

sampling to accelerate GNN training. DGL accelerates sampling

by storing the graph topology in GPU, but it does not cache

features in GPU to speed up Trainers. DGL also supports storing

graph topological data in host memory for very large-scale graphs,

allowing GPU access via UVA during sampling (referred to as

DGL-Host, discussed in §6.8). However, DGL lacks support for

feature data cache, leading to a longer feature extraction stage. To

train on large-scale graphs, �iver stores the graph topological

data in the host memory and partitions feature data into GPUs.

WholeGraph [49] is an all-in-memory GNN system that stores

both graph topological and feature data across GPUs for better
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Table 4: The runtime breakdown (in seconds) of one epoch for DGL, �iver, DGL+C and XGNN. S, E, T and E2E represent

sample stage, feature extraction and model training in train stage, and end-to-end time. R% and H% represent the cache ratio

of features and the cache hit rate. GSG and PSG are short for GraphSAGE and PinSAGE. For sample stage time on XGNN, the

default graph cache ratio is 100%.

GNN DS
DGL �iver DGL+C XGNN

S E T E2E S E (R%, H%) T E2E S E (R%, H%) T E2E S E (R%, H%) T E2E

GCN

TW 0.10 1.14 0.24 1.48 2.16 1.15( 55, 90) 0.36 3.48 0.09 0.29( 9, 72) 0.20 0.52 0.04 0.05( 79, 99) 0.20 0.25
PA 0.22 2.22 0.54 2.99 3.99 1.82( 44, 73) 0.58 6.18 0.11 0.99( 8, 44) 0.55 1.73 0.11 0.08( 69,100) 0.54 0.62
UK OOM OOM OOM OOM 3.39 10.2( 20, 31) 0.57 13.8 OOM OOM OOM OOM 0.07 0.47( 42, 70) 0.43 0.88
CF OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 0.24 7.75( 10, 54) 1.14 8.67

GSG

TW 0.06 0.50 0.07 0.63 0.33 0.11( 99,100) 0.09 0.54 0.05 0.11( 16, 79) 0.07 0.17 0.03 0.02(100,100) 0.07 0.08
PA 0.15 1.08 0.22 1.45 0.70 0.08( 64, 98) 0.15 0.85 0.07 0.42( 11, 56) 0.23 0.67 0.08 0.06( 80,100) 0.23 0.26
UK OOM OOM OOM OOM 0.72 3.00( 42, 63) 0.20 3.55 0.07 0.64( 1, 7) 0.22 0.85 0.06 0.19( 51, 79) 0.16 0.33
CF OOM OOM OOM OOM 0.78 0.28(100,100) 0.16 1.12 OOM OOM OOM OOM 0.10 0.13( 93,100) 0.17 0.33

PSG

TW 0.13 0.61 0.37 1.10 × × × × 0.04 0.14( 10, 76) 0.34 0.47 0.04 0.03( 84, 99) 0.34 0.36
PA 0.33 0.83 0.75 1.91 × × × × 0.10 0.42( 8, 46) 0.78 1.23 0.11 0.04( 71,100) 0.81 0.83
UK OOM OOM OOM OOM × × × × OOM OOM OOM OOM 0.10 0.48( 35, 62) 0.90 1.37
CF OOM OOM OOM OOM × × × × OOM OOM OOM OOM 0.17 0.94( 28, 85) 1.43 2.35

performance. CliqueOpt [38] further optimizes the clique place-

ment policy in �iver. However, CliqueOpt [38] only supports

the CPU-base sampling, which causes worse overall performance

than �iver, so we port its placement policy in XGNN codebase

and compare their feature extracting performance separately

in §6.6. We also compared XGNN with DGL+C, which shares

the same codebase as XGNN but lacks sampling optimization,

with graph data replicated in eachWorker (DGL+C in Figure 3 (a)).

6.2 Overall Performance

Wefirst compared XGNNwith its competitors for end-to-end train-

ing time1, and conducted a breakdown analysis2 on 4 datasets.

