TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Geoffrey X. Yu* Markos Markakis Andreas Kipf*
Massachusetts Institute of Technology =~ Massachusetts Institute of Technology =~ Massachusetts Institute of Technology
geoffxy@mit.edu markakis@mit.edu kipf@mit.edu
Per-Ake Larson Umar Farooq Minhas™ Tim Kraska
University of Waterloo Apple Massachusetts Institute of Technology
gpalarson@outlook.com ufminhas@apple.com kraska@mit.edu

ABSTRACT

Many modern key-value stores, such as RocksDB, rely on log-
structured merge trees (LSMs). Originally designed for spinning
disks, LSMs optimize for write performance by only making se-
quential writes. But this optimization comes at the cost of reads:
LSMs must rely on expensive compaction jobs and Bloom filters—
all to maintain reasonable read performance. For NVMe SSDs, we
argue that trading off read performance for write performance is
no longer always needed. With enough parallelism, NVMe SSDs
have comparable random and sequential access performance. This
change makes update-in-place designs, which traditionally provide
excellent read performance, a viable alternative to LSMs.

In this paper, we close the gap between log-structured and
update-in-place designs on modern SSDs with the help of new
components that take advantage of data and workload patterns.
Specifically, we explore three key ideas: (A) record caching for ef-
ficient point operations, (B) page grouping for high-performance
range scans, and (C) insert forecasting to reduce the reorganiza-
tion costs of accommodating new records. We evaluate these ideas
by implementing them in a prototype update-in-place key-value
store called TreeLine. On YCSB, we find that TreeLine outperforms
RocksDB and LeanStore by 2.20x and 2.07x respectively on average
across the point workloads, and by up to 10.95X and 7.52x overall.

PVLDB Reference Format:

Geoffrey X. Yu, Markos Markakis, Andreas Kipf, Per-Ake Larson, Umar
Farooq Minhas, and Tim Kraska. TreeLine: An Update-In-Place Key-Value
Store for Modern Storage. PVLDB, 16(1): 99 - 112, 2022.
doi:10.14778/3561261.3561270

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/mitdbg/treeline.

1 INTRODUCTION

Modern persistent key-value stores, such as RocksDB [48] and
LevelDB [27], are typically built using log-structured merge trees
(LSMs) [53]. The key idea behind LSMs is buffered log structuring.

“The first three authors contributed equally to this paper.

fWork done while at Microsoft Research.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
do0i:10.14778/3561261.3561270

99

Writes are first buffered in memory, and then eventually flushed to
immutable files on disk. These files are then periodically compacted
(i.e., merged) in the background to remove overwritten and deleted
records. LSMs are popular because they provide stellar write per-
formance. They ensure that all disk writes are sequential, which
exploits the high sequential write bandwidth of traditional disks.

Yet despite these benefits, LSMs are not a silver bullet in key-
value store design. While their design makes writes efficient, it
comes at the cost of reads, since records can be present in multiple
locations on disk. This is why systems like RocksDB and LevelDB
employ block caches, Bloom filters [7, 22], and various compaction
strategies [9, 19, 50]—complex and hard-to-tune [47] techniques all
aimed at reducing the I/O overhead of reads. For traditional disks
(e.g., HDDs and SATA SSDs), this write versus read performance
trade-off has been the preferred choice. Random I/O on traditional
disks is prohibitively expensive, and so any design that minimizes
the amount of random I/O outshines the competition. But is this
trade-off still the right one for modern storage devices?

We make the observation that modern NVMe SSDs no longer
suffer the same significant random write drawback as traditional
disks [29]. With enough request parallelism, NVMe SSDs can achieve
their peak sequential write throughput through random writes [29,
39, 56]. This naturally leads us to a research question: how should
a persistent key-value store’s design change for NVMe SSDs where
random writes are comparable to sequential writes in performance?

Our hypothesis is that an update-in-place design is the answer
for larger-than-memory workloads that are (i) read-heavy, or (ii)
skewed write-heavy. Update-in-place designs, such as a classical
disk-based B+ tree [16, 51, 52], can offer excellent read performance
because each record is stored in a single location on disk—requiring
only one I/O to read, if inner nodes are cached in memory. High read
performance is desirable because read-heavy workloads such as
caching [8, 45] or analytics [4, 11, 40] are common in practice [10].

While disk-based B+ trees do have these read benefits, they are
also known to suffer from their own challenges. First, updating
a single record on a page requires reading and writing the entire
page, which leads to write amplification. Second, scans can lead
to random reads because logically consecutive leaf pages are not
necessarily stored sequentially on disk; on NVMe SSDs, we observe
that random reads still underperform sequential reads. Third, inserts
also cause write amplification because of the need to “make space”
in the on-disk structure to hold the new records.

Thus, in order to validate our hypothesis, we need to develop a
new design for NVMe SSDs that has the read benefits of a classical
update-in-place design while also mitigating its traditional write

https://doi.org/10.14778/3561261.3561270
https://github.com/mitdbg/treeline
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3561261.3561270
https://www.acm.org/publications/policies/artifact-review-and-badging-current

drawbacks. In other words, observing that the fast random I/O of
NVMe SSDs would be favorable for an update-in-place design, we
propose techniques to make such a design competitive across the
board. Our new design leverages three complementary techniques:
(A) record caching to reduce read/write amplification in skewed
workloads, (B) page grouping to translate scans into sequential
reads, and (C) insert forecasting to reduce the I/O needed to “make
space” for new records. We implement these techniques in TreeLine,
a new update-in-place key-value store designed for NVMe SSDs.

TreeLine buffers all writes in its record cache (key idea A), al-
lowing it to (i) keep hot records in memory for as long as possible,
and (ii) batch writes that go to the same on-disk page to amortize
the I/O costs for updating a page. Caching records instead of pages
efficiently uses the capacity of the cache even when hot records are
not clustered on a few pages. This is true in many real applications:
popular items on an e-commerce platform have scattered item IDs,
while the activity of users of a social media website is similarly unre-
lated to their name. In both cases, hot items are updated frequently,
illustrating the importance of skewed update-heavy workloads.

Instead of laying out pages randomly on disk, TreeLine groups
pages storing adjacent key ranges so that they are stored contigu-
ously on disk (key idea B). Doing so lets TreeLine make long physi-
cal reads, which benefits scans, while still allowing it to access data
at page granularity for point reads. Moreover, TreeLine uses linear
models to map records to specific pages within page groups. This
helps TreeLine keep its in-memory index small, as it only needs to
index the page group boundaries (instead of every page boundary).

Finally, to address the expensiveness of inserts in an update-in-
place design, TreeLine exploits the repetitiveness in skewed insert
workloads to forecast the location and volume of inserts it expects
to receive (key idea C). It uses the forecast to leave appropriate
space in its on-disk pages, thereby reducing how frequently it needs
to reorganize its on-disk pages to accommodate the new records.
TreeLine tracks the inserts observed across different parts of the key
space and extrapolates these trends forward—a simple but effective
technique as we show in our evaluation (see Section 5).

Our proposed techniques provide benefits over other recent
designs that revisit update-in-place for NVMe SSDs. LeanStore [36]
does not optimize for the out-of-memory case, even though it is
efficient when the working set fits into memory. KVell [39] indexes
every key, leading to a higher memory overhead than TreeLine,
which only indexes segment boundaries using page grouping.

We evaluate TreeLine on YCSB [17] using synthetic and real-
world datasets. We compare TreeLine against (i) RocksDB [48], a
widely-used LSM key-value store, and (ii) LeanStore [36], a state-
of-the-art update-in-place key-value store. Across our point YCSB
workloads with 1024 byte records, TreeLine outperforms RocksDB
and LeanStore by 2.20x and 2.07X respectively on average. Al-
though TreeLine makes some random reads from disk, we find that
it still outperforms RocksDB and LeanStore by 2.50x and 2.80x
respectively with 16 threads on uniform scan-heavy workloads.

Contributions. In summary, we make the following contributions:

o We analyze the key performance challenges that arise when
employing an update-in-place design on NVMe SSDs and make
the case for addressing them with our key ideas.

100

% 1000 praszsssannnnnn 750 +
=3
= 5001
2 500 -@—- 4KiB
g 8 KiB 250 A
£ -l 16 KiB
= 0Lb— : : 0Lt— . .
12 4 8 16 12 4 8 16
Threads Threads
(a) Intel DC P4510 (b) AWS c5d.9xlarge

Figure 1: Random write throughput as we increase the num-
ber of concurrent writing threads on two distinct NVMe SSDs.
The dotted line is each SSD’s peak sequential write through-
put. The setup for Figure 1a is as described in Section 5.1.

e We propose page grouping: a technique that boosts scan perfor-
mance by writing logically adjacent pages together onto disk.

e We introduce insert forecasting: a technique that predicts the
location and volume of inserts to reduce I/O overhead.

e We implement these key ideas, along with record caching, into
TreeLine: a new update-in-place persistent key-value store for
NVMe SSDs. We find that it outperforms RocksDB and LeanStore
by up to 10.95X and 7.52X respectively overall on YCSB.

We have open-sourced TreeLine [60].

2 WHY REVISIT UPDATE-IN-PLACE DESIGNS?

TreeLine is a new update-in-place key-value store for NVMe SSDs.
Before diving into its design, we first make the case for why we
believe that now is the time to revisit update-in-place designs over
LSMs—the current popular design choice.

Random Writes ~ Sequential Writes on NVMe SSDs. Recently,
NVMe SSDs have become readily available. NVMe SSDs follow a
completely different storage paradigm compared to traditional hard
disk drives. Free from mechanical elements like a spinning disk
and a moving head, they instead utilize solid state components and
employ an address translation layer to reduce device wear. This
shift not only reduces overall access times, but provides two crucial
benefits: (i) accessing data sequentially is no longer mechanically
superior to accessing them randomly, and (ii) highly parallel re-
quests are now feasible [15], which can be used to hide most of
the access latency [56]. To empirically confirm these characteris-
tics, we run a series of experiments on an Intel DC P4510 NVMe
SSD [31] and the NVMe SSD on AWS c5d.9xlarge instances [3]. As
shown in Figure 1, we use fio [5] to measure the write throughput
while varying the (i) request size, and (ii) number of concurrent
writing threads. As we increase the number of concurrent writing
threads, both devices’ random write throughputs approach their
peak sequential write throughputs (1050 MiB/s [31] and 750 MiB/s).

