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ABSTRACT
Exploratory data analysis can uncover interesting data insights

from data. Current methods utilize “interestingness measures” de-

signed based on system designers’ perspectives, thus inherently

restricting the insights to their defined scope. These systems, con-

sequently, may not adequately represent a broader range of user

interests. Furthermore, most existing approaches that formulate

“interestingness measure” are rule-based, which makes them in-

evitably brittle and often requires holistic re-design when new user

needs are discovered.

This paper presents a data-driven technique for deriving an “in-

terestingness measure” that learns from annotated data. We further

develop an innovative annotation algorithm that significantly re-

duces the annotation cost, and an insight synthesis algorithm based

on the Markov Chain Monte Carlo method for efficient discov-

ery of interesting insights. We consolidate these ideas into a sys-

tem. Our experimental outcomes and user studies demonstrate that

DAISY can effectively discover a broad range of interesting insights,

thereby substantially advancing the current state-of-the-art.
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1 INTRODUCTION
Exploratory data analysis has become increasingly crucial in data

analysis and decision-making across different domains [9, 28, 45],

such as business intelligence. Recent Gartner Reviews [5, 8] have

highlighted it as an emerging topic that could automatically dis-

cover and surface important insights. As a result, the generation of

interesting and useful insights has become an important problem,

gathering significant attention in recent research [12, 31, 43].

Insights are results of queries executed against the database

that expose interesting patterns in the data. An infinite number

of queries can be posed against any given database, and only a

small number of these generate interesting insights. Since this

is a problem of importance, several previous papers have devel-

oped techniques to address it. The typical solution comprises three
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Figure 1: Schematic workflow of DAISY.

parts. First, identify the types of insights to focus on. For example,

QuickInsights [12] defines 13 types of insights, such as trend, out-

lier, majority, etc. MetaInsight [31] defines two types of insights,

commonness and exception, based on homogeneous data patterns.

Second, formulate the interestingness measure for each type of

insights, which evaluates the level of interestingness an insight

presents. QuickInsights, for instance, defines two major compo-

nents, “impact” and “significance”, and formulates them for each in-

sight type based on their observations. Third, optimize the mining

process. Researchers develop different techniques to speed up the

mining process based on the characteristic of the insight types and

the interestingness measure. For instance, QuickInsights leverages

two aspects of its interestingness measure (a) “impact” is less com-

putationally intensive than “significance” (b) the interestingness

measure is proportional to “impact”, and develop several optimiza-

tion rules. In this work, we develop a new paradigm for building

interestingness measure by learning from labeled data (as depicted

in Figure 1).

Motivation. The formulation of the interestingnessmeasure plays a

vital role in insight discovery, determining the insights a system can

render. While hand-crafted interestingness measures are effective

within their specific problem domains, their interestingness scope

is limited by the characteristics defined by the developers. This

could lead to users with different interests missing many interesting

patterns due to the developers’ oversight or underestimation of

these patterns’ significance.

To validate this claim, we conducted a large-scale experiment

with the Austin Crime database [1], where users were asked to

identify interesting data patterns. QuickInsights, as shown in Fig-

ure 2, is able to discover some insights that are deemed interesting

according to our user study. However, the insights discovered by

QuickInsights are restricted to data patterns that the system design-

ers could think of. As a result, it also missed some other important

insights indicated by users, such as the two shown in Figure 3.

This experiment demonstrated that while predefined rule-based
interestingness measures can surface insights with high precision,
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(a) More than 50% of the cases are “not cleared”. (b) More than 50% of the cases are of “theft” type. (c) More than 50% of the cases are described as “theft”.

Figure 2: Top 3 Insights generated by QuickInsights for the Austin Crime database. The highest ranked insight generated by
QuickInsights (see Figure 2a) states that a majority of the incident records are not cleared. This insight is essentially generated
by first executing a SQL query that counts the number of records for each clearance status and then calculates the percentage
of each status. QuickInsights discovered some other interesting insights as well; for instance, Figure 2b and Figure 2c show two
insights that are ranked second and third. As we can see, these insights in Figure 2 are very similar to each other. In fact, they
all belong to the same insight type in QuickInsights, called “attribution”: this type considers only insights where the leading
value in one column dominates more than 50% of values in the same column [12].

(a) For census tract 18.04, top 4 crime
types combined account for nearly
80% of all crimes in census tract 18.04.

(b) For clearance date 2015-12-06, top
3 census tracts combined account for
about 35% of all crimes in Austin.

Figure 3: Visualizations of two insights that are ranked very
high in our user study. DAISY is able to discover both of them;
however, QuickInsights cannot. The insight shown in Fig-
ure 3a reveals a data pattern that, for crimes in the census
tract 18.04, the top 4 crime types combined accounts for nearly
80% of all crimes conducted in that area. This insight was
ranked very high according to our survey; however, Quick-
Insights cannot generate it because it has a rule (which says,
“the leading value should account for more than 50% of total
value”) that is required to hold for any interesting insight,
but it does not hold for this particular pattern. Similarly,
Figure 3b shows another example insight that was ranked
highly in our survey and that can be successfully discovered
by DAISY but not by QuickInsights.

they fundamentally lack the capacity to cover a diverse array of

data patterns that are broadly interesting.
Our Approach. Motivated by the findings, we propose data-driven
insight synthesis, enabling the system to learn an interestingness

measure from data, guiding the subsequent insight search process.

This is realized through a new data-driven insight synthesis sys-

tem, DAISY1, whose workflow is schematically shown in Figure 1.

To use our system, a user simply uploads a multidimensional data-

base; DAISY then generates interesting insights from it. Internally,

1DAISY represents DAta-driven Insight SYnthesis.

DAISY uses a pre-trained interestingness measure that quantita-

tively scores candidate insights
2
in the provided database. Given

our interestingness measure, DAISY then searches for interesting

insights, which are finally visualized to users.

Challenges. To derive a data-driven interestingness measure from

user annotation data, and to employ DAISY with the derived inter-

estingness measure, we need to address the following challenges.

Labeling insights efficiently. The first challenge is the efficient

collection of labeled insights across a diverse range of databases.

Even if we restrict ourselves to one database and insights corre-

sponding to single-block SQL queries, millions of insight candidates

can still be generated from these queries. It is infeasible to exhaus-

tively rate all these insights and form a total order based on their

interestingness. In this work, we propose a methodology that re-

quires annotating significantly fewer insights while still being able

to approximately rank them effectively. The core idea is to collect

partially-ordered insights. We also propose a dynamic annotation

algorithm that focuses on labeling more interesting insights based

on the current annotation results. More details about our data col-

lection methodology are described in Section 2.

Training an effective interestingness measure. The second
challenge is using the collected data to train an effective interest-

ingness measure. To achieve this, we employ neural networks to

approximate an interestingnessmeasure. Our neural networkmodel

assigns higher scores to insights ranked higher in user annotations.

The details can be found in Section 3.

Searching for interesting insights. Finally, the third challenge

is developing an insight synthesizer that can effectively search for

useful insights in a new database using the neural interestingness

measure. Different from prior work [12, 31] where the interesting-

ness measure is human-crafted explicit rules, which can be used

to accelerate the mining process. Our neural model has a less clear

structure, making the search significantly more challenging. We

propose a search algorithm agnostic to the interestingness mea-

sure’s underlying structure to address this challenge. In particular,

we formulate the problem of insight search as an optimal program

synthesis problem and develop a synthesis algorithm based on

Markov Chain Monte Carlo; more details can be found in Section 4.

2
For brevity, we refer to candidate insights as simply “insights” in the rest of this paper
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We have implemented DAISY (Section 5) and evaluated it through
a series of experiments (Section 6). We discuss related work in

Secton 7, and give our conclusion in Section 8.

