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ABSTRACT
Regular path query (RPQ) is a basic operation for graph data anal-

ysis, and persistent RPQ in streaming graphs is a new-emerging

research topic. In this paper, we propose a novel algorithm for

persistent RPQ in streaming graphs, named LM-SRPQ. It solves

persistent RPQ with a combination of intermediate result mate-

rialization and real-time graph traversal. Compared to prior art,

it merges redundant storage and computation, achieving higher

memory and time efficiency. We carry out extensive experiments

with both real-world and synthetic streaming graphs to evaluate its

performance. Experiment results confirm its superiority compared

to prior art in both memory and time efficiency.
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1 INTRODUCTION
Graph is an omnipresent data form for representation of large-

scale entities and their relationships. It is used in various fields

like biochemistry, social networks and knowledge graphs. Many

graph-based applications require continuous updates and deal with

streaming graphs. A streaming graph is an unbounded sequence

of data items received from data sources. Each data item represents

an edge between two vertices. Together these data items form a

dynamic graph. For example, in Twitter, user communication can

be organized as a streaming graph, where each data item represents

an interaction (edge) between two users (vertex). Up to 12𝑘 new

edges need to be processed per second in this streaming graph [16].

Due to the unboundedness of streaming graphs, the entire graph

is not available to analysis algorithms. Additionally, many stream-

ing graph applications focus on real-time analysis, and therefore

focus on more recent data. These issues are usually addressed with

the sliding window model [11]. A sliding window maintains data
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items in a recent time period, like 12 hours. When the window

moves, older data that falls outside this interval is discarded and

new data replaces it. The sliding window model is widely used in

both research [14, 22, 25] and industrial applications [29].

In streaming graph applications, systems generally deal with

persistent queries that are previously registered and continuously
monitored. The answer set of a persistent query is continuously

maintained and updated in real time as the streaming graph changes.

For example, fraud detection can be specified as a persistent query

continuouslymonitored for the emergence of certain graph patterns.

Persistent versions of many common graph queries have been

studied, such as subgraph matching [18, 22], cycle detection[29],

path navigation [25, 26] and triangle counting [14, 31].

In this paper, we focus on persistent Regular Path Query (RPQ

for short) in streaming graphs with a sliding window model. A

regular path query finds vertex pairs connected by a path satisfy-

ing a regular expression in a directed, edge-labeled multi-graph.

RPQ is an important path navigation operation in fields like social

graphs and Semantic Web. It is also supported by many graph query

languages such as SPARQL and Cypher.

RPQ in static graphs has been studied for decades [10, 20, 21, 24].

However, RPQ research in streaming graphs is in its infancy. Pacaci

et.al. [25] are the first to define persistent RPQ over streaming

graphs, and they propose a novel algorithm called RAPQ to solve

this problem. RAPQ transforms RPQ problem into a reachability

problem in a product graph, which is a cartesian product of the

streaming graph and a query graph generated from the regular

expression. Persistent RPQ can be answered by incrementally find-

ing new paths in this product graph. However, it will be time-

consuming to search new paths from scratch upon each streaming

graph update. RAPQ materializes existing paths to all the succes-

sors of a qualified product graph node with a tree called Δ tree

1
. Then it updates Δ trees and extends existing paths to find new

paths when the streaming graph is updated. In [26], they further

combine persistent RPQ with persistent graph pattern matching

and propose an algebra for complex queries in streaming graphs.

RAPQ algorithm is also extended in [26], and the new algorithm is

called S-PATH. Timestamps of regular paths are maintained in S-

PATH to enable further analysis. An example of Δ trees in S-PATH

is shown in Figure 2, which we will discuss in detail in Section 2.2.

S-PATH can efficiently process updates in the streaming graph

but at the cost of high memory consumption. According to [6],

69% of organic RPQs (RPQs issued by browsers) in Wikidata query

1
In the following sections, we call vertex in the product graph as “node”, in order to

distinguish them from “vertex” in the streaming graph. Besides, the trees built in [25]

are originally called spanning trees, we change their name to avoid confusion with

the spanning tree in graph theory.
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log are recursive, namely containing Kleene stars. For these re-

cursive queries, Δ trees built in S-PATH have no depth constraint

and can be very large. For example, according to our experiments

with StackOverflow, a real-world social network dataset, when an-

swering RPQ 𝑎∗𝑏∗ in a sliding window with 180𝑘 edges and 59𝑘

vertices, there are 3.6𝑘 Δ trees with size above 21𝑘 in S-PATH. The

total number of tree nodes is 96𝑀 , and the memory cost of S-PATH

is more than 600 times larger than the original streaming graph.

In real-world applications, we usually need to monitor multiple

persistent queries at the same time, and the total memory cost will

be multiple times higher. Such high memory consumption limits

the scalability of the algorithm, especially when the application

runs in embedded devices like hubs and routers.

In this paper, we propose landmark-based streaming RPQ (LM-

SRPQ) to decrease the size of the Δ tree forests while keeping a high

update speed. We notice that there are common subtrees with the

same root in different Δ trees, resulting in redundant storage. The

subtree with root 𝑣𝑖 in a Δ tree𝑇 stores paths from 𝑣𝑖 to a subset of

its successors, which are fragments of paths from the root of 𝑇 to

these successors. Common subtrees in different Δ trees are induced

by common path fragments. Therefore, we can decrease memory

usage by merging these common path fragments, which leads to

the merging of common subtrees. We propose to select a group of

nodes as landmarks. Each path in the product graph can be split into

a sequence of local paths, which are path fragments containing

no landmarks. We build a Δ tree for each landmark 𝑣𝑖 to maintain

local paths starting from 𝑣𝑖 . Such a Δ tree is called a landmark tree,

or LM tree for short. We also build Δ trees for the original tree roots

in S-PATH, and they maintain local paths starting from these tree

roots. Then we compute paths in the product graph and answer

persistent RPQ by continuously computing concatenations of local

paths. Each local path from a landmark 𝑣𝑖 to its successor 𝑣 𝑗 may

participate in the computation of multiple product graph paths,

corresponding to common fragments in these paths. In prior art,

this local path will be stored multiple times in the common subtrees

of 𝑣𝑖 . But in our method, we only need to store it once in the LM

tree of 𝑣𝑖 . Therefore, redundant storage is eliminated.

However, there are two major challenges in LM-SRPQ:

First, computing local path concatenations raises a performance

issue. In LM-SRPQ, we build a dependency graph 𝐺𝑑 to aid us in

the local path concatenation. Each node in 𝐺𝑑 represents a Δ tree

and each edge represents the local path connecting the roots of

two Δ trees. Concatenated local path sequences can be represented

as paths in 𝐺𝑑 . When a new tuple arrives in the streaming graph,

we first update the Δ trees, producing new local paths and adding

new edges in 𝐺𝑑 . Then we need to traverse in 𝐺𝑑 to find new

paths containing the new edge, which represents new local path

sequences. The cost of such traversal is high and may slow down

the entire algorithm. We need additional acceleration techniques.

Second, how to select a proper landmark set raises another chal-

lenge. Different landmark sets result in different Δ tree forest sizes.

Moreover, as discussed above, the dependency graph traversal is the

bottleneck of the algorithm, and the landmark number influences

the number of LM trees, as well as the dependency graph size. We

need to bound the landmark number to control the dependency

graph traversal cost. Therefore, we hope to select a landmark set

with a bounded size and try to minimize the Δ tree forest size. The

Table 1: Notation Table

Notation Meaning

𝑊 Sliding window

𝛽 Sliding interval

𝐺𝜏 Snapshot graph at time 𝜏

𝑒.𝑡𝑠 / 𝑝.𝑡𝑠 Timestamp of edge 𝑒 / path 𝑝

𝜙 (𝑒 ) / 𝜙 (𝑝 ) Label of edge 𝑒 / path 𝑝

𝐴𝑅 DFA built for regular expression 𝑅

𝐴𝑅 .𝐹 Final state set in 𝐴𝑅

𝑠0 / 𝑠𝑓 Initial state / final state in DFA

𝑃 (𝐺,𝐴) Product graph of graph𝐺 and DFA 𝐴

⟨𝑣𝑖 , 𝑠𝑖 ⟩ Product graph node with vertex 𝑣𝑖 and state 𝑠𝑖 .

𝑇𝑣𝑖 ,𝑠𝑖 Δ tree with root node ⟨𝑣𝑖 , 𝑠𝑖 ⟩.
𝑇𝑣𝑖 ,𝑠𝑖 .⟨𝑣𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 Timestamp of node ⟨𝑣𝑗 , 𝑠 𝑗 ⟩ in tree𝑇𝑣𝑖 ,𝑠𝑖

search space of such landmark selection is exponential, making it

computationally impossible to find an optimal solution. We have

to resort to a greedy algorithm. Besides, we need to continuously

update the landmark set to keep up with the streaming graph.

In LM-SRPQ, we use a greedy algorithm in landmark selection,

which tries to minimize the size of the Δ tree forest while bounding

the number of Δ trees. Besides, we also continuously maintain an

additional index called TI-map in each LM tree, which records the

timestamps of paths starting from the tree root. Based on these

timestamps we propose a set of rules for pruning in dependency

graph traversal. We carry out extensive experiments in two real-

world datasets and one synthetic dataset to evaluate the perfor-

mance of our algorithm. The result shows that LM-SRPQ reduces

the memory usage of prior art S-PATH by at most 30 times. More-

over, as common subtree merging reduces the Δ tree update cost

and efficient pruning reduces the dependency graph traversal cost,

LM-SRPQ is at most 4.5 times faster than S-PATH.

In summary, we made the following contributions in this paper:

(1) We propose a novel algorithm for persistent RPQ in stream-

ing graphs, named LM-SRPQ. It decreases the memory cost

as well as the update cost of the prior art by eliminating

redundant storage and computation.

(2) To balance the time and memory cost of our algorithm, we

propose a greedy landmark selection algorithm to balance

the number of Δ trees and the size of the Δ tree forest, as

well as an additional index that helps to prune the recursive

traversal in the dependency graph.

(3) We carry out extensive experiments to evaluate our algo-

rithm, which confirms its superiority against prior art.

2 PRELIMINARIES
We formally define our problem in Section 2.1 and list frequently-

used notations in Table 1. To better understand the motivation of

our method, we briefly introduce S-PATH [26] in Section 2.2, which

is the prior art for RPQ over streaming graphs in the literature.

2.1 Problem Definition
Definition 2.1. Graph. A directed, edge-labeled graph is defined

as 𝐺 = (𝑉 , 𝐸, Σ, 𝜙), where 𝑉 is a vertex set, 𝐸 ⊂ 𝑉 ×𝑉 is an edge set,
Σ is a set of labels, and 𝜙 : 𝐸 → Σ is an edge labeling function.
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Definition 2.2. Streaming Graph Tuple. A streaming graph
tuple is a triple 𝑠𝑔𝑡 = (𝑒, 𝑙, 𝑡𝑠), where 𝑒 is a directed edge −−−→𝑣𝑖 , 𝑣 𝑗 from
𝑣𝑖 to 𝑣 𝑗 with edge label 𝑙 at timestamp 𝑡𝑠 . We call 𝑡𝑠 timestamp of
edge 𝑒 , denoted as 𝑒.𝑡𝑠 .

