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ABSTRACT

Growing demands for the efficient processing of extreme-scale time
series workloads call for more capable time series database manage-
ment systems (TSDBMS). Specifically, to maintain consistency and
durability of transaction processing, systems employ write-ahead
logging (WAL) whereby transactions are committed only after the
related log entries are flushed to disk. However, when faced with
massive I/O, this becomes a throughput bottleneck. Recent advances
in byte-addressable Non-Volatile Memory (NVM) provide opportu-
nities to improve logging performance by persisting logs to NVM
instead. Existing studies typically track complex transaction depen-
dencies and use barrier instructions of NVM to ensure log ordering.
In contrast, few studies consider the heavy-tailed characteristics of
time series workloads, where most transactions are independent of
each other. We propose DecLog, a decentralized NVM-based log-
ging system that enables concurrent logging of TSDBMS transac-
tions. Specifically, we propose data-driven log sequence numbering
and relaxed ordering strategies to track transaction dependencies
and resolve serialization issues. We also propose a parallel logging
method to persist logs to NVM after being compressed and aligned.
An experimental study on the YCSB-TS benchmark offers insight
into the performance properties of DecLog, showing that it im-
proves throughput by up to 4.6× while offering lower recovery
time in comparison to the open source TSDBMS Beringei.
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1 INTRODUCTION

We are witnessing growing demands for time series data manage-
ment from real-world applications in areas such as cluster moni-
toring [48], finance [80], and medicine [17], as well as the Internet
of Things (IoT) [73]. Traditional relational online transaction pro-
cessing (OLTP) systems have been joined, and in part replaced,
gradually by time series database management systems (TSDBMS)
such as InfluxDB [6], TimescaleDB [11], Monarch [13], Gorilla
[58], and Apache IoTDB [66]. In TimescaleDB, transactions that
exclusively consist of insert operations are referred to as insert
transactions, while transactions that include update or delete opera-
tions are referred to as update transactions. To improve throughput
and query processing performance, TSDBMSs often write the most
recent time series data to DRAM. However, data may be lost when
a system failure occurs due to the volatility of DRAM. To main-
tain the atomicity and durability transactions, write-ahead logging
(WAL) is adopted widely [32]. When a transaction attempts to write
data to the database, a corresponding log entry is written first, and
the transaction is committed only after its log entries are flushed
to non-volatile storage. Data that is lost due to a system failure
can then be recovered by replaying the log. As WAL is on the criti-
cal path of transaction execution, the throughput depends on the
logging performance.

Most existing DBMSs adopt the centralized ARIES [50, 51] log-
ging approach to compute a log sequence number (LSN) for each
log entry, ensuring that the log entries and transaction commits
are ordered consistently. However, ARIES does not scale well on
modern multi-threaded CPUs since it relies on a single thread for
logging to serve transactions processed in multiple threads, which
can cause serious concurrency contention [61, 69, 79]. To improve
logging performance, studies propose decentralized logging ap-
proaches that persist log records on block storage media, such
as Solid State Drives (SSD) and Hard Disk Drives (HDD) [26, 31–
33, 61, 72, 79, 81]. However, logging remains a bottleneck for trans-
action processing throughput. We use the Yahoo! Cloud System
Benchmark-Time Series (YCSB-TS) to compare the throughput of In-
fluxDB, TimescaleDB, and Beringei. The results are shown in Figure
1, where WAL-HDD and WAL-SSD denote that HDD and SSD are
used for logging, respectively, andWAL-DRAM denotes that DRAM
is used for logging, which eliminates the I/O cost of logging and
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Figure 1: Comparison of TSDBMS

yields the best performance possible. We observe that the through-
put of WAL-SSD is improved by 15.7% on average compared to that
of WAL-HDD, while WAL-DRAM improves performance consider-
ably. The results show that a substantial performance optimization
space remains for WAL.

In 2019, Intel’s Optane PMem based on 3D XPoint (PMem) [9]
was released and became the world’s first commercially available
byte-addressable non-volatile memory (NVM). Its write latency is
comparable to that of DRAM, and the read latency is about 2–3
times that of DRAM. Therefore, recent studies [1, 15, 16, 19, 23, 28,
38, 40, 55, 57, 59, 65, 67, 68, 72] propose to store logs in NVM to
improve throughput for OLTP systems. However, since TSDBMS
transactions differ considerably from OLTP transactions, the use of
NVM for TSDBMS logging still faces the unaddressed challenges:

• Dependency capture. Due to the heavy-tailed characteristics of
time series workloads, most operations are insertions and queries
on the most recent data [45]. Updates and deletes of historical
data are rare. Further, the data accessed by update transactions
is relatively scattered, with few inter dependencies. How to best
design logging to efficiently capture the dependencies among
time series transactions is the first challenge.

• Failure atomicity. Existing methods rely on sfence instructions
[4] to ensure correct ordering of log entries, which increases the
overhead of logging. However, insert transactions can be exe-
cuted concurrently without ordering constraints on log entries.
Further, although updates in TSDBMSs are rare, update transac-
tions with conflicts must be serializable. How to reduce sfence
instructions while ensuring correctness is the second challenge.

• Synchronization. With more threads available to transactions,
centralized logging increasingly causes contention. If we simply
adopt parallel logging, additional overhead is incurred by the
need for synchronization of multiple logging threads. How to
design thread synchronization that enables high logging perfor-
mance is the third challenge.

We propose DecLog, a decentralized logging system that consid-
ers the characteristics of time series data and adopts a three-tier
structure of DRAM + NVM + HDD/SSD to persist logs in NVM and
the data in HDD/SSD. DecLog features four main innovations: data-
driven LSNs, a relaxed ordering strategy, parallel logging, and log
alignment with compression. In addition, a checkpoint module that
does not block insertions is designed that exploits the insert-heavy

characteristic of time series data. DecLog also includes a recovery
algorithm to achieve fast startup after system failures. In summary,
the key contributions are as follows.

• We propose a data-driven LSN approach that exploits the data
accessed by transactions to alleviate the computation overhead of
the centralized logging and that tracks transaction dependencies
based on the characteristics of time series data.

• We propose a relaxed ordering strategy to persist log entries
in NVM by using a log flushing pipeline, which can effectively
reduce the number of sfence instructions, thus reducing the nega-
tive impact of log ordering constraints on the concurrency, while
guaranteeing atomicity.

• We propose a thread snapshot based parallel logging method
to achieve multi-threaded synchronization, the goal being to
improve scalability and decrease synchronization overhead.

• We propose a group commit method with log compression and
an alignment algorithm to reduce the storage footprint of logs
and to fully utilize the write performance of NVM.

• We report on an extensive performance study using the YCSB-TS
benchmark, which offers evidence thatDecLog is able to improve
transaction throughput by up to 4.6× with less recovery time.

The remaining of the paper is organized as follows. Sec. 2 reviews
related work. We provide the background and motivation in Sec. 3.
Sec. 4 presents the specific design of DecLog. The experimental
study is presented in Sec. 5, and Sec. 6 concludes the paper.

2 RELATEDWORK

2.1 Time Series Databases

Most TSDBMSs, such as Prometheus [10], Apache Druid [5], and
OpenTSDB [3] adopt the widely used Log Structured Merge Tree
(LSM-Tree) [54] to ingest massive time series data into permanent
storage (HDDs, SSDs). As one of the most popular TSDBMSs, In-
fluxDB [6] includes a Time Structured Merge Tree (TSM-Tree) to
improve insertion performance. In contrast, other TSDBMSs adopt
an in-memory storage model to enhance both insertion and query
performance. Monarch [13], a globally-distributed TSDBMS, keeps
data in DRAM and offers a regionalized architecture to cater for
high performance data monitoring and alerting. Scuba [12] auto-
matically expires data (e.g., only maintains data for 1–2 weeks or
hours) and keeps the most recent data in-memory. Kdb+ [8] is a
column-oriented TSDBMS based on the concept of ordered list,
which exploits L1/2 CPU caches according to a small memory foot-
print (<800kB). Beringei [22] is an open source TSDBMS based on
Gorilla [58] that features a delta-of-delta and XOR compression al-
gorithm to process large-scale time series data in DRAM backed by
permanent storage for persistence. Due to its low coupling property,
the prototype of DecLog is implemented on top of Beringei.

