
ETC: Efficient Training of Temporal Graph Neural Networks over
Large-scale Dynamic Graphs

Shihong Gao
The Hong Kong University of Science

and Technology

sgaoar@connect.ust.hk

Yiming Li
The Hong Kong University of Science

and Technology

yliix@cse.ust.hk

Yanyan Shen∗

Shanghai Jiao Tong University

shenyy@sjtu.edu.cn

Yingxia Shao∗

Beijing University of Posts and

Telecommunications

shaoyx@bupt.edu.cn

Lei Chen
The Hong Kong University of Science

and Technology (GZ)

leichen@cse.ust.hk

ABSTRACT

Dynamic graphs play a crucial role in various real-world appli-

cations, such as link prediction and node classification on social

media and e-commerce platforms. Temporal Graph Neural Net-

works (T-GNNs) have emerged as a leading approach for handling

dynamic graphs, using temporal message passing to compute tem-

poral node embeddings. However, training existing T-GNNs on

large-scale dynamic graphs is prohibitively expensive due to the

ill-suited batching scheme and significant data access overhead. In

this paper, we introduce ETC, a generic framework designed specifi-

cally for efficient T-GNN training at scale. ETC incorporates a novel

data batching scheme that enables large training batches improving

model computation efficiency, while preserving model effectiveness

by restricting information loss in each training batch. To reduce

data access overhead, ETC employs a three-step data access policy

that leverages the data access pattern in T-GNN training, signifi-

cantly reducing redundant data access volume. Additionally, ETC

utilizes an inter-batch pipeline mechanism, decoupling data access

from model computation and further reducing data access costs.

Extensive experimental results demonstrate the effectiveness of

ETC, showcasing its ability to achieve significant training speedups

compared to state-of-the-art training frameworks for T-GNNs on

real-world dynamic graphs with millions of interactions. ETC pro-

vides a training speedup ranging from 1.6× to 62.4×, highlighting

its potential for efficient training on large-scale dynamic graphs.

PVLDB Reference Format:

Shihong Gao, Yiming Li, Yanyan Shen, Yingxia Shao, and Lei Chen. ETC:

Efficient Training of Temporal Graph Neural Networks over Large-scale

Dynamic Graphs. PVLDB, 17(5): 1060 - 1072, 2024.

doi:10.14778/3641204.3641215

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/eddiegaoo/ETC.

∗Yanyan Shen and Yingxia Shao are the corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 5 ISSN 2150-8097.
doi:10.14778/3641204.3641215

1 INTRODUCTION

Dynamic graphs, which are constantly updated with new nodes

and edges, play a crucial role in many real-world applications. For

instance, users on social platforms engage with each other over

time by commenting on posts or sending messages. Likewise, on e-

commerce platforms, users buy a diverse range of items at different

time. To support various downstream tasks such as node classifi-

cation and link prediction, it is necessary to learn representations

of nodes based on new interactions. Temporal Graph Neural Net-

works (T-GNNs) [15, 27, 31ś33] are at the forefront of this endeavor,

having achieved state-of-the-art performance in learning represen-

tations on dynamic graphs. T-GNNs employ recursive temporal

message passing to compute the temporal embedding of a target

node at a specific timestamp. This process involves time-dependent

neighbor sampling and time-encoded neighborhood aggregation,

which enables T-GNNs to capture the propagation process on evolv-

ing graphs more effectively. Recent studies have demonstrated that

T-GNNs can significantly outperform static GNNs [11, 14, 29] and

snapshot-based GNNs [8, 10, 23] by a considerable margin in terms

of predictive performance.

Generally, the training of T-GNNs is in an offline and chronolog-

ical fashion [27, 33]. Figure 1 provides an illustration of the general

T-GNN training workflow. Given an input dynamic graph stored on

CPU, it is split into multiple training batches in the preprocessing

stage. Each training batch contains a number of interactions, of

which the timestamps are contiguous in an increasing order. After

the preprocessing step, the T-GNN starts to process the generated

batches on GPU in a sequential fashion to preserve the intrinsic

temporal dependency of the input dynamic graphs. The process-

ing of a batch consists of temporal neighbor sampling, input data

access, and model computation. Given the target interactions in a

batch, it is firstly required to conduct temporal neighbor sampling

for the nodes included in the target interactions. Then based on

the computation graph generated in the sampling phase, the cor-

responding data such as node state vectors, which summarize the

past interactive information of nodes, are accessed and fed to the

T-GNN model for computation.

Apart from the outstanding performance of T-GNNs, researchers

in DB community [18, 19, 39] recently have discovered that the

training of T-GNNs is prohibitively expensive on large-scale dy-

namic graphs, such that merely one training epoch for existing

1060

https://doi.org/10.14778/3641204.3641215
https://github.com/eddiegaoo/ETC
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3641204.3641215
https://www.acm.org/publications/policies/artifact-review-and-badging-current

1

𝑡!

2

4 5

𝑡"

Batch 1

1

𝑡!

2

3

𝑡#𝑡$

𝑡%

Input Dynamic Graph

2

𝑡&

3

Batch 2 Batch 3

𝑡&

4 42 5

3 3 3 3

𝑡&

𝑡$ 𝑡$ 𝑡% 𝑡%

𝑡# 𝑡# 𝑡"

(B): Temporal Neighbor Sampling

3

(A): Batch Split

𝑡&

3

𝑡# 𝑡# 𝑡"

(C): Input Data Access

Batch 3

4

𝑡$

2

4

𝑡%

5

3 3

T-GNN

4 42 5

𝑡$ 𝑡$ 𝑡% 𝑡%

(D): Model Computation

𝑠 𝑠 𝑠 𝑠

𝑠 𝑠 𝑠 𝑠 𝑠

State Vectors

Preprocessing Training

3

𝑡&

3

𝑡# 𝑡# 𝑡"

3 3

𝑠 𝑠 𝑠 𝑠

3

𝑡"

5

3

𝑡#

4

4

𝑡$

2

4

𝑡%

5

Figure 1: A toy example of T-GNN training. The input dy-

namic graph contains 6 interactions with different times-

tamps. The batch size is 2 (2 target interactions), the number

of sampled neighbor is 1.

T-GNNs over large-scale dynamic graphs would take hours to com-

plete [19]. To tackle the overwhelming T-GNN training costs, Orca

[18] and Zebra [19] focus on improving the model computation

efficiency of T-GNNs. Orca utilizes historical embeddings to avoid

certain computational workload. Zebra proposes to modify the ag-

gregation operation in T-GNN by a temporal personalized PageRank

mechanism, which only aggregates the most influential neighbors

for target nodes to reduce computation costs. However, their tech-

niques can only be generalized to synchronous T-GNNs [15, 27, 33].

By contrast, TGL [39] is a generic training framework that supports

various types of T-GNNs [15, 27, 28, 31, 33]. Nonetheless, it only

focuses on accelerating the sampling stage but overlooks the other

stages in the general T-GNN training workflow. In this paper, we

identify that: (1) the typical small batch size setting in the prepro-

cessing stage can heavily hinder the model computation efficiency,

and (2) the input data access stage occupies a large proportion of

total training time. These two bottlenecks limit the scalability of

training T-GNNs on large-scale dynamic graphs.

Bottleneck I: Small Batch Size Hinders the Efficiency of

Model Computation. In the preprocessing stage, existing works

[15, 18, 19, 27, 31ś33] usually employ a small batch size to mitigate

the intra-batch information loss issue [15, 27, 31]. In T-GNN train-

ing, in order to process the interactions in a given batch in parallel

by GPU, the intra-batch dependencies among target nodes in the

same batch have to be deserted causing information loss [27]. The

larger batch size is, the more intra-batch dependencies can be lost,

which will degrade model performance [27, 31]. However, when

training over large-scale dynamic graphs with over millions of in-

teractions, utilizing a small batch size to alleviate information loss

results in unsatisfactory training efficiency. Since a small batch size

setting not only produces numerous training batches for T-GNNs

to process the whole graph, but also results in limited exploitation

of GPU parallelism [15], which largely impedes the model compu-

tation efficiency of T-GNNs over large-scale dynamic graphs. As

shown in [18, 19], with batch size set as 200, it takes over 12 hours

for existing T-GNNs to finish just one epoch of model computation

on the large-scale Wiki-Talk [3] dataset.

Figure 2: Comparison of the normalized time among the

input data access (Access.), model computation (Comp.), and

the other data preparation operations (Others) when training

different T-GNN models on GDELT using TGL.

Bottleneck II: High Input Data Access Costs Dominate the

Training Process. When tackling the large-scale dynamic graphs,

we find that the input data access is de facto the dominant part

of the overall training process. As shown in Figure 2, the input

data access phase generally takes up over 60% of the total training

time, which vastly overshadows the costs of model computation

and the other data preparation operations. Such overwhelming

cost originates from frequent data transfer between CPU and GPU.

Since the input data such as node features are stored on the CPU

side, the required input data for each batch are constantly selected

on CPU and transferred to GPU in the entire training loop.

In this paper, we propose a generic framework ETC, which en-

ables efficient training over large-scale dynamic graphs for different

variants of T-GNNs. It comprises several systematic designs to re-

solve the common efficiency bottlenecks concerning the general

T-GNN training workflow.

To address Bottleneck I, we take a fundamentally different

batching approach in the preprocessing stage. We first introduce

a novel score function to quantify the impact of information loss.