For ease of presentation, we abbreviate streaming graph tuples as

tuples and use the terms “tuple” and “edge” interchangeably when

the context is clear. Also, following the same assumption in [25] and

[26], all tuples are generated by a single source and arrive in source

timestamp order, which defines their ordering in the stream. More

complicated scenarios, such as out-of-order delivery and multiple

streaming sources, are left to future work.

Definition 2.3. Streaming Graph. A streaming graph is a se-
quence of streaming graph tuples 𝑆 = {𝑠𝑔𝑡1, 𝑠𝑔𝑡2, ......} which arrive
in the order of their timestamps.

Obviously, it is impossible to process all streaming tuples due

to the infinite volume of a streaming graph. In applications, we

usually focus on the most recent tuples, which can be formalized

with the sliding window model.

Definition 2.4. Sliding Window. Let the current time point be
𝜏 . A sliding window𝑊 with time-scale length 𝑁 and sliding interval
𝛽 (𝛽 >= 1) is a set of tuples whose timestamps are in range (⌊ 𝜏

𝛽
⌋ ×

𝛽 − 𝑁, 𝜏]. Tuples in the sliding window𝑊 are called active, while
ones out of this set are considered to be expired.

The sliding interval 𝛽 allows us to handle edge expiration in a

lazy manner, 𝑖 .𝑒 ., removing expired tuples in a batch in every 𝛽 time

units [27]. On the other hand, we process new tuples in real time

to produce fresh results. Furthermore, the graph induced by active

tuples in the current sliding window𝑊 is called a snapshot graph
(denoted as 𝐺𝜏 ). Note that there may be multiple tuples with the

same edge 𝑒 in the sliding window. Those with the same label are

combined into one edge in the snapshot graph, and the timestamp

of this edge, denoted as 𝑒.𝑡𝑠 , is the largest timestamp among them.

Those with different labels are considered as parallel edges with

the same endpoints but different labels.

Example 1. A streaming graph is shown in Figure 1 (a), the sliding
window size is set to 10. Timestamps are shown on the top of edges.
The snapshot graph at current time 𝜏 = 13 is shown in Figure 1 (b).
Note that there may be multiple tuples arriving at one time point
(like time 12), or no tuple arriving at some time points (like time 2).
The sliding interval is 𝛽 = 2, namely we only delete tuples from the
sliding window at even timestamps.

Usually, streaming graph systems deal with persistent queries.
These queries are previously registered and continuouslymonitored

when the snapshot graph changes due to new tuples’ arrival and

old tuples’ expiration. In this paper, we focus on persistent regular

path queries over streaming graphs.

Definition 2.5. Regular Expression. A regular expression 𝑅

over an alphabet Σ is recursively defined as 𝑅 ::= 𝜖 |𝑎 |𝑅 ◦ 𝑅 |𝑅 +
𝑅 |𝑅∗ |𝑅+ |𝑅? where:

(1) 𝜖 is the empty string.
(2) 𝑎 is a character in the alphabet.
(3) ◦ means concatenation function.
(4) + means alternation function, namely 𝑂𝑅 operation.

(5) 𝑅∗ means Kleene star. 𝑅 can repeat 0 or multiple times.
(6) 𝑅+ means 1 or more repetitions of 𝑅.
(7) 𝑅? means 0 or 1 repetition of 𝑅.

𝐿(𝑅) is a set of strings that can be described by regular expression 𝑅.

Definition 2.6. Regular Path Query (RPQ). A regular path
query 𝑄𝑅 over a graph 𝐺 is to find all vertex pairs (𝑣𝑖 , 𝑣 𝑗 ), where
there is at least one path 𝑝 from 𝑣𝑖 to 𝑣 𝑗 in 𝐺 and 𝜙 (𝑝) ∈ 𝐿(𝑅). The
path label 𝜙 (𝑝) is the concatenation of the edge labels along path 𝑝 .
We denote the query result of 𝑄𝑅 as 𝑄𝑅 (𝐺).

Consider a regular expression 𝑅 = (𝑎 ◦ 𝑏)∗ and the RPQ query

𝑄𝑅 . The current snapshot graph 𝐺𝜏 is given in Figure 1(b) and the

path 𝑝 = 𝑣6 → 𝑣3 → 𝑣5 → 𝑣4 → 𝑣2 (marked in red) conforms to 𝑅

due to 𝜙 (𝑝) ∈ 𝐿(𝑅). Thus, (𝑣6, 𝑣2) is a part of the result set𝑄𝑅 (𝐺𝜏 ).
Due to dynamic updates of the snapshot graph, we need to

continuously maintain the result set of a given RPQ query 𝑄𝑅 .

Besides, we also require to maintain a timestamp for each vertex

pair (𝑣𝑖 , 𝑣 𝑗 ) in the result set. Specifically, we have the following

definition of the timestamps of paths and vertex pairs.

Definition 2.7. Timestamp of Path and Vertex Pair. For any
path 𝑝 in the snapshot graph 𝐺𝜏 , the timestamp of 𝑝 , denoted as
𝑝.𝑡𝑠 , is defined as the minimum edge timestamp along the path, i.e.,
𝑝.𝑡𝑠 = 𝑀𝑖𝑛{𝑒.𝑡𝑠 |𝑒 ∈ 𝑝}, where 𝑒.𝑡𝑠 is the timestamp associated with
𝑒 (defined in Definition 2.2).

Given a vertex pair (𝑣𝑖 , 𝑣 𝑗 ) in the result set𝑄𝑅 (𝐺𝜏 ) of an RPQ𝑄𝑅 ,
let 𝑃𝑆 = {𝑝1, ..., 𝑝𝑚} denote the set of distinct paths from 𝑣𝑖 to 𝑣 𝑗
in 𝐺𝜏 satisfying regular expression 𝑅. The timestamp of vertex pair
(𝑣𝑖 , 𝑣 𝑗 ) is defined as the maximum timestamp of all paths in 𝑃𝑆 , i.e.,
(𝑣𝑖 , 𝑣 𝑗 ).𝑡𝑠 = 𝑀𝑎𝑥{𝑝.𝑡𝑠 |𝑝 ∈ 𝑃𝑆}.

The timestamps of vertex pairs reflect their life span and enable

us to use a direct approach to process expiration. We can directly

find and delete all expired vertex pairs with timestamps smaller

than 𝜏 −𝑁 . All the regular paths connecting these vertex pairs have

expired. These timestamps may also be used for further analysis in

different applications. Besides, for path concatenation 𝑝 = 𝑝1 ◦ 𝑝2,
we get 𝑝.𝑡𝑠 = 𝑀𝑖𝑛{𝑝1 .𝑡𝑠, 𝑝2 .𝑡𝑠} according to the above definition.

In the following sections, we solve the persistent RPQ problem

with deterministic finite automaton and product graph:

Definition 2.8. Deterministic Finite Automaton (DFA).Given
a regular expression 𝑅, a deterministic finite automaton for 𝑅 is
𝐴 = (𝑆, Σ, 𝛿, 𝑠0, 𝐹 ), where 𝑆 is a set of states, Σ is the alphabet of
𝑅, 𝛿 is a transition function which belongs to 𝑆 × Σ → 𝑆 , 𝑠0 is an
initial state and 𝐹 is a set of finite states. 𝛿∗ is extended from 𝛿 and
is recursively defined as 𝛿∗ (𝑠, 𝜔 ◦ 𝑎) = 𝛿 (𝛿∗ (𝑠, 𝜔), 𝑎) where 𝜔 is a
string made up of characters in Σ and 𝑠 ∈ 𝑆 , 𝑎 ∈ Σ. A string 𝜔 can be
accepted by 𝐴 if 𝛿∗ (𝑠0, 𝜔) ∈ 𝐹 , and 𝜔 ∈ 𝐿(𝑅) if and only if it can be
accepted by 𝐴.

We use 𝑠𝑓 to denote states in the final state set 𝐹 . With a regular

expression 𝑅, we can create an NDFA with Thompson’s construc-

tion algorithm [32] and transform it into a DFA using Hopcroft’s

algorithm [17]. We denote the DFA generated from regular expres-

sion 𝑅 as 𝐴𝑅 , and denote states in 𝐹 as 𝑠𝑓 by default.

Definition 2.9. Product Graph. Given a graph𝐺 = (𝑉 , 𝐸, Σ, 𝜙)
and a DFA 𝐴 = (𝑆, Σ, 𝛿, 𝑠0, 𝐹 ), the corresponding product graph
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Figure 1: Streaming graph, snapshot graph, DFA for (𝑎 ◦ 𝑏)∗ and the corresponding product graph

𝑃 (𝐺,𝐴) = (𝑉𝑃 , 𝐸𝑃 , Σ, 𝜙𝑃 ) is defined as: (1)𝑉𝑃 = 𝑉 ×𝑆 . (2) 𝐸𝑝 ⊂ 𝑉𝑃 ×
𝑉𝑃 , and

−−−−−−−−−−−−→
⟨𝑣𝑖 , 𝑠𝑖 ⟩, ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ belongs to𝐸𝑝 if−−−→𝑣𝑖 , 𝑣 𝑗 ∈ 𝐸 and𝛿 (𝑠𝑖 , 𝜙 (−−−→𝑣𝑖 , 𝑣 𝑗 )) =

𝑠 𝑗 . (3) 𝜙𝑃 (
−−−−−−−−−−−−→
⟨𝑣𝑖 , 𝑠𝑖 ⟩, ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩) = 𝜙 (−−−→𝑣𝑖 , 𝑣 𝑗 ).

If the product graph is built upon a snapshot graph 𝐺𝜏 , each

edge 𝑒 =
−−−−−−−−−−−−→
⟨𝑣𝑖 , 𝑠𝑖 ⟩, ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ in the product graph also has a timestamp

equal to the timestamp of 𝑒′ = −−−→𝑣𝑖 , 𝑣 𝑗 in𝐺𝜏 , where the label of 𝑒
′
is 𝑙

and 𝛿 (𝑠𝑖 , 𝑙) = 𝑠 𝑗 . We can define paths and path timestamps in the

product graph similar to the snapshot graph. We call path 𝑝 a latest
path if it has the largest timestamp among the paths connecting

its source node ⟨𝑣𝑖 , 𝑠𝑖 ⟩ and destination node ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩.
Given a regular expression 𝑅 = (𝑎 ◦ 𝑏)∗, the corresponding DFA

is shown in Figure 1 (c). 𝑠0 is both the initial state and the final

state, and is marked in shadow. Considering the snapshot graph

𝐺𝜏 , the product graph 𝑃 (𝐺𝜏 , 𝐴) is given in Figure 1 (d). We add

timestamps to the edges in the product graph, in order to help the

understanding of examples in the following sections.