2.2 Write-Ahead Logging

Whenever time series data is inserted into a TSDBMS, the cor-
responding log entries should be flushed to permanent storage
beforehand. This easily makes logging a bottleneck of data inser-
tion. As few studies of WAL in TSDBMS can be found, so we cover
studies of WAL in relational and key-value DBMSs, which fall into
two main categories.
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Centralized Logging. Most systems use centralized ARIES-style
[51] WAL for recovery [31]. However, ARIES does not scale well on
multi-core processors, as observed in recent studies [31, 61, 69, 79].
Aether [31] proposes a scalable logging approach that utilizes a con-
solidation array to advance the safe LSN boundary and allow locks
to be released earlier, thus reducing lock contention. ELEDA [33]
proposes a concurrent data structure called Grasshopper to track on-
the-fly logging efficiently. Border-Collie [35] provides a wait-free
and read-optimal algorithm for logging, which finds a recoverable
logging boundary and completes required operations in a finite
number of steps.

Decentralized Logging. Most decentralized logging systems
focus on reducing dependencies between log threads to minimize
synchronization overhead. Silo [61, 79] implements an epoch-based
decentralized logging system that copies transaction-local redo logs
to a per-thread log buffer after validation, thus adopting the opti-
mistic concurrency control (OCC). Wang et al. [67] utilize logical
clocks [39] to record a Global Sequence Number (GSN) instead of
an LSN for each transaction, page, and log. Also, a passive batch
commit strategy is utilized to realize the synchronization between
multi-thread loggings. Haubenschild et al. [26] extend GSN based
logging and propose a Remote Flush Avoidance (RFA) protocol to
reduce the dependency between logs. Taurus [72] features parallel
logging and employs an LSN vector to track transaction depen-
dencies. Although these studies realize synchronization effectively,
additional protocol and instruction overheads are introduced. In
addition, when determining the transaction log order, they do not
consider the data accessed by transactions. Unlike these studies,De-
cLog implements a data-driven LSN method inspired by TicToc [77]
to reduce overhead, and it utilizes a synchronization strategy with
a logging thread snapshot.

2.3 Non-Volatile Memory and Usage

Studies of systems that utilize NVM can be classified into four cate-
gories: NVM B+ trees [14, 20, 30, 44, 47, 56, 64, 76], NVM hashing
[21, 27, 41, 46, 52, 70, 71, 82, 83], NVM storage engines [15, 34, 38,
40, 42, 60, 62, 74, 78], and NVM logging [16, 19, 23, 28, 37, 59, 67, 70].
Most of the studies focus on reducing the number of sfence instruc-
tions to improve thewrite performance onNVMwhile guaranteeing
atomicity. Fang et al. [23] offer an OS calling interface and a log
storage manager for NVM to optimize logging performance. Huang
et al. [28] maintain a ring buffer in NVM to mitigate performance
degradation caused by the space allocation. All log entries for the
same transaction are connected by a doubly linked list so that log
entries of the same transaction can be found quickly during recov-
ery. Write-behind logging (WBL) [16] employs a hybrid storage
structure with DRAM and NVM that enables transactions to be
executed and persisted in NVM directly. After data is written to
NVM, the corresponding log entry can be flushed to NVM. So only
the timestamp of each committed transaction needs to be recorded
in the log entry. Pelly et al. [59] implement a DBMS in NVM to
achieve fast failure recovery. They propose a group commit method
to reduce the overhead of sfence instructions, which only needs
to persist the undo logs for each group of transactions. DecLog
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Figure 2: Logging in NVM

proposes a similar alignment and group commit method, but ex-
ploits the characteristics of time series data to improve the logging
performance in NVM.

3 BACKGROUND AND MOTIVATION

We proceed to cover the background knowledge and then provide
motivation for DecLog.

3.1 Motivating Example

Some recent studies [15, 16, 19, 23, 26, 28, 37, 67] utilize NVM to
improve logging performance. To ensure data consistency after
recovery, the log order in NVMmust be consistent with the transac-
tion commitment order. Due to instruction optimization in modern
compilers and multi-core CPUs, instruction reordering may cause
inconsistencies between different CPU cores. Therefore, when we
use the clwb instruction to write logs to NVM, the sfence instruc-
tion [4] must ensure that log entries are persisted in order [29]. In
the X86 architecture, the sfence instruction sends a cache invali-
dation signal to the CPU buffer and flushes the data stored in the
buffer to the L1 CPU cache. It also prohibits the CPU from reorder-
ing store instructions before and after the sfence instruction, which
enables all memory updates before the store barrier to be visible
for multi-cores [4]. However, the sfence instruction requires a long
CPU delay to wait for the clwb instruction to complete, which in-
curs a high execution overhead [24, 75]. The heavy use of sfence
instructions degrades the logging performance and thus affects the
transaction throughput.

Logging in NVM. Fig. 2 illustrates the logging process in NVM.
Let 𝑋𝑖 denote the 𝑖-th transaction, and let𝑂𝑖 denote the operations
in 𝑋𝑖 , including insert, update, delete, and read. Further, L𝑖 denotes
the log entry of transaction 𝑋𝑖 , which has three parts: a header that
records meta information; a payload, where the data resides; and a
tail that contains the commit flag and LSN. Using transaction 𝑋𝑖+1
as an example, the logging process is as follows:

1© Transaction 𝑋𝑖+1 is ready to commit.
2© An entry L𝑖+1 for 𝑋𝑖+1 is generated, and its LSN is computed

based on the log size |L𝑖+1 | and the LSN of the previous trans-
action, i.e., LSN𝑖+1 = LSN𝑖 + |L𝑖+1 |. The current entry L𝑖+1 with
LSN𝑖+1 is written to NVM.

3© The sfence instruction is used to ensure that the head and pay-
load are persisted before the tail, which guarantees the failure
atomicity. After L𝑖+1 is persisted, a success flag is returned for
transaction 𝑋𝑖+1.
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4© Transaction 𝑋𝑖+1 is committed, and its updates become visible
to subsequent transactions.

5© The checkpoint thread periodically executes in the background,
writing dirty pages in DRAM to permanent storage and deleting
the corresponding log entries. During recovery, log entries are
read from NVM and used for redo operations in order. If a
log entry has no log tail, meaning that the transaction has not
committed, it is discarded directly.

Strict Ordering Strategy. The above process relies on the sfence
instruction to ensure a strict ordering of log entries. On the one
hand, sfence ensures that the head and payload are persisted be-
fore the tail of an entry. Without sfence, instruction reordering by
a compiler and CPU may cause a tail to be persisted before the
corresponding head and payload. If a failure occurs at this time, the
recovery process incorrectly identifies the transaction as commit-
ment based on the log tail, which leads to an inconsistent recovery.
On the other hand, the sfence instruction ensures that log entries
are persisted in order of their LSNs, in turn ensuring that log entries
can be executed in a correct order during recovery.