In summary, this paper makes the following contributions:

• We introduce a data-driven interestingness measure, learnt from

user annotation data, and propose an effective and efficient

method for collecting training data.

• We define the insight search problem as an optimal program

synthesis problem and develop an efficient insight synthesis

algorithm using Markov Chain Monte Carlo.

• We implement our ideas in a new system, and evaluate its effec-

tiveness using ten real-world databases and a user study.

2 LABELING INSIGHTS
Our objective is an interestingness measure that captures a broader

spectrum of interestingness with user annotation. So we have to

develop training data with care. We begin by constructing a new

training dataset from 10 diverse real-world databases (details of

these databases can be found in Section 5.1).

Recall that our interestingness measure model takes in an insight

(table) and returns a numerical value indicating its interestingness.

Therefore, a straightforward way to train such a model is to develop

a corpus of insights on this dataset where every insight is labeled

with its interestingness score; this essentially gives us a total order
of insights. Unfortunately, this idea is not feasible because con-

structing a total order of insights requires an enormous amount

of manual annotation effort, and it is very difficult to scale this

process to multiple large databases. Furthermore, it may not always

be easy to create a total order: for instance, there may be multiple

insights that are similar to each other in terms of interestingness,

and humans may differ in their relative ordering. In other words, a

unique total order in general may not even exist.

Our Observation. After investigating the set of insights that

users found interesting in our preliminary experiment mentioned

in the introduction, we come up with two observations: (1) many

insights are similar with each other, (2) similar insights share similar

interestingness level.

Key ideas.We propose to use partially-ordered insights as our

training data. In particular, we create a corpus of labeled insight
pairs, as opposed to labeling each insight with the absolute rank/s-

core. Given a pair (𝐼 , 𝐼 ′), we consider three types of labels: (a) if the
label is 1, it means 𝐼 is more interesting than 𝐼 ′, (b) if the label is
-1, it means 𝐼 is less interesting than 𝐼 ′, and (c) if the label is 0, it

means both insights are similar in terms of their interestingness.

The advantage of this approach is that, rather than annotating a

set of candidate insights to form a total order, we only need to

label which insight (among two candidate insights) is more inter-

esting. It does not require exhaustively labeling all insight pairs;

we only need to obtain a set of labeled pairs that cover sufficiently

many candidate insights from the given database. Finally, cognitive

psychology researchers also show that providing pairwise compar-

isons is typically much more straightforward than quantitatively

measuring each individual entity [14, 15, 17].

In what follows, we first describe how we collect data.

Generating candidate insights by enumerating queries.Given
a multi-dimensional database, our first step is to generate all candi-

date insights. To do this, we enumerate all queries from the query

language we consider and run each of them against the database.

Details of the query language will be introduced in Section 4.1.

Sampling insight pairs using k-means clustering. Our next
step is to generate insight pairs to be annotated. However, because

there are too many of them (quadratic to the number of insights),

it is infeasible to annotate all insight pairs. Therefore, we sample

a subset of them to annotate. Our basic idea is to first cluster all

insights into 𝑛 clusters𝐶1, . . . ,𝐶𝑛 , then randomly sample an insight

𝐼𝑖 from each cluster𝐶𝑖 , and finally obtain a set of insight pairs from

these sampled insights.
3
That is, the final set 𝑅 of insight pairs is:

𝑅 = {(𝐼 , 𝐼 ′) | 𝐼 ∈ 𝐶𝑖 , 𝐼
′ ∈ 𝐶 𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}

Our technique uses the k-means algorithm to partition all insights

into clusters. In particular, we first compute a feature vector for each

insight 𝐼 : this feature vector contains the normalized top-10 values

of the aggregated column of 𝐼 . Then, based on these feature vectors,

the k-means algorithm returns 𝑛 disjoint clusters 𝐶1, . . . ,𝐶𝑛 . These

clusters are used to construct the final set 𝑅 of insight pairs.

Example 2.1. Figure 3 presents two insights. The aggregated

column, the number of crimes by different crime types and different

census tracts, is used in each to calculate their feature vectors for

clustering. Given the disparity of the two insights, we expect them

to reside in different clusters. The details of the insight formulation

and query language will be discussed in Section 4.1.

Annotating insight pairs dynamically. Unfortunately, even
if we restrict to only those sampled insight pairs, annotating all of

them still incurs prohibitive overhead (since |𝑅 | is quadratic to 𝑛).
For instance, if we have 10

3
clusters, wewill have 10

6
insight pairs to

annotate. To further reduce this burden, our key observation is that

it is not necessary to exhaustively compare the interestingness for

those less interesting insights. That is, it is less useful for 𝑅 to include

insight pairs (𝐼 , 𝐼 ′) where neither of 𝐼 , 𝐼 ′ are interesting. The reason
is that our ML model only needs to score those interesting insights

precisely–this is important for us to identify top-ranked insights; it

does not need to precisely differentiate the relative interestingness

of the less interesting insights, as long as their scores are all lower

than themost interesting ones. Therefore, motivated by this idea, we

only exhaustively construct pairs for the most interesting insights.

However, there is a cyclic dependency underlying this idea: how

do we know an insight is interesting before its interestingness is

annotated? To break this cyclic dependency, we propose an algo-

rithm that dynamically determines which insights to annotate based

on the current interestingness annotations. Instead of having two

separate steps where we first construct all insight pairs and then

annotate them, we intertwine these two steps using a quickselect-

like algorithm. In particular, given a set of 𝑛 insights, the goal of

our algorithm is to produce

[𝐼1, . . . , 𝐼𝑘 ], {𝐼𝑘+1, . . . , 𝐼𝑛}
such that: (a) for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , 𝐼𝑖 is annotated to be more

interesting than 𝐼 𝑗 , and (b) for any 1 ≤ 𝑖 ≤ 𝑘 < 𝑗 ≤ 𝑛, 𝐼𝑖 is anno-

tated to be more interesting than 𝐼 𝑗 . In other words, our algorithm

3
In our implementation, we actually sample multiple insights from each cluster. More

details can be found in Section 5.
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Figure 4: Schematic workflow of our neural interestingness measure training process.

constructs a total order of the top-𝑘 insights but it does not care

about the relative interestingness for insights 𝐼𝑘+1, . . . , 𝐼𝑛 .
More specifically, our algorithm is based on the standard quicks-

elect algorithm for finding the 𝑘th largest element in an unsorted

list. In particular, given 𝑛 insights, it first picks a pivot insight 𝐼𝑝 ,

making sure all insights that are more interesting than 𝐼𝑝 are placed

to the left of 𝐼𝑝 and all less interesting ones are placed to its right.

Note that we need humans to annotate their relative interestingness

when comparing two insights in this algorithm. If 𝐼𝑝 is among the

top-𝑘 insights
4
, we recursively invoke our algorithm for insights

to the right of 𝐼𝑝 . Otherwise, we invoke the algorithm for those to

the left. This recursive process terminates until we obtain a pivot

insight that is at exactly the 𝑘th position.

Note that, at this point, we have also identified the top-𝑘 insights.

However, their relative interestingness is not yet determined. There-

fore, we use a standard sorting algorithm (e.g., quicksort) to sort the

top-𝑘 insights, where every comparison of interestingness requires

human annotations. We also note that we do not sort the remain-

ing low-ranked insights, because it is not necessary to precisely

determinate their relative interestingness.