LSMs Leave Read Performance on the Table. As we describe
in Section 1, LSMs optimize for writes; but their design also com-
plicates reads. To see how much read performance LSMs “leave
on the table”, we compare RocksDB (a widely-used LSM key-value
store) against our own naive disk-based B+ tree (an update-in-place
system) on an Intel DC P4510 NVMe SSD. We also run TreeLine,

1481.89

g_ 600+ =@~ Treeline

g =jl- Disk-Based B+ Tree

+ 400+ RocksDB

3

Ny

$ 200 .

2 A —8—8— n§
= 0

40 60
Update Percentage (%)

0 20

Figure 2: TreeLine, a disk-based B+ tree, and RocksDB com-
pared on Zipfian read/scan/update workloads. We vary the
proportion of updates in the workload from 0% to 100%.

our new system. We compare the systems on a Zipfian-distributed
(8 = 0.79) workload consisting of reads, updates, and scans on 64
byte records. We vary the proportion of update requests from 0% to
100%. Of the requests that are not updates, 10% are range scans and
the rest are point reads. Figure 2 shows each system’s throughput
in thousands of requests per second. For read-heavy workloads
(i-e., less than 40% updates), the limitations of the LSM design lead
to RocksDB performing similarly to or worse than our naive disk-
based B+ tree (see Section 5.1 for our experimental setup). TreeLine,
using an update-in-place design, takes this performance difference
a step further and outperforms RocksDB all the way up to 80%
updates. We outline the key ideas behind TreeLine in Section 3 and
we describe why and when it outperforms RocksDB in Section 5.

Summary. The advent of modern NVMe SSDs means that random
writes are no longer significantly more expensive than sequential
writes. We believe that this change affords us an opportunity to
reconsider how to design persistent key-value stores. Free from
needing to ensure sequential writes, we believe that adopting an
update-in-place design is a good choice because they excel at read-
heavy workloads—an important and common class of workloads.
Although writes are more challenging in an update-in-place design,
we present techniques in Section 3 that mitigate these challenges.

3 TREELINE: KEY IDEAS

3.1 Record Caching (Key Idea A)
Workload Skew Does Not Care About Your Layout.

Even in cases where the total size of our data is large enough to
warrant using modern storage media instead of a purely in-memory
solution, it is usually the case that our working set is much smaller
than that, as well as relatively stable in the short term. Given the
performance discrepancy between main memory and storage access
times, some form of caching would be beneficial. The question then
becomes, what granularity this cache should be at.

We argue that record caching is the better option for providing
good cache utilization when pursuing an update-in-place design.
Certainly, this choice increases the metadata:data ratio for the cache
memory usage, since the fixed metadata overhead for each cache
entry is now incurred per record (possibly a few bytes) instead of
per page (4 KiB in our design). However, the alternative of page
caching has the potential for even worse memory consumption.

101

Consider a working set that is uncorrelated with the key sort
order - one example would be a database of user metadata, where
the activity of users is not correlated to the value of their user_id.
An LSM design, like RocksDB [48], would consolidate updates from
hot users in the write buffer and later in level 0 files. Caching the
blocks in these files and continuing to employ the write buffer
would be sufficient to keep the working set in memory.

An update-in-place design, on the contrary, cannot perform this
consolidation efficiently. Having a single “true” copy of the record
means that frequent and costly reorganizations would be required
to consolidate hot records in “hot pages”. A more sustainable option
is to organize records in some workload-independent way, such
as having each page responsible for a specific key range at any
time. Then, page caching could lead to significant cache under-
utilization. In the worst case, there could only be a single few-byte
hot record in each of several different pages. As such, caching at
record granularity is preferable in an update-in-place design.

3.2 Page Grouping (Key Idea B)
Small Pages, Large Pages: Why Not Both?

From the perspectives of space amplification and I/O reduction,
the ideal page is as small as possible (often 4 KiB in practice). In-
deed, pages can be seen as simply an unfortunate artifact of current
storage technology, with novel media like Optane persistent mem-
ory [33] pushing the boundary towards byte addressability.

However, small pages hurt range scans, which benefit from read-
ing large amounts of contiguous data from storage. This is because
small random reads still do not perform as well as sequential reads
on NVMe SSDs; the best way to utilize the full read bandwidth is
through large requests [29, 56], making large pages attractive.

To bridge this gap, we propose page grouping. The idea is that
pages themselves are small but contiguous on the storage device,
providing the potential for larger reads when needed. As a thought
experiment, one could implement this idea for the entire key space,
laying out the data consecutively in pages and keeping the page
boundaries in memory. But this design will suffer in the face of
inserts, requiring us to re-write (on average) half of the entire
database whenever we insert a record.

Instead, we implement page grouping locally, by co-locating
pages produced during each reorganization—creating data segments.
Grouping also lets us reduce the number of entries we have to index
in memory to only one entry per segment. We can achieve this by
(i) fitting a piece-wise linear model over the keys and their positions
in the data segment, and then (ii) using the linear components of
the model to define and find the page boundaries. Each linear model
indexes records belonging to one data segment and we place the
records into the pages using the model to ensure that there is no
indexing error (model-based inserts [1, 23]). This approach both
(i) allows for long reads when needed, and (ii) leads to a compact
in-memory index without sacrificing page-level access for point
operations. The in-memory index only stores each segment’s lower
boundary, linear model, and location on disk; this information is
enough to compute the correct page for any key.

Page grouping is governed by two parameters, goal and epsilon,
which represent (i) the target fill rate of each page, and (ii) the
maximum deviation that a model’s prediction can have from a

In memory

Insert Forecaster

-

(H @

Evict once cold

Record Cache

In-memory Index Segment Reorganizer

indexed segments QT Overflow

BITL LT

Figure 3: The design of TreeLine, highlighting our key ideas.

Linear Model

record’s true position in the dataset. A user would typically set these
parameters by first selecting goal (which impacts TreeLine’s space
amplification) and then maximizing epsilon, within the constraints
of the maximum number of records that can fit in a page. Space for
at least epsilon records must be left at each of the front and back of
the page, to deal with model error near page boundaries.

For example, when using 64 byte records, each page fits up to
54 records after accounting for a 10-byte slot per record and the
89-byte page header (see Section 4.4). In our experiments, we find
that setting goal to 44 and epsilon to 5 provided good performance.
We study how these parameters affect the segments in Section 5.4.

3.3 Insert Forecasting (Key Idea C)
Half-Full Pages Are Usually Half~Empty.

Even with page grouping, requiring reorganization for each
insert is impractical; data pages must contain empty space to absorb
some inserts. This is common in tree data structures, which split a
full node into two half-full ones. However, in a disk-based update-
in-place design, empty space creates amplification during I/O.

Thus, we must leave empty space intelligently, by leveraging
patterns in the inserts to generate forecasts about the future insert
load. During reorganization, we then leave empty space according
to this forecast, decreasing space amplification while still absorbing
inserts in a high-performance manner. For this paper, we maintain
an in-memory histogram to track the distribution of inserts and use
it to forecast inserts for each part of the key space, but TreeLine is
also compatible with more elaborate forecasting schemes.

4 TREELINE: IMPLEMENTATION DETAILS

In this section we describe TreeLine, which implements our three
key ideas. As shown in Figure 3, TreeLine responds to the per-
formance characteristics of modern storage media by using an
update-in-place design, consisting of two main parts: (i) a Tree,
an in-memory index to map reads and writes to pages, and (ii) a
Line of variable-sized on-disk data segments, all on a single logical
level. Section 4.1 describes each supported operation, while Sec-
tions 4.2-4.6 then introduce the individual components of TreeLine.
Sections 4.7 and 4.8 deal with crash consistency and recovery, as
well as thread synchronization, respectively.

102

4.1 Supported Operations

Lookups. Lookups first check the record cache (Section 4.2), which
contains the most recent version of a record. If the key is not cached,
the in-memory index (Section 4.3) is used to find the correct data
segment, while the associated linear model (if any) locates the data
page (Section 4.4). That page is brought into memory and searched.
If the key is still not found, the page’s overflow page (if any) is
also brought into memory and searched. If there is no match in the
overflow page either, TreeLine reports that the key was not found.

Data Modifications. Inserts, updates, and deletes initially create
or update an entry in the record cache. Once the entry is later
selected for eviction, TreeLine finds the corresponding data page
using the in-memory index and segment linear model (if any), and
brings it into memory to perform the operation, together with its
overflow page (if any). If the base and overflow page are both full,
reorganization is triggered (Sections 4.5 and 4.6).

Range Scans. Range scans proceed like lookups, but both the
record cache and appropriate data page(s) (base and overflow) are
always checked for keys within the specified range, which are
then merged in key order. Records encountered in the record cache
override records with the same key that might exist on a data page.

4.2 Record Cache (Key Idea A)

Cache Admittance. Whenever TreeLine admits a record into the
record cache, it sets a priority level for the entry, from 0 to pmax.
The priority is incremented whenever a cache entry is accessed.

We admit records into the record cache on three different occa-
sions. First, any data modification request (insert, update, delete)
by the user is cached with priority p,,;q = Pmax/2. If no entry
with the same key is already present, TreeLine possibly evicts an
entry to make space. Second, any lookup of a non-cached record
will cache the record with priority p,,;4 after retrieving it from
the appropriate data page. Third, we can choose to optimistically
also cache additional entries from the same page with priority 1
whenever we cache a record through the lookup path.