Since the total memory consumption (graph topological and fea-

ture data, runtime memory) of 4 datasets surpasses the capacity

of fully connected GPUs (4 GPUs on our platform),WholeGraph

cannot train these datasets. We compare it and XGNN separately

in §6.10. Table 4 reports the detailed time on 8 GPUs. To present

the performance details, we split the Train stage into Extract and

Train stages, which include feature extracting and NN computing

respectively. We mainly find the following.

(1) Overall, XGNN outperforms DGL, �iver and DGL+C by up

to 7.9× (from 2.3×), 15.7× (from 3.3×) and 2.8× (from 1.3×), re-

spectively. The improvement mainly comes from GGMS, which

improves resource utilization efficiency on the GPU platform. As

XGNN does not change the neural network training behavior,

XGNN has a similar training stage performance with other sys-

tems.

(2) Compared with DGL, XGNN stores the graph topological and

feature data across GPUs by GGMS. As a result, XGNN outper-

forms DGL in feature extraction up to 27.8× (from 18×). Thanks to

fast GPU interconnects and optimized graph access, XGNN does

1 We use the pipeline technique to overlap different stages for end-to-end training.
2 We use the average time of 10 epochs after the first epoch for breakdown analysis.

not introduce large overhead in the sampling stage and even beat

DGL in the sampling stage. Furthermore, XGNN can still train

on large-scale graphs (UK and CF) with high performance, which

causes OOM in DGL.

(3) Compared with �iver, XGNN has a better sampling per-

formance and lower memory usage overhead. �iver stores the

graph topology in host memory and stores more feature data for

better extracting performance. However,�iver suffers from poor

sampling performance (up to 54× slower than XGNN). Contrarily,

XGNN stores the graph across GPUs by GGMS and enjoys high

sampling performance thanks to high inter-GPU bandwidth. Addi-

tionally, �iver also suffers from GPU memory efficiency issues,

as (a) it spawns new training processes after the system initializa-

tion, which causes extra GPU memory consumption (about 0.8GB

on each GPU). (b) �iver uses PyG as its backend and consumes

more GPU memory during model training.

(4) Compared with DGL+C, XGNN can train GNN on larger graph

datasets (e.g., UK and CF) and store more feature data in GPU

to speed up feature extracting (up to 12× faster). Similar to DGL,

DGL+C stores the graph topological data in each GPU, which also

causes GPU redundancy storage and training process termination

for large-scale graphs. Thanks to GGMS, XGNN stores more fea-

ture data in GPUs and utilizes NVLinks well, which significantly

improves feature extracting performance (e.g., 12× for GCNmodel

on PA). The optimization for graph access also contributes to per-

formance improvement (e.g., from 0.09s to 0.04s for GCN on TW).

6.3 Factor Analysis of Improvement

To study the impact of each design and how they affect the system

performance, we cumulatively enable each optimization method

and give the detailed running time of the Sampler and Trainer with

respect to different models and datasets with 8 GPUs to test.

• BASE uses the same settings with DGL+C while storing the

same graph topological and feature data in each GPU.
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Figure 10: Factor analysis of improvement on an 8-GPUplat-

form.
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Figure 11: Scalability of DGL+C and XGNN training (a) GCN

model on PA, (b) GraphSAGE on UK with different number

of GPUs.

• +MSG uses GGMS to store the graph topological data.

• +MSF uses GGMS to store feature data.

• +OGA optimizing graph accessing for Sampler.

• +PSA placement solver algorithm supported.

As shown in Figure 10, enabling all optimizations (+PSA)

beats the basic version (BASE) by up to 2.5× in training time

and 2.5× in sampling time. Graph topological data with GGMS

(+MSG) not only solves out-of-GPU-memory to train on large-

scale graphs (e.g., GraphSAGE on CF), but also allows larger fea-

ture data cache due to graph topological storage de-duplication.

Thanks to the high performance of NVLink, the sampling time

does not increase obviously. Feature data with GGMS (+MSF)

distributes the hottest feature data across multiple GPUs and

improves Trainer performance significantly on GCN+PA, Graph-

SAGE+UK and GraphSAGE+CF (ranging from 1.6× to 3.6×). The

improvement of (+MSF) on GCN+TW is smaller than others due

to diminishing returns of feature data cache. Our optimization for

graph accessing (+OGA) reduces sampling time on GCN+TW and

GraphSAGE+UK obviously, the main reason is that we eliminate

neighbor nodes iteration in the KHop algorithm. Finally, Place-

ment Solver (+PSA) optimizes NVLink utilization for data across 8

GPUs and reduces training time on GraphSAGE+CF by 1.3×. Less

improvement on other combinations of other models and datasets

is due to feature extracting not dominating the training time.