Generating training data from annotated insight pairs. In
the final step, given the top-𝑘 sorted insights [𝐼1, . . . , 𝐼𝑘 ] and 𝑚

lower-ranked unsorted insights {𝐼 ′
1
, . . . , 𝐼 ′𝑚}, we create a set 𝑆1 of

directly-labeled insight pairs as follows. For each label (𝐼 , 𝐼 ′, 𝑍 ), 𝐼
and 𝐼 ′ are insights and 𝑍 ∈ {−1, 0, 1} is the label. Specifically, given
insights 𝐼 and 𝐼 ′, 𝑍 = 1means 𝐼 ismore interesting than 𝐼 ′, whereas
𝑍 = −1 encodes 𝐼 is less interesting than 𝐼 ′. In addition, 𝑍 = 0

means 𝐼 and 𝐼 ′ are similar in terms of their interestingness.

𝑆1 = { (𝐼𝑖 , 𝐼 𝑗 , 1) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 }∪{ (𝐼𝑖 , 𝐼 ′𝑗 , 1) | 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑚} (1)

In addition, given the clusters𝐶1, . . . ,𝐶𝑛 obtained from k-means

clustering, we create the following two sets of labeled insight pairs.

𝑆2 = { (𝐼𝑖 , 𝐼 𝑗 , 𝑍 ) | (𝐼 , 𝐼 ′, 𝑍 ) ∈ 𝑆1, 𝐼 ∈ 𝐶𝑖 , 𝐼
′ ∈ 𝐶 𝑗 , 𝐼𝑖 ∈ 𝐶𝑖 , 𝐼 𝑗 ∈ 𝐶 𝑗 } (2)

𝑆3 = { (𝐼 , 𝐼 ′, 0) | 𝐼 ∈ 𝐶𝑖 , 𝐼
′ ∈ 𝐶𝑖 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} (3)

The intuition is that insights from the same cluster are “similar”.

Therefore, if in 𝑆1, 𝐼 is more interesting than 𝐼 ′, we can infer that

any insight 𝐼𝑖 in 𝐼 ’s cluster 𝐶𝑖 is more interesting than any insight

𝐼 𝑗 from the cluster 𝐶 𝑗 of 𝐼
′
. For 𝑆3, it simply says any two insights

𝐼 , 𝐼 ′ from the same cluster are similar to each other.

Our final dataset 𝑆 is the union of 𝑆1, 𝑆2, 𝑆3, i.e., 𝑆 = 𝑆1 ∪ 𝑆2 ∪ 𝑆3.

This significantly boosts the amount of our training data.

Limitations.We outline two key limitations of the labeling process.

First, the labeling process necessitates the involvement of a devel-

oper with expertise in clustering techniques and crowd-sourcing.

4
Here, 𝑘 is a hyperparameter of our annotation algorithm.

This individual should have domain-specific knowledge and a deep

understanding of the datasets under consideration, enabling them to

configure clustering parameters effectively. While this requirement

is not inherently limiting, we anticipate that DAISY’s developers

would meet the requirements. Second, the quality of the training

set is tied to the effectiveness of the clustering algorithm. In our

experiments, we empirically determined the hyper-parameter by ex-

ploring various cluster settings. The ultimate quality of the training

data hinges on the success of this clustering process.

3 INTERESTINGNESS MEASURE FROM DATA
In this section, we first give our problem formulation for interest-

ingness measure from data in Section 3.1, then we introduce the

neural model and the training method in Section 3.2.

3.1 Problem Formulation
We define an insight as a table, which is a query result that may

exhibit an interesting data pattern. Under this definition, our inter-

estingness measure is a function that takes as input an insight 𝐼 (i.e.,

a table) and returns a numerical score indicating how interesting

𝐼 is; this is fairly standard in the literature [12]. However, unlike

prior work that uses manually-crafted rule-based measures, we aim

to learn this measure from data automatically.

Ideally, the training data is a set of candidate insights, each

annotated with an interestingness score. However, as discussed in

Section 2, such annotations are difficult to obtain, primarily because

it requires users to assign scores to insights with no handy absolute

scale that users can refer to. Instead, we propose to label partially-
ordered insights instead of a total order. Given the training data, we

formulate the learning problem as follows.

Definition 3.1 (Interestingness measure over data). Given a set

𝑆 of labeled insight pairs of the form (𝐼 , 𝐼 ′, 𝑍 ), where 𝐼 and 𝐼 ′ are
insights and 𝑍 ∈ {−1, 0, 1} is the label. Specifically, given insights 𝐼

and 𝐼 ′, 𝑍 = 1 means 𝐼 is more interesting than 𝐼 ′, whereas 𝑍 = −1
encodes 𝐼 is less interesting than 𝐼 ′. In addition, 𝑍 = 0 means 𝐼

and 𝐼 ′ are similar in terms of their interestingness. We define an

interesting measure 𝑀 as a function that takes as input an insight

𝐼 and returns a positive numerical value. Furthermore, 𝑀 should

minimize the following loss 𝐿:∑︂
(𝐼 ,𝐼 ′,𝑍 ) ∈𝑆

(1−|𝑍 |) · |𝑀 (𝐼 )−𝑀 (𝐼 ′) |+|𝑍 | ·max

{︁
0,𝑚−𝑍 · (︁𝑀 (𝐼 )−𝑀 (𝐼 ′))︁}︁

Here,𝑚 is themargin, which is a hyper-parameter to our problem.

When label 𝑍 = 0, i.e. 𝐼 , 𝐼 ′ are similar in terms of interestingness,

the loss is |𝑀 (𝐼 ) −𝑀 (𝐼 ′) |, minimizing the loss will make the model

learn to assign close interestingness scores to the two insights;
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primary_type COUNT(*)
Theft 520

Burglary 167

Theft: BOV 135

Theft: All Other Larceny 110

. . . . . .

SELECT primary_type, COUNT(*)
FROM Austin Crime
WHERE census_tract=“18.04”
GROUP BY primary_type
ORDER BY COUNT(*) DESC

(a) Insight (left) and its corresponding query (right) for Figure 3a.
census_tract COUNT(*)

203.18 5

17.5 1

17.75 1

8.04 1

. . . . . .

SELECT census_tract, COUNT(*)
FROM Austin Crime
WHERE clearance_date =“2015-12-06”
GROUP BY census_tract
ORDER BY COUNT(*) DESC

(b) Insight (left) and its corresponding query (right) for Figure 3b.

Figure 5: Two example insights.

when label 𝑍 = 1, i.e. 𝐼 is more interesting than 𝐼 ′, the loss is

calculated asmax

{︁
0,𝑚−

(︁
𝑀 (𝐼 ) −𝑀 (𝐼 ′)

)︁}︁
, minimizing the loss will

ask the model to learn to assign a higher interestingness score to 𝐼

than 𝐼 ′ with a margin of𝑚; the same logic applies when 𝑍 = −1.

Example 3.1. The insight/table in Figure 5a corresponds to the

visualization from Figure 3a; this insight is obtained by executing

the SQL query (on the right) which considers crime records in a

particular census tract (namely, 18.04). This insight is interesting

since multiple crime types combined account for a vast majority of

all crimes for the given area. Similarly, the insight in Figure 5b is

also interesting for a similar reason.

3.2 Interestingness Measure Model
After collecting the training data, the next step is to use it to train

a model that can predict an interestingness measure for any can-

didate insight. Recall that our Definition 3.1 of interestingness

measure is written as the minimization of a loss function. A multi-

layer perceptron (MLP) model is usually a good choice of neural

architecture [10] to solve such an optimization problem.

Multilayer Perceptron Interestingness Measure. Neural net-
work models have demonstrated remarkable success in various

fields. For instance, recurrent neural networks, short term memory

models and transformer-based models have gathered significant

attention in natural language processing tasks. While these mod-

els have excelled with long sequences, particularly in the context

of text inputs, our unique problem of measuring interestingness

over data requires a distinct approach. In our case, we have deliber-

ately chosen the Multilayer Perceptron (MLP) for several reasons.