2.2 Existing Solution:S-PATH Algorithm
In this section, we introduce S-PATH algorithm proposed in [26]. It

is an extension of RAPQ algorithm proposed in [25], which adds

time information to the result set and adopts direct expiration

approach. Note that the original S-PATH algorithm uses a valid-

ity interval model, where tuples and paths have validity intervals

rather than timestamps. This model is an extension of the sliding

window model, which enables to manipulate tuples with different

life spans. In this paper, we focus on the sliding window model to

keep conciseness of the presentation, and leave more complicated

scenarios to future work. Therefore, we modify S-PATH algorithm

by changing validity intervals of edges and paths to timestamps,

S-PATH algorithm is based on the following theorem [25]:

Theorem 2.1. There is a path 𝑝 from 𝑣𝑖 to 𝑣 𝑗 in the snapshot
graph 𝐺𝜏 conforming to a regular expression 𝑅 if and only if there is
a path from ⟨𝑣𝑖 , 𝑠0⟩ to ⟨𝑣 𝑗 , 𝑠𝑓 ⟩ in the product graph 𝑃 (𝐺𝜏 , 𝐴𝑅) with
the same timestamp.

According to this theorem, S-PATH answers a regular query 𝑄𝑅

by finding connected node pairs ⟨𝑣𝑖 , 𝑠0⟩ and ⟨𝑣 𝑗 , 𝑠𝑓 ⟩ in the product

graph. S-PATH materializes intermediate results in the traversal of

𝑃 (𝐺𝜏 , 𝐴𝑅) with Δ trees.

Definition 2.10. Δ Tree Index: Given a regular expression 𝑅

and a snapshot graph 𝐺𝜏 , S-PATH maintains Δ trees 𝑇𝑣𝑖 ,𝑠0 which has
initial-state root ⟨𝑣𝑖 , 𝑠0⟩ and is built with following rules:

(1) A node ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ is in 𝑇𝑣𝑖 ,𝑠0 if there is a path from ⟨𝑣𝑖 , 𝑠0⟩ to
⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ in the product graph 𝑃 (𝐺𝜏 , 𝐴𝑅), or equivalently, there
is path 𝑝 from 𝑣𝑖 to 𝑣 𝑗 in 𝐺𝜏 where 𝛿∗ (𝑠0, 𝜙 (𝑝)) = 𝑠 𝑗 .

(2) The path 𝑝 from root ⟨𝑣𝑖 , 𝑠0⟩ to node ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ in 𝑇𝑣𝑖 ,𝑠0 is the
latest path between them in 𝑃 (𝐺𝜏 , 𝐴𝑅), and node ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ is at-
tached with a timestamp𝑇𝑣𝑖 ,𝑠0 .⟨𝑣 𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 = 𝑝.𝑡𝑠 . We simplify
𝑇𝑣𝑖 ,𝑠0 .⟨𝑣 𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 as ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 when there is no ambiguity.

Result set 𝑅𝑆 contains all tuples ((𝑣𝑖 , 𝑣 𝑗 ), 𝑡𝑠) if there is node

⟨𝑣 𝑗 , 𝑠𝑓 ⟩ in the Δ tree 𝑇𝑣𝑖 ,𝑠0 with timestamp 𝑡𝑠 . Those Δ trees that

only contain a root node, as well as self-join results are omitted (for

example, results like (𝑣𝑖 , 𝑣𝑖 ) are omitted for query 𝑎∗).
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Figure 2: Δ trees in S-PATH

Example 2. Figure 2 shows Δ trees for the snapshot graph and
regular expression in Figure 1 (b) and (c). Note that we only present
𝑇𝑣1,𝑠0 and 𝑇𝑣6,𝑠0 as examples due to space limitation. There is a node
⟨𝑣2, 𝑠0⟩ ∈ 𝑇𝑣6,𝑠0 with timestamp 8, because there is a path 𝑝 =

⟨𝑣6, 𝑠0⟩ → ⟨𝑣3, 𝑠1⟩ → ⟨𝑣5, 𝑠0⟩ → ⟨𝑣4, 𝑠1⟩ → ⟨𝑣2, 𝑠0⟩ in the prod-
uct graph with timestamp 8 (marked in red). Besides, 𝑝 is corre-
sponding to the snapshot graph path 𝑣6 → 𝑣3 → 𝑣5 → 𝑣4 → 𝑣2
with label 𝑎𝑏𝑎𝑏, where 𝛿∗ (𝑠0, 𝑎𝑏𝑎𝑏) = 𝑠0. Note that there is an-
other path from ⟨𝑣6, 𝑠0⟩ to ⟨𝑣2, 𝑠0⟩ in the product graph, namely
𝑝′ = ⟨𝑣6, 𝑠0⟩ → ⟨𝑣3, 𝑠1⟩ → ⟨𝑣1, 𝑠0⟩ → ⟨𝑣4, 𝑠1⟩ → ⟨𝑣2, 𝑠0⟩. But
this path has a smaller timestamp 4. Therefore, Δ tree index only
stores path 𝑝 rather than 𝑝′.

Update: Algorithm 1 shows the steps to update Δ tree index and

the result set upon receiving a new tuple 𝑠𝑔𝑡 = (𝑒𝑏 =
−−−−→𝑣𝑏 , 𝑣𝑑 , 𝑙, 𝑡𝑠). S-

PATH finds all state pairs (𝑠𝑏 , 𝑠𝑑 ) from DFA 𝐴𝑅 where 𝛿 (𝑠𝑏 , 𝑙) = 𝑠𝑑 .

For each state pair, if 𝑠𝑏 = 𝑠0 and 𝑇𝑣𝑏 ,𝑠0 ∉ Δ, it builds a new Δ tree

with root ⟨𝑣𝑏 , 𝑠0⟩, (line 2-3). Then it finds all Δ trees containing node

⟨𝑣𝑏 , 𝑠𝑏⟩. It expands each tree 𝑇𝑣𝑥 ,𝑠𝑥 with a Dijkstra-based search,

which maintains source-destination-edge triples (⟨𝑣𝑖 , 𝑠𝑖 ⟩, ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩, 𝑒)
with a heap 𝑄 , sorted in decreasing order of the destination node’s
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Algorithm 1: Processing new tuples in Δ tree index

Input: new tuple 𝑠𝑔𝑡 = (𝑒𝑏 =
−−−→𝑣𝑏 , 𝑣𝑑 , 𝑙, 𝑡𝑠 )

Output: updated Δ trees and result set 𝑅𝑆

1 forall (𝑠𝑏 , 𝑠𝑑 ) ∈ 𝐴𝑅 .𝑆 × 𝐴𝑅 .𝑆 where 𝛿 (𝑠𝑏 , 𝑙 ) = 𝑠𝑑 do
2 if 𝑠𝑏 = 𝑠0 𝑎𝑛𝑑 𝑇𝑣𝑏 ,𝑠0 ∉ Δ then
3 Add𝑇𝑣𝑏 ,𝑠0 with root ⟨𝑣𝑏 , 𝑠0 ⟩ into Δ, ⟨𝑣𝑏 , 𝑠0 ⟩.𝑡𝑠 = 𝐼𝑁𝐹 .

4 forall𝑇𝑣𝑥 ,𝑠𝑥 ∈ Δ where ⟨𝑣𝑏 , 𝑠𝑏 ⟩ ∈ 𝑇𝑣𝑥 ,𝑠𝑥 do
5 heap𝑄.𝑝𝑢𝑠ℎ (⟨𝑣𝑏 , 𝑠𝑏 ⟩, ⟨𝑣𝑑 , 𝑠𝑑 ⟩, 𝑒𝑏 ) .
6 while !𝑄.𝑒𝑚𝑝𝑡𝑦 do
7 ⟨𝑣𝑖 , 𝑠𝑖 ⟩, ⟨𝑣𝑗 , 𝑠 𝑗 ⟩, 𝑒 = 𝑄.𝑡𝑜𝑝 ( ) .
8 𝑄.𝑝𝑜𝑝 ( ) .
9 if ⟨𝑣𝑗 , 𝑠 𝑗 ⟩ ∉ 𝑇𝑣𝑥 ,𝑠𝑥 then
10 Add ⟨𝑣𝑗 , 𝑠 𝑗 ⟩ into𝑇𝑣𝑥 ,𝑠𝑥 with parent ⟨𝑣𝑖 , 𝑠𝑖 ⟩.
11 ⟨𝑣𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 = 𝑀𝑖𝑛{⟨𝑣𝑖 , 𝑠𝑖 ⟩.𝑡𝑠, 𝑒.𝑡𝑠 }
12 else if ⟨𝑣𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 < 𝑀𝑖𝑛{⟨𝑣𝑖 , 𝑠𝑖 ⟩.𝑡𝑠, 𝑒.𝑡𝑠 } then
13 Set parent of ⟨𝑣𝑗 , 𝑠 𝑗 ⟩ to ⟨𝑣𝑖 , 𝑠𝑖 ⟩
14 ⟨𝑣𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 = 𝑀𝑖𝑛{⟨𝑣𝑖 , 𝑠𝑖 ⟩.𝑡𝑠, 𝑒.𝑡𝑠 }
15 else
16 Continue

17 if 𝑠𝑥 = 𝑠0 and 𝑠 𝑗 ∈ 𝐴𝑅 .𝐹 then
18 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑎𝑝 (𝑅𝑆, (𝑣𝑥 , 𝑣𝑗 ), ⟨𝑣𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 )
19 forall ⟨𝑣𝑞, 𝑠𝑞 ⟩ where 𝑒′ = −−−→

𝑣𝑗 , 𝑣𝑞 ∈ 𝐺𝜏 and
𝛿 (𝑠 𝑗 , 𝜙 (𝑒′ ) ) = 𝑠𝑞 do

20 𝑄.𝑝𝑢𝑠ℎ (⟨𝑣𝑗 , 𝑠 𝑗 ⟩, ⟨𝑣𝑞, 𝑠𝑞 ⟩, 𝑒′ )

timestamp, namely 𝑀𝑖𝑛{⟨𝑣𝑖 , 𝑠𝑖 ⟩.𝑡𝑠, 𝑒 .𝑡𝑠}. 2 For each node ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩
it finds from source node ⟨𝑣𝑖 , 𝑠𝑖 ⟩ through edge 𝑒 in the search,

there is a path 𝑝 from ⟨𝑣𝑥 , 𝑠𝑥 ⟩ to ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩, which is the concate-

nation of the path from ⟨𝑣𝑥 , 𝑠𝑥 ⟩ to ⟨𝑣𝑖 , 𝑠𝑖 ⟩ in 𝑇𝑣𝑥 ,𝑠𝑥 and 𝑒 . And

𝑝.𝑡𝑠 = 𝑀𝑖𝑛{⟨𝑣𝑖 , 𝑠𝑖 ⟩.𝑡𝑠, 𝑒 .𝑡𝑠}. There are 3 cases:
(1) If ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ ∉ 𝑇𝑣𝑥 ,𝑠𝑥 , S-PATH adds it into 𝑇𝑣𝑥 ,𝑠𝑥 with parent

⟨𝑣𝑖 , 𝑠𝑖 ⟩ and timestamp 𝑝.𝑡𝑠 (line 9-11).