Fig. 3 illustrates the strict ordering strategy and its negative im-
pact on transaction execution. Four transactions 𝑋𝑖 , . . . , 𝑋𝑖+3 are
executed concurrently in four threads. The sfence in log entry L𝑖+2
is necessary because a dependency exists between 𝑋𝑖+2, 𝑋𝑖 , and
𝑋𝑖+1. The concurrency control protocol schedules 𝑋𝑖+2 to execute
after 𝑋𝑖 and 𝑋𝑖+1, and the sfence in L𝑖+2 ensures that L𝑖 and L𝑖+1
are persisted before L𝑖+2. However, this strict ordering for logging
in NVM may result in transaction serialization issues, which re-
duces transaction throughput. For instance, transactions 𝑋𝑖 and
𝑋𝑖+1 insert four data items at different positions. Before𝑋𝑖 and𝑋𝑖+1
commit, they have to wait for entries L𝑖 and L𝑖+1 to be persisted,
where the sfence in L𝑖 causes L𝑖 and L𝑖+1 to be serialized so that
𝑋𝑖+1 has to commit after 𝑋𝑖 . However, as no dependencies exist
between 𝑋𝑖 and 𝑋𝑖+1, they can execute concurrently.

In a nutshell, although NVM is able to improve logging perfor-
mance and enhance transaction throughput, the heavy use of sfence
instructions caused by the strict ordering strategy leads to signifi-
cant waiting by the CPU, and thus reduces performance. Further,
the transaction serialization caused by centralized LSN computation
reduces throughput. In addition, it is difficult to persist log entries
with dependencies in parallel due to the thread synchronization
overhead.
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Log Flushing PipelineData-driven 
LSN

Log Compression 
and Alignment

Timeseries Database

Relaxed Ordering Strategy

Timeseries Data Thread Snapshot

Parallel 
Logging
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Figure 4: Framework Overview of DecLog

3.2 Framework Overview

To eliminate the limitations mentioned above and to improve log-
ging performance in NVM by utilizing the characteristics of time
series data, we propose DecLog, a decentralized logging system, an
overview of which is shown in Fig. 4. The system has four key ele-
ments: (1) data-driven LSN (Sec. 4.1), (2) a relaxed ordering strategy
(Sec. 4.2), (3) parallel logging (Sec. 4.3), and (4) log compression and

alignment (Sec. 4.4).
When time series data is inserted or updated in the TSDBMS,

corresponding logs are generated, and the LSN of each log is com-
puted by the data-driven LSN module. Next, the parallel logging
module assigns the log entries to different log threads according
to the key values. After the logs are compressed and aligned by
the log compression and alignment module, they are persisted to
NVM by using the relaxed ordering strategy. Further, the log flush-
ing pipeline is used to flush logs to NVM concurrently, and thread
snapshotting is implemented to achieve synchronization among
logging threads.

4 DECENTRALIZED LOGGING

We proceed to introduce the proposed decentralized logging system
DecLog, which utilizes both the characteristics of time series and
NVM to improve the logging performance in TSDBMS.

4.1 Data-driven LSN

An LSN is a unique identifier of a log entry that ensures that the
ordering of WALs in permanent storage is consistent with that of
the transaction commits. During recovery, a TSDBMS replays the
WAL to restore a consistent state. Most existing studies adopt a
centralized logging approach and compute LSNs to determine the
log ordering. However, the LSN computation may result in trans-
action serialization issues, which reduces throughput. Therefore,
decentralized logging approaches are proposed to replace central-
ized ones to improve the logging performance. Two main categories
of approaches exist: Epoch-based logging [18, 61, 79] and global
sequence number (GSN) based logging [26, 67]. Although these
proposals avoid concurrent contention, additional protocol and in-
struction overheads are introduced. In addition, they only consider
epochs or GSNs, but neglect the data accessed by transactions that
can be used to determine whether transactions should be serialized.

Therefore, to effectively avoid the transaction serialization issue
and improve the concurrent write capability of WAL in TSDBMSs,
we propose data-driven LSNs based on the characteristics of time
series data. In order to compute LSNs, we design an extended times-
tamp data structure and an LSN computation protocol.
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4.1.1 Extended Timestamp. We first introduce the extended
timestamp data structure. The timestamp field of a time series
data point is usually 64 bits, but it suffices to use only 52 bits to
represent a timestamp at microsecond precision, which satisfies
the requirements of most real-world applications. Therefore, to
fully utilize the timestamp field, we modify its structure to achieve
an extended timestamp field. As shown in Fig. 5, the extended
timestamp is composed of the four parts:

(1) Lock. Lock is stored in the highest bit and is used to achieve
the atomic modification of the extended timestamp.

(2) Tombstone. Tombstone is stored in the second bit and is used
to indicate whether the data entry has been deleted.

(3) Update timestamp (𝑢𝑡𝑠). The 𝑢𝑡𝑠 is stored in the next 10 bits;
it is used for LSN computation.

(4) Timestamp. The lowest 52 bits store the original timestamp.

We introduce how to set the extended timestamp for a data point
in three cases: (1) For a data point newly inserted by a transaction, its
extended timestamp is the same as that without using our extended
timestamp data structure; its highest 12 bits are all 0s. (2) For a
data point read by a transaction, the lock bit needs to be checked
to determine whether the data can be read. If the lock bit is 1, the
transaction needs to wait until the lock bit becomes 0. Otherwise,
the data point can be read directly. (3) For a data point updated
or deleted by a transaction, the extended timestamp is updated
according to the LSN computation protocol (Details in Sec. 4.1.2).

4.1.2 LSN Computation Protocol. The LSN computation proto-
col computes LSNs for transactions. We differentiate among three
types of transactions based on their operations: insert-only transac-
tions, read-only transactions, and update transactions. Transactions
that exclusively consist of insert operations are referred to as insert-
only transactions. Similarly, transactions that exclusively consist
of read operations are referred to as read-only transactions. While
transactions that include update or delete operations are referred to
as update transactions. LetDP denote the set of data points accessed
by a transaction 𝑋 . Let dp be a data point in DP, and let dp.uts be
the update timestamp of dp. We compute an LSN as follows:

Rule 1: The extended timestamp of newly inserted data is 0.
Rule 2: For an insert-only transaction, the LSN of the correspond-

ing log entry is set to 0.
Rule 3: For an update transaction, the LSN of the corresponding

log entry is computed as LSN = maxdp∈DP dp.uts + 1.

Rule 4: Before a transaction is committed, the uts of all modified
data points are atomically updated to the LSN of the cor-
responding log entry.

Rule 5: When a checkpoint is performed, all extended timestamps
are set to 0.

Rule 1 ensures that the extended timestamp of newly inserted
data is the same as that without using our extended timestamp.
Rule 2 ensures that no dependencies exist between insert-only
transactions since the LSNs of these transactions are all equal to 0.
The third and fourth rules ensure that transactions with dependen-
cies are serialized. The last rule avoids overflow of the extended
timestamps.

Next, we detail how to compute LSNs for update transactions:
(1) Read the extended timestamps and compute an LSN. If any lock
bit of the extended timestamps is 1, the transaction needs to wait.
Otherwise, we compare the 𝑢𝑡𝑠 values of all data points in DP to
compute the maximum 𝑢𝑡𝑠 . Then the LSN of the corresponding log
entry is computed by LSN = maxdp∈DP dp.uts + 1 according to Rule
3; (2) Obtain the lock. We read the lock bits of all modified data and
check them one by one. If it is 0, the lock bit is set to 1. Otherwise,
the transaction is terminated to avoid deadlocks; (3) Modify the
extended timestamp. The current 𝑢𝑡𝑠 values are compared with
those read at the first step. If they are different, another transaction
has modified the data, and the current transaction is terminated.
If all 𝑢𝑡𝑠 values are the same then we modify them to the LSN
computed in the first step and set the lock bit to 0. For the deleted
data point, the tombstone bit is set to 1.

The LSN protocol is similar to OCC and is suitable for scenarios
where transaction conflicts are infrequent. Since there are very
few update transactions in TSDBMSs, the LSN protocol is able
to compute LSNs efficiently while guaranteeing correctness. We
demonstrate the correctness of the LSN protocol by considering
two cases. In the first case, where different transactions update the
same data, the LSN protocol ensures that the LSNs are computed
according to the order of the transaction commits. In the second
case, where different transactions update different data, since there
are no dependencies between transactions, redo can be performed
in any order to recover the database to a consistent state. Note that
when the same data is updated repeatedly by many transactions,
the extended timestamp may overflow. To handle this rare situation,
we call the checkpoint process to write all dirty data in DRAM to
permanent storage and reset the extended timestamps of all data.
The details of the checkpoint are covered in Sec. 4.5.

We illustrate the LSN computation process in Fig. 5. The worker
threads execute transactions𝑋𝑖 , 𝑋𝑖+1, . . . , 𝑋𝑖+5 concurrently and the
logical order is the same as the transaction IDs. At first, thread 1 and
thread 2 execute transactions 𝑋𝑖 and 𝑋𝑖+1, respectively. Then, 𝑋𝑖+2,
𝑋𝑖+3, and 𝑋𝑖+4 are executed concurrently. For clarity, we assume
that 𝑋𝑖 , 𝑋𝑖+1, and 𝑋𝑖+3 insert six data points (A to F) into database
in sequence and the initial status is shown in state 1. As transaction
𝑋𝑖+2 updates data A and D, and 𝐴.𝑢𝑡𝑠 = 𝐷.𝑢𝑡𝑠 = 0, the LSN is
computed by LSN = 𝑚𝑎𝑥{𝐴.𝑢𝑡𝑠, 𝐷.𝑢𝑡𝑠} + 1 = 1. Then it sets the
lock bit to 1 and updates 𝐴.𝑢𝑡𝑠 = 𝐷.𝑢𝑡𝑠 = 1, as shown in state
2. Meanwhile, transaction 𝑋𝑖+4 that runs concurrently with 𝑋𝑖+2
in thread 2 has to abort because it finds that the lock bit of data
point D has been set to 1. Once 𝑋𝑖+2 commits, it resets the lock
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bit of data A and D. Next, the database schedules thread 2 to re-
execute transaction 𝑋𝑖+4 and thread 3 to execute transaction 𝑋𝑖+5
concurrently. At this time, 𝑋𝑖+4 finds that 𝐵.𝑢𝑡𝑠 = 0 and 𝐷.𝑢𝑡𝑠 = 1.
So, the LSN of its transaction log entry is computed by LSN =
𝑚𝑎𝑥{𝐵.𝑢𝑡𝑠, 𝐷.𝑢𝑡𝑠} + 1 = 2 according to the protocol, and then
𝐵.𝑢𝑡𝑠 = 2, and 𝐷.𝑢𝑡𝑠 = 2, as shown in state 3. The tombstone bit
of data point B is set to 1, indicating that this data point has been
deleted. For transaction 𝑋𝑖+5, it computes LSN = 1 in the same
way as transaction 𝑋𝑖+2. Note that the LSN protocol allows log
entries to have the same LSNs. Although the LSNs of the two log
entries for transactions𝑋𝑖+2 and𝑋𝑖+5 are the same, the database can
still be recovered to a consistent state by replaying the log entries
in the order of the LSNs. This is because these two transactions
update different data. In addition, although transaction 𝑋𝑖+4 has
dependencies with the previous committed transaction 𝑋𝑖+2, the
LSN protocol ensures that the LSN of 𝑋𝑖+4 exceeds that of 𝑋𝑖+2.
Therefore, the recovery in ascending LSN order ensures correctness.

4.2 Relaxed Ordering Strategy

We proceed to discuss how to persist log entries in NVM efficiently.
In relational and key-value databases, the sfence instructions ensure
that log entries and transaction commits are ordered consistently
for update-heavy transactions. However, a set of clwb and sfence

instructions adds about 250ns latency on average [53], compared
with 90ns latency on average for NVM writes [43]. In fact, trans-
actions in TSDBMSs are insert-heavy, and the sfence instruction is
not needed between log entries of two insert transactions in order
to guarantee atomicity and correctness.

To reduce the number of sfence instructions, a straightforward
method is to remove sfence instructions from log entries of in-
sert transactions and let the CPU schedule the persist order. Fig.
6 illustrates the straightforward method through an example. We
only keep the sfence instruction in the log entry of update trans-
action 𝑋𝑖+2. So, the log entries L𝑖 , L𝑖+1, and L𝑖+2 are written to
NVM concurrently, which avoids the serialization of transactions
𝑋𝑖 and 𝑋𝑖+1. Note that the sfence instruction requires L𝑖+3 to be
persisted after L𝑖+2, which results in transaction𝑋𝑖+3 being blocked
until 𝑋𝑖+2 is committed. However, there is no dependency between
transactions 𝑋𝑖+2 and 𝑋𝑖+3, and these two transactions may have
been executed concurrently. From the above example, we can see
that the straightforward method only solves the serialization is-
sue between transactions 𝑋𝑖 and 𝑋𝑖+1 caused by the strict ordering
strategy, while it is unable to address the serialization issue between
transactions 𝑋𝑖+2 and 𝑋𝑖+3.

Log Queues. To solve the above problem, we differentiate log
entries according to their LSNs and buffer them in different log
queues. Specifically, we logically maintain 𝑛 log queues 𝑞𝑖 (𝑖 ∈

[1, 𝑛]) of capacity 𝑙 , which are initialized to be empty. When a
transaction executes, we first check the 𝑢𝑡𝑠 of the accessed data
and then compute the LSN of the log entry using the data-driven
LSN. Once the transaction is committed, the transaction type can be
determined by the LSN. If LSN = 0, it is an insert-only transaction,
and the log entry is buffered in 𝑞𝑖 . Otherwise, we buffer the log
entry in 𝑞𝑖 and close the current log queue 𝑞𝑖 so that subsequent
log entries are written to the next log queue 𝑞𝑖+1. Log entries are
buffered in 𝑛 log queues in a looping manner, i.e., when 𝑞𝑛 is closed,
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Figure 6: Relaxed Ordering

the subsequent log entries are buffered in 𝑞1. The 𝑛 log queues form
a circular linked list-like structure.

Log Flushing Pipeline. Next, we discuss how to persist log
entries in log queues to NVM. The straightforward approach is to
flush log entries based on the log queue ID, but this approach also
results in serialization due to the sfence instructions. To reduce the
performance degradation caused by sfence and maximize the byte-
addressable capability of NVM,we propose a log flushing pipeline to
persist log entries concurrently, which reduces the waiting caused
by sfence instructions.

We illustrate how the log flushing pipeline works with a running
example. In Fig. 7, each log entry in Fig. 5 is generated in the
order in which the corresponding transaction is executed. Log
entries L𝑖 and L𝑖+1 with LSN = 0 are first buffered in 𝑞1. Once
L𝑖+2 with LSN = 1 arrives in 𝑞1, we temporarily close 𝑞1. The
following entries L𝑖+3 and L𝑖+4 are buffered in 𝑞2. As the LSN
of L𝑖+4 is 2, we temporarily close 𝑞2 and buffer L𝑖+5 in 𝑞3. The
closed queues are reopened after the log entries in each queue have
been persisted in NVM. Specifically, we start from 𝑞1 and use the
clwb instruction to persist L𝑖 , L𝑖+1, and the head and payload of
L𝑖+2. Note that transaction 𝑋2 cannot commit until the tail of L2 is
persisted. Once the sfence instruction in 𝑞1 is executed, the logging
thread concurrently flushes L𝑖+3 and the head and payload of L𝑖+4
in𝑞2, while waiting for the tail ofL𝑖+3 in𝑞1 to be persisted. After the
sfence instruction in 𝑞1 completes, the tail of L𝑖+2 in 𝑞1 is persisted
in NVM, and the transaction 𝑋2 commits. This way, 𝑋𝑖+3 commits
before 𝑋𝑖+2 commits , which avoids the unnecessary dependency
between them, as shown in Fig. 6. Meanwhile, the sfence instruction
in 𝑞2 ensures that the last log entry L𝑖+2 in 𝑞1 is persisted before
the last log L𝑖+4 in 𝑞2 persisted, which guarantees that the order of
log entries persisted in NVM are the same as the logical order of
the transactions. The following log queues flush log entries in the
same manner, which composes a log flushing pipeline.

4.3 Parallel logging

We proceed to introduce the thread snapshot based parallel logging
method, which is able to further improve logging performance with
less multi-threaded synchronization overhead.

Parallel logging has been proposed in recent studies [26, 36, 38,
67, 72, 79]. However, only few commercial database systems dis-
tribute log entries in parallel threads within a single node, and even
distributed commercial database systems still opt for a shared log
[31]. Because dependencies among transactions are frequent in
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OLTP systems, it is almost infeasible to track them. If the parallel
logging is implemented in OLTP systems, most transactions need to
flush multiple log entries at commit time, and the synchronization
among logging threads results in performance degradation. How-
ever, dependencies among transactions in TSDBMS are rare, and
the data-driven LSN can capture dependencies efficiently, which
makes parallel logging attractive.

4.3.1 Key-based Partitioning. Existing parallel logging takes
two main forms: transaction-based partitioning and page-based
partitioning, which are designed for the performance optimization
of OLTP systems. However, they are not appropriate for TSDBMSs.
On the one hand, the vast majority of transactions in TSDBMSs
are insert-only transactions, and our data-driven LSN is able to
make these transactions independent. So there is no need to apply
transaction-based partitioning for thread synchronization. On the
other hand, time series data points with the same keys are usually
stored continuously. Since the collection periods of data points
with different keys are not always the same, their storage footprints
differ. Therefore, these data points may cover multiple pages or may
be stored in the same page as others. It is difficult for page-based
partitioning scheme to efficiently handle both scenarios.

To overcome these shortcomings, we implement a key-based
partitioning method [58] that records a log entry for each insert or
update operation in a transaction. Specifically, for each time series
data point accessed by a transaction, we use the measurement, tag
key, and field key as the key, which is recorded in each log entry.
Further, we use hash mapping to map the log entries in transactions
based on their keys to disparate logging threads. However, the key-
based partitioning scheme still has two problems: 1) Redo needs to
be executed based on transactions across multiple log files during
the recovery process, which entails time-consuming log parsing.
2) The log entries for the same transaction need to be recorded in
multiple log files and persisted simultaneously, which results in
additional thread synchronization overhead. To address the first
problem, since the dependencies of transactions can be tracked by
data-driven LSNs, we can redo logs at the granularity of operations
in LSN order, rather than at the granularity of transactions. The
details of recovery are covered in Sec. 4.6. To address the second
problem, we propose a thread snapshotting approach that alleviates
the synchronization overhead.

4.3.2 Thread Snapshotting. When log entries of an update trans-
action are to be persisted in NVM, we obtain the LSNs of all log
entries buffered in each log queue, which is called a thread snapshot.
Then we compare the LSNs of the currently processed log entry
with the thread snapshot. If the former is the largest, this means
that the log entries that have dependencies with the current log
entry have not been persisted. So the current log entry needs to
wait. Otherwise, we compare the number of persisted log entries
with LSN > 0. If the number is consistent in the snapshot, the
current log entry must wait. Otherwise, the current log entry can
be persisted in NVM directly. Unlike latch-based synchronization
methods [49], the thread snapshot based method is latch-free and
enables efficient persisting of log entries for update transactions
without blocking independent log entries in other log queues.

Specifically, given𝑚 logging threads, we maintain 𝑛 log queues
for each thread. To obtain the thread snapshot efficiently, we main-
tain a log number array N of size𝑚 × 𝑛 in DRAM, which is used
to record the number of update transaction log entries in each log
queue that have already been persisted in NVM. We also maintain
an LSN array S of size𝑚 ×𝑛 in DRAM, which is used to record the
LSN of the log entries in each log queue that have not been persisted
in NVM. Both of these are initialized as N = S = [0, . . . , 0]. We
note that when insert-only transaction log entries are processed,N
and S are not updated. When a log entry with LSN > 0 is buffered
in a log queue 𝑞𝑖 𝑗 , 𝑖 ∈ [1,𝑚], 𝑗 ∈ [1, 𝑛], we record S𝑖 𝑗 = LSN. Once
the log entry is persisted in NVM, N𝑖 𝑗 is incremented by 1. Then
we update S𝑖 𝑗 = 0 because each log queue only has one log entry
with LSN > 0 according to the relaxed ordering strategy.

Next, we illustrate how to use a thread snapshot to handle syn-
chronization for parallel logging with an example. In Fig. 8, three
logging threads, each with two log queues, are used to process the
log entries for transactions in Fig. 5. Solid lines indicate that log
entries have been persisted in NVM, dotted lines represent entries
are still being processed in the buffer, and gray indicates that the
log entry has not been generated yet. For clarity, we show the data
recorded in each log entry using a superscript. We map the log
entries by the key-based partitioning so that data points A and B
are mapped to logging thread 1, C and D to thread 2, and E and F to
thread 3. Consider the case where L𝐵𝑖+4 in log queue 𝑞12 is to persist
in NVM; its LSN is 2. We temporarily neglect the log entry L𝑐𝑖+5 in
𝑞21. First, logging thread 1 reads the current thread snapshot, which
is shown as state 1. Since the log entry L𝐴𝑖+2 has been persisted in

NVM, we have N11 = 1. As the LSNs of L𝐵𝑖+4, L
𝐷
𝑖+2, and L

𝐷
𝑖+4 are 2,

1, and 2, respectively, we have S12 = S22 = 2 > S21 = 1. Therefore,
we know that the log entries in the other log queues whose LSN is
smaller than that of L𝐵𝑖+4 have not been persisted in NVM. Logging
thread 1 needs to wait and reads the thread snapshot in a loop.
After L𝐷𝑖+2 is persisted in NVM, the log entry L𝐶𝑖+5 is buffered in 𝑞21
exactly. Logging thread 1 reads the updated thread snapshot shown
as state 2. Although S21 is smaller than S12 at this time, the former
log entry L𝐷𝑖+2 has been persisted in NVM, and the data-driven LSN

protocol ensures that L𝐶𝑖+5 in 𝑞21 has no dependency with L𝐵𝑖+4 in

𝑞12. Therefore, L𝐵𝑖+4 can be persisted safely in NVM.
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4.4 Log Compression and Alignment

We proceed to introduce the log compression algorithm and the log
alignment based group commit method that aim to further improve
logging performance.

4.4.1 Compression. With large volumes of time series data con-
tinuously being inserted into a TSDBMS, the corresponding log
entries need to be persisted in NVM, which requires considerable
storage. In addition, the write endurance of Optane PMem is eight
orders of magnitude lower than DRAM [43]. If such large scale
log entries are persisted in NVM, the lifetime of NVM is reduced.
Therefore, log compression is crucial for a TSDBMS to reduce the
storage footprint and extend the lifetime of NVM. We observe that
data in each log entry exhibits the following characteristics:

(1) The metadata that includes page ID, segment position, LSN,
etc., are all integers. Only the key of the time series data is a
string.

(2) The number of keys is relatively small and stable in a TSDBMS.
(3) For time series data with the same key, the collection interval

is usually fixed, and the range of value fluctuations is relatively
small.

By exploiting the characteristics of time series data, we adopt
the delta-of-delta and XOR compression algorithms to compress
the numerical values [58]. These two algorithms are effective at
compressing continuously varying data. Therefore, they are likely
to work well for time series data with the same key. However, log
entries are persisted in LSN order and not classified by keys. So it is
challenging to achieve the best performance of the two compression
algorithms. To compress the time series data in logs according to
its key, we construct a hash table for keys in NVM and maintain
a mirror of the hash table in DRAM, which is used to classify and
compress data based on their keys. The key of the hash table is the
key of the time series data, and the values of the hash table contain

compressed string encoding, integer field, floating-point number
field, floating-point number encoding, and log metadata which
belongs to the first log entry with this key. The integer field is used
for delta-of-delta timestamp compression, and the two floating-
point number fields are used for the XOR values of floating point
number. Except for the string encoding, all other fields are cleared
after each checkpoint. The hash table is first created in NVM and
then synchronized to the DRAM mirror. Thus, the reading of the
hash table during log compression is completed entirely in DRAM.
For each log entry L𝑖 , a 1-bit compression flag is added to indicate
whether the entry is compressed. Before the log entry is persisted,
we first check whether the key of the data exists in the hash table.
If it exists, we read the original data from the hash table, compress
the entry, and set the compression flag to 1. Otherwise, we first
set the compression flag of the entry to 0 and persist the current
log entry in NVM. Then we update the corresponding entry in the
hash table, persist it in NVM, and synchronize the DRAM mirror.

4.4.2 Group Commit with Log Alignment. The Optane PMem
hardware works internally on 256-byte blocks, while a typical CPU
cache line is 64 bytes. So persisting log entries to NVM in 64 bytes
causes about four times the write amplification. Further, the write
performance of NVM in 64 bytes is about four times worse than
that in 256 bytes [63]. Hence, we align the log entries in 256 bytes
after they are compressed to maximize the performance of NVM
with slightly larger space overhead. Specifically, for each log queue
in a logging thread, we merge all log entries whose length are below
256 bytes into it. Until the total data size approaches 256 bytes or its
multiple, we pad the log entry with 0s at the end to align it to 256
bytes. After this, we persist the log entries to NVM, and commit the
corresponding transactions in groups [59]. With 256 bytes align-
ment, the starting address of a log entry that exceeds 256 bytes is a
multiple of 256 bytes, which avoids the use of LSNs to compute the
offset of each log entry in NVM. Note that with the alignment, the
size of aligned log entries may not be equal to 256 bytes or multiples
of it in most cases, which results in a slight storage footprint waste.
However, without alignment, a log entry smaller than 256 bytes is
persisted to NVM as complete 256-byte data, which causes write
amplification and performance degradation.

4.5 Checkpoint

With the surge of data in a TSDBMS, the storage footprint of logs
continuously increases, which leads to longer recovery times. Fur-
ther, the LSN protocol may cause LSN overflows when the same
data point is updated intensively. While this is rare, it still needs to
be handled. Therefore, we periodically execute a checkpoint pro-
cess to write dirty data in DRAM to permanent storage and purge
outdated log data. In addition, we log the checkpoint and reset the
extended timestamp. However, these operations block transactions,
which affects the performance of a TSDBMS. To tackle this prob-
lem, we design a checkpointing process that does not block insert
transactions to alleviate the performance degradation. The main
difference from standard checkpointing is the process to record
checkpoint log.

Checkpoint Log. The checkpoint log has four parts: (1) The
time period [𝑡1, 𝑡2], where 𝑡1 and 𝑡2 denote the start and end time
of the checkpoint, respectively; (2) the offsets of log blocks within
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[𝑡1, 𝑡2]; (3) the LSN update time 𝑡LSN; and (4) the hash table. The
creation of the checkpoint log encompasses four steps: (1) After
blocking update transactions, we write dirty data to permanent
storage, and record the start time 𝑡1 of the checkpoint; (2) Outdated
logs are purged and log entries in each log queue are persisted in
NVM. The offsets of current processing log blocks are recorded in
the checkpoint log; (3) The extended timestamp of all updated data
in DRAM is set to 0. The insert-only transactions can continue to be
executed while update transactions must be blocked at this point.
The completion time 𝑡LSN of this step is recorded in the checkpoint
log; (4) A copy of the active hash table in DRAM is persisted in NVM
for recovery. The active hash table is reset except for the string
encoding of the key, and all other fields are cleared. We record the
end time 𝑡2 at this step. After the checkpoint log is persisted, both
of insert and update transactions can be executed and the new hash
table is used to compress logs from time 𝑡2.

In Fig. 9, we illustrate the checkpoint process with an example.
(1) The checkpoint starts at time 𝑡1 = 4 : 30 which is persisted to
NVM as part of the checkpoint log, and all time series data prior
to 𝑡1 is also flushed to permanent storage. (2) Outdated logs are
purged. Taking the log stream 1 as an example, since the maximum
timestamp of the data in log blocks B𝑖 , B𝑖+1, and B𝑖+2 is less than
𝑡1, these log blocks are purged directly. As the maximum timestamp
of the log entries in the log block B𝑖+3 exceeds 𝑡1, B𝑖+3 needs to be
preserved as part of the checkpoint log. Next, all the log entries in
log queues are persisted in NVM, and the offset in B𝑖+3 is recorded
in the checkpoint log. (3) All extended timestamps are set to 0, and
the completion time 𝑡LSN = 4 : 32 is recorded. (4) The active hash
table is copied in NVM first, after which all fields are cleared except
for the string encoding. When the end time 𝑡2 = 4 : 36 is recorded
in the checkpoint log, we synchronize the mirror hash table with
the active one in NVM and the checkpoint has completed.

4.6 Recovery

DecLog takes the no force/no steal policy and records redo logs
which are compressed and aligned, so we divide the recovery for
DecLog into two steps: 1) Log parsing. Log entries are read from
NVM and decompressed. 2) Log replay. The most recently commit-
ted changes are recovered by the information stored in logs. As
logs of insert-only transactions can be replayed concurrently, we
first replay these logs in parallel during log parsing, then update
transaction logs are replayed in the order of LSN. Next, we intro-
duce the main modifications made to the existing recovery method
in our recovery algorithm of DecLog as follows:

Log Parsing. If there is no checkpoint log, log parsing process
starts from the first log block, and the active hash table in NVM is
used to decompress logs directly. Otherwise, we obtain the offsets
of log blocks from the checkpoint log and start from the offsets to
read logs. Next, we introduce how to parse logs and simultaneously
replay insert transaction logs.

We create one thread for log parsing and multiple threads to
replay logs of insert transactions. To buffer the log entries of update
transactions based on LSN, we create a set of buckets whose number
is equal to the maximum LSN. In addition, the hash table in the
checkpoint is used to decompress log entries with data timestamps
before 𝑡2, and the active hash table is used to decompress log entries
with data timestamps after 𝑡2. Specifically, let𝑎𝑑𝑑𝑟𝑖 denote the offset
of a log block recorded in the checkpoint, and 𝑎𝑑𝑑𝑟 𝑗 denote the
current address of the log entry that is read by log parsing thread.
At initialization, 𝑎𝑑𝑑𝑟 𝑗 is equal to 𝑎𝑑𝑑𝑟𝑖 . The log parsing thread
reads log entries from 𝑎𝑑𝑑𝑟 𝑗 to 𝑎𝑑𝑑𝑟 𝑗 + 256 and decompresses them
by the hash table. Meanwhile, it sends log entries with LSN = 0 to
log replay threads, and log entries with LSN > 0 are buffered in the
corresponding bucket. If log parsing thread encounters an end flag,
𝑎𝑑𝑑𝑟 𝑗 is updated by 𝑎𝑑𝑑𝑟 𝑗 = 𝑎𝑑𝑑𝑟 𝑗 + 256. Otherwise, log parsing
thread continues to read 𝑛 consecutive 256 bytes until the end flag
is encountered and 𝑎𝑑𝑑𝑟 𝑗 is updated by 𝑎𝑑𝑑𝑟 𝑗 = 𝑎𝑑𝑑𝑟 𝑗 + 𝑛 × 256.
This process continues until 𝑙 consecutive data blocks of 256 bytes
are all 0s, where 𝑙 is the length of log queue. As transactions are
committed in group. If log entries parsed from a 256-byte aligned
block are incomplete, none of them needs to be replayed.

Log Replay. In this step, we describe how to process update
transaction logs. Since the data-driven LSN captures the dependen-
cies between transactions and computes LSNmonotonously, update
transaction log entries with the same LSN indicate that there are no
dependencies between these transactions. Therefore, we can replay
update transaction logs in the order of LSN and the correctness is
guaranteed. Specifically, we divide the update transaction logs in
the buckets into two parts, with one part before 𝑡𝐿𝑆𝑁 and the other
part after 𝑡𝐿𝑆𝑁 . Then we create a single thread to replay the update
transaction logs of the two parts in the order of LSN respectively.

5 EVALUATION

We report on extensive experiments on the benchmark YCSB-TS
that offer insight into the performance of DecLog.

5.1 Experimental Settings

We implement DecLog on top of the open source TSDBMS Beringei
[22]. Due to the lack of support for update and delete operations
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Table 1: Workloads Profile

Parametres
Workloads

A B C D
insert 100% 90% 90% 90%
read 0% 9.9% 9% 9%

update 0% 0.1% 1% 1%
𝜃 of zipfian - 0.9 0.9 1.1

in Beringei, we modify the source codes to implement these func-
tions. DecLog is implemented in C/C++ and compiled by GCC/G++
5.5.0 with -O2. We conduct all experiments on a two-socket server
running Ubuntu 18.04 LTS with two Intel Xeon Gold 6326 @ 2.9
GHz CPUs, each of which has 16 cores and 32 threads. To avoid the
CPU context switching overhead, we close CPU hyper-threading
and each thread is bound to its corresponding CPU core via affinity.
Each CPU is equipped with 4 channels of Intel Optane DC Pmem
DIMMs 200 Series (128 GB per channel, 1 TB total) and 4 chan-
nels of DDR4 memory (3200 MHz, 128 GB total). The hard disk
comprises of 4 Nand Flash SSDs (4 TB total) and 3 HDDs (7.2 TB
total). In addition, we use the libpmem of Intel Persistent Memory
Development Kit (PMDK) library [7] to manage NVM.

Competitors. We implement and compare five logging methods:
(1)DecLog: our proposal in NVM; (2)DecLog-SSD: the logs of De-
cLog are persisted in SSD; (3) Beringei-NVM: the logs of Beringei
are persisted in NVM by a strict ordering strategy of centralized
logging; (4) Beringei-SSD: the logs of Beringei are persisted in
SSD; (5) No-logging: the logging module of Beringei is disabled.

Parameters. The number of logging threads in DecLog is set to
4. Each thread is dedicated to a single channel of NVM, and each
thread is composed of 2 log queues with log queue length of 300.

Workloads. We use the time series benchmark YCSB-TS [2]
to test each performance metric of all proposals. To evaluate the
performance of update transactions, we modify the Core Workload
of YCSB-TS to generate workloads in accordance with a given ratio
for insert, read, and update transactions. Then we vary the portion
of transactions and follow the widely-used Zipf distribution [25] to
generate four workloads (workload A–D). Each transaction in the
workloads has 10 operations. The parameter settings for the four
workloads are shown in Table 1, where 𝜃 represents the parameter
of the Zipf distribution. Compared with workload C, there are
more transactions that access the same data in workload D. So that
workload D presents a higher level of transaction conflict. Each
data point has a total size of 50 bytes, which comprises an 8-byte
timestamp, an 8-byte data field, and a 34-byte character field. The
total size of the data is 18GB, which consists of approximately 400M
individual data points.

5.2 Overall Performance

We conduct a comprehensive performance study for our proposals
in terms of transaction throughput, scalability, commit latency, and
recovery, respectively.

TransactionThroughput.We compare the transaction through-
put of five approaches on all workloads. As shown in Fig. 10(a), we
make the following observations: (1) For the workload A–D, the
transaction throughput of DecLog is 1.1×, 4.2×, 4.5×, and 4.6× that

(a) Throughput Comparison (b) Scalability

Figure 10: Throughput Comparison of Logging Strategies

of Beringei-NVM, respectively. Compared with Beringei-SSD, the
transaction throughput of DecLog-SSD is improved by 1.1×, 3.8×,
3.1×, and 2.7× on the four workloads, respectively. The reason is
that Beringei serializes transactions because of the strict ordering
strategy and centralized LSN computation for each log. Conversely,
DecLog and DecLog-SSD compute the LSN based on the accessed
data and persist log entries in a pipeline, which allows for parallel
logging and the concurrent execution of independent transactions;
(2) Compared to DecLog-SSD, the throughput improvement of De-
cLog is 1.1×, 1.7×, 8.0×, and 8.5×, respectively. The throughput
gain is beneficial from the low write latency and high bandwidth of
NVM; (3) For all workloads, the transaction throughput of DecLog
is comparable to that of No-logging and is decreased by 6.2%, 7.5%,
11.3%, and 15.6%, respectively, which demonstrates the effectiveness
of DecLog for optimizing logging performance; (4) Compared with
workload A, the transaction throughput of DecLog is decreased by
8.2% and 12.7% on workload C and workload D, respectively. This
is mainly due to the increased overhead of duplicate LSN computa-
tions as the conflicts among transactions increase. However, since
update transactions in TSDBMSs are typically infrequent, the effect
on database performance is negligible.

Scalability. To evaluate the scalability of our proposals, we
vary the number of transaction threads from 1 to 28 and test the
corresponding throughput. The results of five approaches are shown
in 10(b). We can see that as the number of threads increases,DecLog
and DecLog-SSD exhibit approximately linear throughput growth,
which shows good scalability. This is because that DecLog applies
data-driven LSN and thread snapshot based parallel logging, which
reduces the log contention overhead resulting from an increase in
the number of transaction threads.

Commit Latency. To evaluate the commit latency of all pro-
posals, we rank the transactions in an ascending order of their
commit latency, and compute the average commit latency of the
top 95% transactions. Fig. 11 shows the cumulative distribution
function (CDF) of average commit latency. For the workload A–D,
the average latency of DecLog-SSD is shorter than Beringei-SSD
by up to 16.4%, 83.5%, 68.4%, and 62.1%, respectively. Compared to
Beringei-NVM, the average commit latency of DecLog is decreased
by 39.7%, 78.7%, 80.8%, and 80.2%, respectively. Compared to No-
logging, the average latency of DecLog is increased by 5.2%, 8.2%,
9.9%, and 15.2%, respectively. There are two main reasons why
DecLog outperforms Beringei in terms of commit latency. First, the
log flushing pipeline ensures that subsequent insert transactions
are not blocked by update transactions. Second, the current logging
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Figure 11: CDF of Transaction Latency

thread only needs to wait for the log entries that have dependencies
with the currently processed log entries to be persisted by using the
thread snapshot. Other logging threads are not blocked at this time,
which reduces commit latency. When comparing the experimental
results between different workloads, we find that compared with
workload A, the average latency of DecLog on workloads C and
D is increased by 8.0% and 12.1%, respectively. The main reason is
that with the growing conflicted transactions, the LSN computation
overhead incurred through data-driven LSN is increased, which
leads to larger log persistence overhead and transaction commit
latency.

Recovery. We evaluate the recovery performance of DecLog,
DecLog-SSD, Beringei-NVM, and Beringei-SSD on workload A–C.
After completing the execution of the three workloads, the database
process is terminated. Upon restart, we record the total CPU clock
time taken by the recovery process as the recovery time and the
results is shown in Table 2. The average recovery time of DecLog is
shorter than Beringei-NVM by 80.8%, 80.3%, and 80.6%, respectively.
The average recovery time of DecLog-SSD is shorter than Beringei-
SSD by 72.6%, 79.3%, and 77.2%, respectively. The reason is that
Beringei-SSD and Beringei-NVM can only execute recovery based
on centralized LSN in a single thread, while DecLog can achieve
multi-threaded recovery by logs, which reduces the recovery time.
The recovery for the workload B and workload C is slightly faster
than that of workload A. This is because that there are no logs for
the transactions that only include read operations. Moreover, when
compared with DecLog-SSD, the average recovery time of DecLog
is reduced by 28.7%, 5.6%, and 14.9%, respectively. This is mainly
due to the inherent performance advantages of NVM. However, the
recovery time of Beringei-NVM is comparable with that of Beringei-
SSD. It indicates that if we directly apply the centralized logging
and recovery design in NVM, it is unable to realize the full potential
of NVM performance. Compared with DecLog, the recovery time
of DecLog with checkpoint is reduced by 95.5%, 97.4%, and 95.7,
respectively. The reason is that only log entries after the offsets

Table 2: Recovery Time

Logging Strategy
Recovery Time of Workloads (s)

A B C
DecLog 77.7 72.5 72.7

DecLog-SSD 109.0 76.8 85.4
Beringei-NVM 405.6 367.2 375.7
Beringei-SSD 398.3 371.6 374.0

DecLog with checkpoint 3.5 1.9 3.1

recorded in the checkpoint need to be replayed, which alleviates
the overhead of recovery.

5.3 Sensitivity Study

We first evaluate the effect of different logging modules in DecLog

on database performance by using all workloads. Next, we con-
duct parameter studies on all workloads to evaluate the impacts
of logging thread number, NVM channel, and log queue length,
respectively.

Dissecting the Features. To evaluate the impacts of each mod-
ule in DecLog on database performance, we enable all necessary
logging components step-by-step, which include relaxed ordering
strategy, data-driven LSN computing protocol, parallel logging,
log compression and alignment, and checkpoint. The results by
using the strict ordering strategy as the comparative method are
presented in Fig. 12(a). We make the following observations: (1)
Compared with the strict ordering strategy, the throughput gained
by the relaxed ordering strategy is 19.4%, 11.4%, 13.0%, and 12.1%,
respectively. The main reason is that relaxed ordering strategy
avoids unnecessary sfence instructions, which thereby reduces CPU
wait latency. (2) After adding the data-driven LSN module on top
of relaxed ordering strategy, the throughput increases by 6.7%,
13.2%, 15.9%, and 22.3%, respectively when compared to using only
the relaxed ordering strategy. This is because the data-driven LSN
computing protocol avoids the contention of LSN by independent
transactions. (3) After adding parallel logging, DecLog achieves
higher throughput, which is 3.6×, 3.5×, 3.5× and 3.4×, respectively.
The main reason is that parallel logging increases the bandwidth for
persisting logs in NVM and the tread snapshot alleviates the over-
head of synchronization, which improves the logging performance.
(4) After adding log compression and alignment module, the transac-
tion throughput decreases by 5.1%, 4.7%, 2.8% and 1.0%, respectively.
This is because that log compression consumes additional CPU re-
sources and incurs more computing overhead. However, from the
experimental results, we can see that the logging performance loss
is relatively small. This is because DecLog aligns log entries by 256
bytes, which in turn improves logging performance. In addition,
logging compression reduces the amount of data persisted in NVM,
which extends the lifetime of NVM. (5) After adding checkpoint, the
transaction throughput is about the same for the workload A. For
the workload B–D, the throughput decreases by 5.3%, 16.9%, and
16.4% on average, respectively. This is because the checkpoint con-
sumes CPU and IO resources, which thereby affects the transaction
throughput.

Impact of Logging Thread Number. Fig. 12(b) reports the
correlation of throughput and the number of logging threads when
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Figure 12: Performance of DecLog

we fix the transaction thread number to 28 and adjust the logging
thread number from 1 to 8. The results show that the throughput
increases nearly linearly with the increase of logging thread num-
ber, and reaches its peak when the logging thread number is 4.
Therefore, DecLog sets the default number of logging threads as
4. By analyzing the results of each workload, we observe that: (1)
For the workload A, the throughput gains largely by 4.5× when the
logging thread number increases from 1 to 4. This is because the
multi-threaded concurrent logging of DecLog improves the logging
performance; (2) For the workload C, the throughput is enlarged
by 4.5× when the logging thread number increases from 1 to 4. But
the throughput is still less than that of workload A. This is because
DecLog uses the thread snapshot to synchronize logging threads.
When conflicts of transactions exist, thread snapshot does not block
the commitment of other transactions with no dependencies, and
thus affects the throughput. (3) For the workload D, the throughput
improvement is 4.3× when the logging thread number increases
from 1 to 4, which is slightly smaller than that of workload C. This
is because workload D has more conflicting transactions, and the
data-driven LSN computing protocol needs to perform more re-
peated computations. However, in practical applications, there are
very few conflicts among update transactions in TSDBMS, so their
impacts on database performance is trivial.

Impact of NVM Channel. In Fig. 12(c), we fix the logging
thread number to 4 and vary the NVM channel. We can observe
that the throughputs for the four workloads remain steady, as the
NVM channel increases from 1 to 4. The results indicate that con-
current writes to different NVM channels do not improve system
throughput significantly. This is mainly due to the high random
write performance of NVM. On the one hand, the performance of a
single NVM channel is already sufficient to handle logs generated
by the database transaction module. On the other hand, although
increasing the number of NVM channels can improve the logging

performance to some extent, DecLog has alleviated the overhead
of logging in a single NVM channel. Therefore, the bottleneck of
the overall system performance lies in other system modules (e.g.,
transaction processing and lock contention), which is beyond the
scope of this study.

Impact of Log Queue Length. To evaluate the impact of log
queue length on database performance, we vary the log queue
length from 50 to 800 and fix other parameters as their default
values. As shown in Fig. 12(d), with the log queue length increases,
the throughput for each workload increases and first reaches its
maximum when the length is 300. Then the throughput remains
steady. The reasons mainly include two aspects. First, when the log
queue length is relatively small, the log entries in each log queue
can reside in CPU cache. When the log queue length reaches the
threshold, the clwb instruction is used to flush log entries from CPU
cache to NVM in parallel.With an increasing of the log queue length,
the amount of log entries that are flushed by clwb instructions to
NVM increases. Hence, the throughput of the database is improved.
Second, when the log queue length exceeds 300, log entries in log
queues exceed the CPU cache capacity. When the clwb instruction is
used to flush data back to NVM, an additional operation is required
to copy the data from DRAM to the corresponding NVM address,
which increases the persistence overhead. Therefore, the default
log queue length of DecLog is set to 300. Moreover, the setting of
the log queue length is related to the average size of log entries and
the size of CPU cache, so it needs to be adjusted according to the
actual situation in use.

6 CONCLUSION AND FUTUREWORK

We design and implement a decentralized logging system DecLog

in NVM for TSDBMS by utilizing the characteristics of time se-
ries data to improve the logging performance. First, we propose a
data-driven LSN based on the data accessed by transactions and
track the transaction dependencies. Next, we design a relaxed or-
dering strategy to persist log entries to NVM by using log flushing
pipeline, which effectively addresses the transaction serialization
issue caused by a heavy use of sfence instructions. Based on these,
we propose a thread snapshot based parallel logging method to fur-
ther improve the concurrency of persisting logs to NVM in multiple
threads with less thread synchronization overhead. To decrease the
log storage footprint and to fully utilize NVM properties, we design
a log compression and alignment algorithm to process the logs.
In addition, we implement checkpoint and recovery algorithms of
DecLog to reduce the recovery time. The experimental study shows
that the throughput of DecLog outperforms the Beringei TSDBMS
by up to 4.6× with less recovery time in the YSCB-TS benchmark.

In the future, it is of great interest to extend the decentralized
logging system in NVM to distributed TSDBMS by exploiting the
characteristics of time series data and workloads.
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