
SepHash: A Write-Optimized Hash Index On Disaggregated
Memory via Separate Segment Structure

Xinhao Min
Kai Lu∗

Wuhan National Laboratory for
Optoelectronics, Huazhong

University of Science and Technology
minxinhao@hust.edu.cn

kailu@hust.edu.cn

Pengyu Liu
Jiguang Wan

Changsheng Xie
Wuhan National Laboratory for
Optoelectronics, Huazhong

University of Science and Technolog
pyliu@hust.edu.cn
jgwan@hust.edu.cn
cs_xie@hust.edu.cn

Daohui Wang
Ting Yao

Huatao Wu
Huawei Cloud

wangdaogui@huawei.com
yaoting17@huawei.com
wuhuatao@huawei.com

ABSTRACT
Disaggregated memory separates compute and memory resources
into independent pools connected by fast RDMA (Remote Direct
Memory Access) networks, which can improve memory utilization,
reduce cost, and enable elastic scaling of compute and memory
resources. Hash indexes provide high-performance single-point op-
erations and are widely used in distributed systems and databases.
However, under disaggregatedmemory, existing hash indexes suffer
from write performance degradation due to high resize overhead
and concurrency control overhead. Traditional write-optimized
hash indexes are not efficient for disaggregated memory and sacri-
fice read performance.

In this paper, we propose SepHash, a write-optimized hash index
for disaggregated memory. First, SepHash proposes a two-level
separate segment structure that significantly reduces the band-
width consumption of resize operations. Second, SepHash employs
a low-latency concurrency control strategy to eliminate unneces-
sary mutual exclusion and check overhead during insert operations.
Finally, SepHash designs an efficient cache and filter to acceler-
ate read operations. The evaluation results show that, compared
to state-of-the-art distributed hash indexes, SepHash achieves a
3.3× higher write performance while maintaining comparable read
performance.

PVLDB Reference Format:
Xinhao Min, Kai Lu, Pengyu Liu, Jiguang Wan, Changsheng Xie, Daohui
Wang, Ting Yao, and Huatao Wu. SepHash: A Write-Optimized Hash Index
On Disaggregated Memory via Separate Segment Structure. PVLDB, 17(5):
1091 - 1104, 2024.
doi:10.14778/3641204.3641218

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/minxinhao/SepHash.

∗Corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 5 ISSN 2150-8097.
doi:10.14778/3641204.3641218

1 INTRODUCTION
Recently, disaggregated memory architecture has received wide-
spread attention from both academia [20, 26, 36, 37, 45, 57, 58]
and industry (e.g., Microsoft [21], Alibaba [5, 58], IBM [17]) due
to its high resource utilization, scalability, and failure isolation ad-
vantages. Disaggregated memory decouples compute (CPU) and
memory resources from traditional monolithic servers to form in-
dependent resource pools. The compute pool contains rich CPU
resources but minimal memory resources, whereas the memory
pool contains large amounts of memory but near-zero computa-
tion power. The compute pool accesses the memory pool through
RDMA-capable networks such as InfiniBand, RoCE, and Omnipath
[15, 38, 54], which offer salient features including remote CPU
bypass, low latency, and high bandwidth [14, 40, 59].

Distributed hash indexes are widely used for high-performance
data indexing services such as databases, key-value (KV) stores,
memory pool systems, and file systems [1, 8, 24, 27, 46]. However,
due to the near-zero computation power of memory pools, tradi-
tional solutions [14, 28, 46] based on two-sided RDMA operations
cannot be applied efficiently to disaggregated memory architec-
tures. Prior work, e.g., RACE [65], focused on designing extendible
hash structures [19, 30] that are friendly to one-sided RDMA access.
However, when faced with write-intensive workloads, RACE suffers
from severe write performance degradation due to inefficient resize
operations and high concurrency control overhead. One common
way to improve the write performance of hash indexes is to intro-
duce leveling index structures that optimize data movement, such
as CLevel [9] and Plush [41]. However, these designs do not cater to
disaggregated memory, leading to frequent RDMA communication
induced by a large number of small reads and writes. Furthermore,
the multi-level index structure significantly compromises the read
performance. Direct transplanting of these solutions is inadequate
to attain the desired performance. In summary, it is imperative to
redesign high-performance hash indexes for disaggregated memory,
yet it is confronted with the following challenges:

1) Significant resize overhead. Resize operations of hash in-
dexes need to be transferred to clients due to the limited computa-
tion power of the memory nodes, resulting in significant bandwidth
consumption. Existing methods concentrate on minimizing the ag-
gregate data volume moved during each resize operation. Nonethe-
less, they utilize an entry-based transfer strategy that relocates data

1091

https://doi.org/10.14778/3641204.3641218
https://github.com/minxinhao/SepHash
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3641204.3641218
https://www.acm.org/publications/policies/artifact-review-and-badging-current

at the granularity of individual entries, causing substantial network
overhead and becoming a performance bottleneck. Simultaneously,
in the context of variable-length KV payloads, transferring each
entry requires accessing the original KV, resulting in a significant
increase in read amplification.

2) Concurrency control overhead. Concurrent access to the
index requires robust mechanisms for ensuring data consistency.
When multiple clients access an index concurrently, they may read
or write the same key at the same time. To avoid issues such as
insert-miss and duplicate key [9, 30, 65], current approaches gener-
ally adopt lock-based or reread-based concurrency control strate-
gies. However, both methods incur additional round-trip time (RTT)
and increase the latency of insert operations.

3) Sacrificing read performance. Achieving optimal write per-
formance often requires compromising the orderliness of the data
layout, which can negatively impact read performance. For instance,
in a leveling hash structure, the read operation must search through
multiple levels, causing severe read amplification. In addition, mem-
ory constraints on compute nodes and communication overhead
make optimizing read performance challenging.

In this paper, we propose SepHash, a write-optimized hash index
for disaggregated memory. To address the above challenges, we
have introduced innovative techniques, including the separate seg-
ment structure for efficient resizing, an RTT-reduced concurrency
control mechanism for reducing write latency, and efficient cache
and filter structures for enhancing read performance. With these
techniques, SepHash delivers high read and write performance.

Separate segment structure. To reduce the resize overhead,
SepHash proposes a two-level separate segment structure that com-
bines the benefits of extendible hash and leveling hash. The data
flow between segments is completely batch-oriented, avoiding indi-
vidual entry movements. By storing depth information (part of the
hash) and state information in each entry, SepHash reduces access
to original KVs and quickly empties old entries during resize.

RTT-reduced concurrency control. SepHash designs an RTT-
reduced concurrency control strategy that uses append write, corou-
tine, and sliding windows. This policy allows highly concurrent
access to the index without additional locking or rereading opera-
tions. All write operations can return immediately after inserting
KV pointers, without waiting for the completion of subsequent
meta-data updates, significantly reducing write latency.

Efficient cache and filter. To improve read performance, Sep-
Hash introduces a filter for the separate segment structure and
maintains a client-side cache. These components can effectively
reduce the access granularity of RDMA operations and reduce
unnecessary access to indexes. SepHash designs a space-efficient
cache structure and proposes an update-efficient filter structure
that requires only one RDMA operation for each update.

We implement a prototype of SepHash and evaluate performance
using Micro-Benchmarks and YCSB workloads [10, 50] . Our experi-
ments demonstrate that, under write-intensive workloads, SepHash
improves write throughput by 3.3× and reduces write latency by
30% compared to state-of-the-art hash indexes. Furthermore, un-
der read-intensive workloads, SepHash achieves 7.1× higher read
throughput compared to other leveling index structures. In sum-
mary, we have the following contributions:

• We perform an analysis of existing hash indexes on disag-
gregated memory and identify three factors contributing to
poor write performance: entry-based resize strategies, read
amplification caused by out-of-place KV, and additional
RTTs caused by concurrent control strategies (§3).

• We design SepHash, a write-optimized hash index on disag-
gregated memory. SepHash employs a two-level structure,
RTT-reduced concurrent control, and efficient cache and
filter to achieve excellent performance (§4).

• We evaluate SepHash and compare it with state-of-the-
art distributed hash indexes. Evaluations demonstrate that
SepHash outperforms other indexes in terms of write per-
formance while achieving balanced read performance (§5).

2 BACKGROUND
2.1 Disaggregated Memory
Disaggregated memory segregates compute and memory resources
into separate pools [21, 22, 53], which are interconnected using
high-performance RDMA networks. The compute pool has mul-
tiple CPUs (e.g., 100s) with a few GBs of DRAM. In contrast, the
memory pool has a large number of memory resources (e.g., 100s–
1000s of GBs) with weak computing capabilities (e.g., 1–2 wimpy
cores) for handling communication and memory management.
RDMA networks provide RDMA READ, WRITE, and ATOMIC inter-
faces, e.g., compare-and-swap (CAS) and fetch-and-add (FAA) oper-
ations. RDMA operations are based on the post-poll mechanism.
Users initiate data transfer by posting work requests to the send
queue. Requests in the same send queue are executed sequentially.
By using doorbell batching [34, 43, 47], multiple RDMA operations
can be combined into a single request. These requests are then
read by the RDMA NIC, which asynchronously writes/reads data
to/from remotememory. During data transfer, the completion queue
is polled to check if the operation is complete. Waiting for network
transmissions accounts for most of RDMA’s latency overhead [7],
making it suitable for optimization using coroutine techniques.

Coroutines are lightweight threads that are not managed by the
operating system but by the program. Coroutines allow a program
to pause execution at any location and resume execution later
without interrupting the entire program. This makes coroutines
well suited for asynchronous tasks like RDMA where I/O wait and
compute can be executed under the same thread.

2.2 Write Optimized Hash
Current write-optimized hash indexes include extendible hash [25,
30, 62] and leveling hash [9, 41, 55, 63, 64], as shown in Figure 1.

Extendible hash uses a three-level structure comprising a direc-
tory, segments, and buckets. The directory contains a global depth
variable, which represents the length of the hash suffix used to
index segments in the directory. Each segment holds a local depth
variable, which represents the hash suffix length shared by all KVs
in that segment. A segment includes multiple buckets stored contin-
uously, and the corresponding bucket is selected using another part
of the hash value to insert KVs. Each bucket has multiple entries to
hold KVs with the same hash value. When storing variable-length
KVs, each entry holds a pointer to the KV data. When a bucket is
full, a resize operation is triggered for the entire segment. During a

1092

Bucket Bucket Bucket Bucket...

Bucket Bucket...