(2) If ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ ∈ 𝑇𝑣𝑥 ,𝑠𝑥 but ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 < 𝑝.𝑡𝑠 , it means a new path

with larger timestamp is found. S-PATH sets the parent of

⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ to ⟨𝑣𝑖 , 𝑠𝑖 ⟩, and ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 to 𝑝.𝑡𝑠 (line 12-14).
(3) If ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ ∈ 𝑇𝑣𝑥 ,𝑠𝑥 and ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 ⩾ 𝑝.𝑡𝑠 , S-PATH prunes

this search branch (line 15-16).

Besides, if 𝑠𝑥 = 𝑠0 and 𝑠 𝑗 is a final state, S-PATHupdates the result

set 𝑅𝑆 with function𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑎𝑝 (·) (line 17-18). This function sets

(𝑣𝑥 , 𝑣 𝑗 ).𝑡𝑠 to ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 if (𝑣𝑥 , 𝑣 𝑗 ) ∉ 𝑅𝑆 or (𝑣𝑥 , 𝑣 𝑗 ) .𝑡𝑠 < ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩.𝑡𝑠 .
Note that 𝑠𝑥 = 𝑠0 always holds in S-PATH, but it is not necessary

in LM-SRPQ, which we will discuss in Section 3.

Expire: S-PATH carries out an expiration procedure at the end of

every sliding interval. It first deletes all the outdated edges from the

snapshot graph. Then it deletes all the tree nodes with timestamps

smaller than 𝜏 − 𝑁 in Δ-tree index, where 𝜏 is the current time. At

last, it deletes all result tuples with timestamps smaller than 𝜏 − 𝑁

in the result set 𝑅𝑆 .

2
[26] uses depth-first search (DFS) here. But according to our experiments, Dijkstra-

based search is much faster. Because it guarantees that we visit each edge only once

in the search, and the complexity is 𝑂 ( |𝐸 |𝑙𝑜𝑔 ( |𝑉 | ) ) . While in DFS we may visit

the same edge multiple times through different paths, with a search cost of𝑂 ( |𝐸 |2 ) .
Besides, we do not actually store the product graph, and traverse it by simultaneously

traversing the snapshot graph and the DFA according to Definition 2.9.

Drawback: By materializing the latest paths in the product

graph, S-PATH achieves high update speed. However, as a cost of

materialization, the memory consumption of S-PATH is high. We

notice that there are many common subtrees with the same root

in Δ tree forests, like the subtree of ⟨𝑣2, 𝑠1⟩ in Figure 2. We can

reduce memory usage by eliminating redundant storage of these

subtrees. Moreover, by reducing the forest size, we also reduce the

maintenance cost and further improve the update speed.

3 LM-SRPQ ALGORITHM
3.1 Overview
In this section, we propose LM-SRPQ algorithm. Our idea is to

eliminate the redundant storage by merging common subtrees in

the Δ tree forest of S-PATH. These common subtrees are induced

by common fragments in different paths. For example, in Figure 3,

the subtree of ⟨𝑣2, 𝑠1⟩ in 𝑇𝑣1,𝑠0 stores paths from ⟨𝑣2, 𝑠1⟩ to ⟨𝑣7, 𝑠0⟩
and ⟨𝑣9, 𝑠0⟩, which are fragments of paths from tree root ⟨𝑣1, 𝑠0⟩
to ⟨𝑣7, 𝑠0⟩ and ⟨𝑣9, 𝑠0⟩, respectively. It is similar in 𝑇𝑣6,𝑠0 . The same

subtree of ⟨𝑣2, 𝑠1⟩ in 𝑇𝑣1,𝑠0 and 𝑇𝑣6,𝑠0 are induced by the same path

fragments. We can use ⟨𝑣2, 𝑠1⟩ as a landmark and split these paths,

as shown in Figure 3. The common postfix ⟨𝑣2, 𝑠1⟩ → ⟨𝑣7, 𝑠0⟩ and
⟨𝑣2, 𝑠1⟩ → ⟨𝑣9, 𝑠0⟩ can be stored in an independent Δ tree with

root ⟨𝑣2, 𝑠1⟩, and in 𝑇𝑣1,𝑠0 (or 𝑇𝑣6,𝑠0 ), we only need to store the pre-

fix, namely the path from ⟨𝑣1, 𝑠0⟩ ( or ⟨𝑣6, 𝑠0⟩) to ⟨𝑣2, 𝑠1⟩. We can

recover the full path by concatenating the prefix and the postfix.

For example, timestamp of the full path from ⟨𝑣1, 𝑠0⟩ to ⟨𝑣7, 𝑠0⟩ can
be computed as 𝑀𝑖𝑛{𝑇𝑣1,𝑠0 .⟨𝑣2, 𝑠1⟩.𝑡𝑠,𝑇𝑣2,𝑠1 .⟨𝑣7, 𝑠0⟩.𝑡𝑠}. After such
modification, we do not need to store duplicated subtrees of ⟨𝑣2, 𝑠1⟩.
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Figure 3: Merge common subtrees

More generally, we select a group of nodes as landmarks and split

paths in the product graph into fragments with these landmarks.

We name path fragments that pass no landmarks as local paths.
We build Δ trees for a node ⟨𝑣𝑖 , 𝑠𝑖 ⟩ if 𝑠𝑖 = 𝑠0 or ⟨𝑣𝑖 , 𝑠𝑖 ⟩ is a landmark.

In this Δ tree we maintain the latest local paths from ⟨𝑣𝑖 , 𝑠𝑖 ⟩ to other
nodes. In the following sections, we use “local paths” to implicitly

denote the latest local paths stored in Δ trees, as other local paths

will not be considered in our algorithm. We name the Δ trees whose

roots are landmarks as landmark trees (LM trees for short), and

name other Δ trees whose roots have initial state 𝑠0 as normal trees.

Figure 4 shows an example of our LM-SRPQ algorithm. In this

example, we select ⟨𝑣1, 𝑠0⟩, ⟨𝑣2, 𝑠1⟩, ⟨𝑣3, 𝑠0⟩, ⟨𝑣4, 𝑠1⟩ and ⟨𝑣6, 𝑠0⟩ as
landmarks. We present detailed LM tree𝑇𝑣2,𝑠1 and normal tree𝑇𝑣8,𝑠0
as examples (the TI-map will be discussed in Section 3.3, and we

ignore it here). Landmarks in Δ trees are marked in shadow.

We have the following theorem about local paths:
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Figure 4: Overview of LM-SRPQ

Theorem 3.1. For any node pair ⟨𝑣𝑖 , 𝑠0⟩ and ⟨𝑣 𝑗 , 𝑠𝑓 ⟩, we can get
the latest path between them by concatenating a sequence of local
paths {𝑙𝑝0, 𝑙𝑝1 ....𝑙𝑝𝑛}, where the source node of 𝑙𝑝0 is ⟨𝑣𝑖 , 𝑠0⟩ and the
destination node of 𝑙𝑝𝑛 is ⟨𝑣 𝑗 , 𝑠𝑓 ⟩. Other endpoints are landmarks,
and each 𝑙𝑝𝑐 (0 ⩽ 𝑐 ⩽ 𝑛) is the latest local path between its endpoints.

Detailed proof can be found in the technique report [1]. Note

that there may be multiple landmark sequences connecting a node

pair, and we need to find the latest one. According to this theorem,

we can answer RPQ by maintaining latest local paths with Δ trees

and continuously computing local path sequences that connect

each node pair ⟨𝑣𝑖 , 𝑠0⟩ and ⟨𝑣 𝑗 , 𝑠𝑓 ⟩.
In order to maintain local paths, we can update LM trees and

normal trees with Algorithm 1. The only difference is that we prune

the search branch when we meet a landmark in graph traversal. In

order to continuously compute concatenations of local paths, we

build a dependency graph𝐺𝑑 , where each node represents a Δ tree,

and each edge represents the local path between two tree roots. An

example of the dependency graph can be found in Figure 4, where

we mark LM trees in shadow. 𝐺𝑑 is gradually built along with the

streaming graph’s update. When new streaming graph tuples arrive,

Δ trees are updated and new local paths are built, inducing new

edges in 𝐺𝑑 . Edges in 𝐺𝑑 expire when their timestamps fall out

of the sliding window. Each path in𝐺𝑑 corresponds to a concate-

nation of local paths, and we call it a dependency path. A local

path sequence connecting ⟨𝑣𝑖 , 𝑠0⟩ with ⟨𝑣 𝑗 , 𝑠𝑓 ⟩ can be split into a

dependency path from𝑇𝑣𝑖 ,𝑠0 to an LM tree𝑇𝑣𝑞 ,𝑠𝑞 and a local path in

𝑇𝑣𝑞 ,𝑠𝑞 which leads to ⟨𝑣 𝑗 , 𝑠𝑓 ⟩. For example, in Figure 1, there is a the

path from ⟨𝑣6, 𝑠0⟩ to ⟨𝑣2, 𝑠0⟩: 𝑝 = ⟨𝑣6, 𝑠0⟩ → ⟨𝑣3, 𝑠1⟩ → ⟨𝑣1, 𝑠0⟩ →
⟨𝑣4, 𝑠1⟩ → ⟨𝑣2, 𝑠0⟩. This path can be divided into a local path se-

quence {𝑙𝑝1, 𝑙𝑝2, 𝑙𝑝3} where 𝑙𝑝1 = ⟨𝑣6, 𝑠0⟩ → ⟨𝑣3, 𝑠1⟩ → ⟨𝑣1, 𝑠0⟩,
𝑙𝑝2 = ⟨𝑣1, 𝑠0⟩ → ⟨𝑣4, 𝑠1⟩, 𝑙𝑝3 = ⟨𝑣4, 𝑠1⟩ → ⟨𝑣2, 𝑠0⟩.While in Figure 4,

𝑙𝑝1, 𝑙𝑝2 and 𝑙𝑝3 are stored in tree𝑇𝑣6,𝑠0 ,𝑇𝑣1,𝑠0 and𝑇𝑣4,𝑠1 , respectively.