Then, we formulate a batch split problem that aims to minimize the

number of batches used in training while controlling the extent of

information loss of each batch. By reducing the number of batches,

we can enlarge the batch size on average. To solve the batch split

problem, we propose an efficient single-pass algorithm, which scans

the input dynamic graph only once in the preprocessing stage and

generates the corresponding batching scheme. We also provide a

rigorous theoretical analysis to demonstrate that our algorithm can

provide an optimal solution to the batch split problem.

To address Bottleneck II, our key observation is that: there

exists plenty of redundant data access in each batch due to the

temporal characteristic. For instance, the same data in the CPU

storage, e.g., node state vectors that summarizes the past interac-

tive information of nodes, can be repeatedly accessed by the nodes

with the same ID but different timestamps. In practice, redundant

data access can take up over 80% of the total data access volume.

Based on the crucial observation, We propose a novel three-step

data access policy Supra. Unlike the conventional input data access

1061

approach [18, 19, 39], which directly performs input data access

based on the sampling result, Supra firstly identifies the redundant

access workload according to the sampling result, then, it only

performs data access for the unique data in each batch. Finally, the

originally required data for a given batch are reconstructed on GPU

by Supra. As Supra requires constant identification of redundant

access workload throughout the training process, it is important

to guarantee that the reduced data access costs by Supra are not

outweighed by the cost of Supra itself. To achieve this, we manage

the training workflow by proposing an inter-batch pipeline mecha-

nism. It enables concurrent execution of the model computation for

the current batch alongside Supra for the subsequent batch. This

simple yet effective pipeline mechanism helps to further improve

the overall efficiency gain.

In summary, we have made the following contributions:

• We present ETC, a generic framework tailored for efficient

T-GNN training on large-scale dynamic graphs, which com-

prises systematic designs to resolve the efficiency bottle-

necks in the general T-GNN training workflow.

• We formulate a batch split problem for T-GNN training

over large-scale dynamic graphs with practical constraints

on information loss, and propose an efficient single-pass

algorithm for solving this problem, which generates large

batches for higher model computation efficiency while re-

stricting information loss for model performance preserva-

tion. Moreover, We provide a rigorous theoretical analysis

demonstrating that the proposed algorithm yields an opti-

mal solution to the batch split problem.

• ETC significantly reduces the input data access costs in

training T-GNNs over large-scale graphs by a novel three-

step data access policy Supra, which substantially removes

data access redundancy. Besides, we propose a simple yet

effective inter-batch pipeline mechanism, which reduces

the cost associated with Supra and helps to further enhance

the data preparation efficiency.

• Extensive experiments are conducted to showcase the ef-

fectiveness of the proposed ETC framework. The results

demonstrate that ETC enjoys 1.6× ∼ 62.4× training speedup

compared to state-of-the-art T-GNN training frameworks.

2 BACKGROUND

In this section, we introduce the concept of Continuous-time Dy-

namic Graphs (CTDGs) and Temporal Graph Neural Networks

(T-GNNs).

2.1 Continuous-time Dynamic Graphs

Definition 1 (Continuous-time dynamic graph (CTDG)).

A CTDG can be described as a collection of interaction events G =

{𝛼 (𝑡1), 𝛼 (𝑡2), ...}, which occur over time and are ordered chronolog-

ically. Each event is represented by a tuple 𝛼 (𝑡) = (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡),

which represents a temporal edge in a directed graph. This tuple

includes the nodes 𝑣𝑖 and 𝑣 𝑗 which are connected by an edge, an asso-

ciated feature vector 𝑒𝑖 𝑗 (𝑡) which describes the edge, and a timestamp

𝑡 that indicates when the interaction occurred.

A CTDG can also be viewed as a multigraph, in which multiple

edges can occur between two nodes in multiple timestamps with

different edge feature vectors. In this work, we focus on Continous-

Time Dynamic Graphs (CTDGs) rather than Discrete Time Dynamic

Graphs (DTDGs), since CTDGs are more general and reflective in

terms of dynamic evolving patterns.

Event Types Covered by CTDG. Generally, a CTDG includes

not only the addition of interaction events, but also the deletion and

update of interaction events, which can be distinctly reflected in the

associated descriptive features [27]. Besides, for node-wise events

(addition/deletion of nodes, update of node features), they can be

perceived as self-interacted events, thus can be defined similarly as

described in Definition 1.

2.2 Temporal Graph Neural Networks

Temporal Graph Neural Networks (T-GNNs) have shown their su-

periority of representation learning on dynamic graphs. Currently,

existing state-of-the-art T-GNNs [15, 27, 32] on CTDGs can be

generalized into a common architecture, which involves two key

operations: node state update and temporal message passing.

Node State Update. Since different nodes may have an interac-

tion history of different lengths, merely using neighborhood sam-

pling may not be adequate to provide information for the dynamic

embedding generation. Therefore, most existing T-GNN models

[15, 19, 27, 31] adopt the node memory module to summarize the

past information of nodes. Specifically, for each node 𝑣𝑖 , T-GNN

maintains a state vector 𝑠𝑖 (𝑡) for it, which encodes the historical

information of the interactions containing node 𝑣𝑖 . Upon the arrival

of an interaction 𝛼 (𝑡) = (𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡), T-GNN firstly updates the

state vectors for the nodes 𝑣𝑖 and 𝑣 𝑗 as follows:

𝑠𝑖 (𝑡) = UPDATE(𝑠𝑖 (𝑡
−), 𝑠 𝑗 (𝑡

−), 𝑒𝑖 𝑗 (𝑡), 𝜙 (𝑡 − 𝑡
−)), (1)

𝑠 𝑗 (𝑡) = UPDATE(𝑠 𝑗 (𝑡
−), 𝑠𝑖 (𝑡

−), 𝑒𝑖 𝑗 (𝑡), 𝜙 (𝑡 − 𝑡
−)), (2)

where UPDATE is the RNN or GRU memory updater. 𝑠𝑖 (𝑡
−) and

𝑠 𝑗 (𝑡
−) are the latest state vectors for node 𝑣𝑖 and 𝑣 𝑗 before the

timestamp 𝑡 . 𝜙 (·) is a time encoding function, which encodes the

time interval Δ𝑡 = 𝑡 − 𝑡− into a vector.

Temporal Message Passing.When a new interaction 𝛼 (𝑡) =

(𝑣𝑖 , 𝑣 𝑗 , 𝑒𝑖 𝑗 (𝑡), 𝑡) arrives, T-GNN generates the node embeddingℎℓ𝑖 (𝑡)

for node 𝑣𝑖 (and for node 𝑣 𝑗 as well) in the following steps:

𝑁 ℓ𝑖 (𝑡) = SAMPLE(G, 𝑣𝑖 , 𝑡), (3)

ℎℓ𝑖 (𝑡) = AGGREGATE({ℎℓ−1𝑗 (𝑡
−) | |𝑒𝑖 𝑗 (𝑡

−) | |𝜙 (𝑡 − 𝑡−) |

(𝑣 𝑗 , 𝑡
−) ∈ 𝑁 ℓ𝑖 (𝑡)}),∀ℓ = 1, ..., 𝐿, (4)

ℎ0𝑗 (𝑡
−) = 𝑠 𝑗 (𝑡

−) +MLP(𝑥 𝑗). (5)

Firstly T-GNN conducts temporal neighborhood sampling for 𝑣𝑖
(Eq.3). The sampled neighbor set 𝑁𝑖 (𝑡) consists of nodes, which

interacts with the node 𝑣𝑖 before the timestamp 𝑡 . Note that in tem-

poral sampling, the timestamp needs to be considered. It means that

the same nodes may be sampled multiple times but with different

timestamps. As for the sampling strategy, top-𝑘 recent neighbor

sampling is widely adopted in previous literature [19, 27, 31], which

samples the top-k neighboring nodes of the target node 𝑣𝑖 with

the latest timestamps up to 𝑡 . Then, T-GNN conducts embedding

generation at the ℓ-th layer through the neighborhood informa-

tion aggregation for node 𝑣𝑖 at the timestamp 𝑡 (Eq.4). Generally,

AGGREGATE is an attention-based aggregator. Moreover, during

1062

1

2 4

3

𝑡 𝑡

𝑡𝑡

𝑡

1

4

3

𝑡

𝑡

CPU

Dynamic graph

Node features

Edge features

Node state vectors

GPU

Update

Aggregate

①

②

③

⑥

④

⑤

Figure 3: An illustration of hybrid CPU-GPU data layout

for T-GNN training over large-scale dynamic graphs. The

input dynamic graph, associated node features, edge features

and the node state vectors are held in CPU main memory

during training. For every training batch, ① neighborhood

sampling is performed on CPU. ② Based on the sampling

result, the corresponding input data are accessed on CPU. ③

The sampled subgraph together with accessed data is trans-

ferred from CPU to GPU for ④ T-GNNmodel computation. ⑤

The updater on GPU updates the state vectors for the target

nodes in the current batch. ⑥ The updated state vectors for

target nodes are transferred back from GPU to CPU.

the temporal message passing, the input node features at the first

layer are comprised of initial node features and the state vectors of

nodes (Eq.5). If the CTDG does not provide the initial node features,

the input features would be solely the node state vectors.

2.3 Training of T-GNNs

Generally, T-GNN offline training is conducted in a chronological

fashion. We illustrate the data layout, the preprocessing, and main

training stages for T-GNN training over large-scale dynamic graphs

as follows.

