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ABSTRACT
Spatio-Temporal Graph Neural Network (STGNN) has been used
as a common workhorse for traffic forecasting. However, most of
them require prohibitive quadratic computational complexity to
capture long-range spatio-temporal dependencies, thus hindering
their applications to long historical sequences on large-scale road
networks in the real-world. To this end, in this paper, we propose
BigST, a linear complexity spatio-temporal graph neural network,
to efficiently exploit long-range spatio-temporal dependencies for
large-scale traffic forecasting. Specifically, we first propose a scal-
able long sequence feature extractor to encode node-wise long-
range inputs (e.g., thousands of time-steps in the past week) into
low-dimensional representations encompassing rich temporal dy-
namics. The resulting representations can be pre-computed and
hence significantly reduce the computational overhead for predic-
tion. Then, we build a linearized global spatial convolution network
to adaptively distill time-varying graph structures, which enables
fast runtime message passing along spatial dimensions in linear
complexity. We empirically evaluate our model on two large-scale
real-world traffic datasets. Extensive experiments demonstrate that
BigST can scale to road networks with up to one hundred thou-
sand nodes, while significantly improving prediction accuracy and
efficiency compared to state-of-the-art traffic forecasting models.
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1 INTRODUCTION
Traffic forecasting has emerged as an indispensable component of
modern intelligent transportation systems with the goal of predict-
ing future traffic dynamics (e.g., flow, speed) based on historical
observations [14, 22]. Accurate and timely traffic forecasting plays a
significant role in congestionmanagement and route guidance. In re-
cent years, Spatio-Temporal Graph Neural Networks (STGNNs) [15]
have shown great promise in learning spatio-temporal dependen-
cies by incorporating the latent graph structure of the road network
as an inductive bias. However, existing STGNNs still have two sig-
nificant limitations when solving the traffic forecasting problem.

First, future traffic states yield complicated temporal dependen-
cies on long-term historical observations [8, 37], e.g., recurring
patterns, and taking them into account is beneficial for accurate
forecasting. Nevertheless, the computational and memory cost of
STGNNs grows explosively as the input sequence length increases,
especially when dealing with large-scale road networks. To reduce
computational overhead, most existing models [1, 19, 41] only rely
on the historical information within a short time window (e.g., the
past one hour) to make predictions, which greatly limits their per-
formance. Some studies attempt to model long-term correlations
using hand-crafted features [12, 13], but they are heavily depend
on empirical assumptions, such as daily or weekly periodicity, to
capture simple periodic effects. These methods are unable to model
complex temporal dependencies beyond simplified assumptions.

Another essential problem inherent in STGNNs is the topology
structure of the target system, which directly decides the effec-
tiveness and efficiency of spatial dependency modeling [21]. To
define the graph topology, early studies simply compute the pair-
wise similarity between nodes using some predefined metrics, such
as road network distance [21, 44]. However, in real-world scenar-
ios, the prior topological information of the target traffic system is
usually incomplete, noisy, and may be biased towards a particular
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task [1, 41]. A more effective solution is to learn a latent graph
structure end-to-end under the supervision of downstream fore-
casting tasks. For example, GWNET [41] learns a dense adjacency
matrix A = 𝜎 (E1E⊤2 ) to capture implicit node interactions through
trainable node embedding matrices E1 and E2. Such methods re-
duce reliance on prior knowledge and are capable of identifying the
optimal topology to facilitate learning better node representations,
thus obtaining state-of-the-art performance. However, learning
graph structures requires O(𝑁 2) computational complexity, where
𝑁 denote the node number, which hinders their application to
large-scale road networks.

This paper aims to improve the effectiveness and scalability of
STGNNs in learning spatio-temporal dependencies on long histori-
cal sequences and large-scale road networks. However, two major
challenges need to be addressed in achieving this goal: (1) How to
efficiently and effectively exploit knowledge over long-term historical
time series? With the increase of input sequence length, the time
and space complexity grows dramatically and the model can be
easily overwhelmed by noises, which poses a challenge to optimize
both the model’s efficiency and effectiveness. (2) How to reduce the
expensive quadratic complexity in learning latent graph structures?
As previously mentioned, existing STGNNs rely on an adaptive
graph to capture complicated spatial dependencies between arbi-
trary nodes in road networks. However, learning a latent graph
structure requires prohibitive quadratic computational complexity,
which is challenging to scale to huge road networks.

To tackle the above challenges, we propose BigST, a linear com-
plexity spatio-temporal graph neural network for large-scale traffic
forecasting. BigST decouples long historical sequence modeling
and traffic forecasting, treating the former as a pre-processing step.
In the pre-processing step, we develop a scalable Long Sequence
Feature Extractor (LSFE), including (1) a pre-trained context-aware
linearized Transformer that encodes long-range inputs into low-
dimensional representations containing rich temporal dynamics,
and (2) a training-free periodic feature sampling module that explic-
itly captures regular periodic patterns. Note that the output of LSFE
can be pre-processed to enable efficient utilization, thus addressing
the first challenge. Based on the pre-processed features and the
latest traffic observations, we build a Linearized Global Spatial Con-
volution Network (LGSCN) for prediction. The LGSCN first captures
the time-varying graph structure of the road networks through
a patch-level dynamic graph learning block, and then performs
linear complexity message passing along the graph structure with
an efficient spatial convolution operator, which is able to scale to
large road networks.