6.4 Scalability

We evaluate the scalability of XGNN and DGL+C with respect to

the number of GPUs. Figure 11 shows end-to-end times for training

GCN on PA and GraphSAGE on UK. We find that XGNN outper-

forms DGL+C and has better scalability. The reasons are two folds.

First, with the increase of the number of GPUs, XGNN split the

graph topological and feature data on more GPUs. Hence, more
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Figure 12: The memory usage of graph topological and

feature data over all GPUs and Sampler, Trainer execution

time breakdown for a mini-batch using different number of

GPUs on GraphSAGE with UK.

data can be stored in GPU and reduce costly data movement from

host memory. Second, XGNN leverages all NVLinks to accelerate

remote data access during sampling and feature extracting. Higher

NVLink utilization means less overhead in graph sampling and fea-

ture extracting.

XGNN can also train GNN on asymmetric GPU topologies, even

for extremely irregular topologies. For example, training with five

GPUs (GPU0–GPU4 in Figure 7). However, it is not possible to

distribute the graph and features on GPUs equally while ensur-

ing each GPU can directly access the whole data at the same time.

Hence, there will exist unused memory among GPUs and degrade

performance slightly.

6.5 GPU Memory Efficiency

We next evaluate GPU total memory usage in XGNN. Figure 12

displays the average execution time of the Sampler and Trainer in

a mini-batch, along with the memory footprint of the graph and

feature data across all GPUs. When there is only one GPU, how-

ever, the most of memory is used by the graph topology. XGNN

trades sampling for faster feature extraction by partitioning the

graph across GPUs. When the number of GPUs increases to two,

the graph is partitioned on the two GPUs and more features are

cached in GPU memory. However, the feature extraction perfor-

mance has no improvement due to contention between two GPUs

on a single PCIe. When the number of GPUs is four, XGNN only

stores one copy of the graph cross GPUs. Moreover, the feature

cache becomes larger and more NVLinks are available to facilitate

feature extraction. Thus, Trainer performance improves.When the

number of GPUs is eight, there exist two copies of the graph and

features over all GPUs. Although the mini-batch execution time

does not change, the number of per-epoch tasks of each GPU and

the end-to-end training time halves.

6.6 Placement Solver Comparison

We train GraphSAGE on TW and CF datasets using different GPU

NVLink topologies to evaluate Placement Solver. The evaluated

topologies are a full-connected clique with 4 GPUs (4� 5 ), a circu-

lar topology with 4 GPUs (4�2 ), a topology with 6 GPUs (6�), and

a topology with 8 GPUs (8�). We use the same XGNN codebase

to compare Placement Solver (Solver), the clique placement pol-

icy (Clique) [42], and the optimized clique policy (CliqueOpt) [38].
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Figure 14: KHop optimization training GCN model with 4

GPUs on PA and UK datasets. (a) shows average NVLink re-

ceived data bytes in the sampling kernel function. (b) shows

sampling breakdown time during an epoch. The dark color

represents the sampling kernel execution time.

The 4�2 and 6� topologies are split into several cliques of 2 full-

connected GPUs for Clique and CliqueOpt policies. The 8� topol-

ogy is split into 2 cliques of 4 full-connected GPUs. Figure 13 shows

the impact of Placement Solver on feature extracting. The result

shows that the XGNN Solver outperforms Clique and CliqueOpt

policies by up to 1.8× in the above topologies. The improvement

mainly comes from two aspects. First, the Solver allows Trainers

to extract features from all neighbor GPUs and resolve the issue of

low NVLink utilization between cliques. Second, the Solver elimi-

nates GPU memory waste and improves the cache ratio, for exam-

ple, from 41% in Clique and CliqueOpt policies to 59% on the CF

dataset in the 6� topology. For the full-connected topology, which

forms a GPU clique, Clique policy and the Solver achieve the same

performance due to the same data placement result. CliqueOpt has

the best performance due to intra-clique data movement optimiza-

tion via replication. However, CliqueOpt policy benefits are mar-

ginal when cache space is insufficient for the large-scale graph (e.g.,

CF dataset).