Data Layout. In previous works [15, 19, 27, 31ś33], most T-

GNNs are trained in an all-on-GPU fashion, such that the storage of

the necessary input data for training and the training process itself

solely rely on GPU. However, when tackling large-scale dynamic

graphs, GPU alone is not adequate to take over both the storage

and training process. For example, for GDELT [16], a real-world

dynamic knowledge graph with near-billion interactions, just the

storage of all the input data would already consume over 130GB

memory. This vastly exceeds the memory capacity of a single GPU,

which is generally equipped with 11GB ∼ 40GB memory. To accom-

modate the memory requirement of large-scale dynamic graphs,

TGL [39] points out the necessity of a hybrid CPU-GPU data layout

as shown in Figure 3, which leverages large CPU main memory for

input data preservation during the training process. Specifically, all

the input data are loaded from the secondary storage to the CPU

main memory in an one-shot manner right before the starting of the

training. Then, the input data including the input dynamic graph,

node state vectors, node features, and edge features are maintained

in CPU main memory throughout the training process. This CPU

main memory storage scheme is also the mainstream choice in sys-

tems for static GNN training [20, 34, 37]. On the other hand, GPU

is responsible for conducting model computation of the T-GNN.

Preprocessing. Before the training, it is required to preprocess

the given dynamic graph and split it into multiple batches with a

temporal order constraint as shown in Figure 1. The temporal order

constraint preserves the intrinsic temporal characteristic of the

dynamic graph. It ensures that the order of the timestamps cannot

be violated. For example, in Figure 1, it is not allowed to exchange

the interaction (𝑣2, 𝑣3, 𝑒23 (𝑡2), 𝑡2) in Batch 1 with the interaction

(𝑣3, 𝑣5, 𝑒35 (𝑡3), 𝑡3) in Batch 2. Since the T-GNN would process the

batches in a sequential fashion, no prediction would be made by

leveraging the future information. Otherwise, the prediction result

is unfair.

Main Training Stages. Model training on each batch mainly

consists of three stages: temporal neighbor sampling, input data

access, and model computation. For each target node in a given

batch, the temporal neighbor sampling is conducted as shown in

Eq. 3. Different from the sampling in static graphs, in which all the

neighbors of the target node are sampling candidates, the temporal

neighbor sampling only considers the neighbors with past times-

tamps so that no future neighbors would be included. To enhance

the efficiency of such a sampling process, TGL [39] proposes a

parallel sampler, such that the temporal neighbor sampling pro-

cess for different nodes can be conducted simultaneously. Then the

corresponding node state vectors, node features, and edge features

required for model computation are accessed based on the sam-

pling result. Finally, these accessed input data are fed to the T-GNN

model for computation. To accelerate the model computation stage

of T-GNN training, Orca [18] utilizes the historical embeddings to

reduce the frequency of aggregation, while Zebra [19] changes the

aggregation rule of general T-GNN [27], which only aggregates

most influential temporal neighbors.

3 BOTTLENECKS OF T-GNN TRAINING ON
LARGE-SCALE DYNAMIC GRAPHS

In this section, we provide more detailed analysis for the two pivotal

efficiency bottlenecks discussed in Section 1, which prevent scaling

existing T-GNNs to large-scale dynamic graphs.

3.1 Ill-suited Batching Scheme in Preprocessing

As illustrated in Section 1, the traditional batching scheme for

T-GNN training in previous literature [18, 19, 27, 31, 39] usually

adopts a small batch size, which leads to few interactions being

processed in parallel by T-GNN models on GPU. As a result, the

efficiency of T-GNN computation is dragged down [15]. Naively

setting a large batch size under the traditional batching scheme

can exaggerate the intra-batch information loss issue. Example 1

provides an explanation for the intra-batch information loss issue.

Typically, with the increase in batch size under the traditional batch-

ing scheme, the model computation efficiency is boosted while the

predictive accuracy can be significantly degraded. Corresponding

results can be seen in Section 5.4 later. This calls for an approach

to quantify the information loss of batches, and a new design of

the batching scheme, which can mitigate the information loss issue,

1063

𝑡

1

Embeddings

Initial features State vectors
𝑥

𝑥

𝑥

𝑥 𝑠

𝑠

𝑠

𝑠

𝑠𝑠𝑠𝑥 𝑥 𝑥

𝑡

1

𝑡

1

Figure 4: An illustration of data access pattern in T-GNN.

while using possibly large batches for offline T-GNN training to

achieve higher model computation efficiency.

Example 1. consider the two interactions (𝑣4, 𝑣2, 𝑒42 (𝑡5), 𝑡5) and

(𝑣4, 𝑣5, 𝑒45 (𝑡6), 𝑡6) of Batch 3 in Figure 1. As they are included in the

same batch and processed simultaneously, they can be perceived to

be arriving at the same time. Note that 𝑣4 occurs in both of these

interactions. Ideally, T-GNN would update the state vector of 𝑣4 twice

on 𝑡5 and 𝑡6. However, when performing the state vector update for 𝑣4
in these two interactions within the same batch, the same past state

vector of 𝑣4 is utilized. Therefore, when performing the state vector

updates for 𝑣4 on 𝑡6, it does not leverage the updated state vector of

𝑣4 by the interaction (𝑣4, 𝑣2, 𝑒42 (𝑡5), 𝑡5), which indicates that such

interaction is cast away from the viewpoint of node 𝑣4 on 𝑡6.

3.2 High Input Data Access

As shown in Figure 1, input data access is the major efficiency bot-

tleneck (around 60% of the overall training time) of T-GNN training

on large-scale dynamic graphs. When conducting input data ac-

cess, the conventional procedure [18, 19, 39] involves selecting and

pulling all the required input data directly based on the sampling

result. It begins by creating an access list that is identical to the

sampled data IDs by the temporal neighbor sampler. Subsequently,

the corresponding data are transferred from the CPU main memory

to the GPU based on this access list. Despite the straightforward-

ness of the conventional data access approach, it overlooks the data

access pattern in T-GNN training, which can lead to redundant

data transfer. A crucial observation of the data access pattern in

T-GNN training is that: within a given batch, the same nodes can

occur in various interactions with different timestamps. Even though

the T-GNN model would create distinct state vectors and embeddings

for these same nodes with different timestamps, they all require ac-

cessing the same input node features and past state vectors. Example

2 provides an illustration for such a data access pattern. In practice,

such redundancy can be overwhelming as shown in Figure 5. The

same nodes are repeatedly accessed, which can lead to redundant

data transfer taking up over 80% of the total data transfer volume.

Example 2. In Figure 4, node 𝑣1 occurs at timestamp 𝑡𝑎 , 𝑡𝑏 , and

𝑡𝑐 respectively in a given batch. Though they would have different

embeddings generated by T-GNN due to different timestamps, the

same initial feature 𝑥1 and the same past state vector 𝑠1 are accessed

and fed to T-GNN for computation. Under the conventional data

access policy, there exists redundant data access such that 𝑥1 and 𝑠1

(a) (b)

Figure 5: The sampling results (batch_size=600; 𝑘=10) on (a)

Wikipedia and (b) Reddit datasets [15]. The X-axis denotes

the number of batches in an epoch, and the Y-axis denotes

the number of data IDs. łoriginalž indicates the total data

IDs based on the sampling result, while łuniquež represents

the unique data IDs in the sampling result.

are selected three times on CPU and transferred altogether to GPU.

But actually, 𝑥1 and 𝑠1 can be only transferred once, since the same

input data are required to generate different embeddings.

4 THE ETC FRAMEWORK

In this section, we present ETC, a generic framework tailored for

efficient T-GNN training over large-scale dynamic graphs, which

resolves the two efficiency bottlenecks discussed in Section 3. The

optimizations in ETC reside in the batch split preprocessing stage

and the input data access stage, which are orthogonal to existing

T-GNN training frameworks [18, 19, 39]. In the preprocessing stage

of T-GNN training (Section 4.1), we present an information-loss-

bounded batching scheme, which forms sizeable training batches to

enhancemodel computation efficiencywhile restricting the possible

information loss to preserve the effectiveness of the underlying

T-GNN models. To address the tremendous input data access costs

(Section 4.2), we present a novel three-step data access policy to

cut down the redundant data access volume. Also, we incorporate

an inter-batch pipeline mechanism in ETC, which parallelizes the

input data access and the model computation to further hide the

input data access costs.

4.1 Information-loss-bounded Batching Scheme

In contrast to the traditional batching scheme as discussed in Sec-

tion 3.1, ETC’s batching scheme successfully increases the batch size

while effectively limiting the impact of information loss. As a result,

our approach significantly improves the efficiency of model compu-

tation without compromising model performance, surpassing the

limitation of the conventional batching scheme.