First, MLP represents a simpler yet well-established neural archi-

tecture when compared to the aforementioned models. Its maturity

is underscored by a rich literature encompassing methodologies,

efficient training techniques, and refinements. As such, MLP serves

as an excellent baseline model within the DAISY system. Moreover,

MLP possesses the valuable characteristic of being a universal ap-

proximator, adepting at capturing nonlinear relationships, which

is a crucial feature in modeling our interestingness measure [10].

This capability aligns with the demands of our problem domain

and adds to MLP’s suitability as the model of choice.

The crucial next question is what features to consider. In the

next paragraph, we describe our choices. However, we should first

hasten to point out that the intellectual contributions of this paper

are orthogonal to the neural model architecture or features being

chosen. If readers would like to use other neural models or features

in a system they build, they can freely adopt their choice while

keeping everything else described in this paper intact. The key

novelty of our work lies in that we apply this neural model in a

new problem domain for scoring insights, along with an efficient

training data collection method, discussed in Section 2.

Features.We choose to manually engineer features instead of

using end-to-end deep representation learning, which is not very

suitable for our problem of insight ranking, where the insights/ta-

bles involve structured data with a lot of numbers [6]. Given an

insight 𝐼 (i.e., a table), we first extract features from the entire table

𝐼 (e.g., the number of tuples). In addition, we also extract features

from the aggregated column 𝐶 in 𝐼 (which is the column resulted

from an aggregation function in the corresponding query that pro-

duced 𝐼 ). On the other hand, we do not use dimension columns,

since in our experience, most of the interesting insights are related

to values in the aggregated column. More specifically, we consider

the following features:

(1) Tuple-count: the total number of tuples in 𝐼 .

(2) Value-sum: the sum of all values in 𝐶 .

(3) Max-min: the maximum and minimum values in 𝐶 .

(4) S-dev: the standard deviation of all values in 𝐶 .

(5) Top-10: the percentage of each of the top-10 values in 𝐶 .

We choose the features from two perspectives. First, feature (1-4)
encompass statistical metrics, they are also employed in previous

work [30]. These statistical features provide a comprehensive sta-

tistical summary of the insight. Second, feature (5) the raw data

(normalized) representing the insight itself. We use the raw data

and subsequently truncate the “top-10” to form a fixed length in-

put for our neural model. This selection decision stems from the

absence of an effective encoder for numerical table columns.

4 INTERESTING INSIGHT SYNTHESIS
So far, we have described how to train a machine learning model

that can be used to measure the interestingness of an insight. In this

section, we present a synthesis algorithm that can automatically

generate interesting insights from a multi-dimensional database

given an interestingness measure. Our synthesis algorithm is pa-

rameterized over an interestingness measure and, therefore, can be

used in combination with other interestingness measures as well.

Key idea.We view insight mining as an optimal program syn-

thesis problem. Different from prior work on both program syn-

thesis [2, 22, 34] and insight mining [12, 31], a unique challenge in

our work is that the interestingness measure is a neural network.

As a result, there is no explicit structure from the interestingness

measure that we can leverage to guide the search. To address this

challenge, we propose using a stochastic searchmethod in this work.

In particular, our approach is based on Markov Chain Monte Carlo

(MCMC) sampling, a well-known technique that can effectively

solve optimization problems with poor structures.

In what follows, we first give our problem formulation for insight

synthesis, then we give a primer on MCMC. Last, we present our

MCMC-based insight synthesis algorithm.
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4.1 Insight Synthesis as Program Synthesis
Recall that insights are defined as tables obtained by executing

SQL queries against data. Therefore, we can reduce the problem

of generating interesting insights to the problem of synthesizing

“interesting” SQL queries that produce these insights; here, the

interestingness of a SQL query is defined by the interestingness of

its resulting table. Now, we can view the insight synthesis problem

as an optimal program synthesis problem with a semantic objective.
That is, we aim to synthesize a program (i.e., a SQL query) whose

output (i.e., the insight) maximizes a quantitative objective (i.e., the

interestingness measure). In what follows, we first give a primer on

optimal program synthesis. Then, we formalize our query language.

Finally, we present our definition of the insight synthesis problem.

4.1.1 Primer on Optimal Program Synthesis. Program synthesis, in

general, is concerned with the problem of how to automatically

generate a program from its desired specification. A standard frame-

work for formulating program synthesis problems is syntax-guided

synthesis (SyGuS) [2], where the key idea is to explicitly define a

space of programs of interest using context-free grammars (CFGs).

Then, a search algorithmwill search for a program within this space

that satisfies a given specification 𝜙 . This specification 𝜙 could take

various forms such as input-output examples or logical constraints.

In general, SyGuS is not restricted to particular forms of specifi-

cations or search algorithms, as long as there is a way to check

whether a program satisfies the given specification.

Optimal program synthesis is a generalization of SyGuS where

the task searching for a highest-score program 𝑃 that satisfies the

specification 𝜙 . That is, an optimal program synthesis problem also

requires an additional scoring function 𝑓 : 𝐿 → R that assigns

a numerical score to each program 𝑃 in the language 𝐿 (i.e., the

search space). The formal definition is given below.

Definition 4.1 (Optimal Syntax-Guided Program Synthesis). Given
a language 𝐿 of programs, a scoring function 𝑓 : 𝐿 → R, and
a specification 𝜙 , the optimal syntax-guided program synthesis

problem is to find a program 𝑃 ∈ 𝐿 such that 𝑃 satisfies 𝜙 and 𝑓 (𝑃)
is maximized among all such programs in 𝐿 satisfying 𝜙 .

4.1.2 Query Language. To formalize insight synthesis as an opti-

mal SyGuS problem, we first define a context-free grammar (CFG),

which essentially defines a search space of candidate queries that
may produce interesting insights. The specific query language we

illustrate in this paper is a subset of SQL and uses standard SQL

operators, logical predicates, and aggregation functions, as shown

in Figure 6. In particular, we focus on multi-dimensional data where

tables consist of two types of columns: dimension columns (denoted

𝐷𝐶) and measure columns (denoted𝑀𝐶). Our language considers

queries of the same structure: they select some columns from an

input table, filtered by a predicate 𝜑 ; the resulting table is grouped

by certain dimension columns and ordered by a particular measure

column. Our language allows using aggregations, such as SUM, AVG,
COUNT. Predicates in our language can refer to a string 𝑠 .

The semantics of our examplar query language follows the stan-

dard SQL semantics. We use ⟦𝑃⟧𝐷 to denote the evaluation of a

query 𝑃 on a database 𝐷 ; the evaluation result is a table/insight.

Readers can refer to Example 3.1 for some example queries as well

as their corresponding insights.

Generalization of Query Language. It is important to highlight

that our technique is agnostic to the query language. The query lan-

guage defined in Figure 6 is an instance of valid query languages for

the explanation, experimentation, and evaluation purpose. System

designers can define a query language for their specific domain. For

example, the SELECT statement can include more measure columns,

more operators can be used in the predicate 𝜙 , and nested query

can also be allowed in the query language. As long as the query

language and the corresponding transformations (to be introduced

in Section 4.3) maintain the properties of the Markov chain (to be

introduced in Section 4), it can be directly used by our system.

Query P ::= SELECT 𝐷𝐶, . . . , 𝐷𝐶,𝜓 (𝑀𝐶 )
FROM𝑇
WHERE 𝜑
GROUP BY 𝐷𝐶, . . . , 𝐷𝐶
ORDER BY𝜓 (𝑀𝐶 ) DESC

Predicate 𝜑 ::= 𝐷𝐶 = 𝑠 | 𝜑 ∧ 𝜑

Aggregation 𝜓 ::= SUM | AVG | COUNT | . . .