To the best of our knowledge, BigST is one of the earliest at-
tempts to build an efficient STGNN architecture for large-scale
traffic forecasting. Our contributions are summarized as follows:

• We develop a long sequence feature extractor to provide pre-
processed long-term feature representations for efficient
utilization, which significantly reduces the computational
overhead caused by involving long historical sequence.

• We introduce a linearized global spatial convolution net-
work, which reduces the computational complexity to lin-
earity for both latent graph structure learning and spatial
message passing on large-scale road networks.

• Extensive experiments on two large-scale traffic datasets
demonstrate the effectiveness and efficiency of the pro-
posed model against state-of-the-art baselines. Notably, our
model can scale to road networks with up to 100 thousand
nodes, two orders of magnitude larger than traffic datasets
commonly used in existing literature.

2 PRELIMINARIES
In this section, we introduce some basic notations and formally
define the traffic forecasting problem.

Let X𝑡 = (x1𝑡 , x2𝑡 , · · · , x𝑁𝑡 ) ∈ R𝑁×𝐹 denotes the spatio-temporal
observations at time step 𝑡 , where 𝑁 is the number of nodes (e.g.,
traffic sensors, road segments), x𝑖𝑡 represents the 𝐹 -dimensional
time-varying traffic states (e.g., traffic flow, traffic speed) of node 𝑖 .
We use X𝑡 :𝑡+𝑇 to indicate the sequence of𝑇 observations measured
in the time interval (𝑡, 𝑡 +𝑇 ] for all the nodes. Likewise, we denote
U𝑡 as the external features (e.g., time of day, day of week) associated
to each node at time step 𝑡 . The graph structure information is rep-
resented by a, possibly time-evolving, weighted adjacency matrix
A𝑡 ∈ R𝑁×𝑁 . Specifically, the adjacency matrix can be derived using
either a predefined metric such as distance of nodes or adaptively
learned from data in an end-to-end manner. Let G𝑡 = ⟨X𝑡 ,U𝑡 ,A𝑡 ⟩
indicates the spatio-temporal graph signal at time step 𝑡 , we define
the problem as follows.

Traffic forecasting. Given a sequence of historical 𝑇 observa-
tions G𝑡0−𝑇+1:𝑡0 , the goal of traffic forecasting is to predict traffic
states for all the nodes over next 𝑇𝑓 time steps,

X̂𝑡0+1:𝑡0+𝑇𝑓 = 𝑓𝜃 (G𝑡0−𝑇+1:𝑡0 ) (1)

where X̂𝑡0+1:𝑡0+𝑇𝑓 = {X̂𝑡0+1, ..., X̂𝑡0+𝑇𝑓 } is the predicted traffic states
from time step 𝑡0 + 1 to 𝑡0 +𝑇𝑓 , 𝑓𝜃 (·) denotes the machine learning-
based forecasting model parameterized by 𝜃 . Notice that, we only
consider a fixed size set of nodes for simplicity.

3 METHODOLOGY
3.1 Model Pipeline
As shown in Figure 1, BigST decomposes the end-to-end STGNN
training into two stages: (1) pre-processing; (2) prediction and train-
ing. At pre-processing stage, we leverage a Long Sequence Feature
Extractor (LSFE) trained by generative pre-training strategy [30]
to efficiently pre-process the long historical traffic time series into
compact vector representations, which dramatically reduce the
heavy computations in prediction and training stage. At prediction
and training stage, we introduce a Linearized Global Spatial Convo-
lution Network (LGSCN), which consists of a Patch-level Dynamic
Graph Learning (PDGL) block and multiple stacked Linearized Spa-
tial Convolution (LSC) layers. The PDGL block first quantifies the
dynamic spatial dependencies by utilizing an attention-based scor-
ing neural network, and then constructs the graph structures based
on the derived attention scores. The LSC enables fast spatial mes-
sage passing along the learned graph structure by avoiding the
explicit computation of dense adjacency matrix, leading to linear
time and space complexity w.r.t. the number of input nodes.
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Figure 1: The model pipeline of BigST.

3.2 Long Sequence Feature Extractor
To effectively and efficiently extract knowledge from long tempo-
ral sequence inputs, we first introduce the Long Sequence Feature
Extractor (LSFE), which includes two modules: (1) a context-aware
linearized Transformer to model complicated interactions between
distant positions in time series with linear complexity, and (2) a
periodic feature sampling module to explicitly capture periodic
traffic patterns through hand-crafted features.

3.2.1 Context-aware linearized Transformer. The major chal-
lenge of modeling long sequence is to reduce signal traveling path
between distant positions in time series while maintaining low
complexity [48]. Recently Transformer [36] significantly shortens
the maximum length of signal traveling path to O(1), but suffers
from quadratic time and space complexity, thus restricting their
applicability in long temporal sequences. We address this issue
by employing a context-aware linearized Transformer, which is
described as follows.