Besides, we also record the search time for Placement Solver.

Thanks to the pruning strategy, the time required in all cases is

less than 15 ms, making it an efficient solution.

6.7 Sampling Optimization

We evaluate the impact of sampling optimization on sampling

inter-GPU data transmission volume. Figure 14(a) shows the aver-

age data transmitted bytes between NVLinks during the sampling

kernel function, which is collected by NSight Compute [6]. The re-

sult shows that the sampling optimization can reduce roughly half

of the transmitted data. Figure 14(b) shows the sampling break-

down time during an epoch. For CF dataset, the decrease in the

sampling kernel execution time (which we optimized) is mainly
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due to less remote transmission requests, constituting an average

of 3/4 of the total requests. For TW dataset, the sampling kernel

has a larger performance improvement due to the KHop sampling

algorithm complexity optimization simultaneously.

6.8 Large-scale Graph

We evaluate GNN training on large-scale graphs of different sys-

tems by only using one GPU, where the graph topological data

exceeds the GPU memory. DGL-Host,�iver and XGNN are eval-

uated to train GraphSAGE onCF dataset. XGNN is evaluated in two

different configurations, i.e., prioritized feature storage (XGNN-F)

and prioritized graph topological data storage (XGNN-G). The re-

sult is shown in Figure 15(a). Compared to training GNN with 8

GPUs (§6.2), all systems have a longer epoch training time. Besides

more mini-batches per epoch, �iver and XGNN cannot utilize

multiple GPUs to store the graph topological or feature data. Com-

pared to DGL-Host and �iver, XGNN-G does not have advan-

tages because sample time does not dominate the epoch time. Thus,

storing the graph topological data in GPU memory only has little

benefit. Contrarily, XGNN-F outperforms all other systems. The

main reason is XGNN-F store the hottest features in GPU, which

reduces Trainer feature extracting time significantly. Thus, with

smaller GPUmemory, prioritized feature storage can be better than

prioritized graph topological data storage.

6.9 Training Convergence

We also evaluate the correctness of XGNN by comparing XGNN,

DGL+C and DGL convergence. The three systems achieve compa-

rable convergence accuracy of 56% after 120 epochs for training

GCN on PA dataset, as shown in Figure 15(b). Remarkably, XGNN

surpasses DGL+C and DGL by 2.7× and 5.3× respectively, indicat-

ing that novel GGMS design and other optimizations have signifi-

cantly improved its performance.

6.10 Comparison with WholeGraph

We use a fully connected 8xA100 GPU platform to compare

WholeGraph and XGNN. We compare two systems by training

GCN on TW and PA, and GraphSAGE on UK.We letWholeGraph

and XGNN use the same backend (i.e., DGL) to comparemore fairly.

Table 5 shows the epoch breakdown and end-to-end training time,

and total GPU memory usage. We find that two systems have simi-

lar performance due to XGNN storing almost the same graph topol-

ogy and features asWholeGraph in the symmetric GPU topology.

Furthermore, upon further breakdown of the sampling stage, we
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Table 5: Comparison of training performance on Whole-

Graph and XGNN for training GCN on PR and GraphSAGE

on PR.

Model+DS System S E T E2E Mem.

GCN+TW
WholeGraph 0.11 0.07 0.10 0.23 138GB
XGNN 0.02 0.02 0.10 0.12 102GB

GCN+PA
WholeGraph 0.33 0.06 0.27 0.55 130GB
XGNN 0.05 0.03 0.27 0.29 105GB

GSC+UK
WholeGraph 0.24 0.02 0.10 0.35 143GB
XGNN 0.03 0.02 0.10 0.10 120GB

find that PyTorch DataLoader inWholeGraph applications intro-

duces higher latency, which is avoided in XGNN.