Bucket Bucket Bucket Bucket...Bucket Bucket

Level 2

Level 1

New Level

rehash

（b）Leveling hash

（a）Extendible hash

Directory
（Global Depth = 1） 00

Bucket

Bucket

Bucket

...

Segment
(Local Depth = 0)

00 01

Bucket

Bucket
...

Bucket

Bucket
...

Segment
(Local Depth = 1)

rehash

01 Directory
（Global Depth = 1）

Figure 1: Write optimized hash indexes.

resize operation, two new segments are allocated. All KVs in the
old segment are scanned to determine which new segment they
should write to based on the local depth+1 bit of their hash value.
RACE [65] further optimizes the extendible hash for disaggregated
memory. With RACE, each KV corresponds to two buckets within a
segment, and adjacent buckets share an overflow bucket, providing
more write space for hash conflicts. The directory cache is kept on
the client side to shorten the client’s remote access path.

Leveling hash maintains a multi-level index structure of increas-
ing size. CLevel [9] manages all hash tables with a lock-free level
list. Both insert and search operations iterate through all hash tables
level by level from bottom to top. The insert operation clears all
duplicate keys encountered and inserts the data into the bucket
closest to the top, while the search operation retains the data at the
highest level as the final result. If a key cannot find an insertion
position in all levels, a larger new hash table is allocated at the
top and inserted at the end of the global level list. The background
rehash thread continuously migrates data from the lowest level to
the top-level hash table until only two levels of hash tables remain.
Plush [41] introduces the idea of LSM-Tree [32, 51, 52] for leveling
hash. Each level of Plush is an extendible hash with a fixed global
depth, and all data is first inserted into the first level. When the
corresponding bucket at the first level is full, a flush operation
is triggered to transfer KVs to the next level. The global depth is
increased by 4 per level, and the bucket is expanded into a group
consisting of multiple buckets starting from the second level. The
flush operation is triggered recursively when the group space is
also full. The search operation starts from the first level and returns
immediately after encountering the target key.

3 MOTIVATION
3.1 Low Insert Performance of RACE
RACE’s search operation exhibits excellent performance. However,
we observe that RACE’s insert operation suffers from severe re-
size overhead and concurrency collision detection overhead. By
manipulating the initial size of the RACE hash table, we test the

2 4 6 8 10 12 14 16
Number of threads

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (K

op
s)

RACE/W Resize
RACE/Wo Resize
RACE/Batch Move

(a) Insert throughput of RACE under write-intensive workloads

Read
Buc

Cas
Entry

Re
Read

Read
Seg

Read
Kv

Move
Entry

Other0.0

0.1

0.2

0.3

Pr
op

or
tio

n

0.16

0.10
0.13

0.03

0.14

0.34

0.10

(b) Breakdown of insert overhead in RACE

Figure 2: Performance analysis of RACE.

performance of RACE inserting 100 million keys from scratch with
and without resizing operations. As shown in Figure 2(a), RACE’s
insert performance is reduced by 50% in the presence of resize.

Furthermore, we perform a time decomposition of RACE’s in-
sertion. The insert overhead of RACE comes mainly in two parts:
the normal write operations and the resize operations. The write
operation involves three steps: (1) reading the bucket from remote
memory (ReadBuc); (2) using the RDMA CAS instruction to write
the KV pointer to the empty entry in the bucket (CasEntry); (3)
rereading the bucket to check for duplicate keys (ReRead). The
resize operation also includes three steps: (4) reading the segment
(ReadSeg); (5) reading the KV data corresponding to each entry
(ReadKV); (6) moving the entry to the corresponding new segment
(MoveEntry). As shown in Figure 2(b), the overhead introduced
by splitting accounts for half of the total time (51%), of which the
overhead of moving entries accounts for the largest part. Reading
the corresponding KV for each entry accounts for 27% in the re-
size operation. The ReRead overhead introduced by the concurrent
control policy takes up one-third of the normal write operation.

3.2 Limitations of Leveling Hashes
The leveling hash provides a more cost-effective way to resize oper-
ations. However, the current leveling hashes are not optimized for
disaggregated memory and do not consider RDMA access charac-
teristics. When applied to disaggregated memory, leveling hashes
face three limitations: 1) Multi-level structure suffers from high
communication overhead. The leveling structure increases the ac-
cess path of the search operation, which significantly lowers search
performance. 2) Small-grained access does not fully utilize RDMA
bandwidth. Both CLevel and Plush are designed for persistent mem-
ory, and they issue many small-grained reads and writes to index
metadata due to the low access latency of NVM [42, 49]. However,
by evaluating RDMA bandwidth and latency changes with access

1093

64 128 256 512 1024 2048 4096 8192
Access size(bytes)

0

20

40

60

80
La

te
nc

y(
us

)
Access latency

0

2

4

6

8

10

Ba
nd

wi
dt

h(
GB

/s
)

Bandwidth

Figure 3: RDMA access patterns.

granularity (Figure 3), we observe that smaller access granularity
leads to lower bandwidth, while larger access granularity leads to
increased latency. Therefore, to design an efficient index structure
for disaggregated memory, it is essential to select appropriate ac-
cess granularity. 3) There is still room for write optimization. Plush
introduces a batch-move strategy to eliminate write amplification
caused by moving entries individually. Applying this strategy to
RACE can improve insert throughput (the green line in Figure 2(a)),
but there is still a large gap compared to the ideal performance.

4 SEPHASH DESIGN
4.1 Overview
This paper proposes SepHash, a write-optimized hash index on dis-
aggregated memory with three core design principles: 1) low resize
overhead, 2) low write latency, and 3) balanced read performance.
Figure 4 shows its key design components:

• Separate segment structure (§4.2). SepHash introduces
a separate segment structure that consists of a small un-
ordered segment (called CurSegment) and a large ordered
segment (called MainSegment). Each CurSegment has a cor-
responding MainSegment, indexed by a directory according
to extendible hash schemes. Whenever the data accumula-
tion in the CurSegment or MainSegment reaches the size
limits, a resize operation (called segment merge or split) is
triggered to batch-transfer entries to a new MainSegment.

• RTT-reduced concurrency control (§4.3). All concurrent
write operations are atomically performed in CurSegment
in an append-only manner. Subsequent write operations
directly overwrite old data without rereading or locking
the segment. The coroutine-optimized RDMA interface and
sliding-window scheme are adopted to reduce write latency.

• Efficient cache and filter (§4.4). Each CurSegment is
equipped with an update-efficient filter to reduce unneces-
sary reads. For each MainSegment, a metadata table (called
FPTable) recording entry distribution is cached in the clients
and is compacted using a record point based scheme.

As shown in Figure 4, the main index structure of SepHash is
stored in the memory pool and consists of two-level hash tables.
Each level is organized according to the extendible hash scheme
and indexed using a common global directory. In the compute pool,
the client maintains a directory cache to accelerate index access and
uses pure one-sided RDMA verbs to perform read/write operations
on the index structure in the memory pool.

Compute Pool

Memory Pool

search/insert/del

CurSegment

MainSegment

CurSegment

MainSegment

Directory
§4.3 RTT-less Concurenncy Control

CurSegment

MainSegment

§4.2 Segment Split

...

00

01

10

11

Clients

§4.2 Segment Merge

§4.5 Cache and Filter

FPTable CacheDirectory Cache

...

Figure 4: The overall architecture of SepHash.

4.2 The Index Structure of SepHash
4.2.1 Separate segment structure. To reduce resize overhead and
optimize both read and write performance, we design a sophis-
ticated separate segment structure, as shown in Figure 5, which
includes four major designs:

1) Dual level structure. To balance insert and search perfor-
mance, we divide the index into two levels of segments: top-level
CurSegments and bottom-level MainSegments. The insert operation
is completed after writing the KV pointer to CurSegment. Once the
CurSegment size reaches its limit, a merge operation is triggered,
combining the CurSegment with the corresponding MainSegment
using a single RDMA write. When the MainSegment size reaches
its limit, a split operation is triggered, dividing the MainSegment
into two smaller new segments. Dual-level index structure allows
data to be moved in batches while avoiding degradation in read
performance due to excessive levels.

2) Shared CurSegment. To reduce the number of resize op-
erations, we design a CurSegment structure that eliminates the
intermediate bucket hierarchy. CurSegments consist of contigu-
ously stored entries with a segment size suitable for RDMA access
(e.g., 512 bytes, 1024 bytes). All entries in CurSegment share the
same hash suffix. Each entry is 8 bytes, and all inserts compete
for these entries in order using RDMA CAS. Extending the hash
collision space to the entire segment avoids splits triggered by un-
even data distribution among buckets. Reduce the frequency of
resize operations while improving index space utilization. We store
shared metadata (called CurSegMeta) in the CurSegment header,
which helps avoid storing metadata for each bucket. We also store
a filter in CurSegMeta to shorten the search path.

3) Resize-optimized entry. To mitigate read amplification dur-
ing resize, we pre-store a portion of the hash value (depth infor-
mation) in each entry. Specifically, we select 4 bits from the hash
value as depth information during each insert based on CurSeg-
ment’s local depth. In each subsequent segment split, a bit of depth
information is used to determine the moving destination of the
entry. This reduces access to the original KV during split opera-
tions. Moreover, it reduces space consumption by 50% compared to
storing the entire hash value of each entry while providing a similar
acceleration effect. To reduce the massive overhead of emptying
old entries in the resize operation, we add a sign bit for each entry
and CurSegMeta. Entries with the same sign bit as CurSegMeta

1094

Figure 5: Separate segment structure in SepHash.

are in an empty state. The merge operation can quickly empty all
entries in CurSegment by flipping the sign bit in CurSegMeta.

4) Sorted MainSegment. To speed up the search process, we
store fingerprints (a small sequence of hash-generated bits) of keys
in each entry. Only entries that match the fingerprint of the tar-
get key need to read the original KV for comparison. However,
MainSegment is much larger than CurSegment due to the merge
mechanism. Reading the entire MainSegment leads to high latency
and reduced throughput, as shown in Figure 3. To address this issue,
we sort entries based on their fingerprints and design an FPTable
that stores the number of entries for each fingerprint. Each read
operation only reads the entry array corresponding to a certain
fingerprint, which can be quickly located through the FPTable. An
RDMA READ can read this array, and the size is only a tiny part of
the MainSegment (e.g., 1/256 if using 8-bit fingerprints). However,
due to the enormous size of MainSegment, an array correspond-
ing to 8-bit fingerprints may contain up to a dozen entries. For
each entry, the corresponding KV needs to be read for comparison,
which will introduce multiple communications. To store a longer
fingerprint while maintaining an entry size suitable for RDMA CAS,
we maintain two 8-bit fingerprint fields fp and fp2 in each entry.
Fp is directly embedded in the entry, fp2 is stored at the end of the
entry, and all entries in the MainSegment are sorted by fp.