Information Loss Qunatification. To quantify the information

loss of each batch, we define a novel information loss score 𝛽 (𝐵𝑖)

for a given batch 𝐵𝑖 as follows:

𝛽 (𝐵𝑖) =
∑︂

𝑣∈𝑁𝑖

𝛽 (𝑣, 𝐵𝑖), (6)

𝛽 (𝑣, 𝐵𝑖) =
|︁

|︁{𝛼 (𝑡) |𝛼 (𝑡) ∈ 𝐵𝑖 , 𝑣 ∈ 𝛼 (𝑡)}
|︁

|︁ − 1
(︁
|︁

|︁{𝛼 (𝑡) |𝛼 (𝑡) ∈ 𝐵𝑖 ,

𝑣 ∈ 𝛼 (𝑡)}
|︁

|︁

> 0
)︁

. (7)

1064

𝑁𝑖 is the node set derived from 𝐵𝑖 . Eq.7 quantifies the gap between

the actual update times and the ideal update times (single interac-

tion per batch) for a given node 𝑣 . Then Eq.6 shows the information

loss score of a given batch, which sums up the information loss

score of each node appearing in 𝐵𝑖 . Based on Eq.6 and Eq.7, we can

also derive the following equivalent formulation for the information

loss score of a target batch 𝐵𝑖 :

𝛽 (𝐵𝑖) = 2
|︁

|︁𝐵𝑖
|︁

|︁ −
|︁

|︁𝑁𝑖
|︁

|︁. (8)

Problem Formulation. Generally, given an input dynamic

graph, we would like to split it into multiple batches for T-GNN

training. The optimization goal is about minimizing the total num-

ber of batches required for the training process. Since the total

number of interactions in an input dynamic graph is fixed, mini-

mizing the total number of batches is equivalent to enlarging the

sizes of batches. Also, an information loss constraint is required for

each batch, such that no batch would incur excessive information

loss. We formally define the batch split problem as follows.

Definition 2 (Batch Split Problem for T-GNN Training).

Given all the interactions G = {𝛼 (𝑡1), 𝛼 (𝑡2), ..., 𝛼 (𝑡𝑒)}, split them

into K batches 𝐵1, 𝐵2, ..., 𝐵𝐾 . Each batch contains a set of continuous

interactions such that 𝐵𝑖 = ∪
𝑞−1

𝑙=𝑝
{𝛼 (𝑡𝑙)}, 𝑝 < 𝑞,∀𝑖 . Each batch is

associated with an information loss score 𝛽 (·). We aim to find a batch

split 𝑓 (G) = {𝐵1, 𝐵2, ..., 𝐵𝐾 }, such that:

𝑚𝑖𝑛
𝑓

𝐾

𝑠.𝑡 . 𝛽 (𝐵𝑖) ≤ 𝜀, ∀𝑖, (9)

𝐵𝑖 ∩ 𝐵 𝑗 = ∅, 𝑖 ≠ 𝑗, ∀(𝑖, 𝑗), (10)

∪𝐾𝑖=1 𝐵𝑖 = G, (11)

𝑡𝑚 < 𝑡𝑛, ∀𝛼 (𝑡𝑚) ∈ 𝐵𝑖 , ∀𝛼 (𝑡𝑛) ∈ 𝐵 𝑗 , 𝑖 < 𝑗 (12)

Eq. 9 indicates that the information loss score of each batch

cannot be larger than a threshold 𝜀. Eq. 10 is a disjoint constraint,

which requires that there is no overlap among all the batches. Eq.

11 is a union constraint, which means that the union of all the

batches is the given input dynamic graph G. As for Eq. 12, it is

a temporal order constraint, which ensures that the batch split

generated would not break the intrinsic order of interactions in the

given dynamic graph.

Single-pass Batching Algorithm. The batch split problem

is a variant of the known bin packing problem [4] with an addi-

tional temporal order constraint. To solve the batch split problem,

we develop Algorithm 1, which is an efficient single-pass batch

split algorithm. We further theoretically prove that the proposed

algorithm is an optimal solution to the batch split problem.

Algorithm 1 begins by initializing an empty first batch, an empty

node set, and a counter for update times (Lines 1-4). It then proceeds

with a sequential scan of all the interactions (Line 5). During the

scan, each target interaction is added to the current batch, followed

by the calculation of the information loss score for that batch (Lines

6-10). If adding the interaction to the current batch does not violate

the information loss constraint, it is retained in the current batch

(Lines 11-12). However, if adding the interaction would violate the

information loss constraint, a new batch is created that includes the

interaction (Lines 13-17). Since Algorithm 1 performs a single scan

of all the interactions and decides whether each scanned interaction

Algorithm 1 Single-pass Batch Split Algorithm.

Input: Dynamic graph G; information loss threshold 𝜀.

Output: Batches 𝐵1, 𝐵2, ..., 𝐵𝐾 .

1: Initialize an update counter: 𝐶𝑢 ← 0;

2: Initialize batch ID: 𝑖 ← 0;

3: Initialize an empty node set: 𝑁 ← { };

4: Initialize an empty batch: 𝐵𝑖 ← { };

5: for 𝛼 (𝑡) ∈ G do ⊲ Iterate over the interactions sequentially.

6: 𝐶𝑢 ← 𝐶𝑢 + 2

7: for 𝑣 ∈ 𝛼 (𝑡) do

8: 𝑁 ← 𝑁 ∪ {𝑣}

9: end for

10: 𝛽 (𝐵𝑖) ← 𝐶𝑢 − |𝑁 |

11: if 𝛽 (𝐵𝑖) ≤ 𝜀 then ⊲ Stick to the current batch.

12: 𝐵𝑖 ← 𝐵𝑖 ∪ {𝛼 (𝑡)}

13: else ⊲ State a new batch.

14: 𝑖 ← 𝑖 + 1

15: 𝐶𝑢 ← 0

16: 𝐵𝑖 ← {𝛼 (𝑡)}

17: 𝑁 ← {𝑣 ∈ 𝛼 (𝑡)}

18: end if

19: end for

should be placed in the current batch or a new batch, its time

complexity is O(|𝐸 |), where |𝐸 | represents the total number of

interactions in the given dynamic graph.

Theoretical Analysis. We present a theoretical analysis of the

proposed single-pass batch split algorithm. Despite the simplicity

of Algorithm 1, we can prove that its output is an optimal solution

to the batch split problem. To establish this claim, we begin by

proving the following two useful lemmas.

Lemma 1. Given a batch 𝐵(𝑝, 𝑞), which starts at the p-th interac-

tion and ends right before the q-th interaction, we have:

𝛽 (𝐵(𝑝, 𝑞)) ≤ 𝛽 (𝐵(𝑝, 𝑞 + 𝑐)), (13)

𝛽 (𝐵(𝑝 − 𝑐, 𝑞)) ≤ 𝛽 (𝐵(𝑝, 𝑞)), (14)

where c is a constant integer.

Proof. For the batches 𝐵(𝑝, 𝑞) and 𝐵(𝑝, 𝑞 + 𝑐), denote the node

sets in them as 𝑁 (𝑝, 𝑞) and 𝑁 (𝑝, 𝑞 + 𝑐) respectively. Based on the

definition of the information loss score as described in Eq.8, we

know that:

𝛽 (𝐵(𝑝, 𝑞)) = 2(𝑞 − 𝑝) − |𝑁 (𝑝, 𝑞) |,

𝛽 (𝐵(𝑝, 𝑞 + 𝑐)) = 2(𝑞 + 𝑐 − 𝑝) − |𝑁 (𝑝, 𝑞 + 𝑐) |.

Then we can derive:

𝛽 (𝐵(𝑝, 𝑞 + 𝑐)) − 𝛽 (𝐵(𝑝, 𝑞)) = 2𝑐 − (|𝑁 (𝑝, 𝑞 + 𝑐) | − |𝑁 (𝑝, 𝑞) |).

We know that 𝑁 (𝑝, 𝑞) ⊆ 𝑁 (𝑝, 𝑞 + 𝑐). Also, 𝐵(𝑝, 𝑞 + 𝑐) can be seen

as 𝐵(𝑝, 𝑞) adding 𝑐 more interactions right after the last interaction

it contains. In this way, 𝑐 more interactions bring at most 2𝑐 more

new nodes to 𝑁 (𝑝, 𝑞). Therefore, we know that:

|𝑁 (𝑝, 𝑞 + 𝑐) | − |𝑁 (𝑝, 𝑞) | ≤ 2𝑐,

which ends the proof for Eq.13. The proof for Eq.14 can be done in

a similar fashion. □

1065

Lemma 1 shows the non-decreasing characteristic of the infor-

mation loss function. For a given batch 𝐵, if adding new interactions

into it, its information loss score 𝛽 (𝐵) would only either increase

or remain the same.

Lemma 2. An optimal solution (𝑂𝑃𝑇) to the batch split problem

generates𝐾∗ batches, and the output of Algorithm 1 (𝐴𝐿𝐺1) generates

𝐾 batches. Denote the index of the last interaction in a batch as 𝑒 (·).

Then for all 0 < 𝑖 ≤ 𝐾∗, we have 𝑒 (𝑖,𝑂𝑃𝑇) ≤ 𝑒 (𝑖, 𝐴𝐿𝐺1).

Proof. We can prove the lemma above by induction. The base

case is when 𝑖 = 1, and the first batch produced by both 𝑂𝑃𝑇 and

𝐴𝐿𝐺1 starts at the first interaction of the input dynamic graph. We

know that𝐴𝐿𝐺1would not stop adding the subsequent interactions

to the first batch until the information loss constraint is violated. If

the first batch produced by 𝑂𝑃𝑇 has more interactions than those

in the first batch produced by𝐴𝐿𝐺1, the information loss constraint

would be violated. Therefore, we have 𝑒 (1,𝑂𝑃𝑇) ≤ 𝑒 (1, 𝐴𝐿𝐺1).

Assume for the 𝑖 − 𝑡ℎ batch, 𝑒 (𝑖,𝑂𝑃𝑇) ≤ 𝑒 (𝑖, 𝐴𝐿𝐺1). Then we

need to prove that for the 𝑖 + 1 − 𝑡ℎ batch, 𝑒 (𝑖 + 1,𝑂𝑃𝑇) ≤ 𝑒 (𝑖 +

1, 𝐴𝐿𝐺1) still holds.