Figure 6: CFG of our query language. 𝐷𝐶 is a dimension col-
umn.𝑀𝐶 is to a measure column. 𝑠 is a string constant.

4.1.3 Insight synthesis. The problem definition is given below.

Definition 4.2 (Insight Synthesis Problem). Given the query lan-

guage 𝐿 defined in Figure 6, an interestingness measure𝑀 : I → R
that assigns numerical values to insights, and an input database 𝐷 ,

the insight synthesis problem is to find a program 𝑃 ∈ 𝐿 such that

𝑀 (⟦𝑃⟧𝐷 ) is maximized among all programs in 𝐿.

While Definition 4.2 is based on Definition 4.1, it is distinct in

two important ways. First, our definition uses a semantic objective
𝑀 , rather than a syntactic objective (which is standard in program

synthesis literature), because our objective requires executing the

query 𝑃 on the input database. This is necessary because interest-

ingness is a property of query results rather than queries. A second

distinction is that Definition 4.2 does not involve specifications

(which constrain the functional behavior of queries). We are only

interested in synthesizing a query that maximizes the quantitative

objective. This is reasonable because it may not always be easy for

users to provide such functional constraints.

4.2 Primer on Markov Chain Monte Carlo
Markov Chain Monte Carlo (MCMC) methods comprise a collection

of sampling algorithms for drawing elements from a probability

distribution. In particular, given a probability density function, it

can sample elements from higher-probability regions more often

than those from regions of low probability.

MCMC has been used in a variety of application domains, one of

which is score maximization. That is, given a score function 𝑠 that

assigns a score to each element 𝑒 in the search space, MCMC can be

used to effectively search for elements with the highest score. The

idea is to construct, from 𝑠 , a probability density function 𝑝 which

can be directly used in MCMC to find a highest-score element. For

instance, one commonly used 𝑝 is the following [18].

𝑝 (𝑒) = 1

𝑍
exp

(︁
𝛽 · 𝑠 (𝑒))︁
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Here, 𝛽 is a constant and 𝑍 is a partition function that normalizes

the distribution. While it is in general intractable to compute 𝑍 , the

Metropolis-Hastings algorithm [20, 33] can be used to explore the

density function without necessarily computing 𝑍 . It is a standard

and well-known method to solve the MCMC sampling problem. In

particular, at each step, the algorithm maintains a current element

𝑒 . In the next step, it transforms 𝑒 to another element 𝑒′ (which is

also called a proposal). This proposal 𝑒′ can be accepted or rejected,

which is controlled by : if accepted, 𝑒′ becomes the current element;

otherwise, another proposal is generated. This process is repeated

a number of times (e.g., until it times out), and returns an element

with the highest score among all elements searched so far.

4.3 Synthesizing Insights using MCMC
While MCMC appears promising at an intuitive level, actually using

it requires casting the program synthesis problem into an MCMC

framework. This is not straightforward because: (1) we need to

ensure that under the insight synthesis problem setting, the Markov

chain can converge (i.e., the ergodic property is maintained); (2)

the proposal distribution should be appropriately designed w.r.t the

insight synthesis problem and the query language of choice.
Now, let us describe how our insight synthesis algorithm works.

At a high level, we use MCMC sampling to search for high-score

programs according to our interestingness measure: each element

in the search space is a SQL query, and we use our interesting-

ness measure 𝑀 as the score function. Given a query 𝑃 in our

language (from Figure 6), our proposal distribution 𝑞(𝑃 → ·) gives
the probability distribution of transformed queries 𝑃 ′. We consider

the following four types of transformations.

Replacingmeasure column. First, we consider transformations

that replace 𝑀𝐶 with another measure column 𝑀𝐶′
in the same

table, with probably 𝑝𝑚 . In particular, we sample 𝑀𝐶′
among all

measure columns uniformly at random. For instance, if there are

ten measure columns, each will have a probability 𝑝𝑚/10.
Changing dimension column. Similarly, we also consider re-

placing one of the dimension columns in 𝑃 with another dimension

column in the same table, with probability 𝑝𝑑 . We also sample the

target dimension column uniformly at random.

Transforming aggregation. The aggregation function𝜓 used in

𝑃 may also get transformed to another, with probability 𝑝𝑎 . Again,

we sample the target aggregation uniformly at random, among all

aggregation functions available in our query language.

Rewriting filter. The final transformation rewrites filters. In

particular, a filter 𝐷𝐶 = 𝑠 in 𝑃 may get rewritten to another filter,

with probability 𝑝 𝑓 . We consider all filters of the same shape but

with different dimension columns or values from the same table.

As before, we generate the new filter uniformly at random.

Note that we need to ensure 𝑝𝑚+𝑝𝑑 +𝑝𝑎+𝑝 𝑓 = 1. Furthermore, it

is also pretty obvious that our transformations are ergodic, because

any query in our query language can be transformed to any other

query using a sequence of steps of the four types above.

Generalization of the Transformations It is essential to note that
the above transformations are tied with the query language defined

in Figure 6. If the system designer instantiates the system with

another query language, they need to design the transformations

accordingly so that the ergodic property is maintained.

SELECT status, COUNT(*)
FROM Austin Crime
WHERE census_tract=18
GROUP BY status
ORDER BY COUNT(*) DESC

(a) Current query

SELECT status, COUNT(*)
FROM Austin Crime
WHERE census_tract=20
GROUP BY status
ORDER BY COUNT(*) DESC

(b) Proposal query

Figure 7: An example that illustrates how query transforma-
tions work. Here, the proposal query in Figure 7b is obtained
by rewriting the filter in the current query from Figure 7a.

5 IMPLEMENTATION
In this section, we describe some important implementation details

for both the interestingness measure and the search technique.

5.1 Neural Interestingness Measure
We present how we sample insights, give more details about our

annotation process, and list the databases for which we collect

labeled insight pairs as training data.

Sampling insights.We samplemultiple insights from each clus-

ter instead of just one to increase the number of insights that users

directly label. This does not affect our data collection method except

for the final step. That is, when constructing 𝑆2 in Eq (2), instead

of considering only one insight from each cluster, we perform a

“majority vote”: we label each 𝐼𝑖 to be more interesting than each 𝐼 𝑗
only if a majority of insights sampled from 𝐶𝑖 are annotated to be

more interesting by users than samples from 𝐶 𝑗 .

Annotation process.We use Amazon Mechanical Turk (MTurk)

as the crowdsourcing platform for human worker annotation. Each

annotation task contains one question: “Which of the following two

insights is more interesting to you?” We also provide the following

information in each annotation task:

• Description: we provide a short description of the database.

• Database schema: we show all the columns with their column

names, data types, as well as descriptions of the columns.

• A pair of insights: we provide the following information for each

insight 𝐼 : (a) 𝐼 itself (i.e., a table), (b) the query 𝑃 producing 𝐼 , (c)

a natural language description of 𝑃 , and (d) a visualization of 𝐼 .

We ask MTurk workers to rank insights based on only the insight

rather than the corresponding query, and use visualizations to help

workers gain an intuitive understanding of the insights.

Databases.We labeled training datawith 10 real-world databases.

More statistics about these databases can be found in Table 1.

5.2 MCMC-based Insight Search
In this section, we present some important implementation details

of our insight search algorithm, including a few key optimizations

to speed up the search process.

Prefetching query results. Metropolis-Hastings algorithm cal-

culates the acceptance probability 𝛼 in every iteration , which

requires first executing a proposal query to obtain its resulting

insight 𝐼 and then invoking our interestingness measure model

on 𝐼 . However, executing all these queries imposes a significant

runtime overhead because our algorithm sometimes needs to run
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Table 1: Statistics of databases. Here, the “# queries” column
essentially gives the size of the search space.