Among them, 𝑙𝑝1 and 𝑙𝑝2 can be represented as edges

−−−−−−−−−→
𝑇𝑣6,𝑠0 ,𝑇𝑣1,𝑠0

and

−−−−−−−−−→
𝑇𝑣1,𝑠0 ,𝑇𝑣4,𝑠1 . Therefore, 𝑝1 can be divided into the dependency

path 𝑇𝑣6,𝑠0 → 𝑇𝑣1,𝑠0 → 𝑇𝑣4,𝑠1 and 𝑙𝑝3 in 𝑇𝑣4,𝑠1 .

we can maintain sequences of local paths by traversing the de-

pendency graph to find dependency paths, and concatenating de-

pendency paths with local paths. More specifically, we process a

new tuple in the streaming graph with the following steps:

First, we update the Δ trees with Algorithm 1 but stop graph tra-

versal at landmarks. When a landmark ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ is added (or updated)
in a Δ tree 𝑇𝑣𝑖 ,𝑠𝑖 with timestamp 𝑡 , we add a new edge

−−−−−−−−−→
𝑇𝑣𝑖 ,𝑠𝑖 ,𝑇𝑣𝑗 ,𝑠 𝑗

with timestamp 𝑡 into the dependency graph. In Figure 4, a new

streaming graph edge
−−−→𝑣2, 𝑣5 with label 𝑏 arrives, and a new local

path in 𝑇𝑣2,𝑠1 is built, namely ⟨𝑣2, 𝑠1⟩ → ⟨𝑣5, 𝑠0⟩ → ⟨𝑣4, 𝑠1⟩. As
⟨𝑣4, 𝑠1⟩ is a landmark, a new dependency edge

−−−−−−−−−→
𝑇𝑣2,𝑠1 ,𝑇𝑣4,𝑠1 is added.

Second, we traverse the dependency graph to find dependency

paths influenced by this update, which can be divided into two

kinds: 1) dependency paths from a tree 𝑇𝑣𝑖 ,𝑠0 to 𝑇𝑣𝑞 ,𝑠𝑞 , where 𝑇𝑣𝑞 ,𝑠𝑞
is an updated LM tree. For example, in Figure 4, we need to find

the dependency paths from 𝑇𝑣6,𝑠0 , 𝑇𝑣1,𝑠0 and 𝑇𝑣8,𝑠0 to 𝑇𝑣2,𝑠1 with a

backward traversal. 2) new dependency paths containing new de-

pendency graph edges. These paths can be found by concatenating

paths from precursors to the source node of the new edge, paths

from the destination node to its successors, and the new edge itself.

For example, in Figure 4, we concatenate path from 𝑇𝑣6,𝑠0 to 𝑇𝑣2,𝑠1 ,

path from 𝑇𝑣4,𝑠1 to 𝑇𝑣3,𝑠0 and new edge

−−−−−−−−−→
𝑇𝑣2,𝑠1 ,𝑇𝑣4,𝑠1 to get the new

dependency path from 𝑇𝑣6,𝑠0 to 𝑇𝑣3,𝑠0 . Note that we may find mul-

tiple dependency paths between the same Δ tree pair in traversal,

and we only use the latest one in the update.

At last, we concatenate dependency paths with local paths and

update the result set. There are two kinds of concatenations 1)

concatenations of new dependency paths with existing local paths

2) concatenations of existing dependency paths with new local

paths. For example, in Figure 4, we concatenate the new local path

from ⟨𝑣2, 𝑠1⟩ to ⟨𝑣5, 𝑠0⟩with the dependency path from𝑇𝑣6,𝑠0 to𝑇𝑣2,𝑠1
to build new path from ⟨𝑣6, 𝑠0⟩ to ⟨𝑣5, 𝑠0⟩. We also concatenate the

new dependency path from 𝑇𝑣6,𝑠0 to 𝑇𝑣4,𝑠1 with the local path from

⟨𝑣4, 𝑠1⟩ to ⟨𝑣2, 𝑠0⟩ to build new path from ⟨𝑣6, 𝑠0⟩ to ⟨𝑣2, 𝑠0⟩. At last,
for each new path 𝑝 from ⟨𝑣𝑖 , 𝑠0⟩ to ⟨𝑣 𝑗 , 𝑠𝑓 ⟩, we set the timestamp

of (𝑣𝑖 , 𝑣 𝑗 ) in the result set 𝑅𝑆 to 𝑝.𝑡𝑠 if it is not in 𝑅𝑆 or has a smaller

timestamp. We omit the new dependency paths to 𝑇𝑣3,𝑠0 in Figure
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4, as there are no local paths to final-state nodes in 𝑇𝑣3,𝑠0 . We also

omit local paths to non-final-state nodes, like ⟨𝑣5, 𝑠1⟩.
However, there are two problems in the above algorithm:

First, how to select a good landmark set is a challenge. We

hope the landmark set helps us to minimize the Δ tree forest, but we

also need to consider the update cost. We can minimize the Δ tree

forest by selecting all nodes as landmarks. In this case, each Δ tree

only stores the 1-hop successors of a node, and the forest becomes

an adjacency list of the product graph. There will be no redundant

storage. However, the dependency graph will be as large as the

product graph, and traversal in it will be terribly slow. Therefore,

we hope to select the landmark set with a bounded size𝑚, and try

to minimize the Δ tree forest under such restriction. There will be𝑚
𝑖=1

 |𝑉𝑝 |
𝑖


methods to select the landmark set in this case, where

|𝑉𝑝 | is the number of nodes in the product graph. This is an expo-

nential search space, which makes it computationally impossible to

find the optimal landmark set. We have to resort to a greedy method.

Moreover, the landmark set needs to be continuously updated to

keep up with the streaming graph.

Second, even bounded in size, the dependency graph traver-
sal still brings a high update cost.Without materializing existing

paths like Δ trees, we need to build dependency paths from scratch

in each update. In the above example, for a new dependency edge

−−−−−−−−−→
𝑇𝑣2,𝑠1 ,𝑇𝑣4,𝑠1 , we need to carry out both forward search from 𝑇𝑣4,𝑠1
and backward search from 𝑇𝑣2,𝑠1 . With a Dijkstra-based method,

each search takes a cost of𝑂 ( |𝐸𝑑 |𝑙𝑜𝑔( |𝑉𝑑 |), where |𝐸𝑑 | and |𝑉𝑑 | are
numbers of edges and vertices in the dependency graph, respec-

tively. As there may be 𝑂 ( |𝑉𝑑 |2) new dependency edges upon one

streaming graph tuple arrival, such traversal will be implemented

multiple times. Even when we bound the size of the dependency

graph, such traversal cost is still a system bottleneck.

We will solve these two problems in the following sections.

3.2 Landmark Selection
Based on the discussion in Section 3.1, when selecting landmarks,

we need to consider both the Δ tree forest size and the dependency

graph size. Besides, we need to continuously update the landmark

set to keep up with the updated snapshot graph.

To keep the landmark set updated, we perform a landmark se-

lection algorithm to update the entire landmark set at the end of

each sliding interval. Compared to inserting or deleting individual

landmarks in real time, such a batch update method will decrease

the cost of modifying the Δ tree forest. Besides, at the end of a

sliding interval, we will delete expired edges, leading to a dramatic

change. We need to check the landmark set after this expiration

anyway. Note that the landmark selection is not a total rebuild. We

will first check if current landmarks are still qualified, and leave

them unchanged if so. The Δ tree forest is modified only based on

the difference between the new landmark set and the old one.

As the search space of selecting a landmark set is exponential, we

cannot select an optimal solution in a reasonable time. Therefore,

we propose a greedy algorithm to select landmarks. We try to select

a bounded number of “good” landmarks. The cost of selecting a

node as a landmark is the size of the LM tree we need to build for

it, and the benefit is the size of all subtrees rooted at it in the Δ
tree forest, which we will delete. A landmark is good if the gap

between its benefit and cost is large. For example, in Figure 3, by

selecting ⟨𝑣2, 𝑠1⟩ as a landmark, we omit the subtrees in 𝑇𝑣6,𝑠0 and

𝑇𝑣1,𝑠0 , but need to build a new LM tree for 𝑇𝑣2,𝑠1 . At last, the forest

size is decreased by one node. The gap between the subtree size

and LM tree size is hard to predict. The subtree sizes of one node in

different Δ trees may be different. For example, in Figure 3, though

⟨𝑣1, 𝑠0⟩ can reach all the nodes in 𝑇𝑣1,𝑠0 , there are no successors

in the subtree of ⟨𝑣1, 𝑠0⟩ in 𝑇𝑣6,𝑠0 . Because all its successors can be

reached from ⟨𝑣6, 𝑠0⟩ through other paths with larger timestamps.

Moreover, selecting one node as a landmark will change the forest,

and influence the benefit and cost of other nodes.

As it is time-consuming to compute cost and benefit for all nodes,

we choose to select a candidate set with a heuristic method. We

prioritize nodes whose estimated Δ tree size is large. Because these

nodes have a high probability to be roots of large subtrees in the

Δ tree forest, and we can obtain high benefits by merging these

subtrees. Then we find nodes with higher benefit than cost in the

candidate set as landmarks.

To be specific, we first filter out nodes that appear in less than 2

Δ trees. Then we assign each remaining node a score, which is an

estimation of its Δ tree size. We sort the remaining nodes according

to their scores, and use the top 𝜌 percent as candidates. The score

of ⟨𝑣𝑖 , 𝑠𝑖 ⟩ is computed with the estimated width and depth of its

Δ tree. The width is estimated as the degree of ⟨𝑣𝑖 , 𝑠𝑖 ⟩. As product
graph paths are guided by state transition in DFA, the depth of Δ
tree of ⟨𝑣𝑖 , 𝑠𝑖 ⟩ can be approximated as the maximum length of paths

built in a traversal starting from 𝑠𝑖 in the DFA. We allow a circle

to repeat 𝑡 times in the traversal, which corresponds to a Kleene

star in the regular expression. For example, in the DFA of (𝑎 ◦ 𝑏)∗
shown in Figure 1, both state 𝑠0 and 𝑠1 get a score of 4 if we set 𝑡 = 2.

Because from each state we can traverse 4 steps ahead, repeating

the circles between them by 2 times.

Then we check all the current landmarks. For each landmark

⟨𝑣𝑖 , 𝑠𝑖 ⟩, we check if it falls out of the candidates set. If so, we delete

it from the landmark set. Otherwise, we continue to count the

number of omitted nodes in subtrees of ⟨𝑣𝑖 , 𝑠𝑖 ⟩. For each Δ tree

𝑇𝑣𝑗 ,𝑠 𝑗 containing ⟨𝑣𝑖 , 𝑠𝑖 ⟩, we count number of nodes which are in

𝑇𝑣𝑖 ,𝑠𝑖 but not in 𝑇𝑣𝑗 ,𝑠 𝑗 . We add up such node numbers in all Δ trees.

If the sum is smaller than the size of 𝑇𝑣𝑖 ,𝑠𝑖 , selecting ⟨𝑣𝑖 , 𝑠𝑖 ⟩ brings
more cost than benefit, and we delete it from the landmark set. For

the eliminated landmarks, we delete their LM trees and recover the

subtrees rooted at them.

At last, we scan all the nodes in the candidate set in descending

order of their estimated Δ tree size. For each candidate that is not a

landmark yet, we first build an LM tree for it. Then we count the

nodes in the subtrees rooted at it in the Δ tree forest. If the node

number in subtrees is larger than the LM tree size, we accept it as a

landmark and delete the subtrees. Otherwise, we do not select it as

a landmark and delete its LM tree.