Case1: 𝑒 (𝑖+1,𝑂𝑃𝑇) ≤ 𝑒 (𝑖, 𝐴𝐿𝐺1). Based on𝐴𝐿𝐺1, we can know

that 𝑒 (𝑖, 𝐴𝐿𝐺1) ≤ 𝑒 (𝑖 + 1, 𝐴𝐿𝐺1). Then based on the assumption,

we get 𝑒 (𝑖 + 1,𝑂𝑃𝑇) ≤ 𝑒 (𝑖 + 1, 𝐴𝐿𝐺1).

Case2: 𝑒 (𝑖 + 1,𝑂𝑃𝑇) > 𝑒 (𝑖, 𝐴𝐿𝐺1). By the information loss con-

straint, we know that the 𝑖 + 1 − 𝑡ℎ batch produced by 𝑂𝑃𝑇 would

not violate the information loss constraint, such that:

𝛽 (𝑒 (𝑖,𝑂𝑃𝑇) + 1, 𝑒 (𝑖 + 1,𝑂𝑃𝑇)) ≤ 𝜀.

Then based on Lemma 1, we can obtain that:

𝛽 (𝑒 (𝑖, 𝐴𝐿𝐺1) + 1, 𝑒 (𝑖 + 1,𝑂𝑃𝑇)) ≤ 𝛽 (𝑒 (𝑖,𝑂𝑃𝑇) + 1, 𝑒 (𝑖 + 1,𝑂𝑃𝑇)).

In this way, we can know that if the 𝑖 + 1 − 𝑡ℎ batch produced by

𝐴𝐿𝐺1 ends at 𝑒 (𝑖 + 1,𝑂𝑃𝑇), the information loss constraint would

not be violated. In other words, the 𝑖 + 1 − 𝑡ℎ batch produced by

𝐴𝐿𝐺1 at least ends at 𝑒 (𝑖+1,𝑂𝑃𝑇). Therefore, we get 𝑒 (𝑖+1,𝑂𝑃𝑇) ≤

𝑒 (𝑖 + 1, 𝐴𝐿𝐺1). □

Based on Lemma 1 and Lemma 2, we provide the following

Theorem 1.

Theorem 1. The output of Algorithm 1 is an optimal solution to

the batch split problem that minimizes the number of batches under

the information loss score constraint as described in Definition 2.

Proof. Denote the number of interactions in the input dynamic

graph as |𝐸 |. For the batch split problem, assume the optimal so-

lution (𝑂𝑃𝑇) produces 𝐾∗ batches, while Algorithm 1 (𝐴𝐿𝐺1) pro-

duces 𝐾 batches, such that 𝐾∗ ≤ 𝐾 . Since 𝑂𝑃𝑇 splits all the in-

teractions of the input dynamic graph into 𝐾∗ batches, we have

𝑒 (𝐾∗,𝑂𝑃𝑇) = |𝐸 |. Then based on Lemma 2, we know 𝑒 (𝐾∗,𝑂𝑃𝑇) ≤

𝑒 (𝐾∗, 𝐴𝐿𝐺1). Since Algorithm 1 performs a single scan over all the

interactions of the input dynamic graph, we know that the algo-

rithm terminates at the last interaction, whichmeans 𝑒 (𝐾∗, 𝐴𝐿𝐺1) =

|𝐸 |. In this way, 𝐾 = 𝐾∗. □

4.2 Efficient Input Data Access

ETC incorporates two key optimizations to efficiently conduct input

data access. Firstly, the three-step data access policy largely shrinks

[1,1,1,5,5]

Sampled Data IDs Access List

Mapping

[1, 5]

[0,0,0,1,1]

1

2

3

4

5

1

5

IDs Data

CPU

1

5

1

1

5

5

5

①

②

②

③

GPU

Data for Training

②

Figure 6: An illustration of the three-step data access policy.

the data access volume, which significantly cuts down the cost

of input data access. Besides, to reduce the additional overhead

incurred by the three-step data access policy, ETC adopts an inter-

batch pipeline mechanism, which decouples the input data access

from the model computation. It assists in further reducing the cost

of input data access and improving the overall training efficiency.

4.2.1 Three-step Data Access Policy. Motivated by the observation

as illustrated in Section 3.2, ETC leverages a novel three-step data

access policy named Supra to efficiently conduct the input data

access. Figure 6 provides an illustrative example. In the first step,

Supra performs data ID transformation. Starting with the original

data IDs obtained from the sampling result, an access list is cre-

ated, containing only unique data IDs. Besides, Supra maintains a

mapping between the original data IDs and the unique data IDs.

In the second step, utilizing the access list generated in the first

step, the corresponding data (node state vectors, node features,

and edge features) are selected on CPU and then transferred from

CPU to GPU. Finally, in the third step, once the unique data has

been transferred to GPU, the originally required input data can be

reconstructed using the mapping generated in the first step.

Data Transfer Volume Analysis. With the conventional data

access policy, the total resultant data transfer volume for a batch

is O(𝑄 · 𝑑), where 𝑄 represents the number of data IDs in the

batch, and 𝑑 is the dimension of a single data point (e.g., dimension

of a node feature). By contrast, with the utilization of Supra, the

data transfer volume is reduced to O(𝑅 · 𝑑 + 𝑄), where 𝑅 is the

number of unique data IDs in the batch. Additionally, an extra term

of 𝑄 accounts for transferring the ID mapping. Considering the

data access pattern in T-GNN training, it is observed that 𝑄 can be

multiple times greater than 𝑅. Consequently, the implemented data

access policy Supra can significantly reduce the total data transfer

volume, thereby mitigating the heavy data transfer costs.

4.2.2 Inter-batch Pipeline. ETC is also equipped with a lightweight

inter-batch pipeline mechanism. While the data access policy Supra

in ETC boosts the input data access efficiency, the design intro-

duces some additional overhead. Specifically, the first step of Supra

1066

Table 1: Summary of statistics of the dynamic graphs. |𝑉 | and

|𝐸 | represent the number of nodes and edges. 𝑑𝑣 and 𝑑𝑒 de-

note the dimension of node features and edge features. 𝛼 and

𝛽 respectively represents the average degree and diameter.

Θ denotes the average update distance of all nodes. Specifi-

cally, for a particular node 𝑣 , its average update distance 𝜃𝑣 is

defined as the average number of interactions between two

consecutive updates among all updates of node 𝑣 . Then the

average update distance for all nodes is Θ =
∑︁

𝑣∈𝑉 𝜃𝑣/|𝑉 |.

Dataset |𝑉 | |𝐸 | 𝑑𝑣 𝑑𝑒 𝛼 𝛽 Θ

LastFM 2K 1.3M 128 128 1306 1 2873

Wiki-Talk 1.1M 7.8M 172 172 14 11 458149

Stack-Overflow 2.6M 63.4M 172 172 49 13 1354646

GDELT 17K 191.3M 413 186 22934 7 4876113

involves searching for unique data IDs and generating mappings

between the unique data IDs and the original data IDs in every train-

ing batch. This operation has a time complexity of 𝑂 (𝑄), where

𝑄 represents the number of data IDs in a batch. However, when

training on a large-scale dynamic graph, a substantial number of

batches are required. The accumulated costs of this operation can

become massive in practice, limiting the potential efficiency gains

offered by Supra. Moreover, in cases where the cost of ID transfor-

mation outweighs the reduction in data transfer costs, the effect of

Supra may be neutralized or even counterproductive.

Under the standard execution order in T-GNN training, CPU

and GPU are utilized sequentially. Specifically, CPU is responsible

for conducting temporal neighbor sampling and processing input

data access. When the model computation of a training batch is

performed by T-GNN on GPU, CPU would remain relatively idle

and underutilized. Recognizing this, we have made a slight adjust-

ment to the T-GNN training by workload decoupling. While the

model training is carried out on GPU for a given batch, the tem-

poral neighbor sampling and input data access for the subsequent

batch are concurrently performed on CPU. This modification well

reduce the additional costs associated with Supra. Although this

pipeline mechanism is lightweight, it effectively facilitates a further

reduction on the data access overhead.

5 EXPERIMENTS

5.1 Experiment Setups

Implementations. We implement ETC based on TGL [39] and

DGL [30], using Pytorch [24] as the backend deep learning frame-

work for the T-GNN model training phase. We adopt the efficient

parallel temporal sampler in TGL with a CSR-based data structure

for rapid access to temporal neighbors. We utilize DGL to generate

the Message Flow Graph (MFG) for each batch, which contains the

sampled dynamic subgraph as well as the associated input data. For

the implementation of the three-step data access policy, we utilize

NumPy [12] for a fast search of unique data IDs and the generation

of the ID mapping. For the inter-batch pipeline, we implement it

using Python threading.

Datasets. As summarized in Table 1, we use four real-world

large-scale dynamic graphswithmillions of interactions that exhibit

distinct graph characteristics. LastFM [15] consists of one-month

listener-music interactions. Wiki-Talk [3] and Stack-Overflow [1]

record user-user interactions from the corresponding websites.

GDELT [39] is a near billion-scale dynamic temporal knowledge

graph, which originates from the Event Database in GDELT 2.0 [16].

As for the data splits, we adopt the same data split on LastFM, Wiki-

Talk, and Stack-Overflow as used in [19, 27, 33], which chronologi-

cally splits the input graph into the training set (70%), the validation

set (15%), and the test set (15%). On GDELT, we also use the same

data split in [39], which uses the interactions before 2019, in 2019,

and in 2020 as training set, validation set, and test set, respectively.