Formally, given a sequence of historical traffic observations
x𝑖
𝑡0−𝑇𝑙 :𝑡0 =

{︂
x𝑖
𝑡0−𝑇𝑙 , x

𝑖
𝑡0−𝑇𝑙+1, . . . , x

𝑖
𝑡0

}︂
for node 𝑖 , where 𝑇𝑙 denotes

the size of time window, we aim to capture the dependencies among
different time steps. However, the semantics of a single time point is
much lower than that of a word in a sentence, which could degrade
the learning capability [29, 33]. To overcome this limitation, we
capture local context information that is not available in point-wise
values through a temporal convolution layer [45]. The convolution
operator at time step 𝑡 is defined as follows

x𝑖 ★ 𝑓 (𝑡) =
𝑆−1∑︂
𝑠=0

𝑓 (𝑠) · x𝑖𝑡−𝜔×𝑠 , (2)

where 𝜔 is the dilation factor, 𝑓 (·) is the filter kernel with size 𝑆 .
In practice, we can leverage a set of filters to extract rich context
features c𝑖𝑡 for each time step 𝑡 .

Afterward, we adopt multiple linearized Transformer blocks to
encode rich long-term temporal dynamics. Each block includes
a position embedding layer and a linearized self-attention layer.
Specifically, we first inject position encoding into c𝑖𝑡 to preserve
ordering information in the time series, denoted as h𝑖𝑡 = c𝑖𝑡 + p𝑡 ,
where p𝑡 represents a learnable temporal embedding for time step
𝑡 . Here we omit superscript 𝑖 for simplicity. We then project the
output h𝑡 into three types of vectors separately, defined as

q𝑡 = W𝑞h𝑡 , k𝑡 = W𝑘h𝑡 , v𝑡 = W𝑘h𝑡 , (3)

where W𝑞 , W𝑘 , and W𝑣 are learnable parameters. Following com-
mon terminology [36], we employ query, key, and value to denote
q𝑡 , k𝑡 , and v𝑡 , respectively. After obtaining queries, keys, and val-
ues, we use the self-attention mechanism to capture latent temporal
dependencies and enable information exchange between arbitrary
time steps 𝑡 and𝑚

h′𝑡 =
𝑡0∑︂

𝑚=𝑡0−𝑇𝑙

exp((q𝑡 )⊤k𝑚)∑︁𝑡0
𝑛=𝑡0−𝑇𝑙 exp((q𝑡 )

⊤k𝑛)
· v𝑚, (4)

where h′𝑡 is the output of self-attention at time step 𝑡 . Nevertheless,
such operation suffers from quadratic time and space complexity
(i.e., O(𝑇 2

𝑙
)) when dealing with long historical time series. To effi-

ciently capture long-range temporal dependencies while achieving
linear complexity, we further utilize the linearized self-attention,
which is described below.

Concretely, we define a Softmax kernel function 𝑘 (q𝑡 , k𝑚) =

exp((q𝑡 )⊤k𝑚). In general, any positive definite kernel function can
be approximated using a randomized feature map 𝜙 : R𝑑 → R𝑟+ with
unbiased estimation [31], defined as 𝑘 (q𝑡 , k𝑚) ≈ 𝜙 (q𝑡 )⊤𝜙 (k𝑚).
Similarly, we can borrow the idea of Performer [3] and leverage
Positive Random Features (PRFs) for Softmax kernel approximation
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exp((q𝑡 )⊤k𝑚) ≈ 𝜙 (q𝑡 )⊤𝜙 (k𝑚), where 𝜙 (x) is defined as

𝜙 (x) = 1
√
𝑟
[exp(w⊤

1 x −
∥x∥22
2 ), · · · , exp(w⊤

𝑟 x −
∥x∥22
2 )], (5)

where w𝑟 ∼ N(0, 𝐼𝑑 ). Given 𝜙 (q𝑡 ) and 𝜙 (k𝑚), equation 4 can be
estimated as follows

h′𝑡 =
𝜙 (q𝑡 )⊤

∑︁𝑡0
𝑚=𝑡0−𝑇𝑙 𝜙 (k𝑚) · v𝑚

𝜙 (q𝑡 )⊤
∑︁𝑡0
𝑛=𝑡0−𝑇𝑙 𝜙 (k𝑛)

, (6)

Note that a𝑡0 =
∑︁𝑡0
𝑚=𝑡0−𝑇𝑙 𝜙 (k𝑚) · v𝑚 and b𝑡0 =

∑︁𝑡0
𝑛=𝑡0−𝑇𝑙 𝜙 (k𝑛) are

shared across different time steps. Therefore, we can reuse them
for each query, resulting in O(𝑇𝑙 ) complexity.

On top of the context-aware linearized Transformer, we average
the hidden representations of the last 𝐾 time steps into h𝑙𝑜𝑛𝑔 and
employ a fully connected layer to project h𝑙𝑜𝑛𝑔 to the traffic states
of next 𝑇𝑓 time steps {x̂𝑡0+1, ..., x̂𝑡0+𝑇𝑓 }. Finally, we pre-train the
Transformer model through generative pre-training strategy [30]
by optimizing the following objective

L𝑠 =
1
𝑇𝑓

𝑡=𝑡0+𝑇𝑓∑︂
𝑡=𝑡0+1

|x𝑡 − x̂𝑡 |, (7)

where x𝑡 is the ground-truth traffic state at time 𝑡 . As spatial cor-
relations are not considered in LSFE, the model can be efficiently
pre-trained by uniformly sampling mini-batches of node samples.

3.2.2 Periodic feature sampling. In addition, urban traffic usu-
ally exhibits strong daily and weekly periodicity [37, 46]. To effec-
tively represent various types of periodic patterns, we construct
a rich pool of hand-crafted features. Specifically, suppose we aim
to make prediction for future time interval (𝑡0, 𝑡0 +𝑇𝑓 ], we sample
traffic state features from the same period in the past 𝐷 days and
𝑊 weeks and aggregate them into a feature vector h𝑝𝑒 .