Combining all the design elements, the details of the separate
segment structure are shown in Figure 5. CurSegment and Main-
Segment both consist of a contiguous array of entries. All entries
in a CurSegment share the same hash suffix. Entries in a CurSeg-
ment are unordered, while MainSegment entries are sorted by fp.
CurSegMeta includes a sign bit for finding empty entries, a 7-bit
local_depth for extendible split, a pointer main_ptr to the corre-
sponding MainSegment and its length, and a filter for read access.
Each entry includes a 1-bit sign indicating its free status, a 3-bit
len indicating the length of the KV after alignment to 64 bytes, a
4-bit dep field for depth information, a 48-bit KV pointer, and two
8-bit fingerprints fp and fp2. FPTable holds the number of entries
for each fp. Based on the separate segment structure, the flow of
insert and search operations is as follows:

Insert: To insert a KV, the client first calculates the hash value
and indexes the corresponding CurSegment address in the local
directory cache. After reading CurSegment from remote memory,
the client looks for an empty entry with the same sign bit as CurSeg-
Meta and initializes it according to CurSegment’s local depth. As

Entry

CurSegMeta

sign local_depth: 5

hash value : 1100 ... 1111 0110 1011

01215round ...

key

fplensign dep kv_ptr fp2

 div 4 round 1

Figure 6: Initialization of entry.

shown in Figure 6, we organize 4 split operations as a round and
divide the hash value into several 4 bits accordingly. The current
round is determined by dividing the local depth by 4. Initialize the
dep field by taking the 4-bit hash value corresponding to the current
round. Two 8-bit hash values are then calculated as fp and fp2. The
client writes the initialized entry to the remote CurSegment using
RDMA CAS. Finally, the client uses two RDMA WRITEs to update
the filter in CurSegMeta and fp2 at the end of the entry. Update
or delete is converted into insert using the new or blank value,
according to the RTT-reduced Concurrency Control in §4.3.

Search: To search for a target key, the client first obtains CurSeg-
ment and MainSegment pointers from the local directory cache.
Then, the client retrieves the CurSegment filter and the MainSeg-
ment FPTable using RDMA READs. Based on the filter, the client
determines whether to read the entry array in CurSegment. Using
the FPTable, the client determines the address and length of the
entry array to be read in MainSegment. After reading the corre-
sponding entry array, the client reads KVs for entries that match
both the fp and fp2 fields and finally matches the key locally.

4.2.2 Segment merge and split. When the data accumulation in
CurSegment or MainSegment reaches the size limits, a segment
merge or split is triggered to transfer data to a new MainSegment.
Through depth information cached in the entries and batch clearing
the old entries, the main flow of both segment merge and split can
be completed within 5 RTTs, as shown in Figure 7.

Segment merge: 1 The CurSegment is read into the client’s
memory, and the entries are sorted according to their fp. For entries
with the same fp, if they also share the same fp2, we read the KV
to verify if they are duplicate keys. According to the RTT-reduced
concurrency control in §4.3, we only keep the entries closest to the
bottom for duplicate keys. 2 The corresponding MainSegment is
read andmerged with CurSegment. Replace the MainSegment entry
with the CurSegment entry that points to the same key. The merged
entry array becomes the new MainSegment if it does not exceed
the size limit. 3 The new MainSegment is written to the remote
memory, 4 followed by updating the main_ptr in the CurSegment.
5 The entire CurSegment is emptied by flipping the sign bits.
Figure 7 illustrates an example of segment merge. For simplicity,

we only use fp in this example and do not involve fp2. When sorting
the CurSegment, two entries with fp=8 are identified as duplicates,
with only the latter entry being retained. The merge operation with
MainSegment adds the entry with fp=4 directly, as it has nomatched
entries. The entry with fp=5 in the CurSegment replaces the old
entry in the MainSegment. The entry with fp=8 in the CurSegment
is appended to the MainSegment since it does not correspond to
the same KV in the MainSegment. In practice, since both fp and fp2
are used for matching, it is rarely necessary to read the KVs.

1095

Figure 7: Segment merge.

Figure 8: Segment split.

Segment split: In 2 of the segment merge, if the size of the
newly generated MainSegment exceeds the size limit, a segment
split is triggered. Each split creates two new MainSegments and
entries in the old MainSegment will be assigned to one of the two
newMainSegments based on their hash suffix. Because we pre-store
the first 4 bits of the suffix for each split round in the dep field, we
can complete the entry assignment without reading the original KV.
Assuming the current local depth is l, the bit at l mod 4 of the dep
field is the first bit of the suffix used by the current split. Entries are
divided into two new MainSegments according to the l mod 4 bit
of the dep. After splitting the MainSegment in client-side memory,
they are bulk written to remote memory using an RDMA WRITE.
When l mod 4 equals 3, the last split in the current split round is
in progress and all information in the dep field will be consumed.
Read the original KV to obtain a new dep.

An example is shown in Figure 8, the local depth of the old
MainSegment is 5, so the 1st bit (5 mod 4) of the dep field is used.
All entries in the old MainSegment with the 1st depth bit of 0 are
split to form a new MainSegment 00, while all entries with the 1st
depth bit of 1 are split to form a new MainSegment 01. In the next
splitting of segments 00 and 01, the second bit of dep field is used.

Merge or split operations update the main_ptr or local_depth in
CurSegMeta. When the insert operation reads the CurSegment, it
checks the main_ptr and local_depth to detect merges and splits
occurring in remote memory and updates the local directory cache.

4.3 RTT-reduced Concurrency Control
If two concurrent clients insert different values of the same key into
the same bucket, the search operation cannot determine the latest
value. Traditional indexes use lock-based [41] or reread-based [65]
schemes to avoid duplicate keys, both incur extra RTTs. As shown
in Figure 9, lock-based schemes obtain the bucket lock before insert

write entrylock

Client

DM

read buckets unlock

(a) Lock-based concurrency control

Client

DM

cas entry

reread bucketsread buckets
(b) Reread concurrency control

Client

DM

cas entry

write fp2
& filter

read meta
& entries
(c) RTT-less concurrency control

Zero-wait Write

Normal RDMA

Figure 9: RTT-reduced concurrency control. (The solid lines
mean normal RDMA requests, and the dotted line means zero-
wait write. The strategies’s overhead is marked in red.)

operations to prevent the writing of the same key. Reread-based
solutions reread the bucket after insert operations and remove all
duplicate keys. We propose a concurrency control strategy with
fewer RTTs using the following three techniques:

Append write: All writes to the CurSegment occur sequentially.
Initially, all CurSegment entries are empty, and inserts can only
occur on the first entry. All clients use RDMA CAS to compete for
the first entry. When the first entry is written, all clients move to
the second entry and repeat the process. All entries are written
atomically using RDMA CAS, ensuring that only one client can
successfully write the current first empty entry without locking
the segment. In addition, the append write ensures that the latest
version of a key will appear in the entry closest to the end. Search
operations can obtain consistent results for duplicate keys, so there
is no need to reread the bucket. Update and delete operations are
converted to inserts, competing for CurSegment entries in the same
order. It ensures that no writes will occur to CurSegment when the
merge operation is in progress, avoiding data loss.

Sliding window: Reading the entire CurSegment to find the
first empty entry causes high write latency. We divide the entry
array in CurSegment into fixed-length entry windows. Each client
maintains a offset variable for each CurSegment that indicates the
position of the last first empty entry. Each insert starts from the
locally recorded offset and reads the entry window one by one to
find the first empty entry. Each successful write updates the local
offset. Whenever a merge on the remote CurSegment is detected,
offset is reset to 0. This prevents any insertion into the window
behind the first empty entry. Due to the uniformity of the hash
function, the first empty entry is usually found on the first attempt.

Zero-wait write: The separate segment structure introduces
additional updates to fp2 and CurSegMeta. However, unlike READ
and CAS operations, RDMA WRITE don’t require a return result.
Based on this, we design a zero-wait write interface. We use a
coroutine framework to schedule and overlap all RDMA requests
from different clients, with each coroutine corresponding to a client.
We share a back-end RDMA connection (back-conn) for clients
that belong to the same thread. For RDMA WRITEs that don’t need
to wait for completion, we return after submitting it to the post

1096

Figure 10: Zero-wait write.

queue in back-conn. For instance, in Figure 10, coroutine 1 needs to
send an RDMA WRITE without waiting and another normal RDMA
request. It returns after submitting the WRITE request into back-
conn, followed by sending the normal RDMA request to the client’s
connection. During the polling process, the write operation posted
to back-conn is polled together through the coroutine framework.
The final schedule result is shown at the bottom of Figure 10, with
the latency of polling write results completely hidden.

The flow of RTT-reduced concurrency control is illustrated in
Figure 9(c). In the first RTT, depending on the local offset, the client
uses doorbell batching to simultaneously read the CurSegMeta and
CurSegment entry window. In the second RTT, the client selects the
first empty entry based on the sign bit in CurSegMeta and occupies
it using an RDMA CAS operation. If the CAS operation succeeds,
the client uses zero-wait write to post changes to fp2 in the tail
of the entry and filter in CurSegMeta. Compared to lock-based
and reread-based schemes, the RTT-reduced concurrency control
significantly reduces RTTs and has lower latency.

4.4 Filter and Cache
The leveling structure inevitably reduces read performance. To
speed up search operations, we design a filter for CurSegment and
a client cache for MainSegment.

4.4.1 FP filter for CurSegment. We adopt a bitmap as a filter for
CurSegment. Traditional filters, such as Bloom filter [2, 35], Quo-
tient filter [18, 33], Cuckoo filter [4, 13], need to modify/read mul-
tiple discrete bits for a single insert/query. This brings multiple
communication overheads in disaggregated memory. The bitmap
is equivalent to a bloom filter using a single hash function, and
inserts and queries on it require only one RDMA Read. The bitmap
records all fps that appear in CurSegment, and the i-th bit equal to
1 means that the entry with fp=i exists in CurSegment. For insert
operations, after occupying the empty entry, we write a 1 to the bit
at fp of bitmap. For search operations, clients use doorbell batch-
ing to read the MainSegment entries and the CurSegment bitmap
simultaneously. Clients read the CurSegment entry array only if
the bit corresponding to the given key in the bitmap is 1.