Cache Eviction. TreeLine uses the clock algorithm to evict entries
from a full cache: it cycles through cache entries until it finds
an entry with priority 0, the eviction candidate, decrementing the
priority level of each entry it encounters. If the eviction candidate
is dirty, we continue advancing the “clock hand” up to 32 entries to
find a clean candidate instead. We do this to prefer evicting entries
that do not require I/O. If the final eviction candidate is dirty, we
also write out all dirty cache entries that would go to the same page,
but do not evict them. This helps amortize the eviction I/O costs.
We have chosen this eviction algorithm because of its minimal
synchronization overhead, which is crucial under high parallelism:
just a single pointer needs to be atomically updated, compared to
e.g., moving an arbitrary element to the back of an LRU queue.

4.3 In-Memory Index

The in-memory index is our map to the on-disk portion of the data.
We employ the TLX btree_map [6]: a fast but traditional B+ tree.

Consulting the In-Memory Index. For both evictions of dirty
cache entries and lookups/scans of non-cached keys, TreeLine needs

to retrieve the correct segment and page for keys. This is achieved
through the in-memory index, which maps the lexicographically
smallest key of each data segment to the appropriate (physical) seg-
ment identifier. This is sufficient because data segments cover mutu-
ally exclusive and collectively exhaustive key ranges. For multi-page
segments, a compact linear model is also stored in the in-memory
index in order to select the correct data page within the segment
without needing additional index nodes.

Updating the In-Memory Index. TreeLine updates the in-memory
index during reorganization (see Section 4.5). A read/write latch
protects against concurrent in-memory index lookups. Although
we have not seen a noticeable impact of this latch, one could use
an opportunistic concurrency scheme [38] instead in future work.

4.4 Pages and Segments

Data Pages. TreeLine stores data in data pages. We adapt the
physical page design from the implementation of BTreeNode in
LeanStore [2, 36]. The page size is currently set to 4 KiB to match the
page size of the underlying SSD. Each data page uses common prefix
compression based on the lowest (inclusive) and highest (exclusive)
key that it is responsible for, as defined at page creation time. It
stores records in insertion order in the back of the page, while a
sorted array of slots grows from the front of the page, with each slot
pointing to a record; this maintains sorted access while reducing
the copying overhead during data modification operations.

Data Segments. As introduced in Section 3.2, TreeLine employs
page grouping to co-locate some data pages on disk, creating data
segments (“ungrouped” data pages are “single-page data segments”).
Data segments consist of pages with the layout described above,
together with any possible overflow pages (see Section 4.5). The
non-overflow (base) pages comprising a data segment are laid out
logically contiguously on disk. For multi-page data segments, the
in-memory index stores a linear model together with the segment
identifier, letting TreeLine find the correct page within the segment
for a given key. More details are covered in Section 4.5.

4.5 Supporting a Growing Database (Key Idea B)

Overflow Pages. When a data page becomes full, TreeLine allo-
cates an overflow page, which is not added to the in-memory index;
it is accessed through the base page that overflowed. Overflow
pages are laid out like base pages, and each inherit responsibility
for the same key range as their base page. Each of the base and the
overflow page remains sorted (using slots), but no guarantees are
provided for the ordering of keys between these two pages.
Overflow pages help us collect more records for a given segment,
to amortize the reorganization cost. Once an overflow page also
fills up, the entire segment involved, called the full segment, will be
reorganized. We do not allow for more than one overflow page per
base page to bound the cost of lookups and data modifications.

Page Orderings. For clarity, we distinguish three types of page
orderings. Our data pages match the page size of the underlying
SSD (4 KiB), so these orderings apply to pages in both the “TreeLine”
and the “SSD” sense. The physical order refers to the actual page
locations on the SSD. It is not exposed, since the drive itself abstracts
it away to balance device wear through out-of-place writes. Instead,

103

= Lin. Mdl Lin. Mdl = Lin. MdI

In memory

Pg# Page

| |
Record :_u U u :

(a) Page 091 - the overflow for 214 - is full, causing reorganization.
Phase I detects more segments with reorganization potential.

=
.

Distance in
key space

Distance in
reorganization set

131
091

O 0dddNNANNO O N

\
(b) Phase II fits a linear model to the reorganization set. Once the
error threshold is reached, records are forwarded to Phase III.

= Lin. MdI

(c) Phase III writes a new segment out. Once all new segments
have been written, Phase IV updates the in-memory index.

Figure 4: An example reorganization.

the drive exposes a logical order of pages, implemented in the device
controller. In TreeLine, each base data page contains keys for a
disjoint region of the key space. Based on the lower boundaries of
these regions, we also get the key order of pages.

Reorganization. We now move on to the reorganization process,
which is divided into four phases. Range detection is followed by
one or more iterations of model building and segment write-out,
followed by the index update. We provide an example in Figure 4.

Phase I: Range Detection. Only considering records from the full
segment can lead to sub-optimal data layouts. Instead, TreeLine
also looks “around” the full segment S for segments with reorgani-
zation potential: segments with at least one base page with a (not
necessarily full) overflow page. It examines neighboring segments
in key order, up to a distance of r (currently set to 5) segments
from S in each direction. This process results in a set of up to 2r +1
segments to be reorganized, which we call pre segments, which are
contiguous in key order and include S. In Figure 4a, Phase I finds
two neighboring segments with reorganization potential around S.

Phase II: Model Building. This phase operates on the sorted set
of all records in the pre segments, called the reorganization set, if it
is non-empty. It is visualized as the collection of ovals in Figure 4b.

TreeLine considers records from the reorganization set in key or-
der and tries to place them into as-large-as-possible newly-created
segments, which we call post segments. Each page, together with
its associated overflow page, is brought into memory as needed and
kept there until all of its records have been written into new seg-
ments. In Figure 4b, Pages 131, 056, 132, 213, 214 and 091 have been
brought into memory. We call the smallest key (in key order) of the
reorganization set the reference key, which will be the smallest key
in the first page of the new segment being built.

While considering each record, TreeLine builds a linear model
(light green line in Figure 4b) using the PGM index’s [24] optimal
piecewise linear regression algorithm [54]. We chose this algorithm
because it produces the optimal (fewest) segments in one pass over
the data [24, 54]. This model will determine the correct page for
a record within the segment, based on the record’s key and the
segment’s reference key. It relates the distance between the record’s
key and the reference key in key space to their distance within the
reorganization set. For example, if the keys in the reorganization
set are {"a", "c", "f"}, the reference key is "a" and the distance of "f"
from "a" is 5 in key space, but 2 in the set.

A linear model is space-efficient and reasonably accurate at the
granularity of the reorganization set, but it will still accumulate
error. We continue processing successive records, until we hit a
configurable error threshold epsilon, indicated by the dashed dark
green line in Figure 4b. Setting epsilon reflects a trade-off. A large
epsilon will let us process more records, but the resulting model will
be less accurate. To compensate, we will need to place fewer records
per page, increasing space amplification. On the other hand, a small
epsilon will only let us process fewer records at a time, leading to
smaller segments and eroding the benefits of page grouping.

Once we reach the error threshold, the current iteration of Phase
II ends. Any processed records are sent to Phase III as a write-out set
and removed from the reorganization set, before repeating Phase II.

An iteration of Phase II is also terminated early in three cases.
One is whenever the contents of the reorganization set fit on a single
page. No model is needed for a single-page segment, so we directly
forward all the records to Phase III. The second case is whenever we
exceed the memory budget set aside for reorganization; remember
that each page with processed records is kept in-memory during
model building. In this case, we stop and forward the records and
model to Phase III, even if the model error was still below epsilon.
The third case is when we have processed enough records (16 *
goal) to fit a 16 page segment without exceeding epsilon.

Phase III: Segment Write-out. Given a write-out set and a model
from Phase II, Phase III materializes the post segment. As shown
in Figure 4c, the model is used to place the records in a number
of logically contiguous pages on the SSD, either freshly allocated
or retrieved from a free list (see Phase IV). The number of pages
is determined by dividing the size of the write-out set by the goal
parameter. However, to simplify file management, TreeLine only
creates fixed-size segments containing 1, 2, 4, 8, or 16 pages. So, if
the proposed post segment comes out to e.g., 10 pages, TreeLine
will only create an 8 page post segment with goal records per
page, returning the leftover records to the reorganization set for
processing in the following iteration of Phase II. Phase III also
generates a unique non-zero production ID associated with this
segment and includes it in the first page of the post segment.

Phase IV: Index Update. TreeLine concludes the reorganization
process by updating the in-memory index. The entries for the pre
segments are deleted, while entries with the reference key, model (if
any) and segment identifiers of the post segments are inserted. The
pre segments are then invalidated by overwriting their production
ID with the value zero, which aids recovery (see Section 4.7). They
are then added to a free list, from where they can be retrieved by a
future reorganization to be overwritten with its post segments.

104

4.6 Insert Forecasting (Key Idea C)

Tracking Inserts. We base our insert forecasting on statistics we
collect from tracking inserts. We divide the workload into epochs,
which represent a certain number of workload inserts (e.g., 100,000).
Over the course of an epoch, we build an equi-depth histogram with
b partitions that captures the distribution of inserts. For each insert,
we increment the counter of the histogram bin corresponding to
the key (an O(log b) operation). To reduce tracking overhead, we
could sample inserts, but we find that the overhead is less than
100 ns per insert, which is negligible for disk-based systems. Once
an epoch ends, we “freeze” its histogram and use it for forecasting
the distribution of future inserts, discarding any older histograms.
This way, there are always two histograms: one being built based on
the current epoch and one “frozen” from the last epoch. Besides the
epoch size, we need to configure the parameter b. In the extreme
case, each partition would correspond to one data page. However,
we find a more coarse-grained partitioning to be sufficient for our
workloads. Since we use an equi-depth histogram (as opposed to
equi-width), we need to set the partition boundaries. In theory, we
could use the full data for this purpose, but this would cause I/O.
Instead, we maintain an in-memory reservoir sample [41] of the
inserts. At every point in time, that sample represents a uniform
random sample of the base data. When creating a new histogram,
we sort the in-memory sample and use it to determine approximate
partition boundaries. By default, we use a sample size of 10 b.

Generating Forecasts. To forecast inserts for a segment, we use its
boundaries to query the “frozen” histogram and sum the counters
of intersecting partitions. For partitions that partially overlap the
query range, we use linear interpolation. We then forecast inserts
for the f epochs following the epoch of the “frozen” histogram.