When checking existing landmarks and selecting new landmarks,

we can also set a higher benefit threshold 𝜖 by demanding the

benefit of a landmark to be 𝜖 times of the cost. Because the snapshot

graph is constantly changing, the cost may exceed the benefit soon

if they are close. Note that if a node has state 𝑠0, there is always a

Δ tree rooted at it whether it is a landmark or not. Thus we do not

need to build a new LM tree when selecting it as a landmark. We

add it to the landmark set as long as it is in the candidate set.
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3.3 Accelerate Dependency Graph Traversal
As discussed above, the bottleneck of LM-SPRQ lies in traversing

the dependency graph.Without additional indexes, we have to build

paths from scratch in each update. The most intuitive method to

accelerate such traversal is to build Δ trees in the dependency graph.

We call these Δ trees dependency trees, in order to distinguish them

with Δ trees that store local paths. We call the LM-SRPQ with

dependency trees LM-DF.

To be specific, we build a dependency tree for each 𝑇𝑣𝑖 ,𝑠0 whose

root has an initial state 𝑠0. When a new tuple arrives, we first update

Δ trees. In this procedure, we build new local paths and produce

dependency graph edges, as discussed in Section 3.1. For each new

edge

−−−−−−−−−→
𝑇𝑣𝑖 ,𝑠𝑖 ,𝑇𝑣𝑗 ,𝑠 𝑗 , we find all the dependency trees containing 𝑇𝑣𝑖 ,𝑠𝑖 ,

add𝑇𝑣𝑗 ,𝑠 𝑗 into them and extend the dependency trees like Algorithm

1. At last, we concatenate the dependency paths with local paths

and update the result set as discussed in Section 3.1.

Figure 5 shows the dependency trees influenced by the update

in Figure 4. After updating Δ tree 𝑇𝑣2,𝑠1 , we can directly fetch the

dependency paths from its precursors 𝑇𝑣6,𝑠0 , 𝑇𝑣1,𝑠0 and 𝑇𝑣8,𝑠0 to it in

the dependency trees, and concatenate themwith the new local path

⟨𝑣2, 𝑠1⟩ → ⟨𝑣5, 𝑠0⟩ in 𝑇𝑣2,𝑠1 to produce new paths. The backward

search is omitted. However, we still need to search forward from

𝑇𝑣4,𝑠1 to extend these dependency trees. In the dependency trees of

𝑇𝑣6,𝑠0 and 𝑇𝑣1,𝑠0 , we find existing paths with larger timestamps and

prune the search. In the dependency tree of 𝑇𝑣8,𝑠0 , we build new

paths to 𝑇𝑣4,𝑠1 and 𝑇𝑣3,𝑠0 . We concatenate these new dependency

paths with local paths in 𝑇𝑣4,𝑠1 and 𝑇𝑣3,𝑠0 , and update the result set.

The dependency graph is usually very dense. A lot of depen-

dency trees need to be updated when inserting a new dependency

edge, and multiple dependency edges may be induced upon one

tuple arrival. We need to carry out a forward search with cost

𝑂 ( |𝐸𝑑 |𝑙𝑜𝑔( |𝑉𝑑 |)) in each of these dependency trees to update them,

where |𝐸𝑑 | and |𝑉𝑑 | are the numbers of edges and vertices in the

dependency graph. Even with pruning, such update cost is high.
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Figure 5: Example of Dependency Forest

We further notice that in the dependency graph, LM trees are

much fewer than normal trees, but contribute to the major part of

traversal. Because normal trees only have out-edges, and can only

become roots (in forward search) or leaves (in backward search)

in traversal. Therefore, we propose another acceleration method,

which builds indexes with rich information only for LM trees. We

build a time information map (TI-map) in each LM tree. It stores

timestamps of the latest paths to all successors of the tree root, no

matter whether they are in the LM tree or not. In Figure 4, we show

the TI-map in tree𝑇𝑣2,𝑠1 as an example. We process a new streaming

graph tuple with the following steps:

Step 1: Upon the insertion of the new tuple, we first update Δ
trees with Algorithm 1. Note that we only build local paths and

stop traversal at landmarks. We need to update the result set (if the

tree root has an initial state) and TI-maps (only for LM trees) in

this procedure. In Figure 4, we add tree nodes ⟨𝑣5, 𝑠0⟩ and ⟨𝑣4, 𝑠1⟩
into LM tree 𝑇𝑣2,𝑠1 . Besides, we add (⟨𝑣5, 𝑠0⟩, 13) and (⟨𝑣4, 𝑠1⟩, 8)
into the TI-map of 𝑇𝑣2,𝑠1 . As the root of 𝑇𝑣2,𝑠1 has state 𝑠1 rather

than initial state 𝑠0, we do not need to update the result set. We

also need to produce new dependency edges when landmarks are

added or updated in a Δ tree. In Figure 4, we add a new dependency

edge

−−−−−−−−−→
𝑇𝑣2,𝑠1 ,𝑇𝑣4,𝑠1 as landmark ⟨𝑣4, 𝑠1⟩ is added into 𝑇𝑣2,𝑠1 .

Step 2: For each new dependency edge 𝑑𝑒 =
−−−−−−−−−→
𝑇𝑣𝑖 ,𝑠𝑖 ,𝑇𝑣𝑗 ,𝑠 𝑗 , we fetch

the TI-map of𝑇𝑣𝑗 ,𝑠 𝑗 . For each (⟨𝑣𝑞, 𝑠𝑞⟩, 𝑡𝑠) in this TI-map, there is a

new path from ⟨𝑣𝑖 , 𝑠𝑖 ⟩ to ⟨𝑣𝑞, 𝑠𝑞⟩ with timestamp𝑀𝑖𝑛{𝑑𝑒.𝑡𝑠, 𝑡𝑠}. It
is a concatenation of 𝑑𝑒 and the latest path from ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ to ⟨𝑣𝑞, 𝑠𝑞⟩.
We update the result set (if 𝑠𝑖 = 𝑠0) and the TI-map of𝑇𝑣𝑖 ,𝑠𝑖 (if𝑇𝑣𝑖 ,𝑠𝑖
is an LM tree) according to the timestamps of these new paths. In

Figure 4, we insert (⟨𝑣2, 𝑠0⟩, 8), (⟨𝑣3, 𝑠0⟩, 8) and (⟨𝑣5, 𝑠1⟩, 6) into the

TI-map of 𝑇𝑣2,𝑠1 , which are computed with the TI-map of 𝑇𝑣4,𝑠1
Step 3: For each updated LM tree 𝑇𝑣𝑖 ,𝑠𝑖 , suppose 𝐷𝑃 denotes the

set of new dependency edges with source 𝑇𝑣𝑖 ,𝑠𝑖 . We carry out a

backward search from 𝑇𝑣𝑖 ,𝑠𝑖 in the dependency graph. For each Δ
tree 𝑇𝑣𝑥 ,𝑠𝑥 we find in the traversal, suppose the dependency path

from it to𝑇𝑣𝑖 ,𝑠𝑖 is 𝑑𝑝 . We can build two kinds of new paths for it: 1)

Concatenation of𝑑𝑝 with new local paths in𝑇𝑣𝑖 ,𝑠𝑖 . 2) Concatenation

of new dependency path 𝑑𝑝 ◦ 𝑑𝑒 𝑗 with paths recorded in the TI-

map of 𝑇𝑣𝑗 ,𝑠 𝑗 for each 𝑑𝑒 𝑗 =
−−−−−−−−−→
𝑇𝑣𝑖 ,𝑠𝑖 ,𝑇𝑣𝑗 ,𝑠 𝑗 in 𝐷𝑃 . Note that we only

compute timestamps of these new paths, as we only record time

information in TI-maps. We need to update the result set (if 𝑠𝑥 = 𝑠0)

and the TI-map of 𝑇𝑣𝑥 ,𝑠𝑥 (if 𝑇𝑣𝑥 ,𝑠𝑥 is an LM tree) according to the

timestamps of these new paths.

In Figure 4, when we travel from 𝑇𝑣2,𝑠1 to 𝑇𝑣1,𝑠0 following a de-

pendency path 𝑑𝑝 = 𝑇𝑣1,𝑠0 → 𝑇𝑣2,𝑠1 with timestamp 3. We first

concatenate 𝑑𝑝 with new local paths in 𝑇𝑣2,𝑠1 and produce a group

of new paths. Then we build the new dependency path from 𝑇𝑣1,𝑠0

to 𝑇𝑣4,𝑠1 as 𝑑𝑝
′ = 𝑑𝑝 ◦ −−−−−−−−−→

𝑇𝑣2,𝑠1 ,𝑇𝑣4,𝑠1 with timestamp 3. We further

concatenate 𝑑𝑝′ with paths starting from ⟨𝑣4, 𝑠1⟩. For each each

(⟨𝑣𝑞, 𝑠𝑞⟩, 𝑡𝑠) in the TI-map of𝑇𝑣4,𝑠1 , timestamp of the new path from

⟨𝑣6, 𝑠0⟩ to ⟨𝑣𝑞, 𝑠𝑞⟩ is𝑀𝑖𝑛{𝑑𝑝′ .𝑡𝑠, 𝑡𝑠}.
The TI-map in each LM tree saves us from forward search in the

dependency graph. Moreover, it pre-computes some concatenations

of dependency paths with local paths, which further accelerates

the update. For example, the TI-map of 𝑇𝑣2,𝑠1 in Figure 4 not only

records timestamps of local paths in 𝑇𝑣2,𝑠1 , but also concatenations

of dependency paths to 𝑇𝑣4,𝑠1 and 𝑇𝑣3,𝑠0 with local paths in these

trees. Though we need to maintain these TI-map entries, its benefit

outweighs the cost.

The above procedure is the basic update algorithm. We can fur-

ther perform 4 kinds of prune with TI-maps. The first 3 kinds are

performed in the backward search in Step 3. When we arrive at

an LM tree 𝑇𝑣𝑥 ,𝑠𝑥 from 𝑇𝑣𝑖 ,𝑠𝑖 following a dependency path 𝑑𝑝 , we

perform the following pruning:

First, we compare the timestamp of ⟨𝑣𝑖 , 𝑠𝑖 ⟩ in TI-map of 𝑇𝑣𝑥 ,𝑠𝑥
with 𝑑𝑝.𝑡𝑠 . If 𝑑𝑝.𝑡𝑠 is smaller, it is not the latest dependency path,

and we can prune this search branch. With this prune, we can use

depth-first search (DFS) to replace Dijikstra-based method in the
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backward search, saving the cost of heap maintenance without

inducing additional cost in wrong search branches. In the backward

search from 𝑇𝑣2,𝑠1 in Figure 4, if we arrive at 𝑇𝑣6,𝑠0 following the

dependency path 𝑑𝑝 = 𝑇𝑣6,𝑠0 → 𝑇𝑣1,𝑠0 → 𝑇𝑣2,𝑠1 in a DFS, we find its

timestamp 3 is smaller than the timestamp of ⟨𝑣2, 𝑠1⟩ in the TI-map

of 𝑇𝑣6,𝑠0 , which is 7. It indicates that there is another dependency

path with a larger timestamp, and we can prune the search branch.