Backbone Models. To verify the effectiveness of ETC frame-

work, we use three representative T-GNNs as the backbone models.

• TGAT [33] uses random Fourier features to encode the time

information and adopts the attention mechanism, which

imitates the message passing scheme in static GNNs.

• TGN [27] is a general T-GNN framework, which includes

several existing T-GNN models [15, 28, 33] as its special

cases. It dynamically maintains state vectors for nodes in

the input dynamic graphs to capture the temporal informa-

tion.

• APAN [31] is an asynchronous and attention-based T-GNN

model, which decouples model computation and message

propagation.

As for the other T-GNN models [13, 15, 32], they can be thought

of as extensions on top of the above representative T-GNN models

with more complex model structure designs [6]. Since the training

procedures for these T-GNN models are similar to the ones for the

three selected representative T-GNNs, we omit the results for these

T-GNN models in the main experiments.

Baseline Frameworks. To verify the efficiency of ETC, we uti-

lize three state-of-the-art T-GNN training frameworks as baselines.

• TGL [39] is a generic training framework that is applicable

to a wide range of T-GNN models. It is equipped with an

efficient parallel sampler that resolves the high complexity

issue in temporal neighbor sampling.

• Orca [18] focuses on resolving the model computation bot-

tleneck in T-GNN training. It leverages a dynamic caching

mechanism and utilizes historical representations to avoid

substantial computation workload. Also, it incorporates a

gradient blocking strategy to improve the generalization

ability of T-GNN models.

• Zebra [19] also aims at reducing the model computation

costs in T-GNN training. It fundamentally changes the ag-

gregation rule of underlying T-GNN by only aggregating

the most influential temporal neighbors.

ETC and TGL are generic frameworks, which do not change the

functionality of backbone T-GNNs. Their optimizations reside in

managing the data during T-GNN training such as faster sampling

and data access. While Orca and Zebra resort to modifying the

model structure design of T-GNN for better model computation

efficiency and model effectiveness. Note that Orca and Zebra can

only be generalized to synchronous T-GNNs [15, 27, 33], and they

only implement the classic TGN [27] model. Therefore, we present

their results on their currently supported TGN model in the main

experiments.

1067

Table 2: Comparison results of T-GNN training frameworks. Time refers to per-epoch execution time (s). The best average

precision (%) and the fastest execution time are marked in bold. łTLEž indicates the time limit exceed such that the training of

one epoch cannot finish within 12 hours.

Dataset Model Framework AP(%) Time(s) Dataset Model Framework AP(%) Time(s)

LastFM

TGN

Orca 80.11 22.0 (1.6×)

Stack-Overflow

TGN

Orca 97.64 12428.7 (25.7×)

Zebra 82.44 76.0 (5.4×) Zebra 97.57 30167.4 (62.4×)

TGL 80.92 29.7 (2.1×) TGL 83.32 1504.4 (3.1×)

ETC 80.79 14.1 ETC 86.10 483.5

TGAT
TGL 67.11 8.5 (2.4×)

TGAT
TGL 87.47 339.4 (1.6×)

ETC 67.58 3.6 ETC 87.55 215.9

APAN
TGL 70.05 19.1 (1.8×)

APAN
TGL 63.10 1696.3 (1.8×)

ETC 69.79 10.8 ETC 66.42 937.4

Wiki-Talk

TGN

Orca 96.05 343.3 (5.8×)

GDELT

TGN

Orca TLE TLE

Zebra 96.08 1029.5 (17.5×) Zebra TLE TLE

TGL 92.94 135.5 (2.3×) TGL 98.08 4001.5 (3.3×)

ETC 93.41 58.9 ETC 98.46 1222.4

TGAT
TGL 86.10 40.7 (2.0×)

TGAT
TGL 98.08 1338.2 (2.2×)

ETC 86.08 20.1 ETC 98.07 619.9

APAN
TGL 86.73 160.4 (2.0×)

APAN
TGL 96.62 3302.9 (2.5×)

ETC 88.11 81.8 ETC 96.93 1304.5

Training Configurations.We focus on the link prediction task,

which is widely adopted in previous works [19, 27, 31ś33, 39]. Such

a task aims at predicting whether there exist interactions between

given pairs of nodes in the future timestamps. Since the original

datasets only contain positive interactions between nodes, an equal

number of false links are sampled. As for the evaluation metric, we

utilize average precision (AP) of models on the test set as in previous

works [19, 27, 31, 39]. For the sampling strategy, we utilize top-𝑘

recent neighbor sampling [27] for all the underlying T-GNNmodels

with k set as 10, since it is shown in previous works [19, 27] that

the top-𝑘 recent neighbor sampling can provide better predictive

performance compared to the other sampling strategies. For TGN

and APAN, we set the base batch size on LastFM, Wiki-Talk, Stack-

Overflow, and GDELT as 1000, 1500, 2000, and 2500 respectively. For

a fair comparison, we first calculate the upper bound of information

loss score for all batches generated by the conventional batch split,

and then use the derived upper bound as the threshold for our

proposed batch split algorithm. In this way, the two approaches

are bounded by the same extent of information loss. The resultant

average batch sizes by ETC’s batch split algorithm on four datasets

are 1180, 2180, 2938, and 2635 respectively. For TGATmodel without

the node memory module, the large batch size does not cause the

information loss issue. Therefore, the batch split algorithm in ETC

is not adopted for TGAT and we fix the batch size to be 5000 for

TGAT on all the datasets. We train all the models on all the datasets

for five epochs. For the other training related hyper-parameters,

we do not tune and fix them the same as in TGL [39] to verify the

robustness of our framework. All the experiments are done on a

server with 96 CPU cores and 256 GB main memory. The model

training is done on a single RTX 3090 (24GB). All the experiments

are repeated three times and the mean results are reported.

5.2 Main Results

We first provide an overall comparison between ETC and baseline

frameworks. We apply ETC and the baseline frameworks to train

the same T-GNNs on different datasets. The results are summarized

in Table 2.

Efficiency of ETC. We notice that compared to the baseline

T-GNN training frameworks, ETC is able to further provide 1.6×

∼ 62.4× training speedup for different T-GNN models, and the

achieved speedup is over 2× in most cases. Compared with Zebra,

ETC exhibits 5.4× ∼ 62.4× training speedup. Zebra utilizes the con-

ventional data access policy and suffers from prohibitive data access

costs. In contrast, ETC is able to remove a huge amount of redun-

dant data access thanks to its data access policy Supra. Compared

with Orca, ETC shows 1.6× ∼ 25.7× efficiency gain. Orca leverages

a dynamic caching mechanism for the intermediate embeddings,

which not only avoids certain computation workload, but also re-

duces the data access volume in an indirect way. Nonetheless, it

falls short of reducing a large amount of redundant data access.

Compared with the next best T-GNN training framework TGL in

terms of efficiency, ETC is able to provide 1.6× ∼ 3.3× faster training

execution. Though the parallel sampler incorporated in TGL is able

to resolve the high time complexity of sampling, it still overlooks

the overwhelming data access costs.

Effectiveness of ETC. By comparing the predictive results by

ETC and the other generic T-GNN training framework TGL, we can

see that ETC is able to well-maintain the effectiveness of different T-

GNNmodels, as there is no prominent accuracy degradation caused

by ETC framework. We also notice that the other two frameworks

Orca and Zebra can present a large accuracy improvement for

TGN. This is because these two frameworks modify the model

structure in TGN, which can also improve the effectiveness and

generalization ability of TGN. By contrast, ETC and TGL do not

contain the optimizations in TGN structure design and utilize the

1068

(a) LastFM (b) Wiki-Talk

(c) Stack-Overflow (d) GDELT

Figure 7: Per-epoch model computation time of TGN and

APAN models by ETC and TGL.

Figure 8: Comparison of normalized time between the batch

split preprocessing and the training.

vanilla implementation of TGN. In fact, the techniques incorporated

in ETC are orthogonal to those in Orca and Zebra. ETC as a versatile

T-GNN training framework, allows the incorporation of the model-

side optimizations to improve the effectiveness of the underlying

T-GNN. In practice, as we train the Orca’s version of the TGN

model using ETC, we can achieve prominent enhancement on the

predictive performance of TGN. Due to the page limit, we put the

corresponding results in our technical report [2].

5.3 Analysis of ETC Framework

In this section, we conduct one to one comparison between the

proposed ETC and the baseline TGL. Since they are both generic

frameworks that support a wide range of T-GNN variants, such com-

parison helps to investigate the impact of different optimizations

incorporated in ETC.

Improved Model Computation Efficiency. The batch split

algorithm in ETC enables training existing T-GNNs with larger

(a) LastFM (b) Wiki-Talk

(c) Stack-Overflow (d) GDELT

Figure 9: Per-epoch data preparation time comparison be-

tween ETC and TGL.

Table 3: Per-epoch data access time (s) comparison between

TGL and ETC.

LastFM Wiki-Talk Stack-Overflow GDELT

TGL 14.2 (4.9×) 66.3 (4.2×) 906.1 (3.9×) 2599.6 (6.1×)

ETC 2.9 15.9 233.3 427.5

batch sizes, thus increasing GPU utilization. In this way, the model

computation efficiency can be enhanced. We compare the model

computation time of TGN and APAN under ETC and TGL imple-

mentations in Figure 7. ETC is able to provide 1.3× faster model

computation on average than TGL for these models, which verifies

the effectiveness of our batch split algorithm. We also evaluate the

cost of the batch split algorithm on different datasets. As shown

in Figure 8, the batch split algorithm does not incur a heavy pre-

processing cost and it merely accounts for around 2.5% of the total

end-to-end training time.