Database # columns # tuples # queries
Population 5 5,280 23,583

Austin 18 116,675 197,563

Names 5 846,459 191,176

PPI 10 61,968 160,745

Video 10 16,599 31,840

Netflix 6 585 7,581

Absenteeism 13 8,3360 36,852

Marketing 28 2,240 89,190

Flight 12 5,819,080 67,145

Happiness 12 158 4,671

SELECT census_tract, status, COUNT(*)
FROM Austin Crime
GROUP BY census_tract, status
ORDER BY COUNT(*)

Figure 8: Query obtained after applying “grouping where” to
the query from Figure 7a.

hundreds of iterations. Our observation is that many proposals only

differ slightly. For instance, consider the proposal query shown in

Figure 7b proposed from the query in Figure 7a. Based on this ob-

servation, we implemented an optimization that prefetches results

of queries that can be inferred from a single query. Our general

idea is to generate a query 𝑃 ′, given the current query 𝑃 , such that,

using the execution result of 𝑃 ′, we can more cheaply generate

results of multiple queries that may be proposed in the future. For

instance, one strategy we used is called “grouping where”. As shown
in Figure 8, we generate 𝑃 ′ by first getting rid of the WHERE clause
from 𝑃 , and then adding the column used in WHERE (in this exam-

ple, census_tract) to SELECT and GROUP BY clauses. Everything else

remains the same. Intuitively, this new query 𝑃 ′ computes a table

𝐼 ′ with an additional column census_tract on which 𝑃 ′ performs

GROUP BY. Then, we split 𝐼 ′ into multiple tables, each of which has

one unique census_trace value. These tables are cached. Therefore,
if in the future there is a proposal (such as the one in Figure 7b) that

only differs from 𝑃 in the value used in WHERE, we can efficiently

obtain its result from cache instead of executing the proposal.

Batching interestingness queries. On top of the previous opti-

mization, another optimization we implement is to eagerly obtain

the interestingness scores of all tables resulting from the aforemen-

tioned 𝐼 ′, instead of querying the machine learning model when

there is a proposal that hits our cache in the future. The reason

is that, for ML models, batching queries can significantly reduce

the inference time, especially on modern GPUs. Therefore, once

we split 𝐼 ′ into multiple tables, we immediately invoke our neural

interestingness model on these tables.

Parallelizing insight search. A final and natural optimization

is, parallelizing the MCMC algorithm by running multiple instances.

We keep the insight with the highest score across multiple threads.

6 EVALUATION
In this section, we describe a series of experiments that are designed

to answer the following research questions:

• Q1: Does DAISY actually produce more diverse insights than

previous work?

• Q2: How well does DAISY’s neural interestingness measure per-
form in practice? For example, can it accurately distinguish gen-

uinely interesting insights from less interesting ones?

• Q3: How well does DAISY’s search algorithm work in practice?

For instance, can it find insights that are highly ranked by a given

interestingness measure within a short amount of time?

• Q4: How well does DAISY perform end-to-end in practice? For

example, can it generate interesting insights that prior techniques

are not able to identify?

6.1 Q1: Diversity
In the introduction, we raise the problem that previous systems

can only produce interesting insights w.r.t. the system designer’s

perspective, and fail to generate other insights that would be inter-

esting to a broader audience (e.g. the insights shown in Figure 3).

In this subsection, we will show that DAISY can produce a more

diverse set of interesting insights to the user.

Setup.We first generate top-k insights with DAISY, then classify

each insight into two categories: possible or impossible to be found

by QuickInsights. The classification is performed by leveraging

the pruning rules defined in QuickInsights [12]. If an insight does

not meet the rules, we classify it as “impossible to be found by

QuickInsights”; otherwise, it is classified as possible. Specifically,
we utilize the following rules:

• The leading value in one column dominates more than 50%
of values in the same column.

• The impact
5
should be larger than a given threshold.

Main result. The main result is presented in Table 2.

Discussion. The result clearly shows that most of the insights

generated by DAISY are impossible to be found by QuickInsights.

Only 7% to 27% of top-ranking insights generated by DAISY are even
within the vocabulary of insights that could be generated by Quick-

Insights. In other words, DAISY is able to generate a more diverse

set of insights and cover a broader spectrum of interestingness.

Table 2: The percentage of 𝑘 insights generated by DAISY that
is impossible to be found by QuickInsights.

Databases k = 10 100 1000

Netflix 0.9 0.86 0.93

Video 0.8 0.73 0.75

6.2 Q2: Evaluating Interestingness Measure
We follow the standard 𝑘-fold cross-validation method to evaluate

our neural interestingness measure.

Setup. We first randomly shuffle the ten databases (for which

we obtained labeled insights; see Section 5.1), which are then split

5
the impact score from QuickInsights is calculated based on the number of tuples in

the original database used to generate the insight 𝐼 .
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Table 3: Test accuracy (in percentage) for (1) full-fledged neural interestingness measure, (2) variants using different training
features (from two sets of features), and (3) variants using different types of training data (namely, 𝑆1, 𝑆2, 𝑆3). We consider five
training sets each of which consists of two (randomly selected) databases.

Databases for Testing Full

Varying training features Varying data types

(a) (b) 𝑆1 𝑆1 + 𝑆2

Population + Austin 71.8 68.4 71.7 62.9 70.6

Name + PPI 79.6 71.4 78.2 65.2 78.5

Video + Netflix 80.7 70.5 79.4 68.7 79.9

Absenteeism + Marking 80.3 70.9 81.5 64.9 77.3

Flight + Happiness 78.4 72.3 77.5 66.3 78.2

Average 78.2 70.7 77.7 65.6 76.9

into five disjoint groups where each group has two databases. For

each group, we take the human-labeled insights corresponding to

databases in that group as our test set, and we use the insight pairs

corresponding to the remaining eight databases as our training
set.6 In other words, we perform a 5-fold cross-validation where

our split is at the database level. Given a training set, we train our

interestingness measure𝑀 using features described in Section 3.2.

During testing, given an insight pair (𝐼 , 𝐼 ′) where 𝐼 is labeled more

interesting than 𝐼 ′, if𝑀 (𝐼 ) > 𝑀 (𝐼 ′), we say𝑀 predicts accurately

on (𝐼 , 𝐼 ′). We report the accuracy on all insight pairs in the test set.

Main results. Our main results are given in the “Full” column

of Table 3. Overall, our neural interestingness measure achieved an

average of 78.2% accuracy across five test sets. Note that databases

that we test on are totally different from those in the correspond-

ing training set. This highlights that it is indeed feasible to train

interesting measures that can generalize well to unseen databases.

Discussion. In order to better understand the scenarios in which
our model would “fail”, we manually inspected some insight pairs

for which our model did not predict accurately. We identified two

common reasons that lead to inaccurate predictions. First, there

are some insight pairs in the test set for which we do not have

sufficient training data. As a result, the model did not learn how

to score those insights well. Second, the training data may contain

noise. Two pairs of “similar” insights from two databases may have

opposite labels in the training set. As a result, this would confuse

the model and lead to wrong predictions.

Ablation studies. We also perform ablation studies to evaluate

the relative importance of various design choices. In particular, we

consider the following variants in our ablation studies:

• Varying training Features: We split all features described in Sec-

tion 3.2 into two disjoint groups: (a) tuple-count + value-sum
+ max-min + s-dev, (b) top-10. Then, we construct 2 variants

that use only the corresponding group of features, perform the

same 5-fold cross-validation test (as in previous experiment) and

record the accuracy.