3.2.3 Pre-processing. We can utilize the pre-trained context-
aware linearized Transformer to generate pre-computed represen-
tations by pre-processing the entire dataset, which significantly
reduces the computational burden at the prediction stage. Specifi-
cally, we denote the output of context-aware linearized Transformer
and periodic feature sampling as 𝐻𝑙𝑜𝑛𝑔 and 𝐻𝑝𝑒 with rows given
by h𝑙𝑜𝑛𝑔 and h𝑝𝑒 , respectively. 𝐻𝑙𝑜𝑛𝑔 and 𝐻𝑝𝑒 can be further incor-
porated into the subsequent linearized global spatial convolution
network as additional inputs to improve performance, which we
will discuss in Section 3.3.3.

3.3 Linearized Global Spatial Convolution
Network

Existing studies [1, 40, 41] mainly exploit an adaptive graph learned
from data to capture dependencies among different traffic sensors.
The inferred graph structure is often static and cannot capture the
time-varying node dependence that commonly exists in practical
scenarios [27, 43]. Moreover, the computational overhead for learn-
ing a latent graph structure grows quadratically with the number
of nodes 𝑁 , which is prohibitively expensive for handling large
road networks. The problem is even more dramatic when graph
convolution is applied for feature aggregation at each time step,
leading to the complexity O(𝑇𝐿𝑁 2), where 𝑇 and 𝐿 denote the

number of time steps and graph convolution layers, respectively.
Previous studies [40] rely on node subset sampling to reduce the
heavy computations in training phase. However, sampling a subset
of nodes may disrupt the underlying spatio-temporal dependencies,
leading to information loss and performance degradation.

To address the above issues, we propose a Linearized Global
Spatial Convolution Network (LGSCN), which includes (1) a patch-
level dynamic graph learning block to capture the time-varying
correlations among arbitrary node pairs, and (2) a linearized spatial
convolution block that can scale to large road networks without
perturbing any spatio-temporal dependencies.

3.3.1 Patch-level dynamic graph learning. To reduce the com-
putational overhead, the LGSCN module only takes the latest 𝑇
observations as input, where 𝑇 is a small value, e.g., 12 time steps.
Specifically, given previous 𝑇 steps’ node observations x𝑖

𝑡0−𝑇 :𝑡0 =

{x𝑖
𝑡0−𝑇 , x

𝑖
𝑡0−𝑇+1, . . . , x

𝑖
𝑡0
}, we first aggregate x𝑖

𝑡0−𝑇 :𝑡0 into a subseries-
level patch using the concatenate operation | |, defined as

x𝑖 = x𝑖𝑡0−𝑇 | |x
𝑖
𝑡0−𝑇+1 | |...| |x

𝑖
𝑡0 . (8)

The patch-wise input has a more informative representation than
point-wise input, making model learning easier [29]. Moreover, by
considering the time series as a whole, we can avoid performing
graph convolution at each time step, which significantly reduces
the computational and storage cost.

To quantify the time-varying node dependence, we maintain two
embedding vectors for each node 𝑖 , i.e., a static embedding u𝑖 and a
dynamic embedding u𝑖 . The static embedding u𝑖 can be encoded by
learnable parameters and does not change over time, representing
inherent node properties. The dynamic embedding u𝑖 = x𝑖 | |sℎ | |s𝑤
captures short-term evolving patterns, where sℎ and s𝑤 are the
learnable embeddings of discrete temporal features, i.e., time of day
and day of week. Based on u𝑖 and u𝑖 , we compute the attention
score between node 𝑖 and 𝑗 via dot product

𝛼𝑖, 𝑗 = (e𝑖1)
⊤e𝑗2, (9)

e𝑖1 = W1 [u𝑖 | |u𝑖 ], e𝑖2 = W2 [u𝑖 | |u𝑖 ], (10)
where W1 and W2 represent the learnable projection matrices.
Attention score 𝛼𝑖, 𝑗 is utilized for graph construction, we define
the edge weight as follows

𝐴𝑖, 𝑗 =
exp(𝛼𝑖, 𝑗/𝜏)∑︁𝑁
𝑘=1 exp(𝛼𝑖,𝑘/𝜏)

, (11)

where 𝐴𝑖, 𝑗 denotes the edge weight between node 𝑖 and 𝑗 , 𝜏 is
the temperature coefficient. A smaller 𝜏 can potentially amplify
the impact of strongly connected nodes while eliminating weak
connections, which further improves the performance.

3.3.2 Linearized spatial convolution. To enable information ex-
change among nodes, we introduce a mix-hop feature propagation
operator as follows

H(0) = U| |U, (12)
H(𝑘 ) = AH(𝑘−1)W(𝑘−1) , (13)

where the 𝑖-th row vectors of U and U are u𝑖 and u𝑖 respectively, 𝐾
is the depth of feature propagation,W(𝑘 ) is a learnable weighted
matrix, H(𝑘 ) denotes the node representations at hop 𝑘 , A is the
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adjacency matrix derived by Equation 11. After 𝐾-hop feature prop-
agation, we can obtain a series of node representations at different
hops: {H(0) ,H(1) , . . . ,H(𝐾 ) }. We further aggregate all the node
representations as follows