Utilizing Forecasts. During reorganization, we use insert fore-
casting to determine the empty space in each page, by setting the
goal parameter. Using a pessimistic estimate of the number of keys
in the current segment, together with the insert forecast, we can
determine how many pages will be needed. We then set the goal so
as to distribute the current records evenly across these pages.

Interaction with Page Grouping. Both insert forecasting and
page grouping affect the physical page layout during reorganiza-
tions. The forecasted inserts for a particular segment influence the
goal parameter, which in turn affects the epsilon parameter, as per
Section 3.2, since the maximum number of records per page must
not be exceeded. Finally, both goal and epsilon impact the linear
model construction, by influencing the transition to Phase III and
the post segment size (see Section 4.5).

4.7 Crash Consistency & Recovery

Crash Consistency. The on-disk information should enable Tree-
Line to recover to a consistent state after a crash. Data modification
operations only touch a single SSD page, for which the SSD guar-
antees atomic writes. However, extra care is needed for the two
processes that edit multiple pages at a time: overflow page allo-
cation and reorganization. When allocating an overflow page, we
first write it to disk, before providing the corresponding base page
with the overflow page identifier and writing out the base page
as well. We use Check I below to recover from crashes between

Table 1: Segment (left) and page (right) lock compatibility.

IR|IW | O | OX
IR|Y| Y |Y|N S| X
W | Y| Y |N|N S|Y|N
O|Y| N|N|N X|N|N
OX|N| N |N| N

these two writes. For reorganization, we detect and repair crashes
when only some of the post segments have been written out using
Check II below. In Phase I, a START REORG record is added to the
write-ahead log, including a new globally unique production ID and
a list of the pre segments and their current production IDs. The new
production ID will also be stored on the post segments resulting
from this reorganization. In Phase IV, an END REORG record is
appended to the write-ahead log, with the same production ID.

Recovery. We now present a sketch of recovery based on the above
scheme. We leave the implementation of this sketch for future work.

Recovery aims to rebuild the in-memory index based on the on-
disk data pages. It scans data segments in logical order and inserts
the reference key of each into the in-memory index. Any overflow
pages are deferred to be examined again in the end of the scan, by
which point the corresponding base page should be already indexed.
We then perform Check I: we use the lower bound of each overflow
page to find the correct base page through the in-memory index,
and ensure the base page points to the overflow page.

Before the data page scan, TreeLine also performs Check II: it
checks the write-ahead log for any START REORG records without
an END REORG record with the same production ID. Among such
in-flight reorganizations, there are two cases. If there is at least
one pre segment on disk with a production ID not matching the
one logged in the START REORG message, Phase IV must have
been reached before crashing. We then treat the reorganization as
successful, invalidate any pre segments that still have the produc-
tion IDs logged in the START REORG message, and treat the post
segments as valid when we encounter them during the page scan.

However, all pre segments might still match the production IDs
in the START REORG record. In this case, we deem the reorgani-
zation failed and treat the pre segments as valid during the page
scan, include them in the in-memory index and re-attempt the re-
organization after recovery. At the same time, we identify any post
segments we encounter during the page scan using the production
ID of the START REORG record, and treat them as invalid.

Note that, for each given crash, there could be at most as many
concurrent reorganizations as the number of user threads, providing
an upper bound on the amount of work needed during recovery.

4.8 Thread Synchronization

TreeLine uses two types of locks: segment locks and page locks.
Table 1 provides their compatibility matrices. Segment locks can
be acquired in Intention Read, Intention Write, reOrganization
or reOrganization eXclusive mode. Page locks can be acquired in
Shared or eXclusive mode. One page lock protects both a base page
and its overflow page. We will now explain our locking strategy.

Lookups. TreeLine first locks the appropriate segment in IR mode.
It then locks the appropriate page in S mode and performs the
lookup. The page lock is then released before the segment lock.

105

Data Modifications. TreeLine first locks the appropriate segment
in IW mode. It then locks the appropriate page in X mode and
performs the operation. The page lock is then released before the
segment lock. If reorganization is triggered, locks are released and
TreeLine follows the reorganization path below.

Range Scans. TreeLine first locks the appropriate segment in IR
mode. It then locks each page in the segment in S mode as the
scan proceeds, releasing each page lock as soon as the page has
been scanned. If the segment is exhausted and the scan is not
finished, TreeLine uses lock coupling to avoid a reorganization
from intervening: it firsts acquires an IR lock on the next segment
before releasing the IR lock on the previous one.

Reorganization. After Phase I, reorganization locks all the pre
segments in key order in O mode. This mode lets reads and scans
still use the pre segments while the post segments are being created.
At the start of Phase IV, TreeLine upgrades to an OX lock, implicitly
also waiting for anyone accessing the pre segments to finish their
reads. Once the in-memory index has been updated and at least
one pre segment has been invalidated, the OX lock is released.

5 EVALUATION

In this work, we present three techniques that mitigate the tradi-
tional drawbacks of update-in-place designs, which we implement
in TreeLine. As a result, the goal of our evaluation is to examine the
effectiveness of these techniques in comparison to (i) LSM-based
systems, and (ii) other update-in-place systems. To that end, we
aim to answer the following questions:

e How does TreeLine compare against RocksDB [48] (an LSM-
based key-value store) and LeanStore [36] (a state-of-the-art
update-in-place key-value store) on throughput and the amount
of physical I/O performed? (Section 5.2)

e How do the record cache and page grouping contribute to Tree-
Line’s overall performance? (Section 5.3)

e How does the choice of the page grouping parameters (goal and
epsilon) affect the grouping “effectiveness”? (Section 5.4)

o How effective is insert forecasting? (Section 5.5)

We find that TreeLine outperforms RocksDB by 2.20x and LeanStore
by 2.07x on average across our 1024 byte YCSB point workloads.
With 16 request threads, TreeLine outperforms RocksDB and Lean-
Store by 2.50x and 2.80X respectively on uniformly distributed
scan-heavy workloads (YCSB E), averaged across three datasets.

5.1 Experimental Setup

Hardware and Environment. We use a machine equipped with
a 20-core 2.10 GHz Intel Xeon Gold 6230 CPU [32] and 128 GiB
of memory, running Linux 5.12.5. We use a 1 TB Intel DC P4510
NVMe SSD [31] and the ext4 file system for all our experiments.

Baselines. We compare TreeLine against RocksDB [48] (an LSM
key-value store) and LeanStore [36] (a state-of-the-art update-in-
place key-value store). We use RocksDB version 6.14.6 [46] and
LeanStore at commit d3d8314 [2]. For a fair comparison, we dis-
able block compression and SSTable checksums in RocksDB, since
these features are not present in TreeLine. We configure RocksDB
and LeanStore to use 4 KiB blocks to match TreeLine’s pages. On
RocksDB, we enable both Bloom filters and prefix Bloom filters [49]

w

g 1500 {—@— TreelLine 1500 1500 1500 1500

= RocksDB

é_ 1000 —l- LeanStore 1000 1000 1000 1000

E] 500 500 500 500

o

'_S 12 4 8 16 012 4 8 16 012 4 8 16 012 4 8 16 012 4 8 16
Threads Threads Threads Threads Threads

(a) A (64 B) (b) B (64 B) (c) C (64 B) (d) D (64 B) (e) F (64 B)

w

g 1500 1500 1500 1500 1500

X

g 1000 1000 1000 1000 1000

Q

'§» 500 500 500 500 500

o

'_S 012 4 8 16 012 4 8 16 012 4 8 16 012 4 8 16 012 4 8 16
Threads Threads Threads Threads Threads

(f) A (1024 B) (g) B (1024 B) (h) C (1024 B) (i) D (1024 B) () F (1024 B)

Figure 5: Zipfian YCSB point workloads on the Amazon dataset. The first (second) row shows results for 64 (1024) byte records.

Table 2: A description of the YCSB workloads.

Workload Description

50% Read, 50% Update

95% Read, 5% Update

100% Read

95% Read Latest, 5% Insert

95% Range Scan (average length 50, maximum length 100), 5% Insert
50% Read-Modify-Write, 50% Read

TEHOO® >

Table 3: Our Amazon dataset system configurations.

Config. System Setup Details

64B TreeLine 44/5 pg. grp. goal/epsilon, 683 MiB rec. cache
RocksDB 107 MiB memtables (X2), 469 MiB block cache
LeanStore 683 MiB buffer pool

1024 B TreeLine 2/0.5 pg. grp. goal/epsilon, 10903 MiB rec. cache
RocksDB 1715 MiB memtables (X2), 7473 MiB block cache
LeanStore 10903 MiB buffer pool

with 10 bits and a prefix length of 3 respectively (the recommended
defaults). We also disable write-ahead logging on all three sys-
tems, to distinguish the performance of TreeLine, RocksDB, and
LeanStore on write-heavy workloads from the logging overhead.

Workloads. We use our own C++ implementation of the Yahoo!
Cloud Serving Benchmark (YCSB) [17] to perform our evaluation.
We provide a description of the YCSB workloads in Table 2.

System Configurations. We use 64 byte records (64 B) (8 byte
key, 56 byte value) and 1024 byte records (1024 B) (8 byte key,
1016 byte value). Depending on the dataset, we give each system
enough memory to store up to 33% of the dataset in memory. Table 3
describes how this memory is used for the Amazon dataset; it
also lists the page grouping parameters used. We give TreeLine,
RocksDB, and LeanStore access to 4 background threads.

Datasets. We evaluate against three datasets (one synthetic, two
real-world): (i) a synthetic dataset of uniformly distributed keys (20
million keys), (ii) an Amazon reviews dataset (33 million keys), and
(iii) an Open Street Maps (OSM) dataset (23 million keys) [18]. We
plot their key cumulative distribution functions (CDFs) in Figure 6.

106

. 1.01 1.01 1.01
%)
o
[/
g 0.51 0.51 0.5
: |/
0.0 ¢ , 0.0+ , 0.0 ,
0 1 0 1 1
Norm. Key Norm. Key Norm. Key
(a) Amazon (b) OSM (c) Synthetic

Figure 6: Our datasets’ key CDFs.