Second, we compare timestamp of ⟨𝑣𝑏 , 𝑠𝑏⟩ in TI-map of 𝑇𝑣𝑥 ,𝑠𝑥
with𝑀𝑖𝑛{𝑑𝑝.𝑡𝑠,𝑇𝑣𝑖 ,𝑠𝑖 .⟨𝑣𝑏 , 𝑠𝑏⟩.𝑡𝑠}. ⟨𝑣𝑏 , 𝑠𝑏⟩ is the source node of the
new product graph edge which triggers the update in 𝑇𝑣𝑖 ,𝑠𝑖 . If the

timestamp in the TI-map is larger, we can prune this search branch.

A similar check is performed for ⟨𝑣𝑑 , 𝑠𝑑 ⟩, the destination node of the
new product graph edge. When the timestamp of ⟨𝑣𝑑 , 𝑠𝑑 ⟩ in the TI-

map is no smaller than the new path, we prune the branch. In Figure

4, the new product graph edge is

−−−−−−−−−−−−−→
⟨𝑣2, 𝑠1⟩, ⟨𝑣5, 𝑠0⟩. When we arrive

at 𝑇𝑣6,𝑠0 following the dependency path 𝑑𝑝 = 𝑇𝑣6,𝑠0 → 𝑇𝑣2,𝑠1 in the

backward search, the new path to ⟨𝑣5, 𝑠0⟩ is 𝑝 = 𝑑𝑝 ◦
−−−−−−−−−−−−−→
⟨𝑣2, 𝑠1⟩, ⟨𝑣5, 𝑠0⟩,

with timestamp 7. We find the timestamp of ⟨𝑣5, 𝑠0⟩ in the TI-map

of𝑇𝑣6,𝑠0 is 9, indicating that there is an existing path 𝑝′ with a larger
timestamp. Check the product graph in Figure 1, and we can find

𝑝′ = ⟨𝑣6, 𝑠0⟩ → ⟨𝑣3, 𝑠1⟩ → ⟨𝑣5, 𝑠0⟩. All the new paths we can build

with source ⟨𝑣6, 𝑠0⟩ contain fragment 𝑝 . By replacing 𝑝 with 𝑝′ we
can get existing paths with no smaller timestamps. Therefore, all

these new paths can not generate effective updates to the result set,

and we can prune this branch.

Third, for each 𝑑𝑒 𝑗 =
−−−−−−−−−→
𝑇𝑣𝑖 ,𝑠𝑖 ,𝑇𝑣𝑗 ,𝑠 𝑗 in 𝐷𝑃 , we compare timestamp

of ⟨𝑣 𝑗 , 𝑠 𝑗 ⟩ in the TI-map of of 𝑇𝑣𝑥 ,𝑠𝑥 with𝑀𝑖𝑛{𝑑𝑝.𝑡𝑠, 𝑑𝑒 𝑗 .𝑡𝑠}. If the
timestamp in TI-map is no smaller, we do not need to check the

TI-map of 𝑇𝑣𝑗 ,𝑠 𝑗 . In Figure 4, when we arrive at 𝑇𝑣1,𝑠0 following

the dependency path 𝑑𝑝 = 𝑇𝑣1,𝑠0 → 𝑇𝑣2,𝑠1 , the new dependency

path we build from 𝑇𝑣1,𝑠0 to 𝑇𝑣4,𝑠1 is 𝑑𝑝
′ = 𝑑𝑝 ◦ −−−−−−−−−→

𝑇𝑣2,𝑠1 ,𝑇𝑣4,𝑠1 with

timestamp 3. We find the timestamp of ⟨𝑣4, 𝑠1⟩ in the TI-map of

𝑇𝑣1,𝑠0 is 5, indicating that there is an existing dependency path with

a larger timestamp 5. We do not need to concatenate 𝑑𝑝′ with paths

recorded in the TI-map of𝑇𝑣4,𝑠1 anymore, as they cannot have larger

timestamps than existing paths, and cannot influence the result set.

The last kind of pruning is conducted in local path building in

Step 1. When we try to add a node to an LM tree in Algorithm 1,

we first check the TI-map. If the node is already in the TI-map and

its timestamp is no smaller than the new local path, there is already

an existing path to this node, and we can not find a new path with

a larger timestamp. Therefore, we prune the search branch.

The above pruning can also be used in normal trees, We can

compute timestamp of the latest path to a specific node by checking

TI-maps of all landmarks in this normal tree. As such computation

is a bit costly, we only use it in the backward search pruning.

The expiration of LM-SRPQ is similar to S-PATH, except that we

need to delete expired TI-map entries and dependency graph edges

besides expired Δ tree nodes.

The second and the fourth kinds of pruning utilize timestamps

of non-landmark nodes, which can be only achieved with TI-maps.

With these pruning tricks, we can guarantee that we visit each

edge and each node in the dependency graph at most once when

inserting a product graph edge, no matter how many dependency

edges are induced by it. We prove this in detail in the technical

report [1]. While LM-DF does not have this guarantee and suffers

Table 2: Queries used in experiments

Notation Query Notation Query

Q1 𝑎∗ Q6 𝑎𝑏∗𝑐
Q2 𝑎?𝑏∗ Q7 (𝑎1 + 𝑎2 + ... + 𝑎𝑘 )𝑏∗
Q3 𝑎𝑏∗ Q8 𝑎∗𝑏∗

Q4 𝑎𝑏𝑐 Q9 𝑎𝑏∗𝑐∗

Q5 𝑎𝑏𝑐∗ Q10 (𝑎1 + 𝑎2 + ... + 𝑎𝑘 )∗

from high forward search cost in multiple dependency trees. The

experiments in Section 4.6 show that TI-map-based method is faster

than LM-DF, and we use it as the default version of LM-SRPQ.

Compared with S-PATH, though we need additional dependency

graph traversal and path concatenation, we greatly decrease the

cost of updating Δ trees. For example, if the update in Figure 4

happens in S-PATH, we need to update the subtree of ⟨𝑣2, 𝑠1⟩ with
a graph traversal three times in𝑇𝑣1,𝑠0 ,𝑇𝑣6,𝑠0 and𝑇𝑣8,𝑠0 . While in LM-

SRPQ, we only need to update 𝑇𝑣2,𝑠1 once. In the three precursor

trees, we produce new results by path concatenations, which are in

fact computations with integer-type timestamps. This procedure

is much faster than updating Δ trees with a graph traversal. As a

result, the overall processing speed improves in most cases. Our

experimental results confirm this. We have the following theorem

about the time and space cost of LM-SRPQ and S-PATH:

Theorem 3.2. LM-SRPQ and S-PATH both have space cost of
𝑂 (𝑘 |𝑉 |2) The cost of each update operation of both algorithms is
𝑂 (𝑘2 |𝑉 | |𝐸 |𝑙𝑜𝑔(𝑘 |𝑉 |)), and the cost of each expiration operation is
𝑂 (𝑘 |𝑉 |2). 𝑘 is the number of states in the DFA. |𝑉 | and |𝐸 | are the
number of vertices and edges in the snapshot graph, respectively.

Specifically, in each update, the cost of updating Δ trees in LM-

SRPQ is 𝑂 (𝑘2 |𝑉 | |𝐸 |𝑙𝑜𝑔(𝑘 |𝑉 |)), the cost of dependency graph tra-

versal is 𝑂 (𝑘 |𝐸𝑑 |), and the cost of update TI-maps is 𝑂 (𝑘2 |𝑉 |2).
Without TI-maps, the dependency graph traversal cost will be

𝑂 (𝑘 |𝑉 |2 × |𝐸𝑑 |𝑙𝑜𝑔( |𝑉𝑑 |)). |𝐸𝑑 | and |𝑉𝑑 | are the number of edges

and nodes in the dependency graph, respectively. |𝐸𝑑 | = 𝑂 ( |𝑉 |2)
and |𝑉𝑑 | = 𝑂 ( |𝑉 |). Detailed proof can be found in the technical

report [1]. We omit it here due to space limitaion.

4 EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate LM-SRPQ over two real-

world datasets and one synthetic dataset. Details about the datasets,

workloads and experimental settings are discussed in Section 4.1

and Section 4.2, respectively. In Section 4.3 and Section 4.4, we

compare LM-SRPQ with prior art S-PATH algorithm [26] on both

memory usage and processing speed. In Section 4.5, we evaluate

the scalability of LM-SRPQ and S-PATH. In Section 4.6, we carry

out an ablation study to evaluate the effect of different techniques.

4.1 Datasets and Workloads
The regular path queries we use in experiments are shown in Table

2. They are the most common recursive queries found in real-world

applications [6], plus a popular non-recursive query Q4 𝑎𝑏𝑐 3
. We

set 𝑘 = 3 for queries with a variable number of labels, as there are

3
there is another query (𝑎1 +𝑎2 + ... +𝑎𝑘 )+ used in [25]. As we omit self-join results,

its answer has no difference with Q10 (𝑎1 + 𝑎2 + ... + 𝑎𝑘 )∗ . Thus we omit this query.
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only 3 labels in StackOverflow, a dataset we use in experiments.

We process edges in datasets in time order to simulate real-world

streaming graphs. The following datasets are used in experiments.

StackOverflow: 4 This is a temporal graph of interactions on

the stack exchange website Stack Overflow. Vertices are users and

edges represent user interactions. There are 63,497,050 edges and

2,601,977 vertices, spanning 8 years. There are three kinds of edges

in this dataset, representing different types of user interactions. We

set the window size to 20 days and sliding interval to 1 day.

LDBC: This is a synthetic dataset that simulates real-world inter-

actions in social networks [12]. The workload has both a static part

and an update stream, and we extract the update stream to use in

experiments. There are 10 types of interactions, but only two kinds

of edges are recursive: ReplyOf and Knows. Moreover, these two

kinds of edges are connected with different types of vertices. As a

result, Q8, Q9 and Q10 cannot be meaningfully expressed. With a

scale factor of 10, there are 55,823,323 edges and 7,586,929 vertices,

spanning 3.5 months. We set the window size to 3 days and the

sliding interval to 6 hours.

Yago2s: This is a real-world RDF dataset
5
, with 244,800,042

edges and 10,852,613 vertices after transformed into a graph. It has

104 edge labels, and supports all queries in Table 2. Edges in this

dataset do not have associated timestamps. We randomly shuffle

the edges and assign a monotonically non-decreasing timestamp

for each edge with a fixed rate. We set the window size to 2𝑀 edges

and the sliding interval to 256𝑘 edges.

4.2 Experiment Implementation
Both S-PATH and LM-SRPQ are implemented with C++ and com-

piled with GCC 5.4.0 and O3 option. As there are many queries to

test and some queries are both memory and time consuming, we

split these experiments on two servers. Experiments with Stack-

Overflow are implemented on a server with 192GB memory and

two Intel Xeon 2.30GHz 18-core CPU. Experiments with LDBC and

Yago2s are implemented on another server with 384GB memory

and two Intel Xeon 2.60GHz 8-core CPU. For LM-SRPQ, we set the

candidate selection rate 𝜌 = 20% and benefit threshold 𝜖 = 1.5 un-

less otherwise specified. And we allow a circle to be repeated 𝑡 = 6

times when carrying out a traversal in DFA (details about these

parameters are in Section 3.2). The interval of landmark selection

is set to the sliding interval. We set a checkpoint whenever the

largest timestamp of processed edges increases by 𝑁 , namely after

processing a sliding window. We measure metrics at checkpoints

and use the average value of all checkpoints as experimental results.