• Varying training data types: We also consider variants that use

different kinds of training data. Recall that Section 2 described 3

6
Since we aim to test our model’s performance on data that is directly provided by

humans, our test set only contains insight pairs in 𝑆1 (see Eq. 1) that are directly labeled

by MTurk workers and does not include insights from 𝑆2 and 𝑆3 that are inferred based

on our clustering result. On the other hand, our train set includes all labeled data in

𝑆1, 𝑆2, 𝑆3 ; this is to boost the amount of training data in order to train better models.

Table 4: Test accuracy using different training sets.

𝑘 Databases for Testing Accuracy

𝑘 = 9

Austin 81.3

Netflix 81.0

Video 80.4

𝑘 = 8

Population + Netflix 81.3

Name + Netflix 79.2

Austin + Marking 80.3

𝑘 = 7

Austin + Video + Name 77.9

Name + PPI + Flight 76.1

Marking + Flight + Netflix 74.3

𝑘 = 6

Flight + Names + Austin + Marketing 68.7

Austin + Flight + PPI + Happiness 67.4

Names + Absenteeism + Marketing + PPI 66.9

types of data: 𝑆1 containing insight pairs that are directly labeled

by human annotators, 𝑆2 consisting of insights pairs whose labels

are inferred based on our clustering result, and 𝑆3 including

similar insights from the same cluster. To evaluate the usefulness

of different types of training data, we construct 2 variants (one

using 𝑆1; the other using 𝑆1 and 𝑆2). For each variant, we conduct

the same 5-fold cross-validation test and report the accuracy.

• Training data amount: Finally, we consider variants using differ-
ent amounts of training data. In particular, we construct variants

that are trained from 𝑘 databases, where 𝑘 ranges from 9 to 6. For

each 𝑘 , we randomly select 𝑘 databases for training, and we use

the remaining databases for testing. We repeat this process three

times. Note that we do not consider all combinations of train/test

split for a given 𝑘 because there are too many of them. On the

other hand, we believe sampling three combinations should give

us a sufficiently good understanding of how different variants

work. Finally, we obtained 12 variants.

Ablation study results. We summarize the main results in Ta-

ble 3 (“Varying training features” and “Varying data types” columns)

and in Table 4. Now let us take a closer look at these results. First

of all, comparing the results in the “Full” column and those in the

“Varying data types” column, our main takeaway is that it is critical

to use all three types of training data (namely, directly labeled data

𝑆1, inferred data 𝑆2, and similar insight pairs 𝑆3) in order to achieve

the highest accuracy. Furthermore, comparing the results from the
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(a) Video. (b) Netflix.

Figure 9: The highest score of the currently discovered insight over iterations, where the y-axis is the score and the x-axis is the
number of iterations. We run our search algorithm 3 times and plot the mean.

(a) Video. (b) Netflix.

Figure 10: Results for ablation studies. Note that now x-axis gives the running time.

Figure 11: Search performance on Flight dataset.

“Full” column with those from the “Varying training features” col-

umn, we conclude that it is also beneficial to include all training

features for the model to generalize better. Finally, looking at Ta-

ble 4, our observation is that we can train a fairly accurate neural

interestingness measure with eight databases. With less training

data, the model performance would get noticeably worse. On the

other hand, if we increase the amount of training data, the model

performance would increase though only slightly.

6.3 Q3: Evaluating Search Algorithm
The central question we aim to answer when evaluating ourMCMC-

based search technique is: can our search algorithm discover highly

ranked insights according to a given interestingness measure?

Setup. Since our search algorithm is agnostic to the underlying

interestingness measure, we conducted this experiment using a

randomly selected neural interestingness measure 𝑀 trained from

eight databases; we picked the third one from Table 3. We then

evaluate our MCMC-based search algorithm using this 𝑀 on the

remaining two databases, i.e., Video and Netflix. In particular, for

each database, we run our search algorithm for 1,000 iterations

and record the interestingness score of the current highest-ranked

insight at the end of each iteration. Since our search algorithm is

stochastic, we run it three times and record the average score in

each iteration. Furthermore, to understand how close our generated

insight is to the globally best insight in the entire search space, we

also obtained the globally highest interestingness score by running

our interestingness measure on every insight in our query language.

We normalize scores of the discovered insights to this globally

highest score.

Main results. Figure 9 summarizes our main results. As we can

see, overall, our search algorithm is able to discover insights with

very high scores within a few hundred iterations. For instance, for

the Video database, DAISY found an insight with a (normalized)

score 0.95 after 25 MCMC iterations. For the Netflix database, it

generated an insight with a score of 0.9 after 580 iterations. While

this result may look noticeably “worse” than the result for Video, it
is still pretty fast regarding the actual running time. In particular, for

both Video and Netflix, it took at most 2 seconds for the algorithm

to converge to an insight with a score higher than 0.9.
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Discussion. Note that the search space for Video contains signif-
icantly more queries than that of Netflix (16,599 vs. 585; see the “#
queries” column in Table 1). However, our search algorithm found

high-score insights for Video using significantly fewer iterations

than for Netflix (25 vs. 580). This seemingly contradictory result

is due to the higher density of interesting insights in Video. While

having a much larger search space, Video contains significantly

more queries that yield interesting insights. Therefore, overall, it is

easier for our technique to discover interesting insights for Video
than for Netflix within fewer iterations.

Ablation studies.We consider the following variants to evaluate

the relative importance of our optimizations:

• No prefetching: this is a variant of our search algorithm without

the “prefetching query results” optimization.

• No parallel search: this is a variant that does not run multiple

MCMC search instances in parallel; it has only one thread.

For each variant, we conduct the same experiment described above.

However, instead of recording the scores at the end of each iteration,

we record scores every 0.1 seconds to compare the running times of

all three techniques.

Ablation study results. Figure 10 summarizes our main results.

Our main take-away message is that both optimizations are im-

portant to the final performance of our search algorithm. More

specifically, for Video, the full-fledged technique was able to find

an insight with a score higher than 0.9 within 1 second. However,

using the variants typically would take a few more seconds. We

observed very similar patterns for Netflix as well.

Discussion.While Netflix required significantly more iterations

thanVideo to discover an interesting insight (580 vs. 25, see Figure 9),
their running times are pretty close (both around 1 second, see

Figure 10). This is because queries from Video generally take longer
time to execute, which “slows down” its search process.

6.3.1 Search Algorithm Scalability. To evaluate the scalability of

the search algorithm, we also report the performance and runtime

space overhead on the largest dataset, Flight.
Setup. The interestingness measure model we use for this ex-

periment is the fifth one listed in Table 3. We monitor the memory

usage during the search phase. We record the time for generating

the insights with QuickInsights on the Flight dataset.
Result. As shown in Figure 11, DAISY takes around 5.5 seconds

to find an insight with a score higher than 0.9 with the full fledged

model. QuickInsights took 20 seconds to generate the top-40 in-

sights on a sampled subset of Flight dataset.7 The maximum mem-

ory usage of the search phase is around 300MiB.

Discussion. Compared with the two smaller datasets Video and
Netflix, DAISY takes a longer time to find top ranked insights. How-

ever, we argue that it is still a reasonable time for a large dataset

like Flight, given that QuickInsights took 20 seconds to generate

the insights on a sampled subset of the Flight dataset. Besides, the
memory consumption of the search phase is also reasonable given

the size of the dataset (5,819,080 tuples; 565MB of raw data) and the

search space (67,145 of queries). This experiment illustrates that

DAISY scales to larger datasets, exhibiting efficiency in terms of

both time and space.

7
QuickInsights on Microsoft PowerBI automatically samples a subset for large datasets.

SELECT Genre, SUM(Runtime)
FROM Netflix
WHERE Language=“Spanish”
GROUP BY Genre
ORDER BY SUM(Runtime) DESC

Figure 12: An interesting insight generated by DAISY.

Table 5: Summary of user study results.