6.11 Performance on Other Platforms

We test XGNN, DGL+C and �iver for training GraphSAGE on

other platforms, a 2xPCIe-V100 platform and a 4xNVLink-V100

platform. The 2xPCIe-V100 platform has two NVIDIA V100 (32GB

memory, PCIe) GPUs, two Intel Xeon E5-2650 v4 CPUs (total 48

cores), and 256GB RAM, representing the low-speed GPU intercon-

nect platforms. The 4xNVLink-V100 platform has 4 full-NVLink-

connected NVIDIA V100 (16GB memory, SXM2) GPUs, two Intel

Xeon Gold 6138 CPUs (total 80 cores), and 378GB RAM, which rep-

resents the future fast-speed GPU interconnects.

The test result is shown in Figure 16. The XGNN can train mod-

els at the traditional PCIe platform. Besides, we can find thatXGNN

outperforms DGL+C and �iver by 1.3 − 1.9× and 1.9 − 6.5× re-

spectively, and achieves high performance at the 4xNVLink-V100

platform. From the evaluation in 6.10 and 6.11, we have reasons

to believe that XGNN can still achieve good performance on the

future fast inter-GPU networks (e.g., NVSwitch and CXL [5]). We

will leave this part of the work for the future.

7 RELATEDWORK

As the scale of graphs becomes larger, contrary to full-batch train-

ing [21, 30, 43, 46], recent GNN systems adopt sampling for scal-

ability. Given that sampling and feature extracting usually dom-

inate training time, various GNN systems strive to improve this.

GPUs are de facto accelerators for sampling in GNN systems and

are supported by the most popular GNN systems, e.g., DGL [1] and

PyG [13]. To efficiently extract features stored in the host mem-

ory, another work [32] enables GPUs direct access to the features.

GNNLab [51] notices the computation and data similarity between

GPUs, and adopts a factored design to reduce resource contention.

Tomitigate the overhead of remote data access, MGG [48] overlaps

remote data access with local data access and computation.

GNN systems additionally cache the most frequently accessed

features to accelerate feature extraction. PaGraph [28] first pro-

poses a degree-based cache policy to determine the hotness of each

node. Then GNNLab [51] proposes a pre-sample policy to cache

features to get a better cache hit rate than the degree-based policy.

Both of them can be applied in XGNN.

As single machines with multiple GPUs become increasingly

popular many GNN systems strive to accelerate GNN training by

better memory efficiency and lower communication costs. Unlike
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form for training GraphSAGE.

the traditional graph partitioning methods [23], GNN systems typ-

ically leverage GNN training characteristics to partition the graph

topology and features across GPUs, examples of such systems in-

clude PaGraph [28] and P3 [15].�iver [42] partitions feature data

across GPUs. Furthermore, similar to DeepSpeed in DNN training

systems [34],�iver extends the data storage to the host memory

to store the rest of the feature data. Another work [38] improves

the efficiency of data movement between NVLink and PCIe com-

pared to the clique policy in�iver [42].WholeGraph [49] treats

multi-GPUmemory as a whole and stores the entire graph topolog-

ical and feature data in GPUs. DSP [9] partitions the graph topol-

ogy and features across GPUs and collectively executes sampling.

However, the mentioned systems overlook the complex GPU in-

terconnects, causing inefficient utilization of GPU memory and

bandwidth. XGNN addresses these issues by introducing a stor-

age abstraction for GNN training. Furthermore, UGACHE [39] ex-

plores different GPU interconnects and cache policies, but it only

focuses on graph features (embeddings). Legion [41] enhances

GPU memory efficiency by trading off storage between graph

topology and features. Both approaches are orthogonal to our

work, and their integration is part of our future work.

8 CONCLUSION

This paper presents XGNN, a system fully utilizes system mem-

ory resources and GPU interconnects to improve GNN training

on various GPU platforms. Through a comprehensive analysis of

present systems, we figure out the issues in GPU memory effi-

ciency, NVLink and host memory utilization. XGNN proposes a

new global memory store abstraction to tackle the above issues.

Specifically, it partitions hybrid input data across both GPU and

host memory and further provides easy-to-use APIs for GNN appli-

cations to access data transparantly. Evaluation on various multi-

GPU platforms using typical GNNmodels with large-scale datasets

confirms the efficacy and generality of XGNN.
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