4.4.2 FPTable cache for MainSegment. On the client side, in addi-
tion to the directory cache, we design an FPTable cache to hold
MainSegment metadata. FPTable needs to store fp distribution in
MainSegment. As shown in Figure 11, a naive way of caching is
to record the number of entries per fp. However, this method will
result in vast space overhead and is not suitable for the compute
side with limited memory resources. Due to the uniformity of the
hash function, the number of entries corresponding to each fp in
MainSegment is very close (in our tests, the average data skew is

Figure 11: Client cache structure.

less than 18%). Therefore, we propose a compact FPTable cache
scheme using record points. We use a set of linear functions with
the same slope to fit the fp distribution in MainSegment. Suppose
the number of entries in MainSegment is 𝐸 and the total number
of fp is 𝑁 . For fp=i, we use the following formula (1) to predict the
starting address (𝑝𝑟𝑒𝑖) of the corresponding entry array.

𝑎𝑣𝑟 =
𝐸

𝑁
, 𝑝𝑟𝑒𝑖 = 𝑎𝑣𝑟 × 𝑖 + 𝛿 (1)

where𝑎𝑣𝑟 is the average length of the entry arrays corresponding
to fps, and 𝛿 is used to correct prediction errors. The 𝛿 is initially 0
and is updated according to formula 2 when the FPTable is created.

|𝑝𝑟𝑒𝑖 − 𝑠𝑡𝑎𝑟𝑡𝑖 | < 0.5 × 𝑎𝑣𝑟 (2)

where 𝑠𝑡𝑎𝑟𝑡𝑖 is the actual starting address of the entry array
corresponding to fp=i. When the prediction error exceeds 0.5 times
𝑎𝑣𝑟 , a new record point is created in the FPTable, as shown in
Figure 11, recording the fp and the new delta value (a 5-bit sign
integer). FPTable reserves 32 record points, which is sufficient in
most cases. An overflow flag (overflag) is set at the end to indicate
the number of overflow record points, stored sequentially after it.
The record point based solution can save space compared to the
naive solution. For the search operation, the latest record point that
does not exceed the fp of the given key is found in the FPTable.
Then, the delta value is used to predict the start address of the entry
array. To ensure reading the complete entry array, several more
entries are read before and after the predicted entry array. If the
entry at the beginning and end of the array still has the given fp,
then the array has not been read completely, and an entry of size
0.5𝑎𝑣𝑟 is read further. In most cases, only one reading is required.

5 EVALUATION
In this section, we evaluate SepHash’s performance using different
workloads. The experiment setup is introduced first (§5.1). Next,
we compare SepHash with three other hash indexes using Micro-
Benchmark and YCSB benchmark (§5.2 and §5.3). Then, we compare
the space overhead of these indexes (§5.4). Finally, we evaluate the
impact of SepHash’s technologies and parameters (§5.5 and §5.6).

5.1 Experimental Setup
Hardware Platform. We run all experiments on 8 machines, each
with two 26-core Intel Xeon Gold 5218R CPUs, 384 GiB DRAM, and
one 100Gbps Mellanox ConnectX-5 IB NIC. Each NIC is connected
to a 100Gbps Mellanox IB switch. We use a machine to simulate
a memory pool and limit its CPU resources to a single CPU core,
which is only used for memory registration during the index initial-
ization stage [23, 56, 61, 65]. Memory is registered using huge pages
to reduce NIC page translation cache misses [14]. The remaining

1097

1 2 4 8 16 32 64 128
Number of Threads

0

2

4

6

8

Th
ro

ug
hp

ut
 (M

op
s)

SepHash RACE CLevel Plush

Figure 12: Insert throughput.

1 2 4 8 16 32 64 128
Number of Threads

20

40

60

80

100

La
te

nc
y

(µ
s)

(a) Median Latency

1 2 4 8 16 32 64 128
Number of Threads

100

101

102

103

104

105

La
te

nc
y

(µ
s,

lo
g

sc
al

e)

(b) P999 Latency

SepHash RACE CLevel Plush

Figure 13: Insert latency.

1:9 3:7 5:5 7:3 9:1
Insert/Search Ratio

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

op
s)

SepHash RACE CLevel Plush

Figure 14: Hybrid workloads.

machines constitute compute pools. Since current RDMA NICs do
not support remote memory allocation[23, 65], we reserve memory
space at the memory pool for each client.

Comparisons.We compare SepHashwith three distributed hash
indexes. 1) RACE [65] is the only distributed hash designed for dis-
aggregated memory, and because RACE is not open-source, we
implement it from scratch. 2) CLevel [9] and 3) Plush [41] are level-
ing hash indexes designed for a single machine, and we port them to
disaggregated memory by replacing local memory read/write with
RDMA READ/WRITE. To ensure fairness, we optimize CLevel and
Plush for disaggregated memory, such as removing persistence logs
and using bucket sizes that are appropriate for RDMA. Additionally,
we maintain client-side caches of similar size to SepHash for Plush
and CLevel. For Plush, we employed Monkey’s [12] policy to set
and cache the bloom filter. For CLevel, we maintain a KV-cache
due to its frequently updated structure. For SepHash, CurSegment
is set to 1024 bytes, and MainSegment is 64 times CurSegment’s
size by default. Based on previous work, we use a configuration of
8 entries per bucket for RACE. For all comparisons, we ensure that
each hash table initially has a similar number of entries to make
the conditions for the first resize operation comparable. In addition,
CLevel uses a client as a background thread for resizing the index.
We use 16-byte keys and 32-byte values that are representative of
KV stores in real-world workloads [3, 6, 23, 26, 43, 65].

5.2 Micro-Benchmark
We test the basic performance of each index by inserting and read-
ing 100 million KVs from scratch. Then, we adjust the number of
concurrent threads to observe their concurrent scalability. When
the number of threads is less than 16, they run on the same compute
node. For thread numbers 32, 64, and 128, they run on 2, 4, and
8 compute nodes respectively [23, 65]. Each thread runs with 1-4
coroutines, choosing the number of coroutines that provide the
highest performance as the final configuration.

5.2.1 Insert performance.
Insert throughput. As shown in Figure 12, SepHash achieves

the highest insert throughput, increasing by 1.4×–4.2× compared
to other indexes. SepHash also shows good scalability, and in-
sert throughput increases linearly with the number of concurrent
threads. RACE’s insert throughput gradually reaches a bottleneck
at 64 threads. CLevel also outperforms RACE, showing excellent
insert throughput and scalability. Plush shows the lowest write
performance of all concurrent configurations.

RACE’s low insert throughput mainly comes from high resize
overhead. As shown in Table 1, RACE’s resize operations occupy
half of the insert time. The entry-based move strategy makes it
impossible to empty the entries in the resized segment in time.
When concurrent clients access the resized segment, they attempt
to initiate a new resize operation but are blocked. Under 128 threads,
RACE experiences 80× more resize operations and takes 21× more
resize time than a single thread. Thanks to higher entry utilization
and the larger MainSegment maintained by the merge mechanism,
SepHash splits only 1/8 as much as RACE. SepHash’s efficient resize
strategy makes its resize time only 1/30 of RACE, and therefore, less
client-side blocking due to resize. Under 128 threads, SepHash’s
resize time has only increased by 4.2×. Plush’s resize operation
also takes a lot of time. Under a single client, the resize operation
time accounts for 45%. This is because Plush needs to read the
KV corresponding to each entry to determine which group they
belong to in subsequent levels. Moreover, RACE allows KV to be
inserted into empty buckets of the segment being resized, while
Plush completely prevents insertion into other free buckets on the
insertion path. As a result, Plush’s insert time increases more with
the number of concurrent threads than RACE, increasing by 30×
under 128 threads. CLevel’s resize operation only needs to insert a
pointer into the remote level list, so the resize overhead is negligible.

Insert latency. Figure 13 shows the median and tail latency
for different index insert operations. The tail latency is presented
using logarithmic coordinates. SepHash’s median latency under a
single client is 4.3𝜇s, only 58% of RACE (7.4𝜇s). CLevel’s median la-
tency is significantly higher while growing rapidly with increasing
concurrent threads. Plush’s median write latency is close to RACE.
SepHash and CLevel have stable tail latency, while RACE’s tail
latency increases rapidly, eventually increasing by three orders of
magnitude compared to SepHash. Plush has the highest tail latency.

When the number of concurrent threads is low, SepHash’s low
insert latency benefits from the RTT-reduced concurrency control
strategy that avoids extra RTTs. While SepHash’s merge and split
operations are more efficient, its local cache fails more frequently
than RACE. Consequently, SepHash’s insert process experiences
more retries than RACE, as shown in Table 1, which causes slightly
higher insert latency under high concurrent threads (as shown in
Figure 13 a). This is acceptable compared to the huge throughput
boost gained in SepHash. Most Plush inserts only need to access
the first level of the index and contain only 6 RDMA operations, so
the median latency is similar to RACE. CLevel has a higher median
insert latency because it checks all levels for conflicts before the

1098

Table 1: Index Overhead

1-client
/128-clients

resize_cnt
(104)

resize_time
(107 𝜇s)

insert_time
(108 𝜇s) resize_ratio retry/level_cnt ReadBuc

SepHash merge_cnt split_cnt merge_time split_time 5.14/81.5 3.5%/1.01% 1.00/6.05 2.05/2.0786.1/86.1 1.64/1.64 0.39/1.10 1.82/8.22
RACE 12.9/1050 68/1470 13.4/290 50.79%/50.48% 1.00/3.82 2.0/2.0
CLevel 0.0012/0.0018 0.049/0.0008 14.9/113 0.00%/0.00% 2.00/8.28 4/16.6
Plush 59.6/59.6 64.7/329 14.7/444 45.35%/7.39% 1.00/1.00 34/34

1 2 4 8 16 32 64 128
Number of Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

op
s)

SepHash RACE CLevel Plush

Figure 15: Search throughput.

1 2 4 8 16 32 64 128
Number of Threads

30

60

90

120

150

La
te

nc
y

(µ
s)

(a) Median Latency

1 2 4 8 16 32 64 128
Number of Threads

100100

101101

102

103

La
te

nc
y

(µ
s,

lo
g

sc
al

e)

(b) P999 Latency

SepHash RACE CLevel Plush

Figure 16: Search latency.

YCSB-A YCSB-B YCSB-C YCSB-D0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

op
s)

SepHash RACE CLevel Plush

Figure 17: YCSB benchmarks.

final insert. CLevel’s median insert latency increases rapidly with
higher concurrency due to the background rehash thread being
unable to move data in time. This results in insert operations having
to traverse more levels. For instance, Table 1 shows that under 128
threads, the median number of levels traversed by CLevel increases
to 8.28. SepHash and CLevel have the lowest tail latency, which
reflects the overhead of different resize schemes. For SepHash, mov-
ing entries in bulk and caching depth-info can minimize the number
of RDMA requests per resize operation. CLevel’s background re-
hash scheme makes the delay of resize operations not manifest in
foreground operations. In contrast, Plush and RACE have extremely
high tail latency due to their expensive resize scheme.