Checkpoints. To ensure consistent results, we start each experi-
ment from the same database checkpoint, created for each system
as follows. We first load each database with the dataset being tested.
Then, we run a 40 million uniform update workload. The purpose of
this update workload is to add levels to RocksDB’s LSM tree to more
closely resemble an LSM that has “been used”. Finally, we persist
the databases; their on-disk images become the “checkpoints” we
use. We run each experiment against a copy of these checkpoints.

Metrics. We primarily measure throughput during the workload
and report it as thousands of requests processed per second (kreq/s).
Using iostat [26], we also measure the amount of physical I/O and
the physical I/O throughput observed by the operating system. We
report TreeLine’s throughput relative to RocksDB and LeanStore
using speedups. We compute averages by taking a geometric mean.

5.2 End-to-End Performance

5.2.1 Skewed Point Workloads. We first run the YCSB point work-
loads with Zipfian-distributed requests (6 = 0.99). Figure 5 shows
TreeLine’s, RocksDB’s, and LeanStore’s throughputs. Since our con-
clusions are similar across datasets, we only show and discuss our
results for the Amazon dataset as it is the largest (33 million records).
TreeLine outperforms RocksDB (LeanStore) by 1.62% (2.81x) and
2.99% (1.53x) on average for the 64 B and 1024 B configurations
respectively. From these results, we draw three conclusions.

TreeLine outperforms RocksDB and LeanStore on skewed
update-heavy workloads because it (i) leverages its record

o
§ 100,~®— TreeLine /. 100 100 1 1 1
% RocksDB 10 10 10
2 50 —fl- LeanStore 50 5o
B 5 5 5
3
Q
'_S o12 4 8 16 0124 8 16 0124 8 16 O12 4 8 16 012 4 8 16 o124 8 16
Threads Threads Threads Threads Threads Threads
(a) Amazon 64 B (U) (b) OSM 64 B (U) (c) Synthetic 64 B (U) (d) Amazon 1024 B (U) (e) OSM 1024 B (U) (f) Synthetic 1024 B (U)
g— 15 15 15
g 100 100 100
e 10 10 10
3
Q
£ 50 50 50 5 5 5
=]
Q
'_E o12 4 8 16 0124 16 0124 16 O12 4 16 012 4 8 16 0124 8 16
Threads Threads Threads Threads Threads Threads
(g) Amazon 64 B (Z) (h) OSM 64 B (Z) (i) Synthetic 64 B (Z) (j) Amazon 1024 B (Z) (k) OSM 1024 B (Z) (1) Synthetic 1024 B (Z)

Figure 7: Scan-heavy (YCSB E) workloads on our three datasets for 64 byte records and 1024 byte records. The first (second) row

shows uniformly (Zipfian) distributed request results.

cache to reduce write amplification while also (ii) providing
efficient reads. We observe that on workload A (64 B), TreeLine
writes 3.09 GiB of physical data while RocksDB and LeanStore write
4.27 GiB and 23.1 GiB respectively. TreeLine uses its record cache
to reduce the amount of physical writes it makes to an amount
that is less than that of RocksDB, thereby mitigating its potentially
high write amplification. LeanStore writes significantly more than
TreeLine and RocksDB because it uses a page cache and (i) the YCSB
workloads have key skew (hot records are not necessarily clustered
on the same pages), (ii) the records are small relative to the page
(64 byte records, 4 KiB pages), and (iii) the pages with hot keys do
not all fit in memory. On the same workload, TreeLine reads 12 GiB
of data while RocksDB reads 27 GiB (2.3x more). RocksDB reads
more data than TreeLine because it also runs compaction jobs in
the background. LeanStore reads 42.2 GiB of data (3.5X more than
TreeLine) because record updates require a page read-modify-write.

The reason why TreeLine and RocksDB achieve a higher through-
put on update-heavy workloads, compared to read-only workloads,
is that caching updates allows reads of recent updates to be served
from the cache without I/O. In contrast, for read-only workloads,
caching a record for the first time requires I/O on the critical path.

When TreeLine outperforms RocksDB on read-heavy work-
loads, it is because it performs fewer physical reads. On work-
loads B and C (64 B), TreeLine reads 19 GiB, while RocksDB reads
31.55 GiB and 65.35 GiB respectively (1.6X and 3.5X more). For
1024 B, RocksDB reads 5.4x and 6.8X more data than TreeLine on
workloads B and C respectively. There are two reasons for these
differences in physical reads. First, as described above, RocksDB
launches compaction jobs in the background to merge obsolete
records; this work affects workload B because it contains updates.
Second, RocksDB has SSTables present on multiple levels. Hence, a
point read may need to query multiple SSTables, even with Bloom
filters enabled. In contrast, point reads on TreeLine only ever re-
quire up to two page reads (base and overflow).

TreeLine surpasses LeanStore on the 64 B read-heavy work-
loads because of record caching. By design, reads are efficient

107

Table 4: Read performance statistics on our Amazon uniform
scan-heavy workload (YCSB E) with 16 request threads.

Config. Phys. Reads Phys. Read Thpt. Req. Thpt.
TreeLine 64 B 13.4 GiB 550 MiB/s 100 kreq/s
RocksDB 64 B 31.1 GiB 797 MiB/s 42 kreq/s
LeanStore 64 B 17.0 GiB 581 MiB/s 56 kreq/s
TreeLine 1024 B 75.9 GiB 1079 MiB/s 12 kreq/s
RocksDB 1024 B 147 GiB 958 MiB/s 5.4 kreq/s
LeanStore 1024 B 76.4 GiB 155 MiB/s 1.7 kreg/s

in both TreeLine and LeanStore because they are update-in-place
key-value stores. However, as mentioned previously, the YCSB
workloads exhibit key skew. Key skew limits LeanStore’s buffer
pool’s effectiveness when records are small relative to the page
(e.g., 64 byte records). For example on workload C, LeanStore reads
42.2 GiB of data whereas TreeLine reads 18.8 GiB of data.

5.2.2 Scan-Heavy Workloads. Next, we examine TreeLine’s perfor-
mance on a scan-heavy workload (YCSB E), where page grouping
influences performance. Since the effectiveness of page grouping
depends on the dataset (see Section 5.4), we present results for all
three of our datasets. For RocksDB, we also enable prefix Bloom fil-
ters, which help reduce the number of SSTables read during a scan,
making RocksDB a strong baseline. We otherwise use the same
experimental setup as our skewed point workload experiments.

Figure 7 shows our results for uniform and Zipfian-distributed
scans. With enough parallelism (i.e., 16 request threads), TreeLine
achieves average speedups of 1.74X (2.21X) and 1.88x (2.50X) over
RocksDB for Zipfian (uniformly) distributed requests against the 64
B and 1024 B configurations respectively. When compared against
LeanStore, TreeLine achieves average speedups of 0.91% (1.58x) and
1.86% (2.80x) for Zipfian (uniformly) distributed requests against
the 64 B and 1024 B configurations respectively. LeanStore outper-
forms TreeLine in certain cases due to caching effects, discussed
below. From these results, we draw three key conclusions.

TreeLine’s speedup over RocksDB on the scan-heavy work-
loads comes from reading less data from disk, because of

its update-in-place design. Table 4 lists each system’s (i) physi-
cal reads, (ii) physical read throughput, and (iii) workload request
throughput for a uniform scan-heavy workload on the Amazon
dataset with 16 request threads. The trends are similar across the
other datasets. In both configurations shown in the table, TreeLine
reads at least 1.9% less data from disk than RocksDB. This difference
leads to TreeLine’s throughput advantage despite it having a lower
physical read throughput when scanning 64 byte records.

RocksDB reads more data from disk for two reasons. First, there
may exist SSTables on multiple levels that overlap the scan range.
RocksDB needs to examine all overlapping SSTables (not excluded
by the prefix Bloom filters) to return the correct records. Second,
RocksDB still runs compaction jobs, because the checkpoints we
use contain recent updates (see Section 5.1) and RocksDB always
launches a compaction job after starting up.

TreeLine has a lower physical read throughput than RocksDB
when scanning 64 B records because of its I/O pattern. Although
page grouping enables sequentially reading all the pages in a seg-
ment, its effectiveness ultimately depends on the dataset and record
size (see Section 5.4). Thus, TreeLine’s scans also contain random
reads, whereas RocksDB’s scans translate to long sequential reads.

TreeLine’s scan performance is not significantly affected by
request skew. TreeLine’s throughput advantage over RocksDB
and LeanStore is higher on uniform scan-heavy workloads because
RocksDB’s block cache and LeanStore’s buffer pool become less
effective. TreeLine cannot use its record cache to avoid I/O during
a scan because it only caches individual records; it must always
check the on-disk pages for the records that lie in the scanned
ranges. RocksDB caches blocks and LeanStore caches pages, which
allows them to avoid I/O when a block or page involved in the scan
is already cached in memory. For workloads with long scans that
exceed the cache’s capacity (e.g., Extract-Transform-Loads [10]),
we expect RocksDB’s and LeanStore’s caches to be less effective.

TreeLine’s speedups over LeanStore on the 1024 B configura-
tions are due to page grouping. As shown in Table 4, LeanStore
and TreeLine read a comparable amount of physical data from
disk. However, on the 1024 B configuration, TreeLine achieves a
7% higher physical read throughput, again due to the I/O request
pattern. LeanStore scans require scattered 4 KiB page reads whereas
TreeLine can read longer segments from disk due to page grouping.

5.2.3 Uniform Point Workloads. We also run our point workloads
with a uniform request distribution. TreeLine achieves an aver-
age throughput speedup of 1.45x and 1.32X over RocksDB and
LeanStore respectively on our 64 B and 1024 B configurations. On
read-heavy uniform point workloads (B, C), TreeLine achieves an
average throughput speedup over RocksDB (LeanStore) of 1.36x
(1.11x); on update-heavy uniform point workloads (A, F), TreeLine
has an average speedup over RocksDB (LeanStore) of 1.55X (1.57X).