Improved Data Preparation Efficiency. The three-step data

access policy Supra, as well as the inter-batch pipeline mechanism,

helps reduce the data preparation costs in training existing T-GNNs

over large-scale dynamic graphs. Figure 9 summarizes the data

preparation costs in training existing T-GNN models with TGL and

ETC frameworks. ETC can provide up to 5.5× faster data preparation

(3.3× on average) compared with using TGL.

The Effect of Three-step Data Access Policy Supra. We con-

duct experiments on all the datasets using TGN [27] as an example

to verify the effectiveness of the proposed three-step data access

policy Supra. The results with the other T-GNN models are simi-

lar. Table 3 shows that Supra largely reduces the data access costs

in data preparation. ETC is able to achieve 4.9×, 4.2×, 3.9×, and

6.1× faster data access compared with TGL. We notice that for

denser dynamic graphs, the higher data access efficiency can be

1069

Table 4: Per-epoch time (s) comparison for three steps of the

data access policy Supra.

LastFM Wiki-Talk Stack-Overflow GDELT

Step I 2.1 10.3 137.3 276.2

Step II 2.9 15.9 233.3 427.5

Step III 0.7 2.5 22.2 60.5

Table 5: Per-epoch time (s) comparison of ETCwith and with-

out the inter-batch pipeline.

LastFM Wiki-Talk Stack-Overflow GDELT

w/o pipeline 16.9 (1.2×) 75.7 (1.3×) 783.6 (1.6×) 1850.0 (1.5×)

w pipeline 14.1 58.9 483.5 1222.4

Table 6: Comparison of batch size by the traditional andETC’s

batching varying information loss score upper bound.

Method Batch Size

Traditional 1000 1500 2000 2500 3000 3500 4000 4500 5000

ETC’s 1442 2118 2771 3399 4033 4631 5243 5860 6480

enjoyed. Specifically, on much denser datasets LastFM and GDELT,

the extent of data access time reduction is more evident than that

on Wiki-Talk and Stack-Overflow. This is reasonable since dense

dynamic graphs are likely to incur more repeated data IDs in the

neighbor sampling results. Table 4 evaluates the cost of each in-

dividual step of Supra. It is observed that the second step, which

transfers the unique input data from CPU to GPU, is the most time-

consuming part. Besides the second step, the first step also causes

a substantial overhead, which is for the searching of unique data

IDs and generating reverse mapping in each batch. While for the

last step, such cost of reconstructing input data on GPU does not

incur much overhead.

The Effect of the Inter-batch Pipeline Mechanism. We also

evaluate the effect of the lightweight inter-batch pipeline mecha-

nism incorporated in ETC. We conduct experiments with TGN as

the backbone model on all the datasets, and compare the training

efficiency of ETC with or without the pipeline mechanism. The

comparison result is shown in Table 5. We see that the pipeline

mechanism helps ETC further achieve 1.2× ∼ 1.6× faster training

speedup compared with ETC without such a pipeline mechanism.

5.4 Analysis on the Batching Scheme

In this section, we conduct case studies with TGN [27] as the back-

bone model, which (1) compares ETC’s batching scheme with the

traditional one varying the information loss score upper bound,

and (2) analyzes the impact of different threshold values by ETC.

Due to the page limit, we report a few representative results that

are useful for discussion. Please see our technical report [2] for

comprehensive comparison results.

Varying Information Loss Score Upper Bound. As the input

for the traditional batching scheme is the pre-determined batch size,

we set a batch size range from 1000 to 5000 with the step as 500

for the traditional batching scheme, and calculate the upper bound

(a) Average Precision (b) Per-epoch Computation Time

Figure 10: Comparison of (a) average precision and (b) per-

epoch computation time between the traditional and ETC’s

batching varying the information loss score upper bound on

Wiki-Talk dataset.

(a) LastFM (b) Wiki-Talk

Figure 11: The effect of different values of threshold 𝜀. X-axis

denotes the per-epochmodel computation time (s) and Y-axis

denotes the average precision (%). Specific threshold values

are represented by dots with numbers next to them.

of information loss score by the traditional batching scheme, and

make them the input for ETC’s batching scheme to ensure the same

constraint of information loss. Figure 10 shows the comparison

results varying the information loss score upper bound on Wiki-

Talk. We can see that both approaches exhibit similar predictive

performance when subjected to the same extent of information loss

in their respective batches. Nonetheless, ETC’s batching scheme

showcased higher model computation efficiency under the same

condition. This improvement is resulted from larger (average) batch

size achieved by ETC’s batching scheme as shown in Table 6.

Impact of Threshold Value & Guidance for Practitioners.

We further perform a case study to investigate the impact of thresh-

old 𝜀 and provide corresponding guidance for practitioners. Specif-

ically, we conduct experiments varying the 𝜀 value from 500 to

8000 with a step size of 500 on LastFM and Wiki-Talk datasets,

which exhibit quite distinct graph characteristics. We observe the

following findings: (1) Increasing the threshold value improves the

model computational efficiency of T-GNNs. However, we notice

an effect of diminishing marginal utility when the threshold be-

comes sufficiently large. Further increasing the threshold value

beyond a certain point only results in minimal improvements in

model computational efficiency. (2) Interestingly, lower threshold

values do not necessarily guarantee better predictive performance.

It is possible that the original dynamic graphs may contain some

noisy interactions, which may result in an overfitted model [26].

Therefore, we recommend a reasonably large lower limit for the

1070

threshold value (e.g., over 1000) to mitigate the overfitting issue

thus improving the generation ability of the underlying T-GNN

models on the test set. On the other hand, as the threshold value

increases to a certain point, the model performance can degrade

drastically due to too much information loss. (3) Besides, we can

see that there exists a broad range of threshold values that can

present satisfactory runtime-accuracy tradeoffs which allow prac-

titioners to fine-tune the specific value based on their individual

preference. For practitioners who prioritize higher model computa-

tion efficiency, choosing a relatively larger value within the range is

advisable. Conversely, those aiming for better model performance

should consider a relatively smaller threshold value within the

range. (4)Moreover, we also notice the upper limit of the suitable

threshold range can significantly vary on two datasets. In order

to determine such an upper limit, it is important to consider the

average update distance of the input dynamic graph (as illustrated

in Table 1). The average update distance can reflect the update

frequency of the node state vectors for a given dynamic graph. For

the input dynamic graph with a small average update distance such

as LastFM, a small threshold value upper limit should be considered

(e.g., around 3000). Otherwise, a large threshold value upper limit

is recommended (e.g., around 5000).

6 RELATED WORK

Representation Learning on Dynamic Graphs. To support the

dynamic graph related downstream tasks, current approaches can

be generally divided into two main categories, namely snapshot-

basedGNNs and T-GNNs. Snapshot-basedGNNs focused on discrete-

time dynamic graphs (DTDGs), which are represented by graph

snapshots captured at different time intervals.While themost recent

efforts are devoted to continuous-time dynamic graphs (CTDGs). In

real-world applications, where interactions occur at varying time

granularities, T-GNNs are more suitable approaches and exhibit

better performance than snapshot-based GNNs.

JODIE [15] is the pioneering work of T-GNNs, which updates

the node representation involved in the edges sequentially using

RNN. Dyrep [28] further takes the 2-hop neighbor information into

consideration to perform node representation update. TGAT [33]

follows themessage passing scheme in static GNNs but incorporates

random Fourier features to encode the timestamp in the continuous

interactions. TGN [27] is a comprehensive T-GNN framework that

encompasses previous works [15, 27, 28] as specific instances. To

enhance the inductive performance on unseen nodes, CAW [32]

anonymizes node identities with the frequency of node occurrences

based on a set of sampled walks. NeurTWs [13] utilizes temporal

walks and motif structure to further improve the inductive ability.

GraphMixer [6] adopts a simplified MLP-based architecture and

bypasses the temporal neighborhood aggregation.

Training Frameworks for Efficient Representation Learn-

ing on Graphs. Besides developing more advanced representation

learning models on graphs, researchers in the database and system

community focus more on the efficient execution of such models.

For representation learning on dynamic graphs, Li et al. [17] propose

a cache-based framework to accelerate the training of static GNNs

on DTDGs. DynaGraph [9] leverages cached message passing and

timestamp fusion mechanisms to efficiently train existing snapshot

based GNNs on DTDGs. Chakaravarthy et al. [5] parallelize the

process of different snapshots of DTDGs to speed up the existing

snapshot-based GNNs. TGL [39] is a generic framework for scaling

existing T-GNN models on large-scale CTDGs, which is equipped

with a parallel temporal sampler to resolve the high sampling over-

head in previous implementations. Zebra [19] proposes temporal

personalized PageRank and performs temporal aggregation only

for top-k influential neighbors to improve model computation effi-

ciency. Orca [18] incorporates a dynamic caching mechanism and

utilizes historical embedding to reduce certain model computation

and input data access workload.

For representation learning on static graphs, some works resort

to mini-batch training to scale GNNs to large-scale static graphs

on single machine, which aim at faster execution of sampling

[7, 11, 35, 36] and CPU-GPU data transfer [20, 34]. By contrast,

some others utilize distributed training approach to scale existing

graph representation learning models to large-scale static graphs,

and propose different optimizations to reduce heavy inter-device

communication [21, 22, 25, 38, 40].