5.2.2 Search performance. Figure 15 shows the search throughput
of different indexes. RACE and SepHash outperform Plush and
CLevel by 7.8×-22×. Figure 16 illustrates that SepHash and RACE
have the lowest search latency, while Plush has 2×-10× higher read
latency than other indexes. The last column of Table 1 shows the
median number of read buckets (ReadBuc) in each index’s search
operation. RACE only needs to access two buckets per search oper-
ation. With the two-level index structure and the fp filter, SepHash
also only needs 2 RDMA READs to complete the search operation
in most cases. In contrast, each group at the bottom levels of Plush
corresponds to 16 buckets, which must be read sequentially during
the search process. CLevel also only needs to query two buckets
per index level but needs to access multiple levels. Table 1 shows
that Plush needs to read 34 buckets per search operation, and Read-
Buc of CLevel has grown 4× from a single thread to 128 threads,
resulting in high search latency for both.

5.2.3 Hybrid workload. Figure 14 shows the performance of dif-
ferent indexes under mixed workloads with different insert/search
operation ratios. We pre-insert 10 million KVs for each index, then
run a mixed workload containing 10 million operations. Each in-
dex records maximum throughput under 128 threads. Under a low

insert ratio, RACE performs well because there are few insert oper-
ations and no resize operation is triggered. When the insert ratio
reaches more than 50%, resize operations are triggered and RACE’s
throughput drops rapidly. Due to the low-overhead resize strategy,
SepHash maintains stable performance in the face of increased
insert operations. Finally, SepHash provides 8× the overall through-
put of RACE in a write-intensive scenario. The overall performance
of CLevel and Plush is stable but low.

5.3 YCSB Benchmark
We use the standard YCSB benchmarks [10] to test the performance
of these indexes. We pre-insert 100 million KVs and perform 10 mil-
lion operations under four workloads including (A) update heavy
(50% updates), (B) read mostly (95% read), (C) read only, (D) read
latest (5% insert). As shown in Figure 17, RACE and SepHash ex-
hibit higher performance among all YCSB workloads. In standard
YCSB benchmarks, the amount of loaded data is 10 times that of
hybrid workloads in the Micro-Benchmark, and all indexes are fully
expanded. In addition, there are more read operations in YCSB
benchmarks. As a result, the resize operations are not triggered
even under the YCSB A workload. The updates of RACE only in-
volve updating the KV pointer in each entry after a search. This
makes RACE perform quite well. SepHash maintains performance
close to RACE through its read optimization strategy, while Plush
and CLevel perform poorly due to search performance limitations.

5.4 Space Overhead Analysis
Space overhead is an important metric for hash indexes [9, 25,
30, 64]. To compare the space cost of different hash indexes, we
calculate the space utilization of different indexes and the space
cost of each component.

5.4.1 Space utilization. To compare the space efficiency of different
hash indexes, we introduce two metrics: entry utilization and space

1099

0 100 200
Number of Inserted KVs (thousands)

0.2

0.4

0.6

0.8

1.0

(a) Entry Utilization

SepHash RACE CLevel Plush

0 100 200
Number of Inserted KVs (thousands)

0.2

0.4

0.6

0.8

1.0

(b) Space Utilization

Figure 18: Entry utilization and space utilization.

utilization. Entry utilization is the ratio of the number of entries
holding valid data to the total number of entries. Space utilization
refers to the proportion of the space overhead of valid entries to
the total space overhead of the index. We first insert 10,000 KV,
which is close to when the index triggers the first resize operation,
and record entry/space utilization for every 1,000 KV inserted. For
CLevel, we record the utilization after waiting for the background
resize thread to complete. As shown in Figure 18, experimental
results show that SepHash achieves more than 90% entry utiliza-
tion and space utilization. Moreover, MainSegment maintains 100%
entry utilization. As more data is inserted, a larger MainSegment
results in higher entry utilization and space utilization. RACE and
CLevel have a maximum entry utilization of around 90%, but resize
operations significantly decrease their entry utilization. CLevel’s
entry utilization can even fall below 20% due to full table resize.
RACE has low space utilization due to the retention of metadata
in each bucket. Plush has excellent entry utilization but low space
utilization due to the large filters in each bucket.

5.4.2 Space overhead. We calculate the space overhead of each
component after inserting 100 million KVs, as shown in Table
2. BucMeta refers to metadata stored in the bucket, such as lo-
cal_depth and suffix stored in RACE’s bucket, and fp bitmap stored
in SepHash’s CurSegment. DirMeta refers to the segment and
bucket information in the directory, such as segment pointer in
RACE, and FPTable in SepHash. The experimental results show the
following: 1) For metadata overhead (BucMeta and DirMeta), al-
though SepHashmaintains additional fp filter and FPTable, BucMeta
is very small because the entire CurSegment shares metadata. In
addition, Sephash maintains a low global depth via the merge mech-
anism and large MainSegments, resulting in a small DirMeta. RACE
and Plush have high metadata overhead. RACE needs to store local
depth and suffixes in each bucket, while Plush needs to maintain a
bloom filter of more than 128 bytes for each bucket after the second
level. CLevel only includes a list of all levels, and its metadata over-
head is negligible. 2) For total overhead, the index size is mainly
determined by the number of its entries. SepHash has lower space
overhead because SepHash can be expanded more finely while
keeping the number of entries low. Table 2 shows that the total
number of entries in SepHash is only 101 million after inserting 100
million KVs. RACE with full-segment resize and CLevel with full-
table resize result in more space usage. After inserting 100 million
KVs, the total number of entries in the two indexes is 197 million
and 800 million, which is a huge space overhead. Plush uses a resize

Table 2: Space overhead

Depth
/Level

BucMeta
(MB)

DirMeta
(MB)

Total
(GB)

#Entry
(billion)

SepHash 14 2.37 2.96 0.85 1.01
RACE 18 188.56 6.00 1.66 1.97
CLevel 16 0 0 6.00 8.05
Plush 4 0 213.79 1.03 1.11

Table 3: The space overhead of FPTable cache

MainSeg/CurSeg 64 32 16 8
Naive 9 MB 18 MB 36 MB 73 MB

Record Point Based 2.68 MB 5.36 MB 10.8 MB 22 MB

strategy similar to SepHash, resulting in a lower total number of
entries and lower space overhead.

Table 3 shows the FPTable cache space of different MainSegment
sizes. Results show that the record point based scheme can save up
to 67% space compared to caching the FPTable directly. Even using
a small MainSegment will not cause excessive cache consumption.

5.5 In-Depth Analysis
To analyze the performance of SepHash and verify its optimization
design, we decompose the performance gap between RACE and
SepHash by applying SepHash’s key techniques one by one. Figure
19 describes the evaluation results for insert and search operations.

5.5.1 Write optimization. In Figure 19(a), Base represents the basic
version of SepHash, including the use of a dual-level structure,
append-write policies, and offset-based sliding windows. +resize-
op entry represents adopting the resize-optimized entry structure
with depth information and empty status on top of the Base scheme.
+zero-wait write indicates that the coroutine-optimized RDMA
WRITE interface is further applied. The Base scheme uses segment
merge and split to transfer the entries in the resize operation as a
batch, better matching the high bandwidth access granularity of
RDMA. As a result, SepHash allowsmore simultaneouswrites under
high concurrency conditions. With 128 client sides, SepHash gains a
1.6× throughput improvement over RACE. Resize-optimized entry
structure alleviates the huge read/write amplification caused by
reading KV and emptying entries during resize, further improving
performance by 2× compared to the Base solution. The coroutine-
optimized RDMA WRITE interface conceals the additional update
operations caused by the separate segment structure and ultimately
obtains a 3.3× performance improvement over RACE.

5.5.2 Read optimization. In Figure 19(b), Base refers to the scheme
of directly scanning the entire CurSegment and MainSegment.
+FPTable means enabling FPTable for sorted MainSegment and
maintaining the corresponding cache on the client side. +BitMap
means adding fp bitmap as a filter for CurSegment. The Base scheme
performs poorly due to the large size of CurSegment and MainSeg-
ment. Reading the entire CurSegment and MainSegment consumes
much bandwidth and cannot scale with the number of threads. FPT-
able reduces access granularity to the MainSegment to an entry

1100

1 2 4 8 16 32 64 128
Number of clients

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

op
s)

RACE
Base
+resize-op entry
+zero-wait write

1 2 4 8 16 32 64 128
Number of Threads

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

op
s)

RACE
Base
+FpTable
+BitMap

Figure 19: In-depth analysis.

array of only 1/256 of the entire segment, resulting in a 22× in-
crease in read throughput over the Base solution. Fp bitmap avoids
accessing a KB-sized CurSegment for each read. In most cases,
CurSegment does not contain the target key, and unnecessary ac-
cess can be avoided by reading 1 bit in the bitmap. Using fp bitmap
further improves the read performance of SepHash by 2×, which is
close to the read performance of RACE.

5.6 Sensitivity Analysis
We test the impact of critical parameters on SepHash, including
segment size, the number of memory nodes, and variable KV size.

5.6.1 Segment size. The size of CurSegment and MainSegment de-
termines the frequency of segment merge and split and the number
of entries accessed in each operation. We test the impact of different
CurSegment and MainSegment sizes on read/write performance.

CurSegment size. Figure 20(a) shows how SepHash perfor-
mance varies with CurSegment size from 128 bytes to 2 KB. In
general, smaller CurSegments improve insert performance. Be-
cause MainSegments decrease synchronously with CurSegments,
the overhead of reading CurSegment and MainSegments during
merging and splitting is also reduced. In addition, each insert oper-
ation accesses smaller CurSegments, reducing read amplification.
In reducing CurSegments from 2 KB to 256 bytes, SepHash’s insert
throughput achieves a 2× performance improvement. Too small
CurSegment, however, can lead to frequent merge and split opera-
tions, declining the concurrent scalability of indexes. When using a
CurSegment of 128 bytes, SepHash’s insert performance decreases
compared to 256 bytes. SepHash’s search performance decreases as
CurSegment decreases. Because smaller CurSegment reduces the
MainSegment proportionally, thus increasing the overall depth of
the SepHash. As the number of CurSegments increases, more read
operations will hit CurSegment, and additional RDMA access will
significantly degrade search performance.