H = 𝐴𝐺𝐺 (H(0) ,H(1) , . . . ,H(𝐾 ) ), (14)

where 𝐴𝐺𝐺 (·) represents an aggregator function, which is instan-
tiated by a concatenate operation in practice. Unfortunately, the
calculation of adjacency matrix A and the feature propagation for
𝑁 nodes requires O(𝑁 2) complexity, which scales poorly as the
number of nodes increases. Inspired by recent advancements in
graph Transformer [38], we develop a linearized spatial convolution
operator to achieve efficient feature propagation. Concretely, we
can rewrite the computation of adjacency matrix A as

A = D−1A′, (15)

A′ = exp(E1E⊤2 /𝜏),D = diag(A′1𝑁 ), (16)
where the 𝑖-th row vectors of E1 and E2 are e𝑖1 and e𝑖2 respectively,
1𝑁 is the all-ones vector with 𝑁 dimension, and diag(·) transforms
the input vector into a diagonal matrix.

Here we reuse Equation 5 to factorize the adjacencymatrixA. For
𝜙 (E1) and 𝜙 (E2) with rows given by 𝜙 (e𝑖1) and 𝜙 (e

𝑖
2), Equation 15

can be approximated as follows

A ≈ D−1 (𝜙 (E1)𝜙 (E2)⊤/𝜏) = D−1E1̂E2̂
⊤
, (17)

where E1̂ = 𝜙 (E1)/
√
𝜏 and E2̂ = 𝜙 (E2)/

√
𝜏 . Finally, we accelerate

Equation 13 with the following linearized feature propagation

H(𝑘 ) = D̂−1 (E1̂ (E2̂
⊤H(𝑘−1) ))W(𝑘−1) , (18)

D̂ = diag(E1̂ (E2̂
⊤1𝑁 )), (19)

where the brackets represent the order of matrix multiplication.
With the above operator, we do not need to explicitly materialize
the quadratic adjacency matrix A. It is obvious that the linearized
spatial convolution have smaller time and space complexity (i.e.,
O(𝑁 )) than regular one.

Moreover, we also impose prior spatial constraints on the learned
graph structure by introducing a additional loss function

L𝑟 =
∑︂
𝑖 𝑗

−𝑑𝑖, 𝑗 log𝐴𝑖, 𝑗 , (20)

where 𝑑𝑖, 𝑗 indicates the spatial proximity among node 𝑖 and 𝑗 in
the road network, e.g., road connectivity.

3.3.3 Prediction and training. At prediction and training stage,
we concatenate the output of LGSCN H, the pre-processed fea-
ture representations H𝑙𝑜𝑛𝑔 and H𝑝𝑒𝑟 derived from LSFE, and then
adopt a Multi-Layer Perceptron (MLP) Φ𝑚𝑙𝑝 to generate the fi-
nal prediction results X̂𝑡0+1:𝑡0+𝑇𝑓 = Φ𝑚𝑙𝑝 (H| |H𝑙𝑜𝑛𝑔 | |H𝑝𝑒𝑟 ). Notice
that, to accelerate the inference speed, we directly project the hid-
den representation to the final output X̂𝑡0+1:𝑡0+𝑇𝑓 ∈ R𝑁×𝑇𝑓 in a
non-autoregressive way. The LGSCN is trained by optimizing the
following objective:

L𝑝 =
1

𝑁𝑇𝑓

𝑖=𝑡0+𝑇𝑓∑︂
𝑖=𝑡0+1

|X𝑖 − X̂𝑖 | + 𝜆L𝑟 (21)

where 𝜆 controls the importance of prior spatial knowledge.

Table 1: Statistics of datasets.

Datasets California Beijing
#Nodes 9,638 99,716

#Time Steps 28,224 10,944
#Traffic Records 272,022,912 1,091,291,904

Time Span 3 months 1 month
Variable Speed Speed

3.4 Complexity Analysis
In this section, we analyze the algorithmic complexity of each
proposed module. We first denote the number of input nodes, the
number of time steps in LSFE, the propagation depth, the hidden
dimensionality, and the dimension of random features as 𝑁 , 𝑇𝑙 , 𝐾 ,
𝑑 , and 𝑟 , respectively.

For the LSFE module, the time and space complexity of dilated
causal convolution are O(𝑇𝑙𝑑2/𝜔) and O(𝑇𝑙𝑑), where 𝜔 denotes
dilation factor. The time and space complexity of a single linearized
Transformer block are O(𝑇𝑙𝑑𝑟 ) and O(𝑇𝑙𝑟 ). If we stack 𝐿 Trans-
former blocks, the overall time complexity becomes O(𝐿𝑇𝑙𝑑𝑟 ) and
space complexity becomes O(𝐿𝑇𝑙𝑟 ). Additionally, since the peri-
odic feature sampling module is training-free, we omit its time and
memory cost. For the LGSCN module, the original time and space
complexity are O(𝐾𝑁𝑑2 + 𝑁 2𝑑) and O(𝐾𝑁𝑑 + 𝑁 2), respectively.
Fortunately, we can reduce the complexity to O(𝐾𝑁𝑑2 + 𝑁𝑑𝑟 ) and
O(𝐾𝑁𝑑 + 𝑁𝑟 ) via spatial convolution approximation, as we only
need to compute and store matrices E1̂ and E2̂. Overall, the model
complexity has linear dependency on the sequence length 𝑇𝑙 and
node number 𝑁 , making it efficient and scalable to deal with long
historical time series and large-scale road networks.