The conclusions we draw about skewed point workloads in Sec-
tion 5.2.1 hold for uniform point workloads as well, with one ex-
ception. The record cache is not as effective at decreasing write
amplification in uniform update-heavy workloads. Such workloads,
especially when the record size is much smaller than the page size,
are fundamentally challenging for larger-than-memory update-in-
place systems for two reasons. First, write buffering (e.g., with a
cache) has a limited impact on reducing the number of page reads

108

3g

25 100% frerees T R R R T
o0 -

3 g No Page Grouping

o o/ | No Page Grouping,

Ce 50% | (=== \o Record Caching

i

L5

S®©

gg 0%

o A B C D E F

Figure 8: Impact of page grouping and record caching on the
Zipfian YCSB workloads (Amazon dataset, 1024 B configura-
tion, 16 request threads).

and writes in uniform workloads since there is no skew. Second,
updates of a single record require reading and writing a entire page
from disk—leading to high write amplification. TreeLine does not
optimize for uniform update-heavy workloads, since skewed point
workloads are more common in real-world scenarios [10].

5.3 TreeLine Factor Analysis

We study the impact of TreeLine’s record cache and page grouping
with a factor analysis, using the Amazon dataset and 1024 byte
records. We run each of the Zipfian YCSB workloads with 16 request
threads. Figure 8 shows our results, where we successively disable
page grouping and then both page grouping and record caching. We
report each configuration’s throughput relative to that achieved by
the full system. From these results, we draw three key conclusions.

Record caching helps reduce read and write amplification
in the read/update workload. TreeLine’s record cache reduces
the total amount of physical reads (writes) by an average of 3.11 X
(2.60x), leading to an average throughput speedup of 8.7x. The
workloads are highly skewed, so caching hot records reduces the
necessary SSD accesses, improving throughput.

Page grouping does not negatively affect the point work-
loads. Even after enabling page grouping, TreeLine maintains its
throughput on the point workloads A-D and F. Recall that Tree-
Line’s in-memory index only stores the (i) key boundaries, (ii) the
physical locations of the beginning of each segment (which can
consist of multiple pages), and (iii) linear models that map records
to pages within segments. Yet, TreeLine does not need to read in
an entire multi-page segment to access a single record for point
reads and updates; TreeLine can still operate at page granularity
by using the linear model to find the page for a given record.

Page grouping accelerates scans by enabling longer physi-
cally contiguous reads. On the scan-heavy workload E, TreeLine’s
throughput increases by 1.87x once page grouping is enabled de-
spite there being no significant change in the amount of physical
reads. The reason for this improvement is that TreeLine achieves
an increased physical read throughput by 1.87X, by making more
sequential reads. Without page grouping, scans consist of scattered
4 KiB reads, which leads to lower physical read throughput.

5.4 Page Grouping Effectiveness

TreeLine uses page grouping (i) to boost scan performance and
(ii) to shrink the in-memory index. In this section we (i) study how
the dataset, goal, and epsilon affect page grouping; and (ii) analyze
page grouping effectiveness in our configurations from Section 5.2.

100

e 100 {=—rrm——_
S ..
& 801
w 501/ K — Amazon .
o N 0oSM .
@ i .,
w ol .-. + Synthetic 60 o
10 20 20 40 60
Epsilon Goal
(a) Goal = 44 (b) Epsilon = 5

Figure 9: The percentage of pages in multi-page segments as
we fix “goal” and vary “epsilon” and vice-versa.

5.4.1 Page Grouping Sensitivity Study. We measure segment effi-
ciency (the percentage of pages that are in multi-page segments)
across our datasets; a higher segment efficiency is better. In Fig-
ure 9a, we fix goal and vary epsilon. In Figure 9b, we fix epsilon
and vary goal. From these results, we draw three conclusions.

Increasing epsilon improves segment efficiency. Epsilon rep-
resents the error tolerance when building a page grouping linear
model. Having a larger error tolerance translates to being able to fit
a model through more records. This tolerance translates to a greater
likelihood of creating a multi-page segment (for a fixed goal value).

Increasing goal decreases segment efficiency. Goal is the de-
sired number of records to place on a page. Recall that page group-
ing uses fixed segment sizes (1, 2, 4, 8, and 16 pages). Thus, choosing
a small goal decreases the maximum number of records that can be
placed onto a segment (for a fixed epsilon). This is why Figure 9b
shows a decreasing trend as goal increases: fitting a model through
more records with a fixed epsilon becomes more difficult.

The dataset affects segment efficiency. Page grouping essen-
tially fits linear models over a dataset’s CDF. Intuitively, for a fixed
epsilon, one needs fewer linear models for a CDF with many “linear
regions”. The Amazon and OSM datasets enable higher segment
efficiencies, because their CDFs have many “linear regions” (see
Figure 6). Interestingly, our uniform synthetic dataset can produce
a lower efficiency, because its CDF is locally “bumpier”.

5.4.2 Index Entries Reduction. With page grouping, TreeLine only
indexes the boundaries of each segment (and the linear model),
instead of each page boundary. Reducing the number of index
entries has two benefits: (i) we save memory for other uses, and
(ii) index operations are faster because the index is logically smaller.

On our 1024 B (64 B) workloads, page grouping reduces the
number of entries in the index by 3.8x (4.8x%), 4.5X (1.9X), and 1.8X
(1.8%) for the Amazon, OSM, and synthetic datasets respectively.
The reduction depends on the segment distribution; having more
pages in larger segments means that fewer index entries are needed.

5.5 Insert Forecasting

Finally, we evaluate insert forecasting. Among the YCSB workloads,
only D and E perform inserts, and only for 5% of the operations.
To make the impact of insert forecasting more visible, we instead
run a workload consisting of 50% reads/50% inserts. We compare
the performance of TreeLine with insert forecasting enabled with
the performance of TreeLine without insert forecasting, as well

109

w

a_c.)- No Forecasting 100
X Bl Forecasting

5 B Perfect

3 erfec 50
<

=)

=

o

c 0
= 64 B 512 B 64 B 512 B

(a) 1 application thread (b) 8 application threads

Figure 10: The performance of insert forecasting,.

10

Perfect

=@~ Forecasting
No Forecasting

Throughput
(kreq/s)

10* 50000 100000 150000 200000
Epoch length (insert ops)

102

10°

Figure 11: Insert forecasting performance across epoch
lengths. A square marks the epoch length used in Figure 10a.

as with the performance of TreeLine given perfect information
about the future stream of inserts, thus avoiding reorganizations.
The forecasting epoch length is set to 100,000, we use b = 20, 000
histogram partitions and forecast inserts for f = 100 future epochs.

For our experiments we use a dataset of taxi pickups in New
York City, where we have inlined the pickup coordinates into an 8-
byte key using the S2 geometry library [28]. This dataset has three
interesting properties regarding hot keys: (i) they exist (popular
taxi pickup areas), (ii) they are not necessarily co-located in the key
space and (iii) they change over time (e.g., due to the time of day).

As shown in Figure 10, insert forecasting is mainly effective in the
64 B case, closing on average more than half of the gap between no
forecasting and perfect forecasting and reducing reorganizations by
an average of 63% (not plotted). With smaller records, the absolute
number of inserts that a 4 KiB page can accommodate is higher. This
means that insert forecasting can estimate and leave appropriate
free space at a finer granularity, delaying reorganization for longer.
On average, insert forecasting improves the throughput of TreeLine
by 1.22X, reducing reorganizations by an average of 41%.

We also explore the sensitivity of insert forecasting to the epoch
length for the 64 B configuration using 1 application thread, scaling
b to keep it at 20% of the epoch length. As shown in Figure 11,
very short epochs cannot justify their overhead, but even an epoch
length of 10,000, 10% of the value in Figure 10a, delivers perfor-
mance benefits. Thus, although the epoch length affects perfor-
mance, coarse-grained tuning is enough to see improvements.

6 DISCUSSION
TreeLine bridges update-in-place and LSM-tree designs. Still, it has
some limitations, discussed below alongside possible solutions.

Variable-Sized Records. Our current design assumes fixed-sized
records. While the data pages support variable-sized records, we
train linear models on record positions and divide by the maximum

records per page to map records to pages. Instead, we could train
the model using record offsets. By setting epsilon accordingly, the
model would still determine the correct base page for a key.

Non-Integer Keys. To handle string keys, we could follow a similar
approach as prior work [58]: recursively build a radix tree of spline
models with a node per 8-byte key prefix, until the model satisfies
a pre-determined maximum prediction error. A similar approach is
taken by the Adaptive Radix Tree (ART) [37], recursing until two
keys can be differentiated, without storing the whole strings.

More Sophisticated Forecasts. To forecast inserts, we project the
insert distribution of the previous epoch. This approach works well
when distribution shifts happen smoothly, as is the case in the taxi
dataset [55]. For more sophisticated insert distributions found in
production workloads [10], we could use a timeseries forecasting
module like Prophet [59]. We found Prophet efficient enough to
perform the forecasting in the background, but its forecasts were
comparable to those of our approach for the taxi dataset.

Pure Write Workloads. TreeLine currently cannot compete with
RocksDB on pure write workloads. Even with perfect forecasting,
inserts in TreeLine still suffer from its update-in-place paradigm,
while RocksDB can simply write out its memtable without a prior
read. To match RocksDB on pure write workloads, we could use
a hybrid approach that stages inserts during burst periods in a
log-structured file which is gradually merged during idle periods.

7 RELATED WORK

LSM Trees. LevelDB [27] pioneered the partitioned leveling merge
policy [43], in which each level (except L0) contains multiple range-
partitioned fixed-size files to improve concurrency. Building on
LevelDB, RocksDB [48] provides more compaction policies and a
merge operation to reduce contention with user requests [43]. Wis-
cKey [42] extends LevelDB by storing values in a separate values
log. This design reduces write amplification by avoiding unnec-
essarily copying values during the merge. TreeLine, in contrast,
only merges a page with its one overflow page. It is hence unclear
whether introducing key-value separation in TreeLine would yield
benefits, considering the added cost of garbage collection.
Modern LSM-trees use Bloom filters to reduce disk accesses.
Dayan et al. [19] show how to best allocate bits to each filter to
improve the space-accuracy trade off. SimDB [57] and Chucky [21]
instead use a multi-level Cuckoo filter, improving pruning power.