7 CONCLUSION

In this paper, we present ETC, a generic framework for efficient

T-GNN training over large-scale dynamic graphs. It incorporates a

novel batching scheme to improve model computation efficiency,

which allows T-GNN training with a large batch size while control-

ling the information loss issue. Moreover, it removes the redundant

input data access for temporal neighbors with a novel three-step

data access policy. It further decouples the input data access and the

model computation by T-GNNs using a simple yet effective pipeline

mechanism. Extensive experimental results show that ETC can

achieve 1.6× ∼ 62.4× faster training compared to state-of-the-art

training frameworks for various underlying T-GNNs on multiple

large-scale dynamic graphs. A promising future direction is to de-

sign a caching mechanism tailored for T-GNN training to further

reduce data access associated costs, which is capable of capturing

the data access dynamics in T-GNN training.

ACKNOWLEDGMENTS

Yanyan Shen’s work is supported by the National Key Research and

Development Program of China (2022YFE0200500), Shanghai Mu-

nicipal Science and Technology Major Project (2021SHZDZX0102),

the Tencent Wechat Rhino-Bird Focused Research Program, and

SJTUGlobal Strategic Partnership Fund (2021 SJTU-HKUST). Yingxia

Shao’s work is supported by the National Natural Science Foun-

dation of China (Nos. 62272054, 62192784), Beijing Nova Program

(No. 20230484319), and Xiaomi Young Talents Program. Lei Chen’s

work is partially supported by National Science Foundation of

China (NSFC) under Grant No. U22B2060, the Hong Kong RGC

GRF Project 16209519, CRF Project C6030-18G, C2004-21GF, AOE

Project AoE/E-603/18, RIF Project R6020-19, Theme-based project

TRS T41-603/20R, China NSFC No. 61729201, Guangdong Basic

and Applied Basic Research Foundation 2019B151530001, Hong

Kong ITC ITF grants MHX/078/21 and PRP/004/22FX, Microsoft

Research Asia Collaborative Research Grant, HKUST-Webank joint

research lab grant and HKUST Global Strategic Partnership Fund

(2021 SJTU-HKUST).

1071

REFERENCES
[1] [2023]. Stack-Overflow. https://snap.stanford.edu/data/sx-stackoverflow.html
[2] [2023]. The technical report. https://github.com/eddiegaoo/ETC/blob/main/

Technical-report.pdf
[3] [2023]. Wiki-Talk. http://snap.stanford.edu/data/wiki-talk-temporal.html
[4] Korte Bernhard and Jens Vygen. 2008. Combinatorial optimization: Theory and

algorithms. Springer, Third Edition, 2005. (2008).
[5] Venkatesan T Chakaravarthy, Shivmaran S Pandian, Saurabh Raje, Yogish Sab-

harwal, Toyotaro Suzumura, and Shashanka Ubaru. 2021. Efficient scaling of
dynamic graph neural networks. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1ś15.

[6] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, HaoWu, Xin Zhou, Hanghang
Tong, and Mehrdad Mahdavi. 2023. Do We Really Need Complicated Model
Architectures For Temporal Networks?. In International Conference on Learning
Representations.

[7] Jialin Dong, Da Zheng, Lin F Yang, and George Karypis. 2021. Global neighbor
sampling for mixed CPU-GPU training on giant graphs. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 289ś299.

[8] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Knowledge-Based Systems 187 (2020), 104816.

[9] Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. 2022. DynaGraph:
dynamic graph neural networks at scale. In Proceedings of the 5th ACM SIGMOD
Joint International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA). 1ś10.

[10] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield,
Mingyuan Zhou, and Xiaoning Qian. 2019. Variational graph recurrent neural
networks. Advances in neural information processing systems 32 (2019).

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[12] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. 2020. Array programming with NumPy. Nature 585,
7825 (2020), 357ś362.

[13] Ming Jin, Yuan-Fang Li, and Shirui Pan. 2022. Neural Temporal Walks: Motif-
Aware Representation Learning on Continuous-Time Dynamic Graphs. In Ad-
vances in Neural Information Processing Systems.

[14] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[15] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1269ś1278.

[16] Kalev Leetaru and Philip A Schrodt. 2013. Gdelt: Global data on events, location,
and tone, 1979ś2012. In ISA annual convention, Vol. 2. Citeseer, 1ś49.

[17] Haoyang Li and Lei Chen. 2021. Cache-based gnn system for dynamic graphs. In
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 937ś946.

[18] Yiming Li, Yanyan Shen, Lei Chen, andMingxuan Yuan. 2023. Orca: Scalable Tem-
poral Graph Neural Network Training with Theoretical Guarantees. Proceedings
of the ACM on Management of Data 1, 1 (2023), 1ś27.

[19] Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. 2023. Zebra: When
Temporal Graph Neural Networks Meet Temporal Personalized PageRank. Pro-
ceedings of the VLDB Endowment 16, 6 (2023), 1332ś1345.

[20] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. Pa-
graph: Scaling gnn training on large graphs via computation-aware caching. In
Proceedings of the 11th ACM Symposium on Cloud Computing. 401ś415.

[21] Xupeng Miao, Yining Shi, Hailin Zhang, Xin Zhang, Xiaonan Nie, Zhi Yang,
and Bin Cui. 2022. HET-GMP: a graph-based system approach to scaling large
embedding model training. In Proceedings of the 2022 International Conference on
Management of Data. 470ś480.

[22] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun Xiong, Eiman
Ebrahimi, Deming Chen, and Wen-mei Hwu. 2021. Large graph convolutional
network training with GPU-oriented data communication architecture. Proceed-
ings of the VLDB Endowment 14, 11 (2021), 2087ś2100.

[23] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, TimKaler, Tao Schardl, and Charles Leiserson. 2020. Evolvegcn:
Evolving graph convolutional networks for dynamic graphs. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 34. 5363ś5370.

[24] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[25] Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong
Cao. 2022. Sancus: Staleness-aware communication-avoiding full-graph decen-
tralized training in large-scale graph neural networks. Proceedings of the VLDB
Endowment 15, 9 (2022), 1937ś1950.

[26] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropE-
dge: Towards Deep Graph Convolutional Networks on Node Classification. In
International Conference on Learning Representations.

[27] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. 2020. Temporal Graph Networks for Deep Learn-
ing on Dynamic Graphs. In ICML 2020 Workshop on Graph Representation Learn-
ing.

[28] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
2019. Dyrep: Learning representations over dynamic graphs. In International
conference on learning representations.

[29] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International
Conference on Learning Representations.

[30] Minjie Yu Wang. 2019. Deep graph library: Towards efficient and scalable deep
learning on graphs. In ICLR workshop on representation learning on graphs and
manifolds.

[31] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xin-
guang Wang, Ping Cui, Yupu Yang, Bowen Sun, et al. 2021. Apan: Asynchronous
propagation attention network for real-time temporal graph embedding. In Pro-
ceedings of the 2021 international conference on management of data. 2628ś2638.

[32] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In International Conference on Learning Representations.

[33] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. In International
Conference on Learning Representations.

[34] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen,
Wenyuan Yu, and Jingren Zhou. 2022. GNNlab: a factored system for sample-
based GNN training over GPUs. In Proceedings of the Seventeenth European
Conference on Computer Systems. 417ś434.

[35] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive LearningMethod.
In International Conference on Learning Representations.

[36] Xin Zhang, Yanyan Shen, and Lei Chen. 2022. Feature-Oriented Sampling for
Fast and Scalable GNN Training. In 2022 IEEE International Conference on Data
Mining (ICDM). IEEE, 723ś732.

[37] Xin Zhang, Yanyan Shen, Yingxia Shao, and Lei Chen. 2023. DUCATI: A Dual-
Cache Training System for Graph Neural Networks on Giant Graphs with the
GPU. Proceedings of the ACM on Management of Data 1, 2 (2023), 1ś24.

[38] Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu,
Changji Li, James Cheng, Hao Yang, and Shuai Zhang. 2022. ByteGNN: efficient
graph neural network training at large scale. Proceedings of the VLDB Endowment
15, 6 (2022), 1228ś1242.

[39] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and
George Karypis. 2022. TGL: a general framework for temporal GNN training on
billion-scale graphs. Proceedings of the VLDB Endowment 15, 8 (2022), 1572ś1580.

[40] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li,
and Jingren Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network
Platform. Proceedings of the VLDB Endowment 12, 12 (2019), 2094ś2105.

1072

https://snap.stanford.edu/data/sx-stackoverflow.html
https://github.com/eddiegaoo/ETC/blob/main/Technical-report.pdf
https://github.com/eddiegaoo/ETC/blob/main/Technical-report.pdf
http://snap.stanford.edu/data/wiki-talk-temporal.html

	Abstract
	1 Introduction
	2 Background
	2.1 Continuous-time Dynamic Graphs
	2.2 Temporal Graph Neural Networks
	2.3 Training of T-GNNs

	3 Bottlenecks of T-GNN Training on large-scale dynamic graphs
	3.1 Ill-suited Batching Scheme in Preprocessing
	3.2 High Input Data Access

	4 The ETC Framework
	4.1 Information-loss-bounded Batching Scheme
	4.2 Efficient Input Data Access

	5 Experiments
	5.1 Experiment Setups
	5.2 Main Results
	5.3 Analysis of ETC Framework
	5.4 Analysis on the Batching Scheme

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