4 EXPERIMENT
4.1 Experimental Setup
4.1.1 Data description. We conduct experiments on two real-
world traffic datasets, California and Beijing. The California
dataset contains traffic data derived from the Caltrans Performance
Measurement System (PeMS)1, which has been widely used for
evaluating traffic forecasting models [4, 39, 41]. However, unlike
previous studies, we utilize the full sensor network consisting of
9,638 traffic detectors distributed across nine districts for model
evaluation. Additionally, the Beijing dataset is collected from Didi,
a large-scale ride-hailing platform. This dataset contains traffic
speed measurements calculated from GPS devices over 99,716 road
segments in Beijing city. All traffic datasets are aggregated every 5
minutes, resulting in 288 time slots per day. We split the datasets
into training, validation, and test data by using the ratio of 7:1:2.
We apply Z-score normalization to normalize the input traffic data
for model training. We also construct an additional prior adjacency
matrix for each dataset by considering the actual distance and
connectivity among sensors and road segments. We summarize the
statistics of each dataset in Table 1.

4.1.2 Baselines. We compare the proposed approach with the
following typical baselines: (1) Historical Average (HA) predicts
1https://pems.dot.ca.gov/
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Table 2: Overall performance comparison evaluated by MAE, MAPE, RMSE on California and Beijing with different horizons.
We use graph partitioning algorithm [16] to avoid Out-Of-Memory (OOM) issue for memory-heavy baseline models.

Dataset Algorithm Horizon 3 Horizon 6 Horizon 12 Average
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

California

HA 1.79 3.56% 3.63 2.10 4.23% 4.22 2.61 5.36% 5.13 2.12 4.28% 4.24
VAR 1.56 3.05% 2.95 1.91 3.86% 3.66 2.35 5.01% 4.51 1.97 3.98% 3.64

DCRNN 1.34 2.53% 2.70 1.71 3.40% 3.55 2.21 4.63% 4.48 1.68 3.38% 3.45
ASTGCN 1.44 2.77% 2.90 1.77 3.57% 3.65 2.23 4.79% 4.49 1.76 3.57% 3.55
GWNET 1.26 2.39% 2.60 1.57 3.17% 3.34 1.94 4.16% 4.09 1.52 3.12% 3.23
AGCRN 1.31 2.55% 2.62 1.61 3.28% 3.31 1.98 4.22% 4.02 1.58 3.23% 3.21
STGODE 1.35 2.65% 2.67 1.66 3.38% 3.37 2.05 4.41% 4.16 1.63 3.35% 3.28
DSTAGNN 1.38 2.72% 2.73 1.69 3.44% 3.42 2.12 4.48% 4.24 1.68 3.42% 3.35

BigST 1.24 2.37% 2.49 1.48 3.01% 3.09 1.71 3.61% 3.56 1.43 2.90% 2.96

Beijing

HA 19.47 31.63% 27.79 20.38 32.92% 28.44 21.17 34.57% 30.03 19.87 32.16% 28.09
VAR 14.78 21.95% 22.08 15.57 23.61% 22.86 16.32 24.95% 23.89 15.25 22.99% 22.61

DCRNN 12.07 17.43% 20.48 12.66 18.41% 21.44 13.62 19.84% 22.24 12.52 18.33% 21.05
ASTGCN 14.28 20.97% 21.40 15.08 22.70% 22.36 15.85 23.85% 23.11 14.74 21.91% 21.90
GWNET 11.01 16.71% 19.95 12.03 18.14% 21.29 12.55 19.25% 21.88 11.49 17.53% 20.55
AGCRN 11.26 16.69% 19.85 12.22 18.11% 21.23 12.79 19.37% 21.89 11.76 17.62% 20.53
STGODE 11.89 17.40% 20.42 12.70 18.64% 21.79 13.25 19.78% 22.02 12.28 18.09% 20.87
DSTAGNN 13.81 20.14% 20.92 14.96 22.41% 22.36 15.54 23.23% 22.69 14.37 21.23% 21.49

BigST 10.39 16.13% 19.22 11.04 17.72% 20.52 11.32 18.51% 20.81 10.51 16.82% 19.76

future traffic states by leveraging the average of historical obser-
vations from the same time slot in previous seasons (e.g., previous
days). (2)VectorAuto-Regression (VAR) [28] is a statistical model
that can capture the inter-dependency relationships of multivariate
time series. In this work, we directly implement VAR for traffic fore-
casting. (3) DCRNN [21] models traffic as a diffusion process and
captures spatio-temporal dependencies via diffusion convolution
operator coupled with recurrent neural networks. (4)ASTGCN [12]
combines spatial and temporal attention mechanisms to capture
dynamic spatio-temporal correlations for traffic forecasting. (5)
GWNET [41] stacks multiple adaptive graph convolution and di-
lated casual convolution layers to capture spatio-temporal traffic
dynamics at different levels. (6) AGCRN [1] further enhances the
performance of traffic forecasting by capturing node-specific pat-
terns through node adaptive graph convolution. (7) STGODE [9]
captures node relationships via both road network distance and
semantic similarity, and adopts a tensor-based ordinary differential
equation for traffic modeling. (8) DSTAGNN [19] improves traffic
forecasting performance by utilizing spatio-temporal aware graph
inferred from data and multi-scale gated convolution.

4.1.3 Evaluation metrics. Following previous studies [21], we
use three widely adopted metrics, including Mean Absolute Er-
ror (MAE), Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE), for model evaluation.