MainSegment size.We fix CurSegment to 1 KB and MainSeg-
ment size varies from 8 KB to 64 KB. As shown in Figure 20(b),
insert performance gradually improves as the MainSegment size
decreases from 32 KB to 8 KB. Because the smaller MainSegment re-
duces the read amplification caused by accessing the MainSegment
during merge and split. On the other hand, a 64 KB MainSegment
achieves better write performance because it reduces the frequency
of split. Increasing theMainSegment size can improve search perfor-
mance. Because larger MainSegments will hit more search accesses,
shortening access paths compared to search CurSegments.

128B 256B 512B 1KB 2KB0

5

10

15

20

In
se

rt
Th

ro
ug

hp
ut

(M
op

s)

(a) Impact of CurSegment Size
8KB 16KB 32KB 64KB0

2

4

6

8

10

12

In
se

rt
Th

ro
ug

hp
ut

(M
op

s)

(b) Impact of MainSegment Size
0

20

40

60

80

Se
ar

ch
 T

hr
ou

gh
pu

t(M
op

s)

0

20

40

60

80

Se
ar

ch
 T

hr
ou

gh
pu

t(M
op

s)

Insert Search

Figure 20: Impact of segment size.

5.6.2 Number of memory node. We test the impact of the number
of memory nodes on index performance. The rest of the index is
evenly distributed across all memory nodes except the directory.
CLevel is incompatible with multi-memory nodes because each
level requires large contiguous memory. We test the throughput of
inserting and searching 100 million KVs using different numbers
of memory nodes. As shown in Figure 21, test results show that
the insert performance of SepHash scales well with memory nodes.
For RACE and Plush, adding a memory node can improve their
insertion throughput while adding more memory nodes leads to
a gradual decline in performance. The read performance of RACE
and SepHash also increases first and then decreases with memory
nodes. Plush’s search performance continues to increase slightly.

Analysis. For indexes limited by the processing power of the
memory NIC, adding memory nodes can increase performance to
some extent. When the NIC processing power is sufficient, increas-
ing the memory node can lead to a decrease in index performance
due to the increase in RDMA connections [14, 29, 46, 60]. We intro-
duce an Array comparison to illustrate this problem. Array main-
tains the array length through a lock and inserts data by modifying
the array length exclusively and inserting KV pointers. For insert,
Array clients have a lot of competition for global locking. Due to the
low bandwidth of RDMA CAS operations, the concurrent locking of
128 clients quickly consumes NIC’s processing power. Therefore,
adding a memory node can improve Array’s insert performance.
When the lock competition is satisfied, the indexing performance
begins to decline. For search operations, since the Array only reads
the 8-byte KV pointer and the 48-byte KV, NIC processing power
is sufficient, resulting in search performance decreasing with the
memory node. Similarly, SepHash allows more concurrent opera-
tions through efficient resize operations and zero-wait writes, so
its insert performance scales well with memory nodes. The resize
operations of RACE and Plush block the insert of concurrent clients
and therefore scale limited with memory nodes. The search oper-
ations of SepHash and RACE are more complex than Array and
require more memory nodes to process requests.

5.6.3 Variable KV sizes. Figure 22 shows the SepHash performance
with different KV lengths. The insert performance is almost unaf-
fected by KV sizes, while search performance degrades when the
KV size exceeds 256 bytes, which is the PCIE packet size [31]. As
shown in Figure 3, the latency of a single RDMA operation rises
sharply after the access granularity exceeds 256 bytes, leading to
degraded read performance. The bottleneck in insert performance
is the RDMA CAS operation, which has a lower upper limit than

1101

2 4 6
Server Number

5

10

15

Th
ro

ug
hp

ut
 (M

op
s)

(a) Insert performance

2 4 6
Server Number

0

50

100

150

Th
ro

ug
hp

ut
 (M

op
s)

(b) Search performance

SepHash RACE Plush Array

Figure 21: Impact of the number of memory nodes.

RDMA WRITE/READ operations, so KV size has no significant im-
pact on performance. Therefore, reducing the use of CAS operations
in insert operations is important for designing write-optimized
indexes. We will explore further optimization in future work.

6 DISCUSSION
Apply to other platforms. SepHash aims to optimize hash resize
and concurrency control with trade-offs between RDMA bandwidth
and latency. We believe that SepHash can provide write perfor-
mance advantages on devices that prefer block read/write, making
it suitable for various scenarios from SSD-based persistent storage
to disaggregated memory based on CXL (Compute express link)
[11, 21]. Although CXL has lower latency, it uses the same PCIE
interface as RDMA, and we believe it still has a bandwidth and
latency trade-off similar to RDMA.

Other write-optimized indexes. dLSM [44], Sherman [43] are
also optimized for write-intensive workloads. However, there are
notable differences compared to SepHash. First, hash indexes pro-
vide high single-point query performance, while tree-based indexes
have poor search performance because they must consider range
query operations. Our test results show that SepHash achieves
over 20× higher read performance compared to dLSM. Therefore,
even under write-intensive conditions, the overall performance
of tree-based indexes is much lower than SepHash. Second, tree-
based indexes generally introduce huge client-side caches or buffers,
ranging from a few hundred MB to GB, significantly larger than
SepHash’s cache overhead of 3 to 20 MB. This can be unacceptable
for clients with tight memory resources on disaggregated memory.

Garbage collection. As in previous work [23, 65], we assume
that thememory pool will provide the interface for allocating and re-
claiming memory. SepHash’s memory space is mainly large chunks
of segments, which can be easily managed using techniques such
as epoch [16, 48] and reference counting [39]. Old segments that
are no longer accessible are reclaimed after merging and splitting.

7 RELATEDWORK
Indexes on disaggregated memory. RACE [65] is currently the
only hash index designed for disaggregatedmemory. RACE achieves
good read performance through shared overflow buckets and a
lock-free concurrency strategy. However, its entry-based resize
scheme and reread-based concurrency strategy seriously increase
resize overhead and write latency, making it inefficient for write-
intensive workloads. Sherman [43] and FG-Tree [61] implement

8 b
yte

s

16
 by

tes

32
 by

tes

64
 by

tes

12
8 b

yte
s

25
6 b

yte
s

51
2 b

yte
s

10
24

 by
tes

20
48

 by
tes

40
96

 by
tes

(a)Insert performance

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

op
s)

Key-Size Value-Size

8 b
yte

s

16
 by

tes

32
 by

tes

64
 by

tes

12
8 b

yte
s

25
6 b

yte
s

51
2 b

yte
s

10
24

 by
tes

20
48

 by
tes

40
96

 by
tes

(b)Search performance

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

op
s)

Figure 22: SepHash performance with different KV sizes.

distributed B+Tree indexes based on disaggregated memory. FG-
Tree distributes B + Tree nodes in different ways and tests their
performance. Sherman uses hierarchical locking stored on RDMA
NIC memory to optimize concurrent access. dLSM [44] implements
LSM-Tree based on disaggregated memory, achieving high write
performance compared to B+Tree. ROLEX [23] accelerates access to
remote data by caching learned indexes on the client side. SMART
[26] finds that the radix tree is a better ordered index for disaggre-
gated memory, providing smaller read and write amplification. By
using fine-grained locks and merging accesses to remote memory,
SMART improves significantly over B+Tree-based indexes.

Write optimized hash index. Level Hash[64] contains two
levels of hash tables: a top level and a bottom level. The top level is
twice the size of the bottom level. Each resize operationmigrates the
data at the bottom level to a new hash table four times its size, thus
reducing the amount of data that needs to be transferred for each
resize. CLevel[9] further allows multiple hash table levels to coexist
and uses a background resize thread to continuously transfer data
from the bottom to the top level. Plush [41] combines extendible
hash with LSM-Tree to divide resize operations into small data
flows between levels. Dual-Stage index [55] divides the index into
dynamic and static stages. When data accumulated in the dynamic
stage reaches the upper limit, it is merged into the static phase.

8 CONCLUSION
In this study, we propose SepHash, a write-optimized hash index for
disaggregated memory. By designing a dual-level separate segment
structure and RTT-reduced concurrency control strategy, SepHash
eliminates the huge bandwidth consumption in the index resize
operation and achieves extremely low write latency. In addition,
SepHash designs an FPTable cache and fp filter to improve read per-
formance. Evaluations indicate that SepHash outperforms existing
solutions in write-intensive workloads with lower space overhead.

ACKNOWLEDGMENTS
This work was sponsored by the National Natural Science Founda-
tion of China under Grant No.62072196, the National Key Research
and Development Program of China under Grant No.2023YFB45027-
01, the Key Research and Development Program of Guangdong
Province under Grant No. 2021B0101400003, the Creative Research
Group Project of NSFC No.61821003.

1102

REFERENCES
[1] 2023. Memcached-a distributed memory object caching system. https://

memcached.org/.
[2] Paulo Sérgio Almeida. 2023. A Case for Partitioned Bloom Filters. IEEE Trans.

Computers 72, 6 (2023), 1681–1691. https://doi.org/10.1109/TC.2022.3218995
[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload analysis of a large-scale key-value store. In ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement and Model-
ing of Computer Systems, SIGMETRICS ’12, London, United Kingdom, June 11-15,
2012, Peter G. Harrison, Martin F. Arlitt, and Giuliano Casale (Eds.). ACM, 53–64.
https://doi.org/10.1145/2254756.2254766

[4] Alex D. Breslow and Nuwan Jayasena. 2020. Morton filters: fast, compressed
sparse cuckoo filters. VLDB J. 29, 2-3 (2020), 731–754. https://doi.org/10.1007/
s00778-019-00561-0

[5] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,
Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,
Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,
Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB
Serverless: A Cloud Native Database for Disaggregated Data Centers. In SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June
20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.).
ACM, 2477–2489. https://doi.org/10.1145/3448016.3457560

[6] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. 2020. Characteriz-
ing, Modeling, and Benchmarking RocksDB Key-ValueWorkloads at Facebook. In
18th USENIX Conference on File and Storage Technologies, FAST 2020, Santa Clara,
CA, USA, February 24-27, 2020, Sam H. Noh and Brent Welch (Eds.). USENIX As-
sociation, 209–223. https://www.usenix.org/conference/fast20/presentation/cao-
zhichao

[7] Xinyi Chen, Liangcheng Yu, Vincent Liu, and Qizhen Zhang. 2023. Cowbird:
Freeing CPUs to Compute by Offloading the Disaggregation of Memory. In
Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM 2023, New
York, NY, USA, 10-14 September 2023, Henning Schulzrinne, Vishal Misra, Eddie
Kohler, and David A. Maltz (Eds.). ACM, 1060–1073. https://doi.org/10.1145/
3603269.3604833

[8] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, YangWang, and Jiwu Shu. 2020.
FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent
Memory. In ASPLOS ’20: Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, March 16-20, 2020, James R. Larus,
Luis Ceze, and Karin Strauss (Eds.). ACM, 1077–1091. https://doi.org/10.1145/
3373376.3378515

[9] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo. 2020. Lock-free Concurrent
Level Hashing for Persistent Memory. In 2020 USENIX Annual Technical Con-
ference, USENIX ATC 2020, July 15-17, 2020, Ada Gavrilovska and Erez Zadok
(Eds.). USENIX Association, 799–812. https://www.usenix.org/conference/atc20/
presentation/chen

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10-11, 2010, Joseph M. Hellerstein, Surajit Chaudhuri, and Mendel
Rosenblum (Eds.). ACM, 143–154. https://doi.org/10.1145/1807128.1807152

[11] SM CXL Consortium et al. 2022. Compute express link: The breakthrough
CPU-to-device interconnect. Retrieved February 2 (2022), 2023.

[12] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal
Navigable Key-Value Store. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May
14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan
Suciu (Eds.). ACM, 79–94. https://doi.org/10.1145/3035918.3064054

[13] Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for LSM-
Tree. In SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and
Divesh Srivastava (Eds.). ACM, 365–378. https://doi.org/10.1145/3448016.3457273

[14] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. 2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2014, Seat-
tle, WA, USA, April 2-4, 2014, Ratul Mahajan and Ion Stoica (Eds.). USENIX
Association, 401–414. https://www.usenix.org/conference/nsdi14/technical-
sessions/dragojevi%C4%87

[15] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, João Carreira, Sangjin
Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network
Requirements for Resource Disaggregation. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX
Association, 249–264. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gao

[16] Thomas E Hart, Paul E McKenney, Angela Demke Brown, and Jonathan Walpole.
2007. Performance of memory reclamation for lockless synchronization. J.
Parallel and Distrib. Comput. 67, 12 (2007), 1270–1285.

[17] IBM. 2018. Advancing Cloud with Memory Disaggregation. https://www.ibm.
com/blogs/research/2018/01/advancing-cloud-memory-disaggregation/.

[18] Young Bae Jun, Sun Shin Ahn, and Hee Sik Kim. 2001. Quotient structures of
some implicative algebras via fuzzy implicative filters. Fuzzy Sets Syst. 121, 2
(2001), 325–332. https://doi.org/10.1016/S0165-0114(00)00008-7

[19] Per-Åke Larson. 1988. Dynamic Hash Tables. Commun. ACM 31, 4 (1988),
446–457. https://doi.org/10.1145/42404.42410

[20] Se Kwon Lee, Soujanya Ponnapalli, Sharad Singhal, Marcos K. Aguilera, Kimberly
Keeton, and Vijay Chidambaram. 2022. DINOMO: An Elastic, Scalable, High-
Performance Key-Value Store for Disaggregated Persistent Memory. Proc. VLDB
Endow. 15, 13 (2022), 4023–4037. https://doi.org/10.14778/3565838.3565854

[21] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa Hsu, Daniel Ernst, Pantea
Zardoshti, Monish Shah, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and
Ricardo Bianchini. 2022. First-generation Memory Disaggregation for Cloud
Platforms. CoRR abs/2203.00241 (2022). https://doi.org/10.48550/arXiv.2203.
00241 arXiv:2203.00241

[22] Haifeng Li, Ke Liu, Ting Liang, Zuojun Li, Tianyue Lu, Hui Yuan, Yinben Xia,
Yungang Bao, Mingyu Chen, and Yizhou Shan. 2023. HoPP: Hardware-Software
Co-Designed Page Prefetching for Disaggregated Memory. In IEEE International
Symposium on High-Performance Computer Architecture, HPCA 2023, Montreal,
QC, Canada, February 25 - March 1, 2023. IEEE, 1168–1181. https://doi.org/10.
1109/HPCA56546.2023.10070986

[23] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng. 2023. ROLEX:
A Scalable RDMA-oriented Learned Key-Value Store for Disaggregated Mem-
ory Systems. In 21st USENIX Conference on File and Storage Technologies, FAST
2023, Santa Clara, CA, USA, February 21-23, 2023, Ashvin Goel and Dalit Naor
(Eds.). USENIX Association, 99–114. https://www.usenix.org/conference/fast23/
presentation/li-pengfei

[24] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada:
Dependably Fast Multi-Core In-Memory Transactions. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada
Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 21–35. https://doi.org/10.1145/
3035918.3064015

[25] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable
Hashing on Persistent Memory. CoRR abs/2003.07302 (2020). arXiv:2003.07302
https://arxiv.org/abs/2003.07302

[26] Xuchuan Luo, Pengfei Zuo, Jiacheng Shen, Jiazhen Gu, Xin Wang, Michael R.
Lyu, and Yangfan Zhou. 2023. SMART: A High-Performance Adaptive Radix Tree
for Disaggregated Memory. In 17th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2023, Boston, MA, USA, July 10-12, 2023, Roxana
Geambasu and Ed Nightingale (Eds.). USENIX Association, 553–571. https:
//www.usenix.org/conference/osdi23/presentation/luo

[27] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan, and Jiwu Shu. 2022. InfiniFS:
An Efficient Metadata Service for Large-Scale Distributed Filesystems. In 20th
USENIX Conference on File and Storage Technologies, FAST 2022, Santa Clara, CA,
USA, February 22-24, 2022, Dean Hildebrand and Donald E. Porter (Eds.). USENIX
Association, 313–328. https://www.usenix.org/conference/fast22/presentation/lv

[28] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In 2013 USENIX Annual
Technical Conference, San Jose, CA, USA, June 26-28, 2013, Andrew Birrell and
Emin Gün Sirer (Eds.). USENIX Association, 103–114. https://www.usenix.org/
conference/atc13/technical-sessions/presentation/mitchell

[29] Sumit Kumar Monga, Sanidhya Kashyap, and Changwoo Min. 2021. Birds of
a Feather Flock Together: Scaling RDMA RPCs with Flock. In SOSP ’21: ACM
SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021, Robbert van Renesse and Nickolai Zeldovich (Eds.).
ACM, 212–227. https://doi.org/10.1145/3477132.3483576

[30] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beomseok Nam.
2019. Write-Optimized Dynamic Hashing for Persistent Memory. In 17th USENIX
Conference on File and Storage Technologies, FAST 2019, Boston, MA, February
25-28, 2019, Arif Merchant and HakimWeatherspoon (Eds.). USENIX Association,
31–44. https://www.usenix.org/conference/fast19/presentation/nam

[31] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. 2018. Understanding PCIe performance
for end host networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 2018, Budapest, Hungary,
August 20-25, 2018, Sergey Gorinsky and János Tapolcai (Eds.). ACM, 327–341.
https://doi.org/10.1145/3230543.3230560

[32] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351–385.

[33] Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-
Colton, and Rob Johnson. 2021. Vector Quotient Filters: Overcoming the
Time/Space Trade-Off in Filter Design. In SIGMOD ’21: International Confer-
ence on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang
Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1386–1399.
https://doi.org/10.1145/3448016.3452841

[34] Waleed Reda, Marco Canini, Dejan Kostic, and Simon Peter. 2021. RDMA is
Turing complete, we just did not know it yet! CoRR abs/2103.13351 (2021).

1103

https://memcached.org/
https://memcached.org/
https://doi.org/10.1109/TC.2022.3218995
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1007/s00778-019-00561-0
https://doi.org/10.1007/s00778-019-00561-0
https://doi.org/10.1145/3448016.3457560
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://doi.org/10.1145/3603269.3604833
https://doi.org/10.1145/3603269.3604833
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3373376.3378515
https://www.usenix.org/conference/atc20/presentation/chen
https://www.usenix.org/conference/atc20/presentation/chen
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3448016.3457273
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi%C4%87
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://www.ibm.com/blogs/research/2018/01/advancing-cloud-memory-disaggregation/
https://www.ibm.com/blogs/research/2018/01/advancing-cloud-memory-disaggregation/
https://doi.org/10.1016/S0165-0114(00)00008-7
https://doi.org/10.1145/42404.42410
https://doi.org/10.14778/3565838.3565854
https://doi.org/10.48550/arXiv.2203.00241
https://doi.org/10.48550/arXiv.2203.00241
https://doi.org/10.1109/HPCA56546.2023.10070986
https://doi.org/10.1109/HPCA56546.2023.10070986
https://www.usenix.org/conference/fast23/presentation/li-pengfei
https://www.usenix.org/conference/fast23/presentation/li-pengfei
https://doi.org/10.1145/3035918.3064015
https://doi.org/10.1145/3035918.3064015
https://arxiv.org/abs/2003.07302
https://www.usenix.org/conference/osdi23/presentation/luo
https://www.usenix.org/conference/osdi23/presentation/luo
https://www.usenix.org/conference/fast22/presentation/lv
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://doi.org/10.1145/3477132.3483576
https://www.usenix.org/conference/fast19/presentation/nam
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3448016.3452841

arXiv:2103.13351 https://arxiv.org/abs/2103.13351
[35] Pedro Reviriego, Alfonso Sánchez-Macián, Stefan Walzer, Elena Merino Gómez,

Shanshan Liu, and Fabrizio Lombardi. 2023. On the Privacy of Counting Bloom
Filters. IEEE Trans. Dependable Secur. Comput. 20, 2 (2023), 1488–1499. https:
//doi.org/10.1109/TDSC.2022.3158469

[36] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A
Disseminated, Distributed OS for Hardware Resource Disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018,
Carlsbad, CA, USA, October 8-10, 2018, Andrea C. Arpaci-Dusseau and Geoff
Voelker (Eds.). USENIX Association, 69–87. https://www.usenix.org/conference/
osdi18/presentation/shan

[37] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang, Yuxin Su, Yangfan Zhou,
and Michael R. Lyu. 2023. FUSEE: A Fully Memory-Disaggregated Key-Value
Store. In 21st USENIX Conference on File and Storage Technologies, FAST 2023, Santa
Clara, CA, USA, February 21-23, 2023, Ashvin Goel and Dalit Naor (Eds.). USENIX
Association, 81–98. https://www.usenix.org/conference/fast23/presentation/
shen

[38] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee, Han
Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019. Shoal: A Network
Architecture for Disaggregated Racks. In 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2019, Boston, MA, February 26-28,
2019, Jay R. Lorch and Minlan Yu (Eds.). USENIX Association, 255–270. https:
//www.usenix.org/conference/nsdi19/presentation/shrivastav

[39] Håkan Sundell. 2005. Wait-free reference counting and memory management.
In 19th IEEE International Parallel and Distributed Processing Symposium. IEEE,
10–pp.

[40] Jérôme Vienne, Jitong Chen, Md. Wasi-ur-Rahman, Nusrat S. Islam, Hari Sub-
ramoni, and Dhabaleswar K. Panda. 2012. Performance Analysis and Eval-
uation of InfiniBand FDR and 40GigE RoCE on HPC and Cloud Computing
Systems. In IEEE 20th Annual Symposium on High-Performance Interconnects,
HOTI 2012, Santa Clara, CA, USA, August 22-24, 2012. IEEE Computer Society,
48–55. https://doi.org/10.1109/HOTI.2012.19

[41] Lukas Vogel, Alexander van Renen, Satoshi Imamura, Jana Giceva, Thomas
Neumann, and Alfons Kemper. 2022. Plush: A Write-Optimized Persistent Log-
Structured Hash-Table. Proc. VLDB Endow. 15, 11 (2022), 2895–2907. https:
//www.vldb.org/pvldb/vol15/p2895-vogel.pdf

[42] Daniel G. Waddington, Clem Dickey, Luna Xu, Travis Janssen, Jantz Tran, and
Kshitij A. Doshi. 2020. Evaluating Intel 3D-Xpoint NVDIMM Persistent Memory
in the Context of a Key-Value Store. In IEEE International Symposium on Perfor-
mance Analysis of Systems and Software, ISPASS 2020, Boston, MA, USA, August
23-25, 2020. IEEE, 202–211. https://doi.org/10.1109/ISPASS48437.2020.00035

[43] Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-Optimized Dis-
tributed B+Tree Index on Disaggregated Memory. In SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1033–1048.
https://doi.org/10.1145/3514221.3517824

[44] Ruihong Wang, Jianguo Wang, Prishita Kadam, M. Tamer Özsu, and Walid G.
Aref. 2023. dLSM: An LSM-Based Index for Memory Disaggregation. In 39th
IEEE International Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA,
April 3-7, 2023. IEEE, 2835–2849. https://doi.org/10.1109/ICDE55515.2023.00217

[45] Tinggang Wang, Shuo Yang, Hideaki Kimura, Garret Swart, and Spyros Blanas.
2020. Efficient usage of one-sided rdma for linear probing. In Eleventh Interna-
tional Workshop on Accelerating Analytics and Data Management Systems Using
Modern Processor and Storage Architectures (AMDS’20).

[46] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
in-memory transaction processing using RDMA and HTM. In Proceedings of
the 25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA,
USA, October 4-7, 2015, Ethan L. Miller and Steven Hand (Eds.). ACM, 87–104.
https://doi.org/10.1145/2815400.2815419

[47] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and Binyu Zang. 2021. Char-
acterizing and Optimizing Remote Persistent Memory with RDMA and NVM.
In 2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-16,
2021, Irina Calciu and Geoff Kuenning (Eds.). USENIX Association, 523–536.
https://www.usenix.org/conference/atc21/presentation/wei

[48] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and Michael L Scott.
2018. Interval-based memory reclamation. ACM SIGPLAN Notices 53, 1 (2018),
1–13.

[49] H.-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg,
Bipin Rajendran, Mehdi Asheghi, and Kenneth E. Goodson. 2010. Phase Change
Memory. Proc. IEEE 98, 12 (2010), 2201–2227. https://doi.org/10.1109/JPROC.
2010.2070050

[50] Yahoo. 2015. YCSB-C. https://github.com/basicthinker/YCSB-C.
[51] Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhiwen Liu, Changsheng

Xie, and Xubin He. 2019. GearDB: A GC-free Key-Value Store on HM-SMR

Drives with Gear Compaction. In 17th USENIX Conference on File and Storage
Technologies, FAST 2019, Boston, MA, February 25-28, 2019, Arif Merchant and
HakimWeatherspoon (Eds.). USENIX Association, 159–171. https://www.usenix.
org/conference/fast19/presentation/yao

[52] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM.
In 2020 USENIX Annual Technical Conference, USENIX ATC 2020, July 15-17,
2020, Ada Gavrilovska and Erez Zadok (Eds.). USENIX Association, 17–31.
https://www.usenix.org/conference/atc20/presentation/yao

[53] Wonsup Yoon, Jisu Ok, Jinyoung Oh, SueMoon, and Youngjin Kwon. 2023. DiLOS:
Do Not Trade Compatibility for Performance in Memory Disaggregation. In
Proceedings of the Eighteenth European Conference on Computer Systems, EuroSys
2023, Rome, Italy, May 8-12, 2023, Giuseppe Antonio Di Luna, Leonardo Querzoni,
Alexandra Fedorova, and Dushyanth Narayanan (Eds.). ACM, 266–282. https:
//doi.org/10.1145/3552326.3567488

[54] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. 2016. The End
of a Myth: Distributed Transactions Can Scale. CoRR abs/1607.00655 (2016).
arXiv:1607.00655 http://arxiv.org/abs/1607.00655

[55] Huanchen Zhang, David G Andersen, Andrew Pavlo, Michael Kaminsky, Lin
Ma, and Rui Shen. 2016. Reducing the storage overhead of main-memory OLTP
databases with hybrid indexes. In Proceedings of the 2016 International Conference
on Management of Data. 1567–1581.

[56] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast One-sided
RDMA-based Distributed Transactions for Disaggregated Persistent Memory.
In 20th USENIX Conference on File and Storage Technologies, FAST 2022, Santa
Clara, CA, USA, February 22-24, 2022, Dean Hildebrand and Donald E. Porter
(Eds.). USENIX Association, 51–68. https://www.usenix.org/conference/fast22/
presentation/zhang-ming

[57] Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong, Sebastian
Angel, Ang Chen, Vincent Liu, and Boon Thau Loo. 2022. Optimizing Data-
intensive Systems in Disaggregated Data Centers with TELEPORT. In SIGMOD
’22: International Conference on Management of Data, Philadelphia, PA, USA, June
12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM,
1345–1359. https://doi.org/10.1145/3514221.3517856

[58] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Jimmy Yang, Wei Cao, Feifei Li, Bo
Wang, Jing Fang, Yuhui Wang, Jingze Huo, and Chao Bi. 2021. Towards Cost-
Effective and Elastic Cloud Database Deployment via Memory Disaggregation.
Proc. VLDB Endow. 14, 10 (2021), 1900–1912. https://doi.org/10.14778/3467861.
3467877

[59] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM 2015, London, United Kingdom, August 17-21, 2015,
Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra Padhye (Eds.). ACM, 523–536.
https://doi.org/10.1145/2785956.2787484

[60] Tobias Ziegler, Jacob Nelson-Slivon, Viktor Leis, and Carsten Binnig. 2023. Design
Guidelines for Correct, Efficient, and Scalable Synchronization using One-Sided
RDMA. Proc. ACM Manag. Data 1, 2 (2023), 131:1–131:26. https://doi.org/10.
1145/3589276

[61] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. Designing Distributed Tree-based Index Structures for Fast
RDMA-capable Networks. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska (Eds.). ACM, 741–758. https://doi.org/10.
1145/3299869.3300081

[62] Xiaomin Zou, Fang Wang, Dan Feng, Janxi Chen, Chaojie Liu, Fan Li, and Nan
Su. 2020. HMEH: write-optimal extendible hashing for hybrid DRAM-NVM
memory. Mass Storage Systems and Technologies (2020).

[63] Pengfei Zuo and Yu Hua. 2018. A Write-Friendly and Cache-Optimized Hashing
Scheme for Non-Volatile Memory Systems. IEEE Trans. Parallel Distributed Syst.
29, 5 (2018), 985–998. https://doi.org/10.1109/TPDS.2017.2782251

[64] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and High-Performance
Hashing Index Scheme for Persistent Memory. In 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX
Association, 461–476. https://www.usenix.org/conference/osdi18/presentation/
zuo

[65] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua. 2021. One-
sided RDMA-Conscious Extendible Hashing for Disaggregated Memory.. In
USENIX Annual Technical Conference. 15–29.

1104

https://arxiv.org/abs/2103.13351
https://doi.org/10.1109/TDSC.2022.3158469
https://doi.org/10.1109/TDSC.2022.3158469
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.usenix.org/conference/fast23/presentation/shen
https://www.usenix.org/conference/fast23/presentation/shen
https://www.usenix.org/conference/nsdi19/presentation/shrivastav
https://www.usenix.org/conference/nsdi19/presentation/shrivastav
https://doi.org/10.1109/HOTI.2012.19
https://www.vldb.org/pvldb/vol15/p2895-vogel.pdf
https://www.vldb.org/pvldb/vol15/p2895-vogel.pdf
https://doi.org/10.1109/ISPASS48437.2020.00035
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.1109/ICDE55515.2023.00217
https://doi.org/10.1145/2815400.2815419
https://www.usenix.org/conference/atc21/presentation/wei
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/JPROC.2010.2070050
https://github.com/basicthinker/YCSB-C
https://www.usenix.org/conference/fast19/presentation/yao
https://www.usenix.org/conference/fast19/presentation/yao
https://www.usenix.org/conference/atc20/presentation/yao
https://doi.org/10.1145/3552326.3567488
https://doi.org/10.1145/3552326.3567488
http://arxiv.org/abs/1607.00655
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://doi.org/10.1145/3514221.3517856
https://doi.org/10.14778/3467861.3467877
https://doi.org/10.14778/3467861.3467877
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/3589276
https://doi.org/10.1145/3589276
https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1109/TPDS.2017.2782251
https://www.usenix.org/conference/osdi18/presentation/zuo
https://www.usenix.org/conference/osdi18/presentation/zuo

	Abstract
	1 Introduction
	2 Background
	2.1 Disaggregated Memory
	2.2 Write Optimized Hash

	3 Motivation
	3.1 Low Insert Performance of RACE
	3.2 Limitations of Leveling Hashes

	4 SepHash Design
	4.1 Overview
	4.2 The Index Structure of SepHash
	4.3 RTT-reduced Concurrency Control
	4.4 Filter and Cache

	5 Evaluation
	5.1 Experimental Setup
	5.2 Micro-Benchmark
	5.3 YCSB Benchmark
	5.4 Space Overhead Analysis
	5.5 In-Depth Analysis
	5.6 Sensitivity Analysis

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