4.3 Memory Comparison
We measure the average memory usage of LM-SRPQ and S-PATH,

as shown in Figure 6. The unit of memory usage is 𝑀𝐵. We also

present the improvements brought by LM-SRPQ compared to S-

PATH, which is calculated as
𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑆−𝑃𝐴𝑇𝐻

𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝐿𝑀−𝑆𝑅𝑃𝑄 . LM-SRPQ out-

performs S-PATH when the improvement is larger than 1. The

higher the improvement is, the better LM-SRPQ performs. The

4
http://snap.stanford.edu/data/sx-stackoverflow.html

5
https://www.mpi-inf.mpg.de/departments/databases-and-information-

systems/research/yago-naga/yago/

memory usage excludes the cost of the streaming graph and the re-

sult set. Because this cost is the same for both methods. To complete

our experiments in a reasonable time, we decrease the window size

of some queries, as they are too complicated and have a very low

processing speed, especially with S-PATH. Q9 and Q10 of Stack-

Overflow have a window size of 10 days, and we only process edges

in the first 800 days. Q8 of LDBC has a window size of 1.5 days.

As shown in these figures, LM-SRPQ costs much less memory

than S-PATH in most queries. The improvement of average mem-

ory usage reaches more than 30. As LM-SRPQ depends on merging

common subtrees to save memory, the number and size of com-

mon subtrees influence the improvement significantly. For example,

queries in StackOverflow have higher improvements. This dataset

is much denser and more cyclic than other datasets, and has fewer

labels. As a result, queries generate larger Δ trees in this dataset, and

LM-SRPQ can merge more large subtrees. The lower improvements

in Yago2s have the same reason. It has a large number of labels,

resulting in a low density of single label and fewer, smaller common

subtrees. Similarly, simple and less recursive queries like Q4 have

lower improvements. Sometimes the improvement is even smaller

than 1, indicating LM-SRPQ has higher memory usage. In this case,

the additional cost of maintaining TI-maps and dependency edges

exceeds the benefits of merging common subtrees. But in these

cases, the memory usage of LM-SRPQ is only higher by less than

20%. On the other hand, in highly recursive queries like Q10, the

improvement is always significant.

4.4 Processing Speed Comparison
We measure the throughput of edge insertions, and the results

are shown in Figure 7. The unit is edge per second (eps). We also

present the improvement brought by LM-SRPQ. The improvement

is calculated as
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑜 𝑓 𝐿𝑀−𝑆𝑅𝑃𝑄
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑜 𝑓 𝑆−𝑃𝐴𝑇𝐻 . The experiment settings

are the same as the experiments in Section 4.3.

As shown in these figures, LM-SRPQ outperforms S-PATH in

most queries. The improvement of throughput reaches at most 4.5.

By merging common subtrees, LM-SRPQ decreases the Δ tree forest

size a lot, and decreases the cost to update these Δ trees as well.

Though it induces new cost of dependency graph traversal and

path concatenation, the pruning techniques have strictly bounded

the cost. As a result, LM-SRPQ has a higher overall speed. Similar

to the memory cost, the number and size of common subtrees

significantly influence the improvement brought by LM-SRPQ. In

dense graphs like StackOverflow and highly recursive queries like

Q10, the improvement is significant. On the other hand, in sparse

graphs and simple queries, the improvement is lower.

4.5 Scalability Evaluation
In this section, we vary the window size to test the scalability of LM-

SRPQ and S-PATH. The experimental results are shown in Figure 8.

The dataset we use in this experiment is StackOverflow. We choose

Q1, Q4 and Q8 as representative queries in order to keep the figure

legible. These queries cover three query types: non-recursive query

(Q4), recursive query with Kleene star on a single label (Q1), and

highly recursive query with Kleene stars on multiple labels (Q8). As

shown in these figures, the memory usage of both methods grows

quickly with the window size, and the time efficiency drops. As
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Figure 6: Average memory usage comparison
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Figure 7: Throughput comparison
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Figure 8: Performance vary with window size

Theorem 3.2 shows, the memory and time cost of both algorithms

have a square relationship with the snapshot graph size, and the

average snapshot graph size grows linearly with the window size.

The advantage of LM-SRPQ grows with the window size. Because

when the Δ tree forest enlarges, there are more and larger common

subtrees to merge, and LM-SRPQ will obtain a higher advantage.

4.6 Ablation Study
In this section, we evaluate the effect of different techniques, includ-

ing TI-maps and the landmark selection algorithm. We implement

several variants of LM-SRPQ. The first variant is LM-SRPQ with no

TI-maps, denoted as LM-NT. In the second variant, we randomly

select a landmark set at the end of each sliding interval. To be

specific, we first find candidate nodes that show up in at least 2 Δ
trees. Then we randomly select 20% nodes from the candidate set

as landmarks. We call this variant LM-random. We also compare

LM-SRPQ with the dependency forest-based algorithm LM-DF and

a brutal search algorithm that only materializes the product graph

and searches new paths from scratch upon each tuple arrival. We

use dataset StackOverflow. The brutal search algorithm and LM-NT

can finish processing in one week only in Q4 and Q5. Therefore we

present the result of these 2 queries, plus another query Q1. The

experimental results are shown in Figure 9. Note that the brutal

search algorithm and LM-NT have no query result in Q1 as they

cannot finish processing in time.
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Figure 9: Performance of different variant
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The result shows that LM-NT, LM-DF and the brutal search

algorithm have lower throughput than LM-SRPQ in most cases.

However, Q4 is a special case, where the throughput of these vari-

ants is compatible with LM-SRPQ. The major cost in these variants

is graph traversal. In Q4 there are no Kleene stars. The lengths of

paths are no more than 3, and the graph traversal cost is bounded.

But according to [6], most popular RPQ queries contain Kleene stars,

and these variants are slow in those queries. The memory usage of

the brutal search algorithm is always the smallest, as it ensures that

each node is only stored once. LM-NT also has smaller memory

usage than LM-SRPQ, as it stores no TI-maps. But as discussed

above, these two variants suffer from low throughput. The memory

usage of LM-DF is larger than LM-SRPQ, because dependency trees

consume more memory than TI-maps. Besides, LM-random always

has larger memory usage and lower throughput than LM-SRPQ,

confirming the effect of our landmark selection algorithm.

We break down the memory usage of LM-SRPQ in the above

3 queries in Table 3. TI-maps may contribute to the major part

of memory usage in complex queries like Q1, but we think it is a

necessary cost. Because the throughput will decrease by orders of

magnitudes without TI-maps according to Figure 9. We also show

the average latency of each landmark selection and the ratio of

total landmark selection time to the total processing time in Table

4. The result confirms that our landmark selection is fast.

Table 3: Break down memory usage of LM-SRPQ

Query Normal trees (MB) LM trees (MB) TI-maps (MB)

Q1 28.5 6.9 84.8

Q4 75.3 23.6 5.4

Q5 49.5 20.9 17.5

Table 4: Landmark selection time in LM-SRPQ

Query Average latency(s) Ratio of landmark selection

time to total processing time

Q1 0.198 1.2%

Q4 0.217 6.1%

Q5 0.164 1.7%

5 RELATEDWORK
Streaming Graph Algorithms: Early researches in streaming

graph settings are motivated by the limitation of memory: the

graph data, usually static and stored on disk, is too large to fit in

memory, thus has to be processed in a streaming manner. These

works usually use insertion-only model, where only edge or vertex

insertion is considered, and some algorithms allow the graph data to

be processed in multiple passes. The topics of these researches are

usually graph compression [3, 15, 19] and graph partition [7, 28, 33],

which pave the way to further analysis of the massive graph data.

Another kind of algorithms allows to store the entire streaming

graph in memory and discusses how to maintain the output when

the data is updated. This kind includes researches for persistent

queries like subgraph matching [9, 18, 22], triangle counting [14,

31, 35], cycle detection [29], as well as building dynamic indexes to

support adhoc queries like connectivity [8, 30, 37].

Regular Path Query (RPQ): RPQ has been widely used in graph

query languages and systems [4, 5, 13]. There are 2 kinds of seman-

tics for RPQ: arbitrary path and simple path. Simple-path RPQ

requires that there are no repeated vertices in the path, while

arbitrary-path RPQ does not have this requirement. It has been

proved that simple-path RPQ is NP-hard unless the graph and query

language meet certain demands [23]. Due to such high complexity

of simple-path RPQ, most works use arbitrary path semantics.

Former RPQ algorithms can be divided into two kinds: automaton-

based approaches and algebra-based approaches. For the first kind,

there are G [10], a graph query language that builds an automaton

to guide the traversal in a graph to answer RPQ, and the work

of Kochut et.al. [20] which builds two automatons and performs

bi-directional search with them. Koschmieder et al. [21] propose an

algorithm that splits the RPQ into fragments with rare labels and

performs bi-directional search for each fragment. Inju Na et.al. [24]

decrease the cost of graph traversal in RPQ evaluation by merging

strongly connected components in the graph. A recent work [34]

also approximately answers RPQ with random walks. The repre-

sentative work of the second kind is 𝛼-RA based method [2], which

extends traditional relational algebra with 𝛼 operator for transitive

closure computation. This method has been widely used in various

SPARQL engines [13]. Yakovets et.al.[36] show that these 2 kinds

of methods can be combined to explore a larger plan space.

There are only 2 existing algorithms for persistent RPQ. In [25],

Pacaci et.al. first propose persistent RPQ, and propose Δ tree-based

methods for both arbitrary path semantics and simple path seman-

tics. But the algorithm can only handle simple path semantics under

certain conditions. In [26], they further extend the definition of

persistent RPQ and merge it into an algebra for complex queries in

streaming graphs. The algorithm for streaming RPQ in [26], named

S-PATH, maintains time information for results to support further

analysis. In this paper, we focus on arbitrary path semantics, and

maintain time information for query results like [26]. But we use

sliding window model to define the validity of edges, paths and

query results, rather than the validity interval model in [26].

6 CONCLUSION
In this paper, we propose a novel algorithm for persistent RPQ in

streaming graphs, named LM-SRPQ. It is built on the foundation

of prior art, which transforms RPQ problem in the snapshot graph

to a reachability problem in a product graph, and builds Δ trees to

materialize paths in the product graph. LM-SRPQ further finds and

merges common substrees in the Δ tree forest, and solves persistent

RPQ with a combination of Δ tree maintenance and dependency

graph traversal. According to our experiments, the memory usage

of LM-SRPQ is at most 30 times smaller than prior art and the

throughput is at most 4.5 times higher, and its superiority is more

significant in complex queries and dense graphs.
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