4.1.4 Implementation details. Our approach and all deep learn-
ing baselines are implemented with Pytorch. Specifically, we aim to
predict 12-step-ahead observations, i.e., the next one hour. We set
the look-back time window 𝑇𝑙 to 2016 and 864 for California and
Beijing datasets, respectively. For the LSFE module, we employ 32
filters with a filter size of 6. We set the random feature dimension 𝑟

to 64, and the hidden dimension of linearized Transformer is fixed
to 32. Furthermore, we set 𝐷 and𝑊 to 7 and 2, respectively. For the
LGSCN module, we set the dimension of static embedding to 16,
while fixing the dimension of dynamic embedding to 32. The hidden
dimension of LGSCN is fixed to 128, and we utilize the LeakyReLU
(alpha=0.2) function in our model. The temperature coefficient 𝜏 is
set to 0.2. Finally, we set the dimension 𝑟 of random feature map
to 64 and 𝜆 to 0.3. The model is trained with the Adam optimizer,
using a learning rate of 0.0001 and a gradient clip of 5.

4.2 Performance Comparison
Table 2 presents the overall performance of our model and all the
baselines with respect to MAE, RMSE, and MAPE on two datasets.
To avoid Out-Of-Memory (OOM) issue for memory-intensive base-
line models, we first divide the large road network into different
sub-networks via graph partitioning algorithm [16] and then train
baseline models for each sub-network.

Overall, BigST consistently outperforms other baseline mod-
els on both the California and Beijing datasets, which demon-
strates the advance of the proposed model. Specifically, our ap-
proach achieves 6.3%, 7.6%, 8.4% improvement beyond the best
baselines (i.e., GWNET and AGCRN) in average MAE, RMSE, and
MAPE on California dataset. Likewise, the improvements on Bei-
jing dataset are 9.3%, 4.2%, 3.9%, respectively. Furthermore, we
can make the following observations: (1) HA achieves the worst
performance, as it overlooks the complex variable correlations in
traffic data. (2) All STGNN-based approaches outperform HA and
VAR by a large margin, validating the superiority of modeling non-
linear and dynamic spatio-temporal dependencies. (3) STGNNs
using an adaptive adjacency matrix, such as GWNET and AGCRN,
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Figure 2: Efficiency analysis. BigST-PP indicates throughput
at pre-processing stage.
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Figure 3: Ablation study on California.

exhibit strong learning capabilities and achieve better performance
than STGNNs that only use pre-defined graph structures, such as
DCRNN. The possible reason is that the pre-defined adjacency ma-
trix is usually noisy and struggles with capturing the long-range
spatial dependencies.

4.3 Efficiency Analysis
In this section, we conduct the experiments to examine the effi-
ciency of the proposed module w.r.t. the number of nodes. Specif-
ically, we adopt training throughput, GPU memory usage, and
inference latency as evaluation metrics. In this work, throughput
represents the average number of batches the model can process
in one minute, i.e., batch/min. The batch size is set to 1 to avoid
memory overflow of baseline models. Since BigST is a two-stage
training approach, we also report the throughput at pre-processing
stage, marked as BigST-PP.

We compare our model with two typical baseline models, i.e.,
DCRNN and GWNET. Figure 2 shows the training throughput, GPU
memory usage, and inference latency depending on the input num-
ber of nodes. Compared to GWNET, our model achieves 2.3×~20.6×
and 1.7×~26.5× higher training and inference acceleration, while
reducing memory cost by up to 76.1%. Compared to DCRNN, the
speedup for throughput and latency becomes more dramatic, as
DCRNN employs a recurrent structure to capture temporal depen-
dency and makes prediction in a step-by-step manner, which could
significantly slow down the model training and inference. Addi-
tionally, we also notice that the inference latency of BigST remains
relatively stable or even decreases slightly as the road network
size increases. The possible reason is that GPUs can fully utilize its
resources to process the data in parallel due to the linear complexity
of our algorithm.
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Figure 4: Ablation study on Beijing. The missing results of
woSAC is due to memory overflow.

4.4 Ablation Studies
In this section, we conduct ablation studies on California and
Beijing to evaluate the effectiveness of each proposed module. We
test five variants: (1) woCLT removes the pre-computed long-term
representations generated by the context-aware linearized Trans-
former, (2) woPFS excludes periodic features, (3) woSAC removes
spatial convolution approximation, (4) woSE includes only dynamic
embedding for graph construction, (5) woDE includes only static
embedding. The results are shown in Figure 4.

First, a performance degradation occurs when we remove either
long-term representations or periodic features, indicating the im-
portance of modeling long-range temporal dependencies. We also
observe that long-term representations have a greater impact on
the Beijing dataset than periodic features. This could be due to
the fact that traffic conditions in Beijing are more complex and
exhibit weaker regular periodicity than in California. Second,
although the use of spatial convolution approximation reduces
the model complexity on large-scale road networks, it leads to a
noticeable performance degradation. Third, removing dynamic or
static embedding in graph construction procedure deteriorates the
model performance, validating the effectiveness of both static and
dynamic embeddings for learning time-varying graph structures.
Moreover, static embedding has a more significant impact on model
performance. This is because short-term information contains a lot
of noise and is unable to capture the reliable spatial graph structure.