Database System Mean Max Min p-value

Netflix
DAISY 7.1 9 6

0.005

QuickInsights 5.7 7 4

Video
DAISY 7.6 9 6

0.021

QuickInsights 6.6 8 5

Table 6: Interestingness score distribution.

Score range [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 0.9) [0.9, 1]

% (Netflix) 0.892 0.089 0.007 0.009 0.001 0.002

% (Video) 0.599 0.069 0.114 0.115 0.059 0.044

6.4 Q4: Evaluating DAISY End-to-end
One of the main goals of our work is to be able to generate broadly
interesting insights, the key question we aim to address, when

evaluating DAISY end-to-end, is whether or not it can discover

insights that are more broadly interesting than prior techniques,

such as QuickInsights. To answer this question, we conducted a

user study for both DAISY and QuickInsights.

User study setup.We recruited 20 participants through Amazon

Mechanical Turk who works in the “Software & IT Services” indus-

try. Each participant took a survey prepared by us. In particular, the

survey first shows two sets of insights: (1) a set of 10 (visualized)

insights discovered by DAISY for a database, and (2) another set of

10 insights identified by QuickInsights for the same database.

Here, for QuickInsights, we used the “get Quick Insights” feature

in Microsoft PowerPI and retained its top 10 insights. For DAISY,
we ran our full-fledged technique on the database for 30 seconds

and retained the top 10 insights. More specifically, DAISY used the

interestingness measure trained from all databases except for Video
and Netflix. In other words, in this user study, we consider two “test

databases” (namely, Video and Netflix). Therefore, in our user study,

each participant would see a total of 20 insights for either Video or
Netflix, 10 generated by DAISY, and 10 generated by QuickInsights.

The survey asks the following question for each of the two sets

of insights: “How interesting are these insights to you?” We ask the

participant to provide an overall score on a scale of 1-10, based on

the ten insights they can see for a given database. We record all the

ratings from each participant for this question.

Finally, to familiarize the participant with the database, our sur-

vey also includes some information, such as a short description and

the schema of the database as well as record samples.

User study results. Our main results are summarized in Table 5.

The high-level message is that DAISY is able to generate insights
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that users indeed found interesting. Furthermore, we ran a standard

1-tailed t-test to evaluate whether our user study results were statis-
tically significant by calculating the p-value (shown in Table 5). We

can see that the p-values are less than 0.05 for both test databases,

meaning our results are statistically significant. Therefore, we be-

lieve our proposed technique can discover more interesting insights

than QuickInsights. Finally, we manually inspected the insights

generated by DAISY and found that they cover a broader class of

types than those identified by QuickInsights. For example, Figure 12

shows an insight discovered by DAISY with two dominating values

(Drama and Thriller). While neither of them dominates more than

50%, participants in our user study still found it very interesting.

We believe this demonstrates the advantage of our data-driven

approach over prior rule-based insight generation techniques.

Comparison with QuickInsights. In addition to a user study,

we also compared DAISY with QuickInsights using an experiment

that is designed to answer the following question: can DAISY “cover”
insights generated by QuickInsights? In particular, in this experi-

ment, we first ran QuickInsights on Netflix and obtained its top 10

insights. Then, we treat these 10 insights as the “gold” insights and

test whether DAISY can find them. Our main result is that, with 2

seconds, DAISY is able to find 8 (out of 10) insights. Furthermore,

the average (normalized) score DAISY assigned to these 8 insights

is 0.94. We believe this result highlights that DAISY can pretty well

cover those insights from QuickInsights.

Discussion. As we can see, DAISY was able to discover insights

with very high interestingness scores. It also covered most of the

insights that QuickInsights can generate. One might wonder: is

that because DAISY’s interestingness measure always assigns a high

score for every insight in the search space? To answer this question,

we performed a small experiment and report the interestingness

score distribution in Table 6. As we can see, only 0.2% of insights

in the entire space have scores higher than 0.9 on Netflix, whereas
almost 90% have shallow interestingness scores (lower than 0.2).

We observed similar patterns for Video overall as well, though Video
has a higher density of interesting insights.

7 RELATED WORK
In this section, we discuss closely related work on insight discovery,

visualization recommendation, and program synthesis.

Insight discovery for multi-dimensional data. There has

been a long line of work on mining different types of insights and

modeling different perspectives on “interestingness” from multi-

dimensional data [11, 19, 21, 25, 30, 32, 39, 44, 50, 54, 55]. For ex-

ample, Knorr and Ng [27] focused on mining outliers from large

datasets. Sarawagi [37] proposed to explore “surprising” parts of

OLAP data, and the “surprisingness” is calculated based on the

Maximum Entropy principle. To the best of our knowledge, Quick-

Insights [12] is the most recent work that provides a unified formu-

lation of interesting insights of 12 different types and an efficient

mining algorithm that leverages multiple optimization and pruning

techniques based on their assumptions.

In this work, instead of using hand-crafted interestingness mea-

sures, we proposed to take a data-driven approach that aim to learn
how interesting a data pattern is from the data. Thus, many opti-

mization techniques developed in previous work cannot be applied

to our work. Instead, we formulate the insight discovery problem

as an optimal program synthesis problem and propose a solution

based on stochastic search to generate interesting insights. We note

that most of the prior techniques require knowing the internal struc-

tures of the interestingness measure. In contrast, our approach is

agnostic to the underlying structure of the interestingness measure.

Interestingness measure for insight discovery. As mentioned

earlier, a key distinction of our work from prior techniques is that

our interestingness measure is automatically learned from data

instead of being designed by developers. For instance, the interest-

ingness measure in QuickInsights [12] consists of two key metrics:

impact and significance. Here, impact roughly corresponds to the

fraction of the input database that an insight is generated from: the

larger this fraction is, the more interesting the insight is. Signifi-

cance is a statistical measure that reflects how significant the insight

is against a defined null hypothesis. MetaInsight [31] includes ad-

ditionally homogeneous data patterns to enrich the pattern types.

Other prior works have also proposed different metrics to measure

the interestingness of data patterns. For example, Geng and Hamil-

ton [16] identified nine criteria: coverage, surprisingness, diversity,

actionability, etc. In contrast to these techniques, most of which

use rule-based interestingness measures, DAISY’s interestingness
measure is a neural network trained from data.

Program synthesis for databases. Program synthesis has been

applied in database research. One important task is generating SQL

queries automatically from high-level specifications such as exam-

ples and natural language [3, 4, 23, 26, 29, 36, 38, 42, 53]. For instance,

SQLizer [52] uses an enumerative search algorithm combined with

semantic parsing that can synthesize SQL queries from English sen-

tences. Similarly, Scythe [46] generates SQL queries from high-level

specifications which, different from SQLizer, are based on input-

output examples. In addition to SQL synthesis, prior work has also

explored other applications within the domain of databases, such

as data migration [49, 51], data wrangling [24, 40, 41, 47, 48], data

discovery [35], and data summarization [13].

Optimal program synthesis. Our work formulates the insight

generation problem as an optimal program synthesis problem. This

is a new application that has not yet been explored by prior work

on optimal program synthesis [7, 34].

8 CONCLUSION AND FUTUREWORK
In this paper, we presented a system called DAISY that can auto-

matically identify interesting insights for multi-dimensional data.

Different from prior work, DAISY uses a data-driven insight syn-

thesis approach by training a neural network from data that can

quantitatively score the interestingness of a given insight. Then,

given this neural interestingness measure, DAISY uses an MCMC-

based stochastic search algorithm to generate interesting insights

effectively. Our technique employs a new problem formulation that

is based on optimal program synthesis. Our evaluation results show

that DAISY can effectively synthesize broadly interesting insights

and significantly advances the state-of-the-art.
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