Update-in-Place Designs. We are not first to revisit update-in-
place designs for modern hardware. LeanStore [36] bridges the
gap between in-memory and disk-based systems through a low
overhead buffer manager. While efficient when the working set fits
into memory, it is not optimized for the out-of-memory case, which
we target. FASTER [11, 12] is another key-value store with in-place
updates. Compared to TreeLine, FASTER is optimized for point
accesses and does not support efficient range scans. KVell [39] is a
key-value store with a similar design to ours. It uses an in-memory
B+ tree to index the unsorted on-disk keys. Its drawbacks are that (i)
it needs to index all keys (which can have a high memory overhead),
and (ii) scans incur random I/O. In contrast, with page grouping,
TreeLine only indexes segment boundaries (i.e., fewer index entries)
and reads full segments sequentially when running range scans.

110

Learned Indexing. Learned indexes [34, 35, 44] build a model
over sorted data to predict the position of a key. Abu-Libdeh et
al. [1] integrate learned indexes into Bigtable [13] and show that
the index’s reduced size improves cache efficiency [1]. Like Tree-
Line’s page grouping, FITing-Tree [25] also fits a piece-wise linear
model over its data. However, FITing-Tree (i) is an in-memory data
structure, and (ii) uses its error bound to bound lookup time. In
contrast, TreeLine is a disk-based system and uses its error bound
(epsilon) to control the “fill variation” among pages in a segment.
Bourbon [18] extends WiscKey [42] by replacing the block index
per SSTable with a faster, more compact learned index. The benefits,
however, are limited to this single granularity at which learned in-
dexes are employed. The reorganization process in TreeLine instead
maximizes the usefulness of each linear model, since it creates the
largest possible segment per model, based on the data distribution.

Since both WiscKey and Bourbon are closed source, we cannot
perform an apples-to-apples comparison. Bourbon achieves a 1.61x
speedup over WiscKey on the Amazon dataset for a 100% read
workload [18]. Assuming Bourbon achieves a similar speedup when
integrated into RocksDB, TreeLine’s 2.4X and 5x speedup (64 B vs.
1024 B records) over RocksDB on that dataset would be competitive.

Instance Optimization. There have been limited proposals for
instance-optimized storage systems. Idreos et al. [20, 30] aim to
instance-optimize (or automatically assemble) an entire storage
system based on data and workload characteristics. Cosine [14] is a
similar proposal targeted at the cloud. Unlike TreeLine, Cosine does
not aim to improve update-in-place designs but rather assembles
hybrid solutions from existing designs, including update-in-place.

8 CONCLUSION

We present TreeLine: a new update-in-place persistent key-value
store for NVMe SSDs. TreeLine captures the read benefits of a classi-
cal disk-based B+ tree and mitigates its drawbacks to be competitive
against LSMs on write-heavy workloads. TreeLine uses three com-
plementary techniques: (A) record caching to reduce read/write
amplification in skewed workloads, (B) page grouping to execute
scans as sequential reads, and (C) insert forecasting to reduce the I/O
cost of “making space” for new records. We evaluate TreeLine on
YCSB using synthetic and real world datasets. On YCSB, TreeLine
outperforms RocksDB and LeanStore by 2.20x and 2.07X respec-
tively on average across the point workloads, and by up to 10.95%
and 7.52x overall. We have open-sourced TreeLine [60].

ACKNOWLEDGMENTS

This research is supported by Google, Intel, and Microsoft as part
of DSAIL at MIT, and NSF IIS 1900933. Geoffrey X. Yu was partially
supported by an NSERC PGS D. This research was also sponsored
by the United States Air Force Research Laboratory and the United
States Air Force Artificial Intelligence Accelerator and was accom-
plished under Cooperative Agreement Number FA8750-19-2-1000.
The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the United States
Air Force or the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

REFERENCES

(1]

(2]

(3]
(4]

8

=

=

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Hussam Abu-Libdeh, Deniz Altinbiiken, Alex Beutel, Ed H. Chi, Lyric Doshi, Tim
Kraska, Xiaozhou, Li, Andy Ly, and Christopher Olston. 2020. Learned Indexes
for a Google-scale Disk-based Database. arXiv:2012.12501 [cs.DB]

Adnan Alhomssi and Viktor Leis. 2022. LeanStore Commit. Re-
trieved September 15, 2022 from https://github.com/leanstore/leanstore/commit/
d3d83143ee74c54¢901fe5431512a46965377f4e

Amazon Web Services, Inc. 2022. Amazon EC2 C5 Instances. Retrieved September
15, 2022 from https://aws.amazon.com/ec2/instance-types/c5/

Apache Software Foundation. 2008. Apache HBase. Retrieved September 15,
2022 from https://hbase.apache.org

Jens Axboe. 2022. fio. Retrieved September 15, 2022 from https://fio.readthedocs.
io/en/latest/

Timo Bingmann. 2018. TLX: Collection of Sophisticated C++ Data Structures,
Algorithms, and Miscellaneous Helpers. Retrieved September 15, 2022 from
https://panthema.net/tlx

Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (jul 1970), 422-426. https://doi.org/10.1145/362686.
362692

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-
mani. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In Pro-
ceedings of the 2013 USENIX Annual Technical Conference (USENIX ATC’13). https:
//www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
Mark Callaghan. 2018. Name that compaction algorithm. Retrieved September
15, 2022 from https://smalldatum.blogspot.com/2018/08/name- that-compaction-
algorithm.html

Zhicao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020. Characteriz-
ing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook.
In Proceedings of the 18th USENIX Conference on File and Storage Technologies
(FAST’20).

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value Store
with In-Place Updates. In Proceedings of the 2018 International Conference on
Management of Data (SIGMOD’18). 275-290. https://doi.org/10.1145/3183713.
3196898

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: An Embedded Concurrent Key-
Value Store for State Management. Proc. VLDB Endow. 11, 12 (2018), 1930-1933.
https://doi.org/10.14778/3229863.3236227

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006.
Bigtable: A Distributed Storage System for Structured Data. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation
(0SDI'06).

Subarna Chatterjee, Meena Jagadeesan, Wilson Qin, and Stratos Idreos. 2021.
Cosine: A Cloud-Cost Optimized Self-Designing Key-Value Storage Engine. Proc.
VLDB Endow. 15, 1 (2021), 112-126. http://www.vldb.org/pvldb/vol15/p112-
chatterjee.pdf

Feng Chen, Rubao Lee, and Xiaodong Zhang. 2011. Essential roles of exploiting
internal parallelism of flash memory based solid state drives in high-speed data
processing. In Proceedings of the 2011 IEEE 17th International Symposium on High
Performance Computer Architecture (HPCA’11). https://doi.org/10.1109/HPCA.
2011.5749735

Douglas Comer. 1979. The Ubiquitous B-Tree. ACM Computing Surveys (CSUR)
11, 2 (1979), 121-137

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC’10). https://doi.org/10.1145/
1807128.1807152

Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2020. From WiscKey
to Bourbon: A Learned Index for Log-Structured Merge Trees. In Proceedings of
the 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI'20). USENIX Association, 155-171. https://www.usenix.org/conference/
0sdi20/presentation/dai

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal
Navigable Key-Value Store. In Proceedings of the 2017 International Conference
on Management of Data (SIGMOD’17). ACM, 79-94. https://doi.org/10.1145/
3035918.3064054

Niv Dayan and Stratos Idreos. 2019. The Log-Structured Merge-Bush & the Wacky
Continuum. In Proceedings of the 2019 International Conference on Management
of Data (SIGMOD’19). ACM, 449-466. https://doi.org/10.1145/3299869.3319903
Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for LSM-
Tree. In Proceedings of the 2021 International Conference on Management of Data
(SIGMOD’21). ACM, 365-378. https://doi.org/10.1145/3448016.3457273

111

[22

[23

[24]

™
2

[26

[27]
(28]

[29]

@
=

(31]

(32

[33

&
=

[35

(36]

[37]

[38

[39

[40

Peter C. Dillinger and Stefan Walzer. 2021. Ribbon filter: practically smaller
than Bloom and Xor. CoRR abs/2103.02515 (2021). arXiv:2103.02515 https:
//arxiv.org/abs/2103.02515

Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
and et al. 2020. ALEX: An Updatable Adaptive Learned Index. Proceedings of
the 2020 International Conference on Management of Data (SIGMOD’20) (2020).
https://doi.org/10.1145/3318464.3389711

Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. Proc. VLDB Endow.
13, 8 (2020), 1162-1175. https://doi.org/10.14778/3389133.3389135

Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim
Kraska. 2019. FITing-Tree: A Data-Aware Index Structure. In Proceedings of
the 2019 International Conference on Management of Data (SIGMOD’19). https:
//doi.org/10.1145/3299869.3319860
Sebastien Godard. 1999. iostat.
//github.com/sysstat/sysstat
Google, Inc. 2011. LevelDB. Retrieved September 15, 2022 from https://github.
com/google/leveldb

Google, Inc. 2022. S2 Geometry. Retrieved September 15, 2022 from https:
//github.com/google/s2geometry

Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2017. The Unwritten Contract of Solid State Drives. In Proceedings
of the Twelfth European Conference on Computer Systems (EuroSys’17). https:
//doi.org/10.1145/3064176.3064187

Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew
Ross, James Lennon, Varun Jain, Harshita Gupta, David Li, and Zichen Zhu. 2019.
Design Continuums and the Path Toward Self-Designing Key-Value Stores that
Know and Learn. In Proceedings of the 9th Biennial Conference on Innovative
Data Systems Research (CIDR’19). http://cidrdb.org/cidr2019/papers/p143-idreos-
cidr19.pdf

Intel Corporation. 2017. Intel DC P4510. Retrieved September 15, 2022
from https://ark.intel.com/content/www/us/en/ark/products/122573/intel-ssd-
dc-p4510-series- 1-0tb-2-5in-pcie-3- 1-x4-3d2- tlc.html

Intel Corporation. 2019. Intel Xeon Gold 6230 CPU. Retrieved September 15, 2022
from https://ark.intel.com/content/www/us/en/ark/products/192437/intel-xeon-
gold-6230-processor-27-5m-cache-2-10-ghz.html

Intel Corporation. 2021. Intel Optane Technology. Retrieved December 15, 2021
from https://www.intel.ca/content/www/ca/en/architecture-and-technology/
intel-optane-technology.html

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2019. SOSD: A Benchmark for Learned
Indexes. NeurIPS Workshop on Machine Learning for Systems (2019).

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The
Case for Learned Index Structures. In Proceedings of the 2018 International Con-
ference on Management of Data (SIGMOD’18). https://doi.org/10.1145/3183713.
3196909

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management Beyond Main Memory. In Proceedings
of the 34th IEEE International Conference on Data Engineering (ICDE’18). IEEE
Computer Society, 185-196. https://doi.org/10.1109/ICDE.2018.00026

Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The Adaptive Radix
Tree: ARTful Indexing for Main-Memory Databases. In Proceedings of the 29th
IEEE International Conference on Data Engineering (ICDE’13). IEEE Computer
Society, 38-49. https://doi.org/10.1109/ICDE.2013.6544812

Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016.
The ART of Practical Synchronization. In Proceedings of the 12th International
Workshop on Data Management on New Hardware (DaMoN’16). https://doi.org/
10.1145/2933349.2933352

Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell:
the Design and Implementation of a Fast Persistent Key-Value Store. In Proceed-
ings of the 27th ACM Symposium on Operating Systems Principles (SOSP’19). ACM,
447-461. https://doi.org/10.1145/3341301.3359628

Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2020. KVell+:
Snapshot Isolation without Snapshots. In Proceedings of the 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI'20). USENIX
Association. https://www.usenix.org/conference/osdi20/presentation/lepers
Kim-Hung Li. 1994. Reservoir-sampling algorithms of time complexity
O(n(1+log(N/n))). ACM Transactions on Mathematical Software (TOMS) 20, 4
(1994), 481-493.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2016. WiscKey: Separating Keys from Values
in SSD-conscious Storage. In Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST’16). USENIX Association, 133-148. https://www.
usenix.org/conference/fast16/technical-sessions/presentation/lu

Chen Luo and Michael J. Carey. 2019. LSM-based storage techniques: a survey.
The VLDB Journal 29, 1 (Jul 2019), 393-418. https://doi.org/10.1007/s00778-019-
00555-y

Retrieved September 15, 2022 from https:

https://arxiv.org/abs/2012.12501
https://github.com/leanstore/leanstore/commit/d3d83143ee74c54c901fe5431512a46965377f4e
https://github.com/leanstore/leanstore/commit/d3d83143ee74c54c901fe5431512a46965377f4e
https://aws.amazon.com/ec2/instance-types/c5/
https://hbase.apache.org
https://fio.readthedocs.io/en/latest/
https://fio.readthedocs.io/en/latest/
https://panthema.net/tlx
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://smalldatum.blogspot.com/2018/08/name-that-compaction-algorithm.html
https://smalldatum.blogspot.com/2018/08/name-that-compaction-algorithm.html
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.14778/3229863.3236227
http://www.vldb.org/pvldb/vol15/p112-chatterjee.pdf
http://www.vldb.org/pvldb/vol15/p112-chatterjee.pdf
https://doi.org/10.1109/HPCA.2011.5749735
https://doi.org/10.1109/HPCA.2011.5749735
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://www.usenix.org/conference/osdi20/presentation/dai
https://www.usenix.org/conference/osdi20/presentation/dai
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3299869.3319903
https://doi.org/10.1145/3448016.3457273
https://arxiv.org/abs/2103.02515
https://arxiv.org/abs/2103.02515
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3299869.3319860
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/google/s2geometry
https://github.com/google/s2geometry
https://doi.org/10.1145/3064176.3064187
https://doi.org/10.1145/3064176.3064187
http://cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
https://ark.intel.com/content/www/us/en/ark/products/122573/intel-ssd-dc-p4510-series-1-0tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/122573/intel-ssd-dc-p4510-series-1-0tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/192437/intel-xeon-gold-6230-processor-27-5m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192437/intel-xeon-gold-6230-processor-27-5m-cache-2-10-ghz.html
https://www.intel.ca/content/www/ca/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.ca/content/www/ca/en/architecture-and-technology/intel-optane-technology.html
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1109/ICDE.2018.00026
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/2933349.2933352
https://doi.org/10.1145/2933349.2933352
https://doi.org/10.1145/3341301.3359628
https://www.usenix.org/conference/osdi20/presentation/lepers
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/s00778-019-00555-y

[44]

[45]

[46]
[47]
[48]
[49]
[50]
[51]

[52]

[53]

Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Benchmarking Learned
Indexes. Proc. VLDB Endow. 14, 1 (2020), 1-13.

Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya
Gunasekar, Jimmy Lu, Daniel S. Berger, Nathan Beckmann, and Gregory R.
Ganger. 2021. Kangaroo: Caching Billions of Tiny Objects on Flash. In Pro-
ceedings of the 28th ACM Symposium on Operating Systems Principles (SOSP’21).
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.
1145/3477132.3483568

Meta Platforms, Inc. 2020. RocksDB v6.14.6. Retrieved September 15, 2022 from
https://github.com/facebook/rocksdb/releases/tag/v6.14.6

Meta Platforms, Inc. 2021. RocksDB Tuning Guide. Retrieved September 15, 2022
from https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

Meta Platforms, Inc. 2022. RocksDB. Retrieved September 15, 2022 from https:
//rocksdb.org

Meta Platforms, Inc. 2022. RocksDB Prefix Seek. Retrieved September 15, 2022
from https://github.com/facebook/rocksdb/wiki/Prefix-Seek

Meta Platforms, Inc. 2022. Universal Compaction. Retrieved September 15, 2022
from https://github.com/facebook/rocksdb/wiki/Universal-Compaction
MongoDB, Inc. 2008. WiredTiger. Retrieved September 15, 2022 from https:
//source.wiredtiger.com/

Michael A Olson, Keith Bostic, and Margo Seltzer. 1999. Berkeley DB. In Pro-
ceedings of the 1999 USENIX Annual Technical Conference (USENIX ATC °99).
183-191.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351-385.

112

(54

[55]

[56

[58

[59

=
=

Joseph O’Rourke. 1981. An On-Line Algorithm for Fitting Straight Lines Between
Data Ranges. Commun. ACM 24, 9 (September 1981), 574-578. https://doi.org/
10.1145/358746.358758

Varun Pandey, Andreas Kipf, Dimitri Vorona, Tobias Miihlbauer, Thomas Neu-
mann, and Alfons Kemper. 2016. High-Performance Geospatial Analytics in
HyPerSpace. In Proceedings of the 2016 International Conference on Management
of Data (SIGMOD’16). ACM, 2145-2148. https://doi.org/10.1145/2882903.2899412
Tarikul Islam Papon and Manos Athanassoulis. 2021. A Parametric I/O Model
for Modern Storage Devices. In Proceedings of the 17th International Workshop
on Data Management on New Hardware (DaMoN’21). ACM, 2:1-2:11. https:
//doi.org/10.1145/3465998.3466003

Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A Space-
Efficient Key-Value Storage Engine For Semi-Sorted Data. Proc. VLDB Endow. 10,
13 (2017), 2037-2048. https://doi.org/10.14778/3151106.3151108

Benjamin Spector, Andreas Kipf, Kapil Vaidya, Chi Wang, Umar Farooq Minhas,
and Tim Kraska. 2021. Bounding the Last Mile: Efficient Learned String Indexing.
3rd International Workshop on Applied Al for Database Systems and Applications
(2021).

Sean J. Taylor and Benjamin Letham. 2017. Forecasting at Scale. Peer Prepr. 5
(2017), €3190. https://doi.org/10.7287/peerj.preprints.3190v1

Geoffrey X. Yu, Markos Markakis, Andreas Kipf, Per-Ake Larson, Umar Farooq
Minhas, and Tim Kraska. 2022. TreeLine open-source implementation. Retrieved
September 15, 2022 from https://github.com/mitdbg/treeline The first three
authors contributed equally.

https://doi.org/10.1145/3477132.3483568
https://doi.org/10.1145/3477132.3483568
https://github.com/facebook/rocksdb/releases/tag/v6.14.6
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://rocksdb.org
https://rocksdb.org
https://github.com/facebook/rocksdb/wiki/Prefix-Seek
https://github.com/facebook/rocksdb/wiki/Universal-Compaction
https://source.wiredtiger.com/
https://source.wiredtiger.com/
https://doi.org/10.1145/358746.358758
https://doi.org/10.1145/358746.358758
https://doi.org/10.1145/2882903.2899412
https://doi.org/10.1145/3465998.3466003
https://doi.org/10.1145/3465998.3466003
https://doi.org/10.14778/3151106.3151108
https://doi.org/10.7287/peerj.preprints.3190v1
https://github.com/mitdbg/treeline

	Abstract
	1 Introduction
	2 Why Revisit Update-in-Place Designs?
	3 TreeLine: Key Ideas
	3.1 Record Caching (Key Idea A)
	3.2 Page Grouping (Key Idea B)
	3.3 Insert Forecasting (Key Idea C)

	4 TreeLine: Implementation Details
	4.1 Supported Operations
	4.2 Record Cache (Key Idea A)
	4.3 In-Memory Index
	4.4 Pages and Segments
	4.5 Supporting a Growing Database (Key Idea B)
	4.6 Insert Forecasting (Key Idea C)
	4.7 Crash Consistency & Recovery
	4.8 Thread Synchronization

	5 Evaluation
	5.1 Experimental Setup
	5.2 End-to-End Performance
	5.3 TreeLine Factor Analysis
	5.4 Page Grouping Effectiveness
	5.5 Insert Forecasting

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