4.5 Parameter Sensitivity
Finally, we study the impact of hyper-parameters on the perfor-
mance of traffic forecasting. We evaluate the impact of the dimen-
sion of random features 𝑟 and temperature coefficient 𝜏 , two critical
hyper-parameters related to our contributions. We perform the
parameter sensitivity analysis on California dataset, and the re-
sults on Beijing are similar. We set other hyper-parameters to their
optimal values when we study the target one.

First, we vary the dimension of random features 𝑟 from 16 to
96. The results on MAE, MAPE and RMSE are reported in Figure 5.
We can observe a clear trend of performance improvement when
increasing 𝑟 from 16 to 96. More specifically, the forecasting accu-
racy first increases rapidly and then slightly decreases, indicating
that a larger random feature dimension can provide a better ap-
proximation for the time-varying adjacency matrix. However, as
increasing 𝑟 introduces extra overhead, we choose 𝑟 = 64 to reduce
the computation cost while achieving reliable approximation.
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Figure 5: Effect of random feature dimension 𝑟 .
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Figure 6: Effect of temperature coefficient 𝜏 .

Then, we vary the temperature coefficient 𝜏 from 0.2 to 1.0. The
results are reported in 6. Overall, we achieve best performancewhen
𝜏 = 0.2. The results show a performance gain when decreasing 𝜏
from 1.0 to 0.4, and the performance becomes stable by further
decreasing 𝜏 from 0.4 to 0.2. This is because a smaller 𝜏 can help
prune out weak connections, which avoids over-fitting spurious
correlations among independent nodes.

5 RELATEDWORK
5.1 Traffic Forecasting
Traffic forecasting aims to provide accurate and timely predictions
of traffic dynamics, e.g., traffic flow [9], traffic speed [41], and trans-
portation demand [11, 24], which plays an essential role in modern
intelligent transportation systems [23]. With the development of
deep learning, many models have been proposed for traffic forecast-
ing. For example, STDN [42] split the whole city into an image-like
grid map and employ convolution neural networks (CNNs) to pre-
dict future traffic flow of each grid. However, such CNN-based
method can only handle regular gridded data and fails to model the
irregular graph structure of the traffic systems, e.g., traffic flows on
road networks. Recently, Spatio-Temporal Graph Neural Networks
(GNNs) [15] have emerged as an effective tool for graph-based
traffic forecasting. Previous studies on STGNNs roughly fall into
two categories. (1) Prior-based approaches [9, 10, 21, 44] leverage
pre-defined graphs to model non-Euclidean spatial dependencies
for traffic forecasting. This line of research highly relies on heuristic
metrics, which are not directly related to downstream forecasting
tasks. (2) Graph learning approaches [1, 2, 19, 33, 34, 41] address
the above issue by automatically learning a latent fully-connected
graph in an end-to-end fashion. For instance, GWNET [41] learns
an adaptive graph topology by factorizing the adjacency matrix
into two node embedding matrices. STEP [33] learns a discrete
graph structure by using the long-term information extracted from
a Transformer model. However, these methods suffer from qua-
dratic complexity issue, which hinders their applications to real-
world large-scale road networks. Another line of research focus

on addressing the indistingushibility in spatiotemporal data to en-
hance forecasting accuracy [6, 32]. For example, STID incorporates
spatiotemporal identity information to achieve comparable perfor-
mance with STGNNs. However, they do not explicitly model spatial
diffusion process, which may lead to performance degradation in
complex traffic scenarios with rich neighorbood information [26].

5.2 Transformer-based Models
In recent years, Transformer-based models have achieved signifi-
cant success in various applications, including computer vision [7],
natural language processing [36], and graph mining [38]. The fun-
damental building block of the Transformer, i.e., self-attention,
dramatically reduces the maximum signal traversing path into
O(1), thus showing great potential in capturing dependencies be-
tween distant positions in long sequences. However, the canonical
self-attention suffers from quadratic complexity, limiting its direct
use in handling extremely long sequences. To address this issue,
several techniques have been proposed, including pooling mecha-
nisms [5], hashing methods [18], and kernel-based methods [3, 17].
Due to the powerful sequential modeling ability, Transformer-based
models have gained increasing attention in time series forecasting
tasks [20, 25, 29, 35, 47, 48]. To name a few, Informer [48] proposes
ProbSparse self-attention with distillation techniques to efficiently
capture long-range dependencies in time series. PatchTST [25] splits
the time series into a series of patches before feeding them into
the Transformer model. In this paper, we employ the Transformer
model by using linear attention to efficiently encode long-term
temporal dynamics for large-scale traffic forecasting.

6 CONCLUSION
In this paper, we introduce BigST, a linear-complexity STGNN
architecture for large-scale traffic forecasting. We first develop a
scalable long sequence feature extractor to encode the long histor-
ical sequences into low-dimensional representations. To achieve
this, we leverage a context-aware kernelized Transformer trained
with generative pre-training strategy to efficiently capture long-
range temporal correlations with linear complexity. Subsequently,
we construct a linearized global spatial convolution network to
enable fast message passing by approximating the dense adjacency
matrix using two lightweight matrices, resulting in time and space
complexity that scale linearly with the number of input nodes.
Extensive experimental results show that our approach achieves
performance and efficiency superiority on large-scale datasets with
up to 100 thousands nodes, which is two orders of magnitude larger
than medium-sized datasets commonly used in current literature.
In the future, we plan to deploy BigST to large-scale real-world
services such as online maps and ride-hailing platforms